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Chapter 12

Dirac quantization

This Chapter is devoted to the Dirac definition of the geometric quantization of
classical mechanical systems. In Sec. 12.1 we recall the notion of classical systems
from Hamiltonian mechanics. The geometric quantization of such systems is defined
in Sec. 12.2.

12.1 Classical systems

We start from the definition of a classical (mechanical) system — an object to be
quantized. A classical (mechanical) system is given by a pair (M,A), consisting of
the phase space M of the system and the algebra of observables (Hamiltonians) A.

12.1.1 Phase spaces

Mathematically, the phase manifold M is a smooth symplectic manifold of an even
dimension 2n, provided with a symplectic 2-form ω. Locally, it is diffeomorphic
(and, in fact, symplectomorphic) to the standard model M0 := (R2n, ω0), where ω0

is the standard symplectic form on R2n. In the conventional coordinates (pi, qi),
i = 1, . . . , n, on R2n this form is given by the expression

ω0 =
n∑
i=1

dpi ∧ dqi .

The corresponding local coordinates (pi, qi), i = 1, . . . , n, on M , in which the sym-
plectic form ω takes on the above standard form, are called canonical . The coordi-
nates qi are interpreted as physical ”coordinates”, while pi correspond to physical
”momenta”.

The standard examples of phase spaces, apart from the standard model M0 =
(R2n, ω0), are given by the cotangent bundles and coadjoint orbits of Lie groups.

Example 30 (cotangent bundles). Denote by M the cotangent bundle T ∗N of a
smooth n-dimensional manifold N , called the configuration space. Local canonical
coordinates (pi, qi) on M have the following meaning: q := (q1, . . . , qn) are local co-
ordinates on N , and p := (p1, . . . , pn) are coordinates in the fibre TqN . A symplectic
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2-form ω, given in the introduced local coordinates by the standard formula

ω =
n∑
i=1

dpi ∧ dqi ,

is a correctly defined (global) 2-form on M , as well as a 1-form θ, given in local
coordinates by the expression

θ =
n∑
i=1

pidqi .

It follows that ω = dθ, that is ω in this case is exact. To show that θ is a correctly
defined (global) 1-form, we note that it can be also defined in an invariant way.
Namely, for any p ∈ T ∗

qN and any tangent vector ξ ∈ T(p,q)(T
∗N) it can be given by

θ(ξ) = p(π∗ξ) ,

where π∗ : T (T ∗N)→ TN is the map, tangent to the projection π : T ∗N → N .

Example 31 (coadjoint orbits). Consider the coadjoint representation of a Lie
group G on the dual space g∗ to the Lie algebra g of G. It is given by the formula

K : G −→ End g∗ , g 7−→
(
Ad g−1

)∗
.

The orbits of this action (when they are smooth) are symplectic manifolds with
the symplectic structure, given by the Kirillov form, defined in the following way.
Denote by ξ∗ the vector field on g∗, generated by ξ ∈ g via the coadjoint action K.
More precisely,

ξ∗(x) = K∗(ξ)x for x ∈ g∗ ,

where K∗ : g → End g∗ denotes the differential of K : G → End g∗. Then the
Kirillov form is defined by the equality

ω(ξ∗(x), η∗(x)) := x
(
[ξ, η]

)
for ξ, η ∈ g, x ∈ g∗ .

The restriction of this 2-form to a smooth K-orbit defines a symplectic structure on
this orbit.

12.1.2 Algebras of observables

An algebra of observables A, mathematically, is an arbitrary Lie subalgebra of the
Poisson Lie algebra C∞(M,R) of smooth real-valued functions on the phase space
M with respect to the Poisson bracket, determined by the symplectic 2-form ω.

Recall the definition of this bracket. Given a smooth function h ∈ C∞(M,R),
denote by Xh the Hamiltonian vector field on M , associated with h. It is determined
by the following relation

dh(ξ) = ω(Xh, ξ) ,

fulfilled for any tangent vector field ξ on M . Then the Poisson bracket {f, g} of two
functions f, g ∈ C∞(M,R) is uniquely defined by the relation

X{f,g} = [Xf , Xg] .
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Example 32 (Heisenberg algebra). In the case of the standard modelM0 = (R2n, ω0)
we can take for the algebra of observables A the Heisenberg algebra heis(R2n). It
is the Lie algebra, generated by the coordinate functions pi, qi, i = 1, . . . , n and 1,
satisfying the following commutation relations

{pi, pj} = {qi, qj} = 0 ,

{pi, qj} = δij for i, j = 1, . . . , n .

We consider heis(R2n) as a ”minimal” algebra of observables on M0. The oppo-
site extreme is the Poisson algebra C∞(M0,R). The Hamiltonian vector field Xf ,
corresponding to an observable f ∈ C∞(M0,R), is given in standard coordinates
(pi, qi) on M0 by the formula

Xf =
n∑
i=1

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

)
.

In particular, Xpi
= ∂

∂qi
, Xqi = − ∂

∂pi
. The Poisson bracket on M0 is given by the

expression

{f, g} =
n∑
i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
for f, g ∈ C∞(M0,R).

Example 33 (Hamiltonian algebra). Let Γ be a Lie group of symplectomorphisms,
acting on a phase space M , so that its Lie algebra Lie(Γ) can be regarded as a
subalgebra of the Lie algebra of Hamiltonian vector fields on M . If M is simply
connected, then Lie(Γ) may be also considered, in the dual way, as a subalgebra of
the Poisson algebra C∞(M,R). Namely, it can be identified with the algebra Ham(Γ)
of Hamiltonians (smooth real functions) onM , generating symplectomorphisms from
Γ.

If a Lie group Γ acts onM transitively, such a manifoldM is called a homogeneous
symplectic Γ-manifold. It is proved in [46] that any homogeneous symplectic Γ-
manifold M is locally equivariantly symplectomorphic to a coadjoint orbit of Γ or
its central extension Γ̃.

12.2 Quantization of classical systems

Definition 39. Let (M,A) be a classical system. The Dirac quantization of (M,A)
is given by an irreducible Lie-algebra representation

r : A −→ End∗H

of the algebra of observables A in the algebra End∗H of linear self-adjoint operators,
acting in a complex (separable) Hilbert space H, called the quantization space. The
algebra End∗H is provided with the Lie bracket, given by the commutator of linear
operators of the form

~
i
[A,B] =

~
i
(AB −BA) .



150 CHAPTER 12. DIRAC QUANTIZATION

In other words, it is required that

r ({f, g}) =
~
i

(r(f)r(g)− r(g)r(f))

for any f, g ∈ A. We also assume the following normalization condition:

r(1) = id .

If a representation r satisfies all these conditions, except for the irreducubulity, it is
called a prequantization of the system (M,A).

We set ~ = 1 in the sequel for the convenience.

Remark 19. Sometimes it is useful to deal with the complexified algebra of observ-
ables AC instead of A. Its Dirac quantization is given by an irreducible Lie-algebra
representation

r : AC −→ EndH ,

satisfying the normalization condition and the conjugation law

r(f̄) = r(f)∗ for any f ∈ A .

In other words, the complex conjugation in AC should correspond to the Hermitian
conjugation in EndH.

Remark 20. The quantization operators r(f) in the Dirac definition are usually
unbounded. In that case we require that all operators r(f) for f ∈ A (or f ∈ AC in
the complexified version) are densely defined and, moreover, have a common dense
domain of definition in H.

Bibliographic comments

The Dirac definition of geometric quantization of classical systems is presented (with
minor modifications) in all books on geometric quantization. A reader may look for
a more detailed exposition [29, 37, 42, 71, 80].



Chapter 13

Kostant–Souriau prequantization

It is difficult (and, often, not possible) to construct the Dirac quantization, defined
in the previous Chapter, for realistic classical systems. However, there exists a
quite general prequantization construction, due to Kostant and Souriau, which is
valid for a large class of phase spaces and the ”maximal” algebra of observables
A = C∞(M,R). We describe it in this Chapter, starting from the simple case of the
cotangent bundle.

13.1 Prequantization of the cotangent bundle

Let N be a smooth n-dimensional manifold and M = T ∗N denotes its cotangent
bundle. Recall (cf. Ex. 30) that the symplectic form ω on T ∗N is given by the for-
mula ω = dθ, where θ is a canonically defined 1-form on M with the local expression
θ =

∑n
i=1 pidqi. We take for an algebra of observables A of our system the Poisson

algebra C∞(M,R) and for the Hilbert prequantization space H the space

H = L2(M,ωn)

of square integrable functions on M with respect to the Liouville measure, given by
ωn. A representation of A = C∞(M,R) in H is given by the following formula

r : f 7−→ r(f) = f − iXf − θ(Xf ) , (13.1)

where f − θ(Xf ) is considered as the multiplication operator on H. Note that
this operator, as well as the Hamiltonian vector field Xf , are correctly defined on
the subspace C∞

0 (M,R) of C∞(M,R), consisting of smooth functions with compact
supports on M .

In particular, for the standard model N = Rn, M = T ∗Rn ∼= R2n the represen-
tation (13.1) acts on the coordinate functions in the following way

r(pj) = pj − iXpj
− θ(Xpj

) = pj − i
∂

∂qj
− pj = −i ∂

∂qj
, (13.2)

r(qj) = qj − iXqj − θ(Xqj) = qj − i
(
− ∂

∂pj

)
= qj + i

∂

∂pj
, (13.3)

since Xpj
= ∂/∂qj, Xqj = −∂/∂pj. Note that this representation is reducible,

even if we restrict it to the ”minimal” Heisenberg algebra heis(R2n). Indeed, the
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operators i ∂
∂pj

and pj + i ∂
∂qj

commute with all operators r(pj), r(qj), being non

scalar. However, we can make the representation of heis(R2n), defined by the above
formulas (13.2),(13.3), irreducible by restricting it to the subspace of H, consisting
of functions, depending only on (qj). Then the representation (13.2),(13.3) will
reduce to the well known Heisenberg representation of heis(R2n) in the space H(q) :=
L2(Rn

(q), d
nq), given by

r(pj) = −i ∂
∂qj

, r(qj) = qj .

We can also construct a dual Heisenberg representation of heis(R2n) in the space
H(p) := L2(Rn

(p), d
np), given by

r(pj) = pj , r(qj) = i
∂

∂pj
.

Remark 21. The ”physical” explanation of the reducibility of the representation

r : heis(R2n) −→ End∗H ,

given by (13.1), is that, according to the Heisenberg uncertainty principle, the ”phys-
ical” quantization space cannot contain the functions, depending on some pair of
variables (pj, qj) simultaneously, as it occurs in the space H = L2(M,ωn).

13.2 Kostant–Souriau (KS) prequantization

13.2.1 Prequantization map

Suppose now that M is a general smooth symplectic manifold of dimension 2n
with symplectic form ω. Take the Poisson algebra C∞(M,R) as the algebra of
observables. We are going to quantize the classical system, represented by the pair
(M,C∞(M,R)).

Let us begin with some heuristic considerations. Note that the symplectic 2-form
ω, being closed, is locally exact, so we can find an open covering {Uα} of M , such
that

ω = dθα on Uα

for some smooth 1-forms θα, defined on Uα. Using these local forms θα, we can apply
the idea, described in the previous Section 13.1, to construct local representation
operators rα in the spaces L2(Uα, ω

n) by the formula (13.1) with θ = θα. It turns out
that (under some topological restrictions) we can combine these local representation
operators rα into a unique operator r, which acts, however, not on functions, but on
sections of a certain complex line bundle L over M . The structure of this line bundle
L→M is, in fact, prescribed by the local formulas (13.1) with θ = θα. Namely, the
local expressions Xα − iθα(Xα) (with Xα being a vector field on Uα) in the right
hand sides of the local formulas (13.1) look like local expressions for the covariant
derivative of a connection in a line bundle over M . If these expressions do arise
from some connection ∇ on a line bundle L → M (i.e. if they match together on
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intersections Uα∩Uβ up to gauge transformations, given by the transition functions
of L), then the local representation operators rα(f) in the spaces L2(Uα, ω

n) will
match into a global representation operator

r : f 7−→ f − i∇Xf
, f ∈ C∞(M,R) ,

acting on sections of L→M . In this case the curvature of such a connection would
be equal to ω. In particular, the 2-form 1

2π
ω, representing the first Chern class c1(L),

should be integral, i.e. [
1

2π
ω

]
∈ H2(M,Z) ⊂ H2(M,R) .

From Sec. 8.1 we know that the integrality of [ 1
2π
ω] is not only necessary, but also

sufficient for the existence of a line bundle L → M with a connection ∇. Namely,
rephrasing Prop. 15, we have the following

Proposition 29. Suppose that the manifold M satisfies the following quantization
condition: the cohomology class[

1

2π
ω

]
is integral in H2(M,R) . (13.4)

Then there exists a Hermitian line bundle L→ M , called the prequantization bun-
dle, having a Hermitian connection ∇, whose curvature is equal to ω.

Proof. The only new assertion in this Proposition, compared to Prop. 15, is the
Hermiticity of the connection ∇. Recall (cf. Rem. 16) that under the integrality
condition (13.4) there exists a complex line bundle L → M , such that c1(L) =
[ω/2π]. We take now an arbitrary Hermitian metric and a Hermitian connection ∇′

on L. Note that the curvature ω′ of ∇′ also represents the class c1(L). Hence,

ω = 2πω′ + dβ

for some 1-form β ∈ Ω1(M,R). If the connection ∇′ is represented by a 1-form α′,
we introduce a connection ∇ on L, represented by the 1-form

α = 2πα′ − iβ .

This connection is Hermitian and its curvature is equal to ω.

The Prop. 29 allows us to realize the scheme, described in the beginning of
this Section. Namely, suppose that our phase space M satisfies the quantization
condition, so that the assertion of Prop. 29 holds. In other words, there exists a
Hermitian line bundle L→M together with a Hermitian connection ∇, having the
curvature, equal to ω. We take for the algebra of observables the Poisson algebra
A = C∞(M,R) and define the prequantization space as

H = L2(M,L;ωn) ,
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i.e. the Hilbert space of square integrable sections of L → M with respect to the
inner product, given by

(s1, s2)H :=

∫
M

< s1(x), s2(x) > ωn ,

where < s1(x), s2(x) > is the Hermitian product of sections s1, s2 of L at x ∈ M .
Then the Kostant-Souriau (KS) prequantization of the algebra A in H will be given
by the formula

rKS : A ∋ f 7−→ r(f) = f − i∇Xf
. (13.5)

It’s easy to check directly (cf. also [29, 37, 42, 71, 73, 80]) that the formula (13.5)
defines a representation of the algebra A = C∞(M,R) in the prequantization space
H.

Remark 22. There is another interpretation of the Kostant–Souriau operator rKS

in terms of the automorphism group G̃ of the prequantization bundle (L,∇). An
automorphism of (L,∇) is a pair (φ, g), where φ : L→ L is a fibrewise isomorphism,
preserving the Hermitian metric on L and the connection ∇ (i.e. φ∗∇ = ∇). The
projection of φ to M is a symplectomorphism g : M →M , belonging to the group G
of all symplectomorphisms of M . In other words, we have a commutative diagram

L
φ−−−→ L

π

y yπ
M −−−→

g
M .

According to Prop. 16, the automorphism group G̃ of the prequantization bundle
(L,∇) can be identified with a central extension of the symplectomorphism group
G by S1, i.e. there is an exact sequence

1 −−−→ S1 −−−→ G̃ −−−→ G −−−→ 1 .

Note that (assuming that M is simply connected) the Lie algebra LieG of the group
G can be identified with the Lie algebra of Hamiltonian vector fields onM , generated
by Hamiltonians f ∈ C∞(M,R), so that that the Lie algebra Lie G̃ of the group G̃
is a central extension of LieG by R.

The action of the symplectomorphism group G on M generates an action of its
central extension G̃ on L. Namely, if an action g on M is generated by a Hamiltonian
vector field Xf with f ∈ C∞(M,R) = LieG, then the corresponding action φ :
C∞(M,L)→ C∞(M,L) on the space of sections of L is generated by

X̃f (s) := fs− i∇Xf
s . (13.6)

Remark 23. In conclusion of this Subsection, we give a description of the C∗-bundle
L̇→M , associated with the prequantization bundle L→M . It is sometimes more
convenient to use for computations this bundle, rather than L → M . Denote by
π : L̇ → M the bundle, obtained from the prequantization bundle π : L → M by
deleting its zero section. It is a principal C∗-bundle, associated with the line bundle
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π : L→M . The space Γ(L) := C∞(M,L) of sections s of L→M can be identified
with the space Γ̇(L) of complex-valued functions ṡ on L̇, subject to the condition

ṡ(zp) =
1

z
ṡ(p)

for any p ∈ L̇ and any z ∈ C∗. The correspondence between sections s of L → M
and functions ṡ on L̇→M is established via the relation

s(π(p)) = ṡ(p)p for any p ∈ L̇ .

Note that if a section s of L→M is non-vanishing at some point x ∈M : s(x) ̸= 0,
then s(x) ∈ L̇ and, applying the above relation for p = s(x), we obtain that s(x) =
ṡ(s(x))s(x), i.e. ṡ ◦ s = 1 at any point x ∈M , where s(x) ̸= 0.

We can introduce a connection ∇̇ on L̇→M , associated with the connection ∇
on L → M . In terms of the local representatives θα of the connection ∇, the local
representatives θ̇α of ∇̇ are given by

θ̇α = θα + i
dz

z

on Uα×C∗. It’s easy to check that these local forms define a global 1-form, which is
the connection form of ∇̇. This connection generates the horizontal lifting of vector
fields on M . Let ξ be such a vector field, then its horizontal lift is a vector field ξ̇
on L̇, such that π∗(ξ̇) = ξ and ∇̇(ξ̇) = 0. A correspondence ξ ↔ ξ̇ between vector
fields ξ on M and their horizontal lifts ξ̇ on L̇ has the following properties

(∇ξs)
· = ξ̇ , (fs)· = fṡ

for any vector field ξ on M , section s of L and function f ∈ C∞(M,R).
We can also give an interpretation of the generator (13.6) in terms of the bundle

L̇ (cf. [73]). Given a Hamiltonian f ∈ C∞(M,R), we define a vector field ηf on L̇
by local representatives

ηf,α := Xf + (θα(Xf )− f)
∂

∂ϑ

on Uα ×C∗. Here the vector field ∂
∂ϑ

is the differentiation with respect to the angle
coordinate ϑ in the polar representation of the coordinate z = reiϑ on C∗. It follows
from this definition that the generator (13.6) can be written in terms of L̇ as

X̃f (s) = −iηf ṡ . (13.7)

Remark 24 (cf. [73]). Using the vector field ηf , introduced in Rem. 23, one can prove
that the KS-operator rKS(f), given by the formula (13.5), is self-adjoint under the
assumption that the Hamiltonian vector fieldXf is complete. (In this case the vector
field ηf is complete too.) Denote by φ̇tf the 1-parameter group of transformations

of L̇, generated by the vector field ηf . Consider the 1-parameter unitary group of
transformations of Γ̇(L) (with respect to the inner product, induced from Γ(L)),
generated by φ̇tf . It acts by the formula: ṡ 7→ ṡ ◦ φ̇tf for ṡ ∈ Γ̇(L). The operator
rKS(f), given by (13.5), coincides with the generator of this unitary group, according
to (13.7). Hence, it is self-adjoint by Stone’s theorem.
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13.2.2 Polarizations

The representation of the algebra A = C∞(M,R) in the prequantization space H,
defined by (13.5), is reducible by the same reasons, as in Sec. 13.1. According to
the Heisenberg uncertainty principle, we can make this representation irreducible
by restricting it to a ”half” of the prequantization space H, i.e. to a subspace of
H, containing the functions from H, which depend, in terms of the local canonical
variables (pi, qi)

n
i=1, only on one variable from each pair (pj, qj). This naive idea may

be formalized, using the notion of the polarization.
Let (M,ω) be a symplectic manifold of dimension 2n. We extend its symplectic

form ω complex linearly to the complexified tangent bundle TCM .

Definition 40. A polarization on M is an integrable involutive Lagrangian distri-
bution P on M . In other words, P is a complex distribution P : x 7→ Px ⊂ TCM of
rank n, satisfying the following conditions: (a) P is involutive, i.e. [P, P ] ⊂ P ; (b)
the restriction of ω to P is identically zero.

For a polarized phase space (M,P ), satisfying the quantization condition (13.4),
it’s natural to choose for the quantization space H the space of polarized sections.
It is defined as

H = L2
P (M,L;ωn) := {s ∈ L2(M,L;ωn) : ∇ξs = 0 for any ξ ∈ P} .

There are two distinguished classes of polarizations.

Example 34. A polarization P on a phase space M is called real , if P = P̄ , where
”bar” denotes the complex conjugation in TCM . A standard example of such a
polarization is the cotangent bundle M = T ∗N of a configuration manifold N with
local canonical coordinates (pi, qi) and polarization P , given by the subbundle of
TM , generated by the vector fields {∂/∂pi}, i = 1, . . . , n. (One can take for P the
subbundle of TM , generated by the vector fields {∂/∂qi}, i = 1, . . . , n, as well.)
The space L2

P (M,L;ωn) of polarized sections in this case consists of sections from
L2(M,L;ωn), which do not depend on momenta {pi}.

A polarization P is called Kähler , if P ∩ P̄ = 0. To give an example of such a
polarization, suppose that our phase space (M,ω) is Kähler, i.e. it is provided with a
complex structure J , compatible with ω. Then we take for P the subbundle T 0,1M
of (0, 1)-vector fields in TCM . In this case the prequantization bundle L can be
made holomorphic with the holomorphic structure, determined by the ∂̄-operator,
given by the (0, 1)-part ∇0,1 of the connection ∇. The space L2

P (M,L;ωn) of polar-
ized sections for P = T 0,1M coincides with the space L2

O(M,L;ωn) of holomorphic
sections of L→M .

Given a polarized phase space (M,P ), satisfying the quantization condition
(13.4), we can hope to obtain an irreducible representation of the algebra of ob-
servables A by restricting the Kostant–Souriau prequantization map to the space
L2
P (M,L;ωn) of polarized sections. Unfortunately, this straightforward idea works

only for very special phase spaces and algebras of observables, since in most of the
cases the space L2

P (M,L;ωn) of polarized sections is not invariant under the action of
the Kostant–Souriau representation. In the next Section we shall demonstrate how
the idea of restriction to the space of polarized sections can be realized for the flat
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space R2n ∼= Cn and the Heisenberg algebra of observables heis(R2n) =: heis(Cn). In
this case the restriction of Kostant–Souriau representation to the space L2

O(Cn;ωn)
of holomorphic sections yields an irreducible Bargmann–Fock representation of the
Heisenberg algebra in L2

O(Cn;ωn).

Bibliographic comments

The prequantization of the cotangent bundle was known long ago to physisists (cf.,
e.g., [35]). Its generalization to general manifolds, satisfying the quantization con-
dition, due to B.Kostant and J.-M.Souriau, is presented in all books on geometric
quantization (cf. [29, 37, 42, 71, 70, 80]). In these books a more detailed discussion
of polarizations may be also found.





Chapter 14

Blattner–Kostant–Sternberg
quantization

In this Chapter we present the Blattner–Kostant–Sternberg (BKS) quantization
scheme for Kähler manifolds, provided with Kähler polarizations. We start from the
simplest example of such a quantization, namely, the Bargmann–Fock quantization
of the standard model (R2n, ω0), provided with the Heisenberg algebra of observables.
In Secs. 14.2-14.5 we explain how to construct the BKS-quantization of a quantizable
Kähler manifold. In Sec. 14.2 we introduce the Fock spaces of half-forms and in
Sec. 14.4 define the BKS-pairing between them, using the metaplectic structure,
introduced in Sec. 14.3. In Sec. 14.5 we explain how to quantize Kähler phase
manifolds, using the BKS-pairing.

14.1 Bargmann–Fock quantization

Let M0 = (R2n, ω0) be the standard model with standard coordinates (pj, qj), j =
1, . . . , n. In these coordinates

ω0 =
n∑
j=1

dpj ∧ dqj ,

so that ω0 = dθ0 with θ0 =
∑n

j=1 pj dqj. We identify R2n with Cn by introducing
complex coordinates

zj =
pj + iqj√

2
, z̄j =

pj − iqj√
2

, j = 1, . . . , n,

(following [71], we have replaced the usual factor 1/2 in these formulas by 1/
√

2 to
make the expression for KS-representation more symmetric). In these coordinates

ω0 = −i
n∑
j=1

dz̄j ∧ dzj .

The Hamiltonian vector fields, corresponding to coordinates zj, z̄j, have the form

Xzj
= −i ∂

∂z̄j
=

1√
2i

(
∂

∂pj
+ i

∂

∂qj

)
, Xz̄j

= i
∂

∂zj
=

i√
2

(
∂

∂pj
− i ∂

∂qj

)
.
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In particular, iω(Xzj
, Xz̄k

) = δjk. Evidently, the vector fields {Xz1 , . . . , Xzn} span
the antiholomorphic tangent space T 0,1(Cn) (which is the Kähler polarization dis-
tribution in the sense of Ex. 34).

The prequantization bundle L→ Cn is the trivial bundle Cn × C→ Cn. We fix
a trivializing section λ0 : Cn → L with < λ0, λ0 >= 1. The connection ∇ on L is
determined by the property

∇λ0 = −i
n∑
j=1

pj dqj ⊗ λ0 .

Following [71], we replace the trivializing section λ0 by another trivializing section
λ1, given by

λ1 := exp

(
−1

4

n∑
j=1

(q2
j + p2

j − 2ipjqj)

)
λ0 .

Then

∇λ1 = θ1 ⊗ λ1 with θ1 = −i
n∑
j=1

z̄jdzj .

In particular, the section λ1 is covariantly constant along the vector fields from
T 0,1(Cn). Hence, any section of L, covariantly constant along T 0,1(Cn), have the
form

φ(z)λ1 ,

where φ(z) is a holomorphic function of z ∈ Cn. We also have

< λ1, λ1 >= exp

(
−1

2

n∑
j=1

(q2
j + p2

j)

)
= exp

(
−|z|2

)
with |z|2 =

∑
j z̄jzj. The inner product in the prequantization spaceH = L2(Cn, L;ωn0 )

takes on the following form

(φλ1, ψλ1) =

∫
Cn

φ(z)ψ̄(z)e−|z|2ωn0 .

Following the idea, formulated at the end of Sec. 13.2, we define the quantization
space to be the space of polarized sections L2

O(Cn, L;ωn0 ). In our case it coincides
with the Bargmann–Fock space

F (Cn) = L2
O(Cn, e−|z|2/2)

of holomorphic functions on Cn which are square integrable with the Gaussian weight
e−|z|2/2.

The Kostant–Souriau (KS)-operators, associated with observables from the Heisen-
berg algebra heis(R2n) = heis(Cn) by formula (13.5), leave the Bargmann–Fock space
F (Cn) invariant and so admit a restriction to this space. To see that, we compute
the KS-operators, corresponding to the coordinates zj, z̄j:

rKS(zj)(φλ1) = zjφλ1 , rKS(z̄j)(φλ1) =
∂φ

∂zj
λ1
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for j = 1, . . . , n. Using the expression for the basis Hamiltonian vector fields, corre-
sponding to coordinates and momenta:

Xpj
=

i√
2

(
∂

∂zj
− ∂

∂z̄j

)
, Xqj = − 1√

2

(
∂

∂zj
+

∂

∂z̄j

)
,

we get the expression for the KS-operators, corresponding to the generators of the
Heisenberg algebra heis(R2n):

rKS(pj)(φλ1) =
1√
2

[(
zj +

∂

∂zj

)
φ

]
λ1 , rKS(qj)(φλ1) =

1√
2i

[(
zj −

∂

∂zj

)
φ

]
λ1 .

It is clear from this expression that these operators leave the Bargmann–Fock space
invariant. So we can restrict our KS-representation to this space, obtaining a repre-
sentation r0 of the Heisenberg algebra heis(R2n) = heis(Cn) in the Bargmann–Fock
space F (Cn) = L2

O(Cn, e−|z|2/2).
This representation, which is called the Bargmann–Fock representation, is al-

ready irreducible. The easiest way to see that is to use the so called creation and
annihilation operators , given in this case by the formulae

a∗j = rKS(zj) = multiplication by zj , aj = rKS(z̄j) = ∂/∂zj ,

acting in the Bargmann–Fock space F (Cn). Denote by φ0 ≡ 1 the vacuum vector in
F (Cn). Note that the Bargmann–Fock space F (Cn) = L2

O(Cn, e−|z|2/2) is generated
by vectors, obtained from φ0 by the action of creation operators a∗j , i.e. by vectors
of the form

a∗j1 . . . a
∗
jk
φ0 .

To show that the Bargmann–Fock representation r0 is irreducible, suppose that
we have an operator A in F (Cn), commuting with all creation and annihilation
operators a∗j , aj of our representation. Then Aφ0 should be equal to cφ0 for some
constant c, since Aφ0 is annihilated by all annihilation operators aj = ∂/∂zj. On
the other hand,

A(a∗j1 . . . a
∗
jk
φ0) = a∗j1 . . . a

∗
jk

(Aφ0) = c(a∗j1 . . . a
∗
jk
φ0) .

These two properties imply that A = c · id, so, by Schur’s lemma, the Bargmann–
Fock representation r0 is irreducible.

Unfortunately, the described method of quantization of the standard modelM0 =
(R2n, ω0) = (Cn, ω0), provided with the Heisenberg algebra heis(R2n) = heis(Cn),
does not apply to other Kähler phase spaces and algebras of observables, since the
KS-prequantization operators do not preserve, in general, the Fock spaces of holo-
morphic sections. We describe this situation in more detail in the next Sec. 14.2.1.

14.2 Fock spaces of half-forms

14.2.1 KS-action on Fock spaces

Suppose that our phase space (M,ω) is a Kähler manifold, provided with a compat-
ible complex structure J . Assume that (M,ω) satisfies the quantization condition
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(13.4) and L → M is the prequantization bundle, provided with a Hermitian con-
nection ∇. We introduce a holomorphic structure on L, which is determined by the
∂̄-operator, given by the (0, 1)-component ∇0,1 of the connection ∇ with respect to
the complex structure J . The Fock space

F (M,J) := L2
O(M,L;ωn)

is the space of square integrable sections of L → M , holomorphic with respect
to the introduced holomorphic structure on L. Denote by A the Lie algebra of
Hamiltonians, which can be identified (under the assumption that M is simply
connected) with the Lie algebra of Hamiltonian vector fields on M . Any observable
f ∈ A generates a (local) 1-parameter group Γ of symplectomorphisms of M , given
by

φtf := exp(2πitXf ) ,

where Xf is the Hamiltonian vector field, generated by f . As we have pointed
out in Sec. 13.2 (cf. Rem. 22), the action of Γ can be lifted to the action of its
central extension Γ̃ on L, and this lifted action is generated by the KS-operator
r(f) ≡ rKS(f). More precisely, the lifted action is given by

Φt
f := exp (2πitr(f)) : L2(M,L;ωn) −→ L2(M,L;ωn) .

However, these operators do not preserve, in general, the Fock space F (M,J), since
Φt
f maps the Fock space F (M,J) into the Fock space F (M,J tf ), associated with

the transformed complex structure J tf := φtf,⋆ ◦ J ◦ φ−t
f,⋆ , which, in general, is not

equivalent to J . When this happens, the corresponding KS-operator rKS(f) does
not admit a restriction to F (M,J). If we still want in this case to construct a
quantization of (M,A), using the KS-operators, we need to find a method of canon-
ical identification of Fock spaces F (M,J) with different J . In other words, we are
looking for a canonical unitary pairing between different Fock spaces F (M,J).

A naive idea would be to have some sort of an integral pairing, given by∫
M

< s1 , s2 > ωn

for s1 ∈ F (M,J1), s2 ∈ F (M,J2). But this idea does not work already for the
Bargmann–Fock quantization. In this case sections s1 and s2 belong to L2

O-spaces
with different weights, more precisely, s1 belongs to F (Cn, J1) = L2

O(Cn, e−K1(z)/2)
and s2 belongs to F (Cn, J1) = L2

O(Cn, e−K2(z)/2), where K1(z) and K2(z) denote
the Kähler potentials of Kähler metrics, determined by J1 and J2. It is clear that
the product of these two factors may be not integrable. A better idea is to replace
square integrable sections s of L → M by square integrable ”half-forms” s ⊗

√
ωn.

Then the integral of their product will be finite by the Cauchy inequality. In the
next Subsection we realize this approach by formalizing the notion of half-forms.

14.2.2 Half-forms

Bundle of J-frames. Let (M,ω, J) be a Kähler manifold of dimCM = n. Its
complexified tangent bundle TCM splits into the direct sum

TCM = T 1,0
J ⊕ T

0,1
J
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of the subbundles, formed by the (±i)-eigenspaces of the operator J . The bundle of
J-frames

FrJ −→M

is the bundle of frames in T 0,1
J , i.e. its fibre at x ∈ M consists of all frames in T 0,1

J,x .
The change of frames in the fibre generates a right GL(n,C)-action on FrJ , making
FrJ a principal GL(n,C)-bundle.

We denote by
FrnJ = K−1

J −→M

the anti-canonical bundle, associated with FrJ , which coincides with the maximal
exterior power of FrJ : FrnJ =

∧n(FrJ). This is a complex line bundle on M , asso-
ciated to FrJ by the homomorphism det : GL(n,C) → C∗. Its sections µ can be
identified with functions µ̇ on FrJ , satisfying the relation

µ̇(X · C) = det(C−1)µ̇(X) (14.1)

for X = (X1, . . . , Xn) ∈ C∞(M,FrJ), C ∈ GL(n,C).
We can define a partial connection, acting on sections of the bundle FrnJ , following

[71, 73]. Suppose that µ is a section of FrnJ , identified with the function µ̇ on FrJ ,
and ξ is a (0, 1)-vector field on M , i.e. a section of T 0,1

J . To define the value of
∇ξµ̇ at a point x0 ∈ M on a frame X0 ∈ FrJ,x0 , we extend X0 to a local J-frame
X = (X1, . . . , Xn) in a neighborhood U of x0, formed by Hamiltonian vector fields
X1, . . . , Xn. Then we set

(∇ξµ̇)(X0) := ξ µ̇(X)|x0 ,

i.e. the value of ∇ξµ̇ on the frame X0 at x0 is equal to the value of the vector field
ξ on the function µ̇(X) at x0. It can be checked that this definition is correct, i.e.
∇ξµ̇ is again a function on FrJ , satisfying (14.1), and does not depend on the choice
of the local extension X of a J-frame X0. So we can define ∇ξµ as the section of
FrnJ , identified with the function ∇ξµ̇ on FrJ .

The introduced derivative ∇ has the properties of a partial connection (cf. [18]).
Namely, for any (0, 1)-vector fields ξ, η, any functions f, g ∈ C∞(M,R) and any
sections µ, ν of FrnJ we have:

1. ∇fξ+gηµ = f∇ξµ+ g∇ηµ ;

2. ∇ξ(µ+ ν) = ∇ξµ+∇ξν ;

3. ∇ξ(fµ) = f∇ξµ+ (ξf)µ .

Moreover, this partial connection satisfies the equality

∇ξ∇ηµ−∇η∇ξµ = ∇[ξ,η]µ ,

which means that it is flat.
Bundle of half-forms. Denote by ML(n,C) the metalinear group, which is a

double covering of GL(n,C):

ρ : ML(n,C)
2:1−→ GL(n,C) .
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Its elements can be identified with the square roots of (n×n)-matrices from GL(n,C)
in the sense that there is a commutative diagram

ML(n,C)
χ //

ρ
&&NNNNNNNNNNN C∗

GL(n,C)

det

::uuuuuuuuuu

,

where χ is a unique complex square root of det, such that χ(I) = 1.
Suppose that the principal GL(n,C)-bundle FrJ → M of J-frames can be ex-

tended to a principal ML(n,C)-bundle over M . Note that such an extension, in
general, may not exist, since there is a topological obstruction for its existence (cf.
[80, 29, 71]). This obstruction is an element of the cohomology group H2(M,Z2),
moreover, the different choices of such metalinear extensions (if there are any) are
parameterized by the elements of H1(M,Z2). So we suppose that this topological
obstruction vanishes for our J-frame bundle FrJ → M and it can be extended to a
principal ML(n,C)-bundle

F̃rJ −→M .

We call F̃rJ the bundle of metalinear J-frames . It is a principal ML(n,C)-bundle
over M together with a double covering bundle epimorphism τ , such that

F̃rJ
τ //

ML(n,C)   B
BB

BB
BB

B
FrJ

GL(n,C)~~||
||

||
||

M

.

We denote by

F̃rnJ = K
−1/2
J −→M

a complex line bundle on M , associated to F̃rJ → M by the homomorphism χ :
ML(n,C)→ C∗. Its sections ν can be identified with functions ν̃ on F̃rJ , satisfying
the relation

ν̃(X̃ · C̃) = χ(C̃−1)ν̃(X̃) (14.2)

for X̃ ∈ C∞(M, F̃rJ), C̃ ∈ ML(n,C).

We can define a partial connection, acting on sections of the bundle F̃rnJ , similar

to the case of the bundle FrnJ . Suppose that ν is a section of F̃rnJ , identified with the

function ν̃ on F̃rJ , and ξ is a (0, 1)-vector field on M . To define the value of ∇ξν̃

at a point x0 ∈M on a metalinear frame X̃0 ∈ F̃rJ,x0 , we extend the corresponding
J-frame X0 = τ(X̃0) to a local J-frame X = (X1, . . . , Xn) in a neighborhood of x0,
formed by Hamiltonian vector fields X1, . . . , Xn. Since τ is a double covering, there
exists a local metalinear J-frame X̃, defined (perhaps, on a smaller) neighborhood
U of x0, extending X̃0 and covering X, i.e. τ(X̃) = X. Then we set

(∇ξν̃)(X̃
0) := ξ ν̃(X̃)|x0 ,

i.e. the value of ∇ξν̃ on the metalinear frame X̃0 at x0 is equal to the value of the
vector field ξ on the function ν̃(X̃) at x0. This definition is correct, i.e. ∇ξν̃ is
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again a function on F̃rnJ , satisfying (14.2), and does not depend on the choices of the

extension X and its metalinear lift X̃. So we can define ∇ξν as the section of F̃rnJ ,

identified with the function ∇ξν̃ on F̃rJ . The defined partial connection ∇ on F̃rnJ
is again flat.

Fock space of half-forms. Consider a line bundle L⊗K−1/2
J →M . It can be

provided with a partial connection ∇, induced by the Hermitian connection on the
prequantization bundle L and the partial connection on the anti-canonical bundle
K

−1/2
J , defined above. More precisely, given a (0, 1)-vector field ξ and a section

σ = λ⊗ ν of L⊗K−1/2
J we define

∇ξσ = (∇ξλ)⊗ ν + λ⊗ (∇ξν) .

Denote by O1/2(M,J) the space of holomorphic sections σ of L ⊗K−1/2
J → M .

We want to define an inner product of two sections σ1, σ2 in O1/2(M,J). Locally (in
a neighborhood U of an arbitrary point x ∈M) these sections may be written as

σ1 = λ1 ⊗ ν1 , σ2 = λ2 ⊗ ν2

for λ1, λ2 ∈ O(U,L), ν1, ν2 ∈ O(U,K
−1/2
J ). We choose a local J-frame X =

(X1, . . . , Xn) on U , so that {X1, . . . , Xn, X̄1, . . . , X̄n} form a basis of TCM |U and

iω(Xj, X̄k) = δjk , ω(Xj, Xk) = ω(X̄j, X̄k) = 0 .

Denote by < σ1, σ2 > a density on U , defined by

< σ1, σ2 >:=< λ1(x), λ2(x) > ν̃1(X̃)ν̃2(X̃)

for x ∈ U and any metalinear lift X̃ of X (such a lift locally always exists). It may
be checked (cf. [71, 73]) that this definition does not depend on the choice of the lift
and correctly defines a density, linear in σ1, anti-linear in σ2 and positive definite in
the sense that ⟨σ, σ⟩ > 0 for non-vanishing σ.

Introduce a pre-Hilbert space

PF1/2(M,J) := {σ ∈ O1/2(M,J) :

∫
M

< σ, σ ><∞}

and provide it with the inner product, defined by

(σ1, σ2) :=

∫
M

< σ1, σ2 > .

The Fock space of half-forms F1/2(M,J) is, by definition, the completion of PF1/2(M,J)
with respect to this inner product.

Locally (in a neighborhood U of a point x ∈M) we can write down the integrand
< σ1, σ2 > explicitly by choosing local trivializing holomorphic sections λ0 of L and
ν0 of K

−1/2
J , subject to the conditions

< λ0, λ0 >≡ 1 , ν̃0(X̃) ≡ 1

in U . In terms of these trivializations, holomorphic sections σ1, σ2 of L⊗K−1/2
J over

U will be written as

σ1 = f1 · λ0 ⊗ ν̃0 , σ2 = f2 · λ0 ⊗ ν̃0
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for some holomorphic functions f1, f2 on U . Then in terms of J-holomorphic local
coordinates (z1, . . . , zn) in U we’ll have

< σ1, σ2 >=

(
i

2

)n
f1(z)f2(z)d

nz ∧ dnz̄ .

14.3 Metaplectic structure

14.3.1 Bundle of metaplectic frames

Metaplectic group. The metaplectic group Mp(2n,R) is a connected double cover-
ing group of the symplectic group Sp(2n,R), i.e. there is a 2:1 group homomorphism

ρ : Mp(2n,R) −→ Sp(2n,R) .

Such a covering exists, because the fundamental group π1 of Sp(2n,R) is equal to
Z. To see that, note that Sp(2n,R) is homeomorphic to

U(n)× Sp(2n,R)

U(n)
∼= S1 × SU(n)× {Siegel disc} ,

and the second and third factors on the right are simply connected.
Metaplectic structure. Let (M,ω) be a symplectic manifold of dimension 2n.

Denote by Frω → M the principal Sp(2n,R)-bundle of symplectic frames on M . A
metaplectic structure on M is an extension of the bundle Frω → M to a principal
Mp(2n,R)-bundle F̃rω →M , called the bundle of metaplectic frames on M . In other

words, we have a double covering bundle epimorphism τ : F̃rω → Frω, which may be
included into the following commutative diagram

F̃rω
τ //

Mp(n,R)   B
BB

BB
BB

B
Frω

Sp(n,R)~~||
||

||
||

M

.

There is a topological obstruction for the existence of the metaplectic structure
on M , due to Kostant [46]. Namely, denote by J an almost complex structure on
M , compatible with ω, so that c1(M) is the 1st Chern class of TM with respect
to J . Then for the existence of a metaplectic structure on M it is necessary and
sufficient that c1(M) mod 2 ≡ 0⇐⇒ c1(M) is even in H2(M,Z). If this condition is
satisfied, then the set of all metaplectic structures on M (up to a natural equivalence)
is parameterized by H1(M,Z2).

14.3.2 Bundle of Kähler frames

It is also convenient to introduce the bundle FrK → M of J-frames for all ω-
compatible almost complex structures J on M . It is a fibre bundle over M with the
fibre at x ∈ M , parameterizing Jx-frames on TxM for all ωx-compatible complex
structures Jx on TxM . This fibre can be identified with

Sp(2n,R)

U(n)
×GL(n,C) ∼= {Siegel disc} ×GL(n,C)



14.4. BLATTNER–KOSTANT–STERNBERG (BKS) PAIRING 167

in the following way. Given a symplectic frame (ξ, η) := (ξ1, . . . , ξn; η1, . . . , ηn) at
x ∈M , we can write down any J-frame X = (X1, . . . , Xn) at x uniquely as (cf. [71])

X = ξU + ηV ,

where U , V are complex n×n-matrices, such that the rank of (2n×n)-matrix t(U, V )
equals n, tUV = tV U , and the matrix i(V ∗U − U∗V ) is positive definite. The set
of such matrices t(U, V ) can be identified with the set: {Siegel disc}×GL(n,C), by
associating with a matrix t(U, V ) a pair of matrices

W := (U + iV )(U − iV )−1 , C := U − iV . (14.3)

Then C belongs to GL(n,C) and W belongs to the Siegel disc

D := {W ∈ L(n,C) : tW = W, I −W ∗W is positive definite} .

The structure group of the bundle FrK → M , acting on the left, coincides with
Sp(2n,R). There is also a natural GL(n,C)-action on FrK → M from the right,
given by the frame change. The bundle FrK → M is associated to the bundle
Frω →M of symplectic frames by a natural Sp(2n,R)-action on the fibre.

In a similar way, we introduce the bundle F̃rK → M of all metalinear J-frames
on M for all ω-compatible J . It is a fibre bundle with the fibre at x ∈M , given by

Sp(2n,R)

U(n)
×ML(n,C) , (14.4)

and the structure group Mp(2n,R), acting by the homomorphism ρ : Mp(2n,R)→
Sp(2n,R) on the first factor. The bundle F̃rK → M is associated to the bundle

F̃rω → M of metaplectic frames by the Mp(2n,R)-action. There is a commutative
diagram

F̃rK
τ //

!!C
CC

CC
CC

C
FrK

}}||
||

||
||

M

,

where τ is a double covering.
Note that for a fixed ω-compatible almost complex structure J on M the bundle

FrJ → M is a subbundle of FrK → M , invariant under the right GL(n,C)-action.

The bundle F̃rJ → M is a ML(n,C)-invariant subbundle of F̃rK → M , which
coincides with the inverse image of FrJ → M under the double covering map τ :
F̃rK → FrK . In other words, we can say that a metaplectic structure on M , given
by the metaplectic frame bundle together with the double covering τ : F̃rω → Frω,
induces metalinear structures on all J-frame bundles simultaneously.

14.4 Blattner–Kostant–Sternberg (BKS) pairing

Lemma 5. Suppose that J1, J2 are two ω-compatible almost complex structures on
a symplectic manifold (M,ω). Then they are transversal in the sense that

T 1,0
J1
⊕ T 0,1

J2
= TCM .
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Proof. Suppose, on the contrary, that there exists a vector ξ ̸= 0, such that

ξ ∈ T 1,0
J1,x
⊕ T 0,1

J2,x
for some x ∈M .

Then
0 < ω(ξ, J1ξ) = ω(ξ, iξ) = iω(ξ, ξ) ,

where the inequality on the left is implied by the ω-compatibility of J1 and the first
equality is provided by ξ ∈ T 1,0

J1,x
. Similarly,

0 < ω(ξ, J2ξ) = ω(ξ,−iξ) = −iω(ξ, ξ) .

So we have simultaneously the two following relations

iω(ξ, ξ) > 0 and − iω(ξ, ξ) > 0 ,

contradicting each other. Hence, T 1,0
J1,x
∩ T 0,1

J2,x
= {0} for any x ∈ M . By dimension

counting we obtain that

T 1,0
J1,x
⊕ T 0,1

J2,x
= TC

xM for any x ∈M .

Due to the above Lemma 5, we can always choose locally, in a neighborhood U
of an arbitrary fixed point x ∈M , a J1-frame X1 and J2-frame X2, so that

iω(Xj
1 , X

k
2 ) = δjk . (14.5)

Given two sections σ1 of L ⊗K−1/2
J1

and σ2 of L ⊗K−1/2
J2

on U , we can write them
down in the form

σ1 = λ1 ⊗ ν1 , σ2 = λ2 ⊗ ν2 .

We define a density, similar to that in Subsec. 14.2.2:

< σ1, σ2 >:=< λ1(x), λ2(x) > ν̃1(X̃1)ν̃2(X̃2) (14.6)

where X̃1, X̃2 are metalinear lifts of X1, X2, satisfying a metalinear analogue of
(14.5). We shall describe this analogue (formula (14.9)) in Rem. 25 below. Now
we note only that the definition (14.6) does not depend on the choice of the frames
X1, X2, satisfying the normalization condition (14.5), and their metaplectic lifts
X̃1, X̃2, satisfying the metaplectic normalization condition (14.9) below (this fact is
proved in [71], Sec.5.1; cf. also [29], Ch.V,Sec.5).

We define the BKS-pairing between different Fock spaces of half-forms F1/2(M,J1)
and F1/2(M,J2) by the formula

(σ1, σ2)12 :=

∫
M

< σ1, σ2 > . (14.7)

Suppose now that our almost complex structures J1 and J2 are integrable. Then
locally, in a neighborhood U of a point x ∈M , we can write down an explicit formula
for the integrand in the above formula. For that we fix a J1-frame X1 and a J2-frame
X2 in U , satisfying the normalization condition (14.5), and their metaplectic lifts
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X̃1, X̃2, satisfying the metaplectic normalization condition (14.9), and choose local

trivializing holomorphic sections λ0 of L, ν1 of K
−1/2
J1

and ν2 of K
−1/2
J2

, subject to
the conditions

< λ0, λ0 >≡ 1 , ν̃1(X̃1) ≡ 1 , ν̃2(X̃2) ≡ 1

in U . Then holomorphic sections σ1 of L⊗K−1/2
J1

and σ2 of L⊗K−1/2
J2

over U will
be written as

σ1 = f1 · λ0 ⊗ ν1 , σ2 = f2 · λ0 ⊗ ν2 ,

where f1 is a J1-holomorphic function on U , and f2 is a J2-holomorphic function
on U . Since J1 and J2 are transversal, we can find local J1-holomorphic coor-
dinates (z1, . . . , zn) and J2-holomorphic coordinates (w1, . . . , wn) in U , such that
(∂/∂z1, . . . , ∂/∂zn; ∂/∂w̄1, . . . , ∂/∂w̄n) form a local basis of TCM over M . Then

< σ1, σ2 >=

(
i

2

)n
f1(z)f2(w)dnz ∧ dnw̄ .

Remark 25 ([71]). To describe the metaplectic analogue of (14.5), suppose that
our frames X1 and X2 are written in terms of a single symplectic frame (ξ, η) :=
(ξ1, . . . , ξn; η1, . . . , ηn), as in Subsec. 14.3.1:

X1 = ξU1 + ηV1 , X2 = ξU2 + ηV2 .

Then Eq. (14.5) can be written in the form

V ∗
2 U1 − U∗

2V1 = −iI .

In terms of the matrices

Wj = (Uj + iVj)(Uj − iVj)−1 , Cj := Uj − iVj , j = 1, 2 ,

this condition means that

I −W ∗
2W1 = 2(C∗

2 )−1C−1
1 . (14.8)

Note that Z := W ∗
2W1 belongs to the matrix disc

D̃ := {Z ∈ L(n,C) : I − Z∗Z is positive definite} .

Consider the map D̃ → GL(n,C), given by Z 7→ I − Z. Since D̃ is contractible

(moreover, convex), this map can be uniquely extended to a map Z 7→ Ĩ − Z,
sending D̃ to ML(n,C) and taking the value Ĩ at Z = 0 (where we denote by Ĩ
the unit element in ML(n,C)). Suppose that the metalinear lifts X̃1, X̃2 of our
frames X1, X2 are described, according to (14.4), by pairs (W1, C̃1), (W2, C̃2), where
Wj ∈ D, C̃j ∈ ML(n,C) for j = 1, 2. Then the metalinear analogue of (14.5) has
the form

˜I −W ∗
2W1 = 2(C̃∗

2 )−1C̃−1
1 . (14.9)
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14.5 Blattner–Kostant–Sternberg (BKS) quanti-

zation

14.5.1 Lifting the φt
f-action

Let (M,ω, J) be a Kähler manifold, and f ∈ C∞(M,R) is an observable on M ,
for which the Hamiltonian vector field Xf is complete, i.e. the 1-parameter flow
φtf = exp(2πitXf ), generated by Xf , is defined for all t ∈ R. Hence, {φtf} is a
1-parameter group of symplectomorphisms of M . The flow φtf generates a natural
flow on the space of ω-compatible complex structures on M , given by

J 7−→ J tf := φtf,⋆ ◦ J ◦ φ−t
f,⋆ ,

and a natural flow, denoted by the same letter φtf , on the bundle FrK → M of all
J-frames on M .

By the covering homotopy property, this flow can be lifted to a 1-parameter flow
φ̃tf on the bundle F̃rK →M of all metalinear J-frames on M , yielding a 1-parameter
flow of bundle isomorphisms

φ̃tf : F̃rJ −→ F̃rJt
f
.

We are going to define an extension of the φtf -flow to the Fock spaces of half-
forms, denoted by

Ht ≡ Ht
f := F1/2(M,J tf ) .

φtf -action on K
−1/2
J . Define first a φtf -action on the bundle K−1/2 over the space

of ω-compatible complex structures on M . Let ν be a section of K
−1/2
J , identified

with the function ν̃ on the bundle F̃rJ . Denote by φtfν a section of K
−1/2
t ≡ K

−1/2

Jt
f

,

identified with the function φ̃tfν, defined by

φ̃tfν(X̃) = ν̃(φ̃−t
f X̃)

for any metalinear frame X̃ ∈ F̃rt ≡ F̃rJt
f
.

φtf -action on sections of L. By Rem. 22, the φtf -flow on M can be lifted to a
φtf -flow on sections of L. More precisely, the generator of the φtf -action on L

Pf (λ) := i
d

dt

(
φtfλ

)∣∣
t=0

is equal to
Pf (λ) = rKS(f)(λ) = fλ− i∇Xf

λ .

φtf -action on the Fock space of half-forms. Recall (cf. Subsec. 14.2.2) that
the Fock space of half-forms H is defined as

H = F1/2(M,J) .

Suppose that an element σ of H is written in the form

σ = λ⊗ ν ,
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where λ ∈ O(M,L), ν ∈ O(M,K
−1/2
J ). Then by definition

φtfσ := φtfλ⊗ φtfν .

By linearity and continuity this definition extends to arbitrary sections in H, so we
obtain a Hilbert space isomorphism

φtf : H −→ Ht

with the inverse map, given by φ−t
f . It may be shown (cf. [71]) that φtf : H → Ht is

unitary.

14.5.2 Quantization of quantizable observables

Let f be an observable on M with a complete Hamiltonian vector field Xf . Sup-
pose first that f is quantizable, i.e. the associated flow φtf,⋆ preserves the complex
structure J , i.e. φtf is a J-holomorphic map. Otherwise speaking, f is quantizable

iff [Xf , T
0,1
J M ] ⊂ T 0,1

J M . The quantizable observables form a subalgebra of the Lie
algebra A of all observables. If f is quantizable, then the φtf -flow preserves H, i.e.
we have a 1-parameter group of unitary operators φtf : H → H, and we can define
the quantized observable Qf by

Qf (σ) := i
d

dt

(
φtfσ

)∣∣
t=0

(14.10)

for any σ ∈ H.
We can describe the operator Qf in a more explicit way as follows. Define a

partial Lie derivative Lξ of half-forms along vector fields ξ on M , preserving J , i.e.
[ξ, T 0,1

J M ] ⊂ T 0,1
J M . Namely, for any half-form ν, identified with the function ν̃ on

the bundle F̃rJ , we identify Lξν with the function L̃ξν, given by the formula

L̃ξν(X̃)|x ≡ (Lξν̃)(X̃)|x =
d

dt
|t=0

(
ν̃(φ̃tfX̃)|φt

fx

)
for any metalinear J-frame X̃. In other words, the Lξ-derivative of the function ν̃,
evaluated on a metalinear J-frame X̃ at a point x, is equal to the d

dt
-derivative at

t = 0 of the function ν̃, evaluated on the metalinear J-frame φ̃tfX̃ at the point φtfx.
The derivative Lξ has the properties of the Lie derivative, but it can be taken

only along the vector fields ξ, preserving J . The operator Qf can be written in
terms of partial Lie derivative as

Qf (λ⊗ ν) = (−i∇Xf
λ+ fλ)⊗ ν − iλ⊗ LXf

ν .

Locally, we can compute the second term on the right as follows. Denote by X =
(X1, . . . , Xn) a local J-frame on an open set U , consisting of Hamiltonian (0, 1)-
vector fields Xj. Then

[Xf , X
j](x) =

n∑
k=1

ajk(x)X
k
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for some smooth matrix function A := (ajk) on U . Denote by X̃ a metalinear lift ofX

over U and choose a local section ν̃0 of K
−1/2
J , so that ν̃0(X̃) ≡ 1. Any σ ∈ F1/2(U, J)

can be written in the form
σ = λ⊗ ν̃0

for some holomorphic section λ ∈ O(U,L). Then (cf. [71], Sec.6.2)

LXf
ν̃0 = −1

2
trA · ν̃0 ,

so that

Qf (λ⊗ ν̃0) =

(
−i∇Xf

λ+ fλ− i1
2
trA · λ

)
⊗ ν̃0 .

It can be shown (cf. [71, 73]) that the map f 7→ Qf is a Lie-algebra representation

{Lie algebra of quantizable observables} Q−→ End∗H

in the Fock space of half-forms H = F1/2(M,J).

14.5.3 Quantization of general observables

Assume that for an observable f the integrals, defining the BKS-pairingH×Ht → C,
are finite, so we have a unitary operator

Ut : Ht −→ H .

In its terms the BKS-pairing, defined by formula (14.7), may be written as

(σ, σt)0t = (σ, Utσt)

for σ ∈ H ≡ H0, σt ∈ Ht.
Consider a unitary operator

Φt
f := Ut ◦ φtf : H −→ H

and define a self-adjoint quantized observable Qf by

Qf := i
d

dt
Φt
f

∣∣
t=0

: H −→ H .

Then the map f 7→ Qf defines an irreducible Lie-algebra representation

Q : A −→ End∗H

of the algebra of observables A in the Fock space of half-forms H (under the as-
sumption that the BKS-pairing is finite for all observables f ∈ A).

Bibliographic comments

The BKS-quantization is presented in several books on geometric quantization. We
follow mainly the Snyatycki book [71], dealing with different kinds of polarizations.
We also recommend the Guillemin–Sternberg book [29], devoted mostly to real po-
larizations, and Tuynman lecture notes [73]. Our goal here was to present the
BKS-quantization scheme without going too much into details (which may be found
in [71, 29, 73]).


