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Chapter 1

Frechet manifolds

This Chapter is devoted to the Frechet manifolds, having Frechet vector spaces as
their local models. We start our exposition by recalling basic facts on Frechet spaces
in Sec. 1.1. In Sec. 1.2 we introduce Frechet manifolds and define various geometric
structures on them, including vector bundles and connections, differential forms,
symplectic and complex structures.

1.1 Frechet vector spaces

1.1.1 Basic definitions

In contrast with Banach spaces, whose topology is defined by a norm, the topology
of a Frechet vector space is determined by a system of seminorms. Recall that

Definition 1. A seminorm on a vector space F is a real-valued function p : F → R,
which satisfies the following conditions:

1. p(f) ≥ 0 for any f ∈ F ;

2. p(f + g) ≤ p(f) + p(g) for any f, g ∈ F ;

3. p(cf) = |c|p(f) for any f ∈ F and any element c of the basic number field k
(we restrict to k = R and k = C in the sequel).

As one can see from this definition, the only difference between seminorms and
norms is that a seminorm p is not required to satisfy the property: p(f) = 0 ⇐⇒
f = 0.

A system of seminorms {pn}n∈N determines on the vector space F a unique
topology , for which

fj → f ⇐⇒ pn(fj − f)→ 0 for any n ∈ N .

This topology is Hausdorff, if the following condition is fulfilled:

f = 0⇐⇒ pn(f) = 0 for all n ∈ N .

A sequence {fj} of elements of F is called a Cauchy sequence with respect to this
topology if pn(fj − fk) → 0 for j, k → ∞ for any n ∈ N. The space F is complete,
if any Cauchy sequence in F has a limit in F .
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Definition 2. A Hausdorff topological vector space F with the topology, defined
by a countable system of seminorms, is called a Frechet space iff it is complete.

Example 1. Any Banach space is a Frechet space with a system of seminorms,
represented by a single norm.

Example 2. The vector space C∞[a, b], consisting of C∞-smooth real-valued func-
tions f on an interval [a, b], is a Frechet space with a system of seminorms

pn(f) =
n∑
j=0

sup
[a,b]

∣∣f (j)(x)
∣∣ .

Example 3. The vector space C∞(X), consisting of C∞-smooth real-valued func-
tions f on a compact manifold X, is a Frechet space with a system of seminorms

pn(f) =
n∑

|j|=0

sup
X

∣∣djf(x)
∣∣ .

Example 4. Let V → X be a vector bundle over a compact Riemannian manifold
X, provided with a Riemannian metric and connection. Then the vector space
C∞(X,V ), consisting of C∞-smooth sections f of V → X, is a Frechet space with
a system of seminorms

pn(f) =
n∑

|j|=0

sup
X

∣∣Djf(x)
∣∣ ,

where Djf is the jth covariant derivative of a section f , and the ”length” |h| of a
section h is computed, using the metrics on X and V .

A closed subspace of a Frechet space is also a Frechet space and the same is true
for the quotient of a Frechet space by its closed subspace.

Example 5. The vector space C∞
2π, consisting of C∞-smooth real-valued 2π-periodic

functions on the real line R, may be identified with the closed subspace in the Frechet
space C∞[0, 2π], consisting of functions f ∈ C∞[0, 2π] such that all their derivatives
f (j) match together at the end points: f (j)(0) = f (j)(2π). It implies that C∞

2π is also
a Frechet space.

Many well-known properties of Banach spaces, such as the Hahn-Banach theorem
and the closed graph theorem, are fulfilled in Frechet spaces as well.

However, there is a number of properties of Banach spaces, which do not transfer
to the Frechet case. For example, the theorem of existence and uniqueness of solu-
tions of ordinary differential equations for Banach spaces do not extend to general
Frechet spaces. Another example: the dual of a Frechet space, which is not a Ba-
nach space, cannot be a Frechet space. In particular, the dual of the Frechet space
C∞(X) of C∞-smooth real-valued functions on a compact manifold X, which is the
space D′(X) of distributions on X, is not a Frechet space. Note also that the space
L(F,G) of linear operators, acting from a Frechet space F to another Frechet space
G, is not, generally speaking, a Frechet space.
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1.1.2 Derivative

Definition 3. Let F and G be Frechet spaces and A : F → G be a continuous map.
The derivative of A at a point f ∈ F in a direction h ∈ F is the limit

DfA(h) = lim
t→0

A(f + th)− A(f)

t
∈ G .

The map A is differentiable at f in the direction h, if this limit exists. The map
A is continuously differentiable (or belongs to the class C1(U)) on an open subset
U ⊂ F , if this limit exists for any f ∈ U and all h ∈ F and the map

DA : U × F −→ G

is continuous.

Example 6. Let f : [a, b]→ F be a path in a Frechet space F , i.e. a continuous map
from an interval [a, b] to F . Denote by 1 the unit vector in R, then the derivative
f ′(t) (if it exists) coincides with Df(t)(1).

Example 7. A continuous linear map L : F → G of Frechet spaces belongs to the
class C1 and DfL(h) = Lh since

DfL(h) = lim
t→0

L(f + th)− Lf
t

= lim
t→0

tLh

t
= Lh .

Example 8. Let U be a relatively open subset of a band [a, b] × R ⊂ R2
(x,y) and

F = F (x, y) be a smooth function on U . Denote by U an open subset in C∞[a, b],
consisting of functions y = f(x), having their graphs inside U . Consider a map
A : U −→ C∞[a, b], given by the formula

A(f)(x) = F (x, f(x)) .

Then A belongs to the class C1 and

DfA(h)(x) = dyF (x, f(x))h(x) .

Example 9. More generally, let X be a compact manifold and V → X, W → X
be two vector bundles over X. Given an open subset U in V , denote by U the open
subset in C∞(X,V ), consisting of sections f of V → X, having their image in U :
f(X) ⊂ U . Let F : U → W be an arbitrary smooth bundle map, sending any fibre
Vp, p ∈ X, into the fibre Wp over the same point p.

Define a fibrewise operator A : U −→ C∞(X,W ), acting by the formula

A(f) = F ◦ f .

Denote by x a local coordinate on X in a neighborhood of a given point p and by
y and z coordinates in the fibres Vp and Wp respectively. Then the map F is given
locally by a function z = F (x, y). A section f has a local representation y = f(x),
and the bundle operator A is given locally by the formula A(f)(x) = F (x, f(x)).

The derivative of A in the chosen local coordinates has the form

DfA(h)(x) = dyF (x, f(x))h(x) ,

where dyF is the matrix of partial derivatives in y, applied to a vector-valued function
h, representing locally a section h ∈ C∞(X,V ).
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If A is a C1-map F → G, then

DfA(h1 + h2) = DfA(h1) +DfA(h2) .

In other words, a continuously differentiable map A is necessarily linear in h. This
important property shows that the derivative ”behaves” like a differential with re-
spect to the variable h.

Moreover, a map A : U ⊂ F → G is continuously differentiable on a convex open
subset U ⊂ F if and only if there exists a continuous map

L : U × U × F −→ G, L = L(f1, f2)h ,

which is linear in h and for any f1, f2 ∈ U satisfies the relation

A(f1)− A(f2) = L(f1, f2)(f1 − f2) .

In this case DfA(h) = L(f, f)h.
If two maps A : F → G and B : G → H are continuously differentiable, then

their composition B ◦ A : F → H is also continuously differentiable and the chain
rule for the derivatives is fulfilled

Df [B ◦ A](h) = DA(f)B(DfA(h)) .

In particular, if f(t) is a C1-path in F and A : F → G is a C1-map, then A(f(t)) is
a C1-path in G and

A(f(t))′ = Df(t)A(f ′(t)) .

Suppose now that the basic number field k = C and A : U ⊂ F → G is a map
between complex Frechet spaces. We shall call this map holomorphic if it belongs
to the class C1(U) and its derivative DA : F × F → G is complex linear in h ∈ F .

By iterating the definition of the derivative, one can define higher order deriva-
tives of maps between Frechet spaces. In particular, the second derivative of a map
A : F → G is defined by the formula

D2
fA(h, k) = lim

t→0

Df+tkA(h)−DfA(h)

t
.

A map A : U → G belongs to the class C2(U) on an open subset U ⊂ F if DA
belongs to C1(U), which is equivalent to the existence and continuity of the second
derivative as a map D2A : U × F × F → G.

Similarly to the first derivative, the second derivative D2
fA(h, k) is linear sepa-

rately in h and k if A is of class C2. Moreover, in this case it can be given by the
limit of the second finite difference

D2
fA(h, k) = lim

t,s→0

A(f + th+ sk)− A(f + th)− A(f + sk) + A(f)

ts

and is symmetric in h, k.
By induction, one can define the nth order derivative Dn

fA(h1, . . . , hn) as the

partial derivative of the (n− 1)th derivative Dn−1
f A(h1, . . . , hn−1) with respect to f

in the direction of hn, more precisely:

Dn
fA(h1, . . . , hn) = lim

t→0

Dn−1
f+thn

A(h1, . . . , hn−1)−Dn−1
f A(h1, . . . , hn−1)

t
.
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Again, a map A : U → G belongs to the class Cn(U) on an open subset U ⊂ F if
Dn
fA(h1, . . . , hn) exists and is continuous as a map DnA : U × F · · · × F → G. In

this case Dn
fA(h1, . . . , hn) is symmetric and linear in h1, . . . , hn. We say that a map

A : U → G belongs to the class C∞(U) on an open subset U ⊂ F if it belongs to all
classes Cn(U) for n ∈ N.

1.2 Frechet manifolds

1.2.1 Basic definitions

Definition 4. A Frechet manifold is a Hausdorff topological space X , provided with
an atlas , i.e. a covering of X by open subsets (coordinate neighborhoods) {Uα}, and
a collection of charts , i.e. homeomorphisms (coordinate maps)

φα : Uα
≈−→ uα ⊂ Fα

onto open subsets uα in model Frechet spaces Fα. The transition functions

φβα : φα(Uα ∩ Uβ)
φ−1

α−−→ Uα ∩ Uβ
φβ−→ φβ(Uα ∩ Uβ)

are smooth (i.e. of class C∞) maps of Frechet spaces.

If all Frechet spaces Fα in this definition coincide with some Banach spaces Eα,
we call such an X a Banach manifold . Respectively, when all Fα coincide with a
separable Hilbert space H = l2, we call it a Hilbert manifold .

There is one more specification of the above definition in the case when the basic
field k = C.

Definition 5. A complex Frechet manifold is a Frechet manifold X , for which all
model Frechet spaces Fα are complex, and the transition functions φβα are holomor-
phic.

We add the definition of a (closed) Frechet submanifold for the future use.

Definition 6. A closed subset Y in a Frechet manifold X is called a submanifold
of X if for any point of Y there exists a coordinate neighborhood U of X with a
coordinate chart, mapping U onto a neighborhood u in the product of Frechet spaces
F ×G, which identifies U ∩ Y with the subset u ∩ F × {0}.
Example 10. Let X be a (finite-dimensional) smooth manifold. Then the set of
all smooth submanifolds in X, denoted by S(X), is a Frechet manifold. Indeed,
consider a submanifold S ∈ S(X), having the normal bundle NS = (TX|S)/TS.

Then there exists a local exponential diffeomorphism

exp : v −→ V ,

mapping a neighborhood v of the zero section in NS onto a tubular neighborhood
V of S in X. This diffeomorphism generates a local coordinate chart φ with

φ−1 : v −→ V ,

mapping the neighborhood v of zero in the Frechet space C∞(S,NS), consisting of
sections of NS with their image in v, onto the neighborhood V of the submanifold
S in S(X), consisting of submanifolds in X, lying in V .
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Example 11. Let X be a compact smooth manifold and π : E → X is a smooth
bundle, i.e. E is a smooth manifold, π is a smooth map, whose tangent π∗ is
everywhere surjective. Then the space of smooth sections of the bundle E, denoted
by C∞(X,E), is a Frechet manifold.

In order to construct coordinate charts on C∞(X,E), we define for a given section
f a vertical vector bundle T vfE → X, associated with f , with the fibre at p ∈ X,
equal to the kernel of π∗, restricted to Tf(p)E. Choose a neighborhood u of the zero
section of T vfE → X together with a fibrewise diffeomorphism of u onto a tubular
neighborhood U of the image f(X) in E. This diffeomorphism generates a local
coordinate chart φ with

φ−1 : u −→ U ,

mapping the neighborhood u of the zero section in the Frechet space C∞(X,T vfE),
consisting of sections of T vfE → X with their image in u, onto the neighborhood
U of f in C∞(X,E), consisting of sections of E → X with their image in U . The
transition functions are given by fibrewise operators, as in Ex. 9 from Sec. 1.1.

Example 12. The manifold C∞(X, Y ) of smooth maps from a smooth compact
manifold X into a smooth manifold Y is a particular case of the above construction,
when the bundle E = X ×Y → X is trivial. The group Diff(X) of diffeomorphisms
of X onto itself is an open subspace in C∞(X, Y ) and so inherits its structure of a
Frechet manifold.

Example 13. The latter example is especially interesting for us when X is a circle,
which we identify with S1 = {|z| = 1 : z ∈ C}. In this case the manifold C∞(S1, Y )
is called the space of (free) loops in the manifold Y .

Consider the simplest example of that sort when Y is also a circle S1. The man-
ifold C∞(S1, S1) consists of a countable number of connected components, denoted
by C∞

k (S1, S1) with k ∈ Z, which are numerated by the index (rotation number) of
a map S1 → S1. By pulling up to the universal coverings, we can associate with
a map f : S1 → S1 the map f̃ : R1 −→ R1, defined up to an additive constant
of the form 2πn, n ∈ Z. In particular, the maps f ∈ C∞

0 (S1, S1) of index 0 have
the pullbacks f̃ , which are smooth 2π-periodic functions, i.e. belong to the Frechet
space C∞

2π (cf. Ex. 5 in Sec. 1.1). So we have a global coordinate chart for the whole
component C∞

0 (S1, S1):

φ : C∞
0 (S1, S1)

≈−→ C∞
2π/2πZ , f 7−→ [f̃ ] .

In the same way, the maps f ∈ C∞
k (S1, S1) of index k have the pullbacks f̃ , which

satisfy the relation: f̃(x+ 2π) = f̃(x) + 2πk. Translating such a function by kx, i.e.
replacing f̃(x) by f̃1(x) := f̃(x) − kx, we obtain a 2π-periodic function f̃1. Hence,
we have again a global coordinate chart on C∞

k (S1, S1):

φ : C∞
k (S1, S1)

≈−→ C∞
2π/2πZ .

For the whole manifold C∞(S1, S1) we get a diffeomorphism

C∞(S1, S1)
≈−→ Z× C∞

2π/2πZ .
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Example 14. Consider an open submanifold Diff(S1) in C∞(S1, S1), consisting of
all diffeomorphisms of the circle S1. It has two connected components: the identity
component Diff+(S1), consisting of diffeomorphisms of S1, preserving its orientation
(this component belongs to the subspace C∞

1 (S1, S1)), and Diff−(S1), consisting
of diffeomorphisms of S1, reversing its orientation (this component belongs to the
subspace C∞

−1(S
1, S1)).

The maps f ∈ Diff+(S1) pull back to functions f̃ , satisfying the relation

f̃(x+ 2π) = f̃(x) + 2π .

They have 2π-periodic derivatives f̃ ′(x), which are everywhere positive, since diffeo-
morphisms f preserve the orientation. We also have:

1

2π

∫ 2π

0

f̃ ′(x) dx =
f̃(2π)− f̃(0)

2π
= 1 ,

i.e. the average of f̃ ′(x) over the period is equal to 1. Denote by C the subset
of C∞

2π, consisting of smooth 2π-periodic strictly positive functions on the real line
with the average, equal to 1. It is an open convex subset in an affine subspace of
codimension 1 in C∞

2π, hence a Frechet submanifold. The above argument implies
that our manifold Diff+(S1) is diffeomorphic to S1 × C. Indeed, the function f̃ is
defined by f̃ ′ up to an additive constant f̃(0) ∈ R, but the function f̃ itself is defined
by f : S1 → S1 up to an additive constant 2πn ∈ 2πZ. Hence, f̃ ′ determines f
up to an element of S1 = R/2πZ. Since C is contractible, we see that Diff+(S1) is
homotopy equivalent to S1.

1.2.2 Frechet vector bundles

Let X , V be two Frechet manifolds and π : V → X be a smooth surjection such that
each fibre π−1(x), x ∈ X , of π has the structure of a Frechet vector space.

Definition 7. A Frechet manifold V is called a Frechet vector bundle over X if
the following conditions are satisfied. There exists an atlas {Uα} of coordinate
neighborhoods in X such that for any α the preimage Vα = π−1(Uα) of the coordinate
neighborhood {Uα} belongs to a coordinate neighborhood in V . The corresponding
coordinate charts have the form

φα : Uα −→ uα = φ(Uα) ⊂ Fα , (1.1)

ψα : Vα −→ vα = ψα(Vα) = uα ×Gα (1.2)

and are compatible in the sense that the following diagram is commutative

Vα = π−1(Uα) −−−→
ψα

vα = uα ×Gα ⊂ Fα ×Gα

π

y yprojection

Uα
φα−−−→ uα ⊂ Fα

The structure of a vector space on π-fibres, induced from the right vertical arrow,
coincides with the original one and the transition functions

ψβα := ψβ ◦ ψ−1
α : φα(Uα ∩ Uβ)×Gα −→ φβ(Uα ∩ Uβ)×Gβ

are linear in the second variable.
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This definition applies with evident modifications to Banach and Hilbert vec-
tor bundles. If all Frechet spaces in the above definition, as well as π-fibres, are
complex and the transition functions are holomorphic, we obtain the definition of a
holomorphic Frechet vector bundle.

Example 15. The tangent bundle TX of a Frechet manifold X is a Frechet vector
bundle. The fibre of TX at x ∈ X is formed by vectors x′(t)|t=0, where x(t) is a
smooth path in X , emanating from x. The coordinate transition function for TX
are given by the derivatives of coordinate transition functions for X .

Example 16. If, in particular, X = C∞(X, Y ), then a path f : [0, 1]→ C∞(X, Y ) is
given by a map f : [0, 1]×X → Y , i.e. by a 1-parameter family of maps ft : X → Y ,
t ∈ [0, 1]. For any x ∈ X the image ft(x) for 0 ≤ t ≤ 1 constitutes a path in Y , whose
tangent vector at ft(x) coincides with the derivative f ′

t(x) ∈ Tft(x)Y = f ∗
t (TY )x.

Hence, f ′
t is a section of the inverse image f∗

t TY → X of the tangent bundle TY
under the map ft and

TfC
∞(X, Y ) = C∞(X, f∗TY ) .

Example 17. Let X be a (finite-dimensional) smooth manifold and S(X) be the
Frechet manifold of its smooth compact submanifolds (cf. Ex. 10). Then its tangent
bundle TS(X) has the fibre at S ∈ S(X), equal to the Frechet space of sections
C∞(S,NS) of the normal bundle NS.

We shall need later another Frechet vector bundle, related to the Frechet mani-
fold S(X). Namely, denote by C∞(S) the Frechet space of smooth functions on S.
Then the union of the spaces C∞(S) over all S ∈ S(X) is a Frechet vector bundle
C∞S(X)→ S(X). Indeed, a coordinate chart φ on S(X) in a neighborhood of the
submanifold S ∈ S(X) maps this neighborhood into the Frechet space C∞(S,NS)
of smooth sections of the normal bundle NS. Using this map, we can identify diffeo-
morphically submanifolds S ′, close to S, with the submanifold S, which corresponds
to the zero section of NS. Accordingly, smooth functions on S ′ will be identified
with smooth functions on S, which defines a coordinate chart ψ on C∞S(X) in a
neighborhood of S with values in C∞(S,NS) × C∞(S), compatible with the coor-
dinate chart φ on S(X).

Definition 8. A map A : X → Y between Frechet manifolds is called smooth if for
any point x ∈ X we can find coordinate charts φ in a neighborhood of this point and
ψ in a neighborhood of its image y = A(x) such that the composition ψ ◦ A ◦ φ−1,
called otherwise a local representative of A, is a smooth map of Frechet spaces.

We say that a smooth map A : X → Y is an immersion (resp. submersion) if
for any point x ∈ X we can find coordinate charts near x and its image y = A(x)
so that the local representative of A is an immersion (resp. submersion) of Frechet
spaces, i.e. it is an inclusion of a summand (resp. projection onto a summand) in a
direct sum of Frechet spaces.

Example 18. A smooth map A : X → Y between Frechet manifolds generates a
tangent map T (A) : TX → TY of their tangent bundles. This map sends any fibre
TxX at x ∈ X to the fibre TyY at the image point y = A(x) ∈ Y . In a coordinate
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chart it is given by the derivative of the corresponding local representative. The
linear map DA : TxX → TyY , induced by T (A) on the tangent space TxX , is the
derivative of A at x, which agrees with the definition, given in Subsec. 1.1.2, in the
case when X and Y are Frechet spaces.

Definition 9. A smooth map π : E → X between Frechet manifolds is called a
Frechet fibre bundle, if it is a submersion and for any point x ∈ X we can find an
open neighborhood U of this point such that there exists a Frechet manifold F and
a diffeomorphism ψ : π−1(U)→ F such that the following diagram is commutative:

π−1(U) −−−→
ψ

U ×F

π

y yprojection

U
id−−−→ U

As in the finite-dimensional situation, a smooth map A : E1 → E2 of a fibre bundle
π1 : E1 → X to a fibre bundle π2 : E2 → X is called a fibre bundle map if it sends
fibres to fibres, i.e. for any x ∈ X it sends the fibre π−1

1 (x) to the fibre π−1
2 (x).

Example 19. Let π1 : E1 → X and π2 : E2 → X be two fibre bundles of Frechet
manifolds. Then we can form a new fibre bundle over X , called the fibre product of
these two bundles, which a closed submanifold in E1 × E2. Namely, we set

E1 ×X E2 = {(e1, e2) ∈ E1 × E2 : π1(e1) = π2(e2)} .

It is a closed subset in E1 × E2, since E1 ×X E2 coincides with the preimage of the
diagonal ∆ in E1×E2 under the product map π1×π2 : E1×E2 → X×X . To prove that
it is a fibre bundle over X and a submanifold in E1×E2, take an arbitrary point x ∈ X
and choose an open neighborhood U so that π1 : π−1

1 (U)→ U and π2 : π−1
2 (U)→ U

are compatible with the projections U × F1 → U and U × F2 → U respectively in
the sense of Def. 9. This generates a diffeomorphism π−1

1 (U) × π−1
2 (U) ⊂ E1 × E2

into U ×F1×U ×F2. Restricting this diffeomorphism to the diagonal ∆ in U ×U ,
we obtain for E1 ×X E2 a local diffeomorphism ψ, required in the Def. 9. The same
argument shows that E1 ×X E2 is a closed submanifold in E1 × E2.

1.2.3 Connections

Let π : V → X be a Frechet vector bundle over a Frechet manifold X . Given a point
v ∈ V denote by Vv = KerDπ the subspace in TvV , formed by vectors, annihilated by
the derivative Dπ : TvV → Tπ(v)X . By mimicking the finite-dimensional definition,
we want to define a connection H on π : V → X as a rule, assigning to any point
v ∈ V a subspace Hv in TvV , complementary to Vv.

The tangent bundle TV can be considered as a Frechet vector bundle πV : TV →
V over V and also as a Frechet vector bundle Tπ : TV → TX over TX . So we have
a natural projection

(πV , Tπ) : TV −→ V ⊕ TX , δv 7−→ (πV(δv), Tπ(δv))

for δv ∈ TV . Note that the composite map π ◦ πV : TV → X provides TV with a
structure of a fibre bundle over X .
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Definition 10. A connection on a Frechet vector bundle π : V → X is a smooth
fibre bundle map

H : V ⊕ TX −→ TV
of fibre bundles over X such that

(πV , Tπ) ◦ H = id on V ⊕ TX

and is bilinear. The latter means that for any x ∈ X the restriction of H to the
fibre over x is a map Hx : Vx ⊕ TxX → TxV , which is linear in both arguments.

To understand what this definition means in local terms, consider a coordinate
neighborhood U in X , over which we have the following identifications

TU ←→ U × F , π−1(U)←→ U ×G , T (U ×G)←→ (U ×G)× (F ×G) .

In these terms our connection H has the following representation

H(x, v, ξ) = (x, v,H1(x, v, ξ), H2(x, v, ξ))

where x ∈ U , v ∈ G, ξ ∈ F . Since (πV , Tπ) ◦ H = id on V ⊕ TX , we have
H1(x, v, ξ) = ξ and the bilinearity condition implies that H2(x, v, ξ) is bilinear in
(v, ξ). We shall denote this map, called the Christoffel symbol of the connection H,
by

Γ : U ×G× F −→ G , Γx(v, ξ) := H2(x, v, ξ) .

Denote, as above, by V the subbundle in TV , given by the kernel KerTπ of
the tangent map Tπ : TV → TX . We call V the vertical subbundle of TV . The
complementary subbundle H in TV , given by the image ImH of the map H :
V ⊕ TX → TV , is called the horizontal subbundle of TV . Note that, while the
vertical subbundle V is canonically defined by π : V → X , the horizontal subbundle
H is determined by the connection H.

There is another way to view the connection, based on the notion of covariant
derivative. The covariant derivative is defined in terms of connection H as follows.
Consider a path v(t) in V , represented in local coordinates as v(t) = (x(t), g(t)) with
x(t) ∈ U , g(t) ∈ G. Then its covariant derivative ∇v(t) is equal to

∇v(t) = (ξ(t),Ξ(t)) ,

where
ξ(t) = x′(t) , Ξ(t) = g′(t)− Γx(t)(g(t), ξ(t)) .

The path v(t) in V , covering the path x(t) in X , is horizontal iff ∇v(t) = 0.
For Banach manifolds we can always find for a given path x(t) in X with the

initial value x(0) a uniquely determined horizontal lift v(t) in V , covering x(t). On
the contrary, for Frechet manifolds the horizontal lift may not exist and, even if
it exists, it may be not unique. This is due to the absence of the existence and
uniqueness theorem for the ordinary differential equations in Frechet spaces.

By definition, a connection on a Frechet manifold X is a connection on its tangent
bundle TX . If x(t) is a path in X , then its derivative v(t) := x′(t) is a path in TX .
Its covariant derivative∇v(t) is called otherwise the acceleration of x(t). A path x(t)
is a geodesic of X iff its acceleration is zero. We say that a connection H on TX is
symmetric if its local representatives Γx(ξ, η) are symmetric in (ξ, η) ∈ TxX × TxX .



1.2. FRECHET MANIFOLDS 13

Definition 11. The curvature R of a connection H on a Frechet vector bundle
π : V → X is a trilinear map

R : V × TX × TX −→ V ,

given in terms of local representatives by the formula

Rx(v, ξ, η) := DΓx(v, ξ, η)−DΓx(v, η, ξ)− Γx(Γx(v, ξ), η) + Γx(Γx(v, η), ξ) ,

where Γx(v, ξ) is a local representative of the connection H. This definition does
not depend upon the choice of a local chart.

Example 20. Consider the Frechet manifold C∞(X, Y ) of smooth maps from a
compact manifold X into a manifold Y . Suppose that Y has a connection, repre-
sented locally by the Christoffel symbol Γy(ξ, η). Then we can define a connection
on C∞(X, Y ) locally by the Christoffel symbol(

Γf (ξ̃, η̃)
)

(x) = Γf(x)(ξ̃(x), η̃(x)) for x ∈ X ,

where f ∈ C∞(X, Y ), ξ̃, η̃ ∈ TfC
∞(X, Y ) = C∞(X, f∗TY ) (cf. Ex.16 in Sub-

sec. 1.2.2). Note that ξ̃(x), η̃(x) ∈ Tf(x)Y .
A path f(t) in C∞(X, Y ), evaluated at x ∈ X, yields a path ft(x) in Y . The

path f(t) is a geodesic in C∞(X, Y ) if and only if the path ft(x) is a geodesic in Y
for any x ∈ X. The curvature R of the introduced connection on C∞(X, Y ) is given
in terms of the curvature R of the connection on Y by the formula

Rf (ξ̃, η̃, ζ̃)(x) = Rf(x)(ξ̃(x), η̃(x), ζ̃(x)) ,

i.e. is computed from R pointwise.

Example 21. Consider the Frechet manifold S(X) of smooth compact submani-
folds S in a Riemannian manifold X (cf. Ex. 10 in Subsec. 1.2.1 and Ex. 17 in
Subsec. 1.2.2). For any S ∈ S(X) and f ∈ C∞(S) we can define vector bundles Tf
and Nf over S by setting

Tf := graph of Df = {(v,Dvf) : v ∈ TS} ⊂ TX × R

and Nf = TX × R/Tf .
Then we have the following natural isomorphisms

TSS(X) = C∞(S,NS) , T(S,f)C
∞S(X) = C∞(S,Nf) .

The vector bundle Nf may be included into the following exact sequence of vector
bundle maps over S

0 −→ R −→ Nf −→ NS −→ 0 ,

which induces an exact sequence of maps of Frechet vector spaces

0 −→ C∞(S) −→ C∞(S,Nf) −→ C∞(S,NS) −→ 0 .

By above isomorphisms, it coincides with the exact sequence

0 −→ C∞(S) −→ T(S,f)C
∞S(X) −→ TSS(X) −→ 0 .
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The third arrow in this sequence is the tangent map of the vector bundle projection
C∞S(X) → S(X), while the second arrow realizes C∞(S) as the vertical subspace
of this bundle at f ∈ C∞(S).

To define a complementary subspace, we need a connection on C∞S(X), which is
generated by the Riemannian connection onX. This connectionH may be described
as follows. For S ∈ S(X) we can identify its normal bundle NS with the subbundle
of TX|S, consisting of vectors, orthogonal to TS with respect to the Riemannian
metric of X. Then NS×R would be a complementary subbundle to Tf in TX×R,
so we can identify Nf = TX ×R/Tf with NS ×R. We set Hf = NS × {0} to be
the horizontal subbundle, complementary to the vertical subspace {0} × R. Then
C∞(S,Hf), which is complementary to the vertical subspace C∞(S), will be the
horizontal subspace of our connection H. Note that it projects isomorphically onto
the space C∞(S,NS) = TSS(X), since Hf = NS × {0} ∼ NS.

Let us compute the curvature of this connection. Using the Riemannian con-
nection ∇ on X, we can define covariant derivatives ∇f of f ∈ C∞(S) and ∇ξ of
ξ ∈ C∞(S,NS) and compute their inner product ∇f · ∇ξ in TX|S. The curvature
R of the connection H is a trilinear map

R : C∞S(X)× TC∞S(X)× TC∞S(X) −→ C∞S(X) ,

which can be interpreted at a point S ∈ S(X) as a linear map

RS : C∞(S)× C∞(S,NS)× C∞(S,NS) −→ C∞(S) .

This map is given explicitly by the formula

RS(f, ξ, η) = ∇f · ∇ξ · η −∇f · ∇η · ξ .

1.2.4 Differential forms

Definition 12. A differential form of degree r (or simply an r-form) on a Frechet
manifold X is a smooth map

ω : TX × · · · × TX︸ ︷︷ ︸
r

−→ C

of the rth direct power TX × · · · × TX of the tangent bundle TX such that for any
x ∈ X its restriction

ωx : TxX × · · · × TxX −→ C
to TxX × · · · × TxX is an r-multilinear alternating map. In other words, ωx is an
r-multilinear alternating form on TxX . We denote the space of r-forms on X by
Ωr(X ). We shall consider smooth functions on X as forms of degree 0.

In a coordinate neighborhood U of X we can identify an r-form ω on U with a
smooth map from an open subset of a Frechet space F into the vector space Ωr(F )
of r-multilinear alternating r-forms on F . If ξ1, . . . , ξr are smooth vector fields on
U ⊂ F , we denote by ω(ξ1, . . . , ξr) the map from U to C, whose value at x ∈ U
is equal to ωx(ξ1(x), . . . , ξr(x)), i.e. the value of the r-form ωx ∈ Ωr(F ) on vectors
ξ1(x), . . . , ξr(x) in F .

Differential forms on Frechet manifolds share many properties with differential
forms on finite-dimensional manifolds. In particular, one can define their exterior
derivative and wedge product similar to the finite-dimensional case.
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Definition 13. The exterior derivative dω of an r-form ω on X is an (r+1)-form on
X , which can be defined locally as follows. For any smooth vector fields ξ0, ξ1, . . . , ξr
in a coordinate neighborhood U ⊂ F , the value of dω on ξ0, ξ1, . . . , ξr is equal to

dω(ξ0, ξ1, . . . , ξr) =
r∑
i=0

(−1)iξi

(
ω(ξ0, . . . , ξ̂i, . . . , ξr)

)
+

+
r∑

i,j=0
i<j

(−1)i+jω
(
[ξi, ξj], ξ0, . . . , ξ̂i, . . . , ξ̂j, . . . , ξr

)
.

(1.3)

This definition does not depend on the choice of the local data in the sense that
there is a unique (r + 1)-form on X , which respects the given local representations
(cf. [47], Ch.V, Prop. 3.2).

Example 22. If f is a 0-form on X , i.e. a smooth map f : X → C, then dfx for
any x ∈ X coincides with the tangent map

Txf : TxX −→ Tf(x)C .

Moreover, for any vector field ξ on X we have

df(ξ) = ξf .

If ω is a 1-form on X , then locally

dω(ξ, η) = ξ (ω(η))− η (ω(ξ))− ω ([ξ, η]) .

For a 2-form ω we have locally

dω(ξ, η, ζ) = ξ (ω(η, ζ)) + η (ω(ζ, ξ)) + ζ (ω(ξ, η))−
− ω ([ξ, η], ζ)− ω ([η, ζ], ξ)− ω ([ζ, ξ], η) .

(1.4)

Definition 14. The wedge product of an r-form ω and an s-form ψ on X is an
(r + s)-form ω ∧ ψ on X , which can be defined locally as follows. For any smooth
vector fields ξ1, . . . ξr+s in a coordinate neighborhood U ⊂ F , the value of ω ∧ ψ on
ξ1, . . . ξr+s is equal to

(ω ∧ ψ)(ξ1, . . . ξr+s) =
r+s∑
i=1

(−1)ϵ(σ)ω(ξσ(1), . . . , ξσ(r))ψ(ξσ(r+1), . . . , ξσ(r+s)) ,

where the sum is taken over all permutations σ of the numbers (1, . . . , r + s) and
ϵ(σ) is the parity of σ.

Again, this definition does not depend on the choice of the local data in the
sense that there is a unique (r+ s)-form ω ∧ψ on X , which respects the given local
representations.

In particular, the wedge product of a function f and a form ω is equal to f ∧ω =
fω. One can easily check that the wedge product of two forms ω and ψ on X is
related to the exterior derivative by the usual formula

d(ω ∧ ψ) = dω ∧ ψ + (−1)degωω ∧ dψ

and the square of d is equal to zero: ddω = 0.
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1.2.5 Symplectic and complex structures

Definition 15. A symplectic structure on a Frechet manifold X is a 2-form ω on
X , having the following properties:

1. ω is closed, i.e. dω = 0;

2. ω is non-degenerate at any point x ∈ X , i.e. for any ξ ∈ TxX , ξ ̸= 0, there
exists an η ∈ TxX such that ωx(ξ, η) ̸= 0.

A Frechet manifold X , provided with a symplectic structure ω, is called symplectic.

Remark 1. Note that we have used here the weakest form of the non-degeneracy
condition. For Banach manifolds, modelled locally on a Banach space E, a conven-
tional non-degeneracy condition on ω requires that for any x ∈ X the linear operator
Ax from TxX ∼ E to the dual space T ∗

xX ∼ E ′, defined by ωx(·, η) = Ax(·)(η), is
invertible for any non-zero η ∈ T ∗

xX .

Most of Frechet manifolds, considered in this book, are symplectic in the sense
of the Def.15. Moreover, they usually have, along with their symplectic structure, a
compatible almost complex structure.

Definition 16. An almost complex structure on a Frechet manifold X is a smooth
vector bundle automorphism J of the tangent bundle TX , such that for any x ∈ X
the restriction Jx of J to TxX satisfies the condition

J2
x = −id .

A Frechet manifold X , provided with an almost complex structure, is called almost
complex .

If J is an almost complex structure on a Frechet manifold X , then the iso-
morphism J can be extended complex linearly to the complexified tangent bundle
TCX = TX ⊗ C, so that TCX decomposes into the direct sum of subbundles

TCX = T 1,0X ⊕ T 0,1X ,

where for any x ∈ X the restriction of Jx to T 1,0
x X is given by the multiplication by

i, and the restriction of Jx to T 0,1
x X is given by the multiplication by −i. Sections

of the bundles T 1,0
x X and T 0,1

x X are called otherwise the vector fields of type (1, 0)
and (0, 1) respectively.

We call an almost complex structure J on a Frechet manifold X integrable or
formally integrable complex structure, if the bracket of any two vector fields on X
of type (1, 0) is again a vector field of type (1, 0).

Remark 2. An almost complex structure J provides a complex structure on every
tangent space TxX , determined by the action of Jx. In particular, any complex
Frechet manifold X has a natural almost complex structure, given by the multipli-
cation by i on TxX . Such an almost complex structure is automatically integrable.
For finite-dimensional manifolds the Newlander-Nirenberg theorem asserts that the
converse is also true, namely, any almost complex manifold with an integrable al-
most complex structure is, in fact, complex . It means that one can introduce an
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atlas of local complex charts on this manifold in such a way that the original al-
most complex structure in these coordinates will be given by the multiplication by
i on tangent spaces. For Frechet manifolds this theorem is, in general, not true (cf.
[51]), so in order to show that a given Frechet manifold is complex, it’s necessary to
construct, following Def.5 from Subsec. 1.2.1, an atlas of local complex charts.

The most important class of Frechet manifolds, considered in this book, is that
of Kähler Frechet manifolds, i.e. Frechet manifolds, which are both symplectic
and complex, and these two structures are compatible in the sense of the following
definition.

Definition 17. A complex symplectic Frechet manifold X is called a Kähler Frechet
manifold , if its complex structure J and symplectic structure ω are compatible in
the following sense:

1. ωx(Jxξ, Jxη) = ωx(ξ, η) for any ξ, η ∈ TxX , x ∈ X ;

2. symmetric form g on TX × TX , defined by

gx(ξ, η) := ωx(ξ, Jxη) ,

is positively definite for any x ∈ X .

Such a form g is called the Kähler metric on X .

Bibliographic comments

A key reference to Ch.1 is the Hamilton’s paper [32] on the Nash–Moser theorem.
Its first part is an excellent introduction to the theory of Frechet manifolds. In
our exposition (except for Subsecs.1.2.4,1.2.5) we follow closely that paper. The
definition Def.10 of the connection on a Frechet vector bundle is borrowed from [47].
The latter book can be recommended for the readers, interested in the theory of
infinite-dimensional manifolds with a special emphasis on the Banach case.





Chapter 2

Frechet Lie groups

Definition 18. A Frechet Lie group is a Frechet manifold G, provided with the
group structure, such that the multiplication

G × G −→ G , (g, h) 7−→ g · h ,

and ”taking-the-inverse”
G −→ G , g 7−→ g−1 ,

are smooth maps of Frechet manifolds. The Frechet Lie algebra of a Frechet Lie
group G is the tangent space G = T1G at the unit 1 of the group G.

For g ∈ G denote by

Lg : G → G, Lg(h) = g · h
Rg : G → G, Rg(h) = h · g

respectively the left and right translations on the group G.
Any element ξ of the Lie algebra G generates by left translations a vector field

Xξ on G, invariant under these translations. The correspondence ξ ←→ Xξ allows
us to consider elements of the Lie algebra G as left-invariant vector fields on the
Lie group G. The left-invariant vector fields on G form a Lie algebra with respect
to the bracket of vector fields, which induces a Lie algebra bracket on T1G = G by
the identification ξ ←→ Xξ (this justifies the use of the term ”Lie algebra” with
respect to T1G). We note that there exists a unique connection H on G, called the
Cartan–Maurer connection, such that the left-invariant vector fields are horizontal
with respect to H, its curvature being equal to zero. Of course, the choice of
the left-invariant vector fields and left translations in this argument was absolutely
ambiguous (though traditional), with the same success we could employ here the
right-invariant vector fields and right translations.

If in the definition of a Frechet Lie group the group G is a Banach (resp. Hilbert)
manifold, we say that G is a Banach (resp. Hilbert) Lie group.

Suppose that for any element ξ of the Lie algebra G there exists a unique 1-
parameter subgroup γξ : R→ G of the group G such that γ′ξ(0) = ξ. Then, as in the
finite-dimensional case, we can define the exponential map

exp : G −→ G

19
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by setting exp ξ := γξ(1). In particular, for Banach Lie groups G the above condition
is always satisfied. Indeed, any element ξ ∈ G is identified with the left-invariant
vector field Xξ, which can be integrated to a 1-parameter group of transformations
φtξ : G → G. In this case γξ(t) := φtξ(1).

We supplement the definition of Frechet fibre bundles, given in Subsec. 1.2.2 (cf.
Def.9), with the definition of a principal Frechet bundle. We say that a Frechet Lie
group G acts on a Frechet manifold X , if there is a smooth map

G × X −→ X , (g, x) 7−→ g · x ,

such that 1 · x = x and (g1g2) · x = g1 · (g2 · x).

Definition 19. Let G be a Frechet Lie group, acting on a Frechet manifold E . This
manifold is called a principal Frechet G-bundle, if there is a smooth submersion
π : E → X onto another Frechet manifold X , such that for any x ∈ X there exists
an open neighborhood U of x and a diffeomorphism of its preimage π−1(U) in E
onto U × G, satisfying the following conditions:

1. the action of G on E corresponds to the natural action of G on the second
factor of U × G;

2. the following diagram
π−1(U) −−−→ U × G

π

y yprojection

U
id−−−→ U

is commutative.

We consider next the two most important examples of Frechet Lie groups, playing
a special role in this book.

2.1 Group of currents C∞(X,G)

2.1.1 Basic properties

Let X be a smooth compact manifold and G is a Lie group. The space C∞(X,G)
of all smooth maps from X into G is a Frechet manifold, as we have pointed out in
Subsec.1.2.1 (cf. Ex.12). Let us recall the definition of the structure of a Frechet
manifold on C∞(X,G) for this particular case.

The exponential map exp : g→ G determines a local diffeomorphism

exp : u −→ U ,

mapping an open neighborhood u of zero in the Lie algebra g onto an open neighbor-
hood U of the unit e ∈ G. Using this diffeomorphism, we can construct a local chart
in a neighborhood U = C∞(X,U) of the identity 1 := X → e ∈ G in C∞(X,U). It
is given by the homeomorphism

χ : U := C∞(X, u) −→ C∞(X,U) = U ,
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given by the pointwise application of the exponential map exp : u→ U . The inverse
map φ1 := χ−1 : U → U yields a homeomorphism of the neighborhood U of the
identity 1 ∈ C∞(X,U) onto the open subset U in the Frechet space C∞(X, g).

The manifold C∞(X,G) is a group with respect to the pointwise multiplication.
Using this group structure, we can construct local charts at any point of C∞(X,G).
To define a local chart at an arbitrary point γ ∈ C∞(X,G), denote by Uγ a neigh-
borhood of γ of the form Uγ := γ ·U and define a local chart φγ in the neighborhood
Uγ as the composition map

φγ := φ1 ◦ γ−1 : Uγ → U ,

where the map γ−1 : Uγ → U is given by the multiplication by γ−1 from the left.
The neighborhoods {Uγ} and the maps {φγ} with γ ∈ C∞(X,G) form an open atlas
and a system of local charts on C∞(X,G), which defines the structure of a smooth
Frechet manifold on C∞(X,G), modelled on the Frechet space C∞(X, g).

The pointwise multiplication and taking-the-inverse maps in the group C∞(X,G)
are smooth with respect to the introduced structure of a Frechet manifold, hence
C∞(X,G) is a Frechet Lie group, called the group of currents.

The Lie algebra of C∞(X,G) coincides with the Frechet space C∞(X, g), the Lie
bracket in C∞(X, g) being given by the pointwise application of the Lie bracket in
g. The exponential map

exp : C∞(X, g) −→ C∞(X,G) ,

given by the pointwise application of the exponential map exp : g → G, is a local
homeomorphism in a neighborhood of zero.

Consider now the most important example of the group C∞(X,G), corresponding
to the case when X = S1. In this case the group C∞(S1, G) is called the loop group
of the Lie group G, and is denoted by

LG := C∞(S1, G) .

The Lie algebra of LG coincides with the loop algebra

Lg := C∞(S1, g) .

Since all operations in the loop group LG are defined pointwise, one can expect
that the properties of LG will be close to the properties of the group G itself. And
this is true in most of the cases, but there are still some differences, demonstrated
by the examples below.

Consider first the homotopy structure of LG. Let us introduce the based loop
space

ΩG := LG/G

of G, where G in the denominator is identified with the group of constant maps
S1 → g0 ∈ G. We can realize ΩG as the closed submanifold of LG, consisting of the
maps γ ∈ LG, which send the identity 1 ∈ LG to the unit e ∈ G: γ(1) = e. Then
the loop group LG will be identified with the direct product ΩG × G. It is well
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known (cf.,e.g., [36]) that the homotopy groups of ΩG coincide with the homotopy
groups of G, shifted by one:

πi(ΩG) ∼= πi+1(G) .

It follows that

πi(LG) ∼= πi(ΩG)⊕ πi(G) ∼= πi+1(G)⊕ πi(G) .

In particular, π0(LG) is equal to π1(G) ⊕ π0(G), i.e. the group LG is connected if
and only if G is connected and simply connected. The fundamental group of LG
coincides with π2(G)⊕ π1(G) ∼= π1(G), since π2(G) = 0 for any connected compact
Lie group G. Hence, LG is connected and simply connected if the Lie group G itself
is connected and simply connected.

2.1.2 Exponential map of the loop algebra

As we have pointed out, the exponential map

exp : Lg −→ LG

of the loop algebra Lg is given by the pointwise application of the exponential map
exp : g→ G.

If G is a compact Lie group, then it has the following well-known property.
Denote by G◦ the identity connected component of G. Then the exponential map
exp : g→ G◦ is surjective. This property is a corollary of the fact that every element
of G◦ belongs to some 1-parameter subgroup of G. However, for the loop group LG
it is not true, in general.

Consider, for example, the simply connected groupG = SU(2). Then the element

LG ∋ γ : z −→
(
z 0
0 z−1

)
, z ∈ S1 ,

is not an exponential of any element in the loop algebra Lg.
Indeed, if we suppose that γ = exp ξ for some ξ ∈ C∞(S1, g), then the matrix

γ(z), being a function of ξ(z), should commute with ξ(z) for any z ∈ S1. It’s easy
to see that this condition implies that the matrix ξ(z) should be diagonal for any
z ∈ S1, i.e. (

z 0
0 z−1

)
=

(
eif(z) 0

0 e−if(z)

)
for some smooth real-valued function f on S1. In particular, z = eif(z), which is
impossible, since the logarithm ln(z) does not admit a continuous branch on the
circle.

However, one can prove the following property of the loop group LG, which may
be considered as a substitution of the surjectivity of exp : g→ G◦.

Proposition 1. Let G be a connected compact Lie group. Then the exponential map

exp : Lg −→ (LG)◦

has a dense image in the connected component of the identity (LG)◦ of the group
LG.
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Proof. To prove this assertion, we note first that a connected compact Lie group G
is the direct product of a torus and a connected semisimple compact Lie group. Our
assertion for the torus is easily checked directly, so it is sufficient to consider the
case of a semisimple connected compact Lie group G. In this case the group G can
be realized as the connected component of the identity of the automorphism group
Aut g of the Lie algebra g (since an arbitrary semisimple connected compact Lie
group G is a finite covering over (Aut g)◦). If this is the case, then the critical points
of the exponential map exp : g → G lie on a closed hypersurface Γ in g, dividing g

into an interior convex domain D, containing 0, and its complement. The image of
Γ under the exponential map, denoted by exp Γ, is contained in a submanifold of G
of codimension≥ 3.

Consider now an arbitrary loop γ(z) ∈ (LG)◦, passing through e ∈ G: γ(1) = e.
We assert that it can be approximated by smooth loops in (LG)◦, which are the
exponentials in LG (we call a loop δ(z) in LG an exponential, if it can be represented
in the form δ = exp ξ for some ξ ∈ Lg).

By smoothly deforming, if necessary, the loop γ, we can approximate it by a
smooth loop γ̃ ∈ (LG)◦, starting at e, such that γ̃(eit) does not intersect exp Γ for
0 < t < 2π. Since the exponential exp : g→ G is locally diffeomorphic along γ̃(eit)
for t < 2π, we can, beginning from e, choose a continuous logarithm branch of the
loop γ̃(eit) for t < 2π. As a result, we obtain a smooth (but, generally speaking, not
closed) path ξ(eit), 0 ≤ t < 2π, in g such that exp ξ = γ̃.

The limit ξ0 of the path ξ(eit) for t → 2π − 0 belongs to D̄. If exp Γ does not
contain e, then ξ0 cannot belong to Γ = ∂D, because exp ξ0 = e. Hence, ξ0 ∈ D,
which forces it to be equal to zero (since, otherwise, exp will be equal to e on the
whole orbit of ξ0 in D \ 0 under the adjoint action Ad, being a smooth submanifold
in g of a positive dimension). So ξ(eit), 0 ≤ t ≤ 2π, is a smooth loop in g such that
exp ξ = γ̃, i.e. we have found a logarithm of γ̃ in g.

If exp Γ contains e, then, in contrast with the considered case, it may happen
that the limit limt→2π−0 ξ(e

it) = ξ0 belongs to Γ. But in such a situation the loop γ̃
will not be contractible, i.e. γ̃ /∈ (LG)◦, contrary to our assumption. To prove it,
note that in this case our path ξ(eit) is homotopic to a linear path ξ0(e

it) := t ξ0
2π

,
0 ≤ t ≤ 2π, with the same endpoints 0 and ξ0, as ξ(eit). Accordingly, the loop γ̃ is
homotopic to the loop γ0(e

it) in G, given by

γ0 : S1 ∋ eit 7−→ exp

(
t
ξ0
2π

)
, 0 ≤ t ≤ 2π .

But it is easy to see that γ0 is not contractible in G. So the loop γ̃ is also not
contractible in G.

2.1.3 Complexification

The loop group LG, similar to compact Lie groups, admits the complexification.
Recall that the complexification of a Lie algebra g coincides with the complex

Lie algebra
gC := g⊗ C = g + ig .

Definition 20. We call by the complexification of a connected Lie group G a con-
nected complex Lie group GC, having the following properties:
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1. the Lie algebra of GC coincides with the complexification gC of the Lie algebra
g;

2. GC contains G as a subgroup, i.e. there exists a monomorphism i : G→ GC.

In particular, a group G, which admits the complexification, should have non-
trivial homomorphisms into complex Lie groups (the monomorphism i is one of
them).

The complexification GC, introduced above, exists and is uniquely defined for
any compact connected Lie group G. For example, the complexification of the
group G = S1 coincides with the multiplicative group GC = C∗ = C\{0} of complex
numbers, and the complexification of G = SU(n) coincides with GC = SL(n,C). For
the non-compact group SL(n,R) its complexification also coincides with SL(n,C).

We give an example of a Lie group, which admits no complexification in the
above sense. As we have pointed out, the complexification of the group SL(2,R)
coincides with the group SL(2,C). The group SL(2,C) is simply connected, while
the fundamental group of SL(2,R) is isomorphic to Z. Let G be a universal covering
group of SL(2,R). Then we have a homomorphism π : G→ SL(2,R), whose kernel
is equal to Z. Suppose that G has the complexification GC. Then it should be a
covering group of SL(2,C). Indeed, the composition of π with the natural embedding
i : SL(2,R) ↪→ SL(2,C) yields a non-trivial homomorphism of G into the complex
group SL(2,C) with the kernel, equal to Z. This homomorphism extends to a
covering homomorphism GC → SL(2,C) with the same kernel. But such a covering
cannot exist, since SL(2,C) is simply connected. The property of the group G, used
in this argument, can be reformulated as follows: any homomorphism of G into a
connected complex Lie group factors through SL(2,R) or (still another formulation)
the kernel of such a homomorphism should contain Z.

In the case of the loop group LG = C∞(S1, G) of a compact connected Lie
group G its complexification coincides with the loop group LGC = C∞(S1, GC)
of the complexified group GC. The group LGC is a complex Frechet Lie group,
modelled on the Frechet Lie algebra C∞(S1, gC).

2.2 Group of diffeomorphisms Diff(X)

Let X be a smooth compact manifold and Diff(X) is the group of diffeomorphisms
of X. The group Diff(X) is a Frechet manifold, being an open subset in the Frechet
manifold C∞(X,X). It is a Frechet Lie group with respect to this Frechet manifold
structure.

The group Diff(X) is closely related to the group of currents C∞(X,G), con-
sidered in the previous Sec.2.1. Namely, Diff(X) acts smoothly on the manifold
C∞(X,G) by the ”reparametrization” of maps from C∞(X,G).

The Lie algebra of the group Diff(X) coincides with the Frechet Lie algebra

C∞(X,TX) =: Vect(X)

of smooth tangent vector fields on X.
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The exponential map

exp : Vect(X) −→ Diff(X)

can be defined, as in the beginning of this Chapter. Namely, any vector field ξ ∈
Vect(X) generates a 1-parameter subgroup of diffeomorphisms φξt of X, defined as
follows. The image y(t) := φξt (x) of an arbitrary point x ∈ X under the action of φξt
coincides with the value at t of the integral path of the ordinary differential equation
y′ = ξ(y) with the initial condition: y = x for t = 0. We set exp ξ := φξ1.

Restrict now to the case of X = S1, which is the most important for us. As we
have already remarked in Subsec.1.2.1 (Ex. 14), the group Diff(S1) consists of two
connected components, and the connected component of the identity Diff+(S1) is
formed by the maps from Diff(S1), preserving the orientation of S1.

The Lie algebra of the group Diff(S1) coincides with the algebra Vect(S1) of
smooth tangent vector fields on the circle S1. Elements v ∈ Vect(S1) can be written
in the form v = v(θ) d

dθ
, where v(θ) is a smooth 2π-periodic function of θ. The

bracket of two vector fields v1, v2 ∈ Vect(S1) is given by the standard formula[
v1(θ)

d

dθ
, v2(θ)

d

dθ

]
= {v1(θ)v

′
2(θ)− v′1(θ)v2(θ)}

d

dθ
.

Denote by VectC(S1) the complexification of the Lie algebra Vect(S1), identified
with the complex Frechet vector space TC

idDiff(S1):

VectC(S1) := Vect(S1)⊗ C .

It is convenient to represent the coefficients v(θ) of vector fields v = v(θ) d
dθ

from

VectC(S1) by their Fourier series

v(θ) =
∞∑

n=−∞

vne
inθ , vn ∈ C .

In these terms the real subalgebra Vect(S1) of VectC(S1) is specified by the relations:
v−n = v̄n, n ∈ Z.

The complexified Lie algebra VectC(S1) has a natural vector space basis, given
by the vector fields

en = ieinθ
d

dθ
, n = 0,±1,±2, . . . ,

satisfying the commutation relations:

[en, em] = (n−m)en+m , m, n ∈ Z.

2.2.1 Finite-dimensional subalgebras in Vectω(S1)

Consider the subalgebra Vectω(S
1) of Vect(S1), consisting of vector fields v(θ) d

dθ

with real analytic coefficients v(θ). Such v(θ) are represented by Fourier series of
the form

v(θ) =
∞∑

n=−∞

vne
inθ , v−n = v̄n ,

converging in a neighborhood of S1 in C.
The Lie algebra Vectω(S

1) has the following interesting property.
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Proposition 2. There are no finite-dimensional Lie subalgebras in Vectω(S
1) of

dimension> 3. Moreover, for any dimension d = 1, 2, 3 there exists only one (up to
an isomorphism) Lie subalgebra of dimension d in Vectω(S

1).

Proof. To prove this assertion, we note first that the bracket of two (not identically
zero) vector fields v1, v2 ∈ Vectω(S

1) is identically zero if and only if these fields are
linearly dependent, i.e. λ1v1 +λ2v2 ≡ 0 for some constants λ1, λ2. So any non-trivial
commutative subalgebra in Vectω(S

1) should be one-dimensional. In particular, the
rank of any non-trivial subalgebra in Vectω(S

1) (i.e. the dimension of its Cartan
subalgebra) is equal to 1.

We show that any subalgebra g of the Lie algebra Vectω(S
1) of dimension≥ 3

is semisimple, i.e. it contains no non-zero commutative ideals. Suppose, on the
contrary, that g contains such an ideal, which should be, as we have just noted,
one-dimensional. Choose a basis {e1, e2, e3, . . . } in g so that our ideal is generated
by e1 (by assumption, this basis has, at least, three elements). Then

[e1, e2] = λe1 and [e1, e3] = µe1 ,

where λ, µ ̸= 0, since e1, e2, e3 are linearly independent. Hence, [e1, µe2 − λe3] = 0,
which implies the linear dependence of e1, e2, e3 in contradiction with our assump-
tion.

Note that the dimension constraint on the Lie algebra g in this assertion is essen-
tial, since we shall see below that the unique two-dimensional subalgebra, contained
in Vectω(S

1), is not semisimple.
We show next that any finite-dimensional subalgebra g in the algebra Vectω(S

1) of
dimension≥ 3 is simple, i.e. it contains no non-trivial ideals. Indeed, any semisimple
algebra g is decomposed into the direct sum of simple ideals. If g is not simple, then
it contains an ideal I of dimension less than 1

2
dim g. We choose a basis in g of

the form {e1, . . . , em, f1, . . . , fk}, so that the vectors e1, . . . , em form a basis of the
ideal I. It’s clear that m ≥ 2 (otherwise, the ideal I would be commutative). The
brackets

[e1, f1] ∈ I , . . . , [e1, fk] ∈ I , [e1, e2] ∈ I
are non-zero (otherwise, the corresponding vectors would be linearly dependent) and
so form a collection of k+ 1 > m non-zero vectors in the m-dimensional subalgebra
I. Hence, they are linearly dependent, which implies, as before, that the vectors
e1, . . . , em, f1, . . . , fk are linearly dependent, contrary to our assumption.

From the list of simple Lie algebras, one can see that only two simple Lie algebras
of dimension 3 can have the properties, described above. Namely, it is the non-
compact Lie algebra sl2(R) and the compact Lie algebra su(2). By comparing the
Lie brackets in the Lie algebras su(2) and Vectω(S

1), one shows that the second
possibility is not realized. A standard embedding of sl2(R) into Vectω(S

1) realizes
sl2(R) as the Lie subalgebra in Vectω(S

1), generated by three vector fields d/dθ,
cos θ d/dθ, sin θ d/dθ. This subalgebra coincides with the Lie algebra of the Möbius
group PSL2(R) of all fractional linear automorphisms of the unit disc.

Any two-dimensional subalgebra in Vectω(S
1) is necessarily non-commutative

since, as we have seen before, the vanishing of the bracket of two vector fields in
Vectω(S

1) implies their linear dependence. Since all two-dimensional non-commuta-
tive Lie algebras are isomorphic, there exists only one (up to an isomorphism) two-
dimensional Lie subalgebra in Vectω(S

1). One of its realizations inside Vectω(S
1)
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is given by the subalgebra, generated by two vector fields v1 = cos θ d/dθ, v2 =
d/dθ + sin θ d/dθ.

2.2.2 Exponential map of Vect(S1)

We analyze now the exponential map

exp : Vect(S1) −→ Diff+(S1)

in more detail. Recall that this map associates with a tangent vector field v =
v(θ) d

dθ
on the circle S1 the diffeomorphism exp v := φv1, where φvt is the 1-parameter

subgroup of diffeomorphisms in Diff+(S1) with the tangent vector v at the identity
id ∈ Diff+(S1). In other words, yθ(t) := φvt (θ) is a solution of the equation dyθ

dt
=

v(yθ) with the initial condition yθ(0) = θ.

For finite-dimensional Lie groups one proves easily, using the inverse function
theorem, that the map exp (whose derivative at zero is equal to the identity) is
locally invertible. However, as we have already pointed out several times before,
the inverse function theorem is, in general, not true for Frechet manifolds. By this
reason we should not be surprised by the following proposition, proved in [32, 65].

Proposition 3. The exponential map

exp : Vect(S1)→ Diff+(S1)

is neither locally injective, nor locally surjective in any neighborhood of zero.

Proof. We prove first that the exponential is not injective in any neighborhood of
zero. Denote by R2π/n the rotation of S1 by the angle 2π

n
and note that this rotation

may be chosen arbitrary close to the identity map id ∈ Diff+(S1) for sufficiently
large n.

Consider 1-parameter subgroups of Diff+(S1) of the form f ◦ S1 ◦ f−1, where
f ∈ Diff+(S1) and S1 is identified with the subgroup of rotations in Diff+(S1).
Denote by Γn the subgroup in Diff+(S1), consisting of diffeomorphisms f , commuting
with the rotation R2π/n:

R−1
2π/n ◦ f ◦R2π/n = f .

In other words, it is the subgroup of (2π/n)-periodic diffeomorphisms in Diff+(S1).
An element f ∈ Γn can be written in the form

f(θ) = θ + h(θ) mod 2π ,

where h is a smooth (2π/n)-periodic function on R and S1 is identified with R/2πZ.
If f ∈ Γn, then the 1-parameter subgroup f ◦ S1 ◦ f−1 contains R2π/n, since

f−1 ◦R2π/n ◦ f = R2π/n ∈ S1 =⇒ R2π/n ∈ f ◦ S1 ◦ f−1 .

Hence, all 1-parameter subgroups Γn of the above form intersect in R2π/n, so the
exponential is not injective near zero.
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To prove that the exponential is not a surjection onto a neighborhood of id in
Diff+(S1), we use the diffeomorphisms from Γn, which are small deformations of the
rotation R2π/n. Such a diffeomorphism f ∈ Γn can be given by the formula

f(θ) = θ +
2π

n
+ ϵ sin(nθ) mod 2π .

For sufficiently large n and sufficiently small ϵ > 0 this diffeomorphism may be
made arbitrary close to the identity. The point θ = 0 is a periodic point of this
diffeomorphism of order n, i.e.

fn(0) = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(0) = 0 mod 2π ,

but fn ̸= id, since the derivative of fn at zero is equal (by the composition law) to
(1 + ϵn)n. Moreover, for a sufficiently small ϵ the diffeomorphism f is close to the
rotation and therefore has no fixed points.

It follows that f cannot be the exponential of any vector field v ∈ Vect(S1).
Indeed, assuming the opposite, let f = exp v for some v ∈ Vect(S1). The vector
field v = v(θ) d

dθ
does not vanish, since f has no fixed points. Hence, the vector

field v(θ) d
dθ

may be transformed into a constant field c d
dθ

with the help of a smooth
change of variable χ = χ(θ) of the form

χ(θ) = c

∫ θ

0

dt

v(t)
, 0 ≤ θ ≤ 2π ,

where the normalizing constant c = 2π
(∫ 2π

0
dt
v(t)

)−1

is chosen from the condition:

χ(2π) = 2π. This argument shows that the 1-parameter subgroup, generated by the
vector v, is conjugate to a rotation R:

f = χ−1 ◦R ◦ χ .

Then fn = χ−1 ◦Rn ◦ χ and, since fn(0) = 0, the rotation Rn has a fixed point, i.e.
Rn = id, which contradicts the relation fn ̸= id.

Remark 3. The last Proposition asserts that there exist diffeomorphisms in Diff+(S1),
which cannot be represented as the exponential of a smooth vector field on the
circle. One can ask if there exist diffeomorphisms in Diff+(S1), which cannot be
represented as the nth power (with respect to the composition) of a diffeomorphism
from Diff+(S1)? It’s clear that such diffeomorphisms, if they exist, also cannot be
represented as the exponentials of smooth vector fields. We try to construct these
diffeomorphisms again in the form

f(θ) = θ +
2π

n
+ ϵh̃(θ) mod 2π , (2.1)

where ϵ > 0 is sufficiently small (the map f constitutes a diffeomorphism of S1, when
ϵ is less than 1/max |h̃′|). The function h̃, 0 ≤ h̃ ≤ 1, is a smooth 2π/n-periodic
function on the real line, whose restriction to the interval [0, 2π/n) is denoted by h.
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Note that the zeros of the function h̃ are n-periodic points of the diffeomorphism f .
Then the following assertion is true.

Suppose that h vanishes on the interval [0, 2π/n) in a finite number of points, and
this number is not divisible by n. Then for a sufficiently small ϵ the diffeomorphism
f , given by the formula (2.1) above, can not be represented as the nth power of any
diffeomorphism from Diff+(S1).

To prove this assertion, we note that if g is a diffeomorphism from Diff+(S1),
then the number of orbits of n-periodic points of gn is a multiple of n. The latter
statement is a corollary of the following combinatorial fact: the number of orbits
of k-periodic points of gn is a multiple of the largest common divisor of n and k,
denoted by (n, k), which is easy to check by direct calculation.

To deduce our assertion from the statement on the number of n-orbits of gn, it
is sufficient to prove that our diffeomorphism f has no other n-periodic points apart
from those, given by zeros of h̃. Indeed, suppose for a moment that we have proved
already that the set of n-periodic points of f coincides with the set of zeros of h̃.
The number of orbits of n-periodic points is equal to the number of zeros of h on
the interval [0, 2π/n), which is not divisible by n by the assumption. Hence, by the
above statement, f cannot be represented in the form gn for any g ∈ Diff+(S1).

To prove that the diffeomorphism f has no other n-periodic points apart from
the zeros of h̃, suppose, on the contrary, that there exists an n-periodic point θ0, in
which h(θ0) > 0. Consider the orbit {θ0, θ1, . . . , θn−1, θn = θ0} of this point on S1

under f . Then θn may be written in the form

θn = fn(θ0) = θ0 + ϵ
(
h̃(θ0) + h̃(θ1) + · · ·+ h̃(θn−1)

)
mod2π .

If fn(θ0) = θ0 mod2π, then ϵ (h(θ0) + · · ·+ h(θn−1)) = 0mod 2π. The coefficient of
ϵ in the latter relation is positive and does not exceed n, since 0 ≤ h ≤ 1. Hence,
for ϵ < 2π

n
this relation cannot be true, i.e. fn(θ0) cannot be equal to θ0 modulo

2π. This contradiction proves that the only n-periodic points of f are those, given
by zeros of h̃, which implies that f cannot be represented in the form gn for any
g ∈ Diff+(S1).

Using the above assertion, one can easily construct concrete examples of diffeo-
morphisms f ∈ Diff+(S1), which cannot be represented as the nth power (n > 1) of
any diffeomorphism from Diff+(S1). For instance, one can take a diffeomorphism f
of the type (2.1) with

h(θ) = sin2(n
θ

2
) for 0 ≤ θ < 2π/n .

Or, take h(θ) = h0

(
π
n
(θ + 1)

)
, where h0 is a smooth function on [−1, 1) of the form

h0(t) = (t− 1)2(t+ 1)2 or h0(t) = e1/(t2−1) for − 1 ≤ t < 1 .

All these diffeomorphisms f cannot be represented as the nth power of any diffeo-
morphism from Diff+(S1).
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2.2.3 Simplicity of Diff+(S1)

One of the remarkable properties of the group Diff+(S1) is its simplicity, which
means that the only normal subgroups in Diff+(S1) are the identity and the group
itself. This fact (which can be anticipated from Prop.2 in Subsec. 2.2.1) was proved
by M.R.Herman in [33, 34]. We shall present in this Subsection an idea how to prove
the following, somewhat weaker, statement, contained in [33].

Proposition 4. Any normal subgroup in Diff+(S1), containing the rotation subgroup
S1, coincides with the whole group Diff+(S1).

The simplicity property of the group Diff+(S1) is closely related to the following
problem, going back to Poincaré and Denjoy: when a diffeomorphism f ∈ Diff+(S1)
is conjugate to a rotation? We have already touched upon this problem in the proof
of Prop.3 in Subsec. 2.2.2. We shall discuss it in more detail after a short digression
on the Poincaré rotation number.

Digression 1 (Poincaré rotation number). Let f be an arbitrary diffeomorphism
from the group Diff+(S1). Denote by f̃ : R→ R its pull-back to R, induced by the
universal covering map

R −→ R/Z ≈ S1 .

Then f̃ is a diffeomorphism of R of the form f̃ = id + h with h being a smooth
periodic function on the real line with period 1. Denote the set of diffeomorphisms
of R of this form by Diff1(R). (Recall that f̃ is determined by f up to an integer
additive constant). Note that any shift R̃λ : x 7→ x + λ of R by the real number
λ projects under the above covering map to the rotation Rα of S1 by the angle
α ≡ λmod1.

H.Poincaré has found that any diffeomorphism f̃ ∈ Diff1(R), being iterated
sufficiently many times, behaves like a translation R̃λ. More precisely, there exists
the uniform limit

f̃k − id

k
−→ λ for k →∞ ,

where λ is a real number, called the rotation number of f̃ and denoted by λ = ρ̃(f̃).
The map ρ̃ : Diff1(R) → R is continuous in the C0-topology. Moreover, for any

shift R̃λ we have the following relations:

ρ̃(R̃λ) = λ and ρ̃(R̃n ◦ f̃) = n+ ρ̃(f̃) for any n ∈ Z .

Therefore, pushing down to S1, we obtain a correctly defined, continuous map

ρ : Diff+(S1) −→ R/Z ≈ S1 ,

assigning to a diffeomorphism f ∈ Diff+(S1) its Poincaré number ρ(f) ∈ S1. This
number is invariant under conjugations.

If the rotation number of a diffeomorphism f̃ ∈ Diff1(R) is rational, i.e. ρ̃(f̃) = p
q

for coprime integers p and q, then there is a simple criterion of its conjugacy to a
shift, namely: f̃ is conjugate to the shift R̃p/q if and only if f̃ q = R̃p.

The situation in the case of an irrational Poincaré number is much more delicate
— everything depends on the arithmetic properties of this number. V.I.Arnold (cf.
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[4]) gave an example of a diffeomorphism with an irrational Poincaré number, which
is not conjugate to a shift, and conjectured that there exists a set A ⊂ S1 \ (Q/Z)
of a full Haar measure on S1, such that any diffeomorphism f ∈ Diff+(S1) with the
Poincaré number α ∈ A is conjugate to the shift Rα. This conjecture was proved by
M.R.Herman in [34]. As it was anticipated, the set A in the Herman’s theorem has
a Diofantine nature and may be described in terms of the decomposition of α into
the continuous fraction.

We shall describe here a simpler result by Herman of a similar character, sufficient
for the proof of the above Prop. 4.

Recall that, according to the Dirichlet principle, any irrational number λ may be
approximated by rationals so that the following relation holds∣∣∣∣λ− p

q

∣∣∣∣ < 1

q2

where p
q
∈ Q is an irreducible fraction.

We say that a number λ satisfies the Diofantine condition (Bϵ) with some ϵ > 0,
if there exists a constant Cϵ > 0, such that for all rational numbers p/q the following
inequality holds ∣∣∣∣λ− p

q

∣∣∣∣ ≥ Cϵ
q2+ϵ

.

If a number λ satisfies to the Diofantine condition (Bϵ) for any ϵ (with a constant Cϵ,
depending on ϵ), then λ is called the Roth number , and the corresponding α ∈ S1

form a set of a full Haar measure on the circle. (The numbers, which do not satisfy
the condition (Bϵ) for any ϵ > 0, are called the Liouville numbers.)

Lemma 1 (cf. [33]). Suppose that α ∈ S1 \ (Q/Z) satisfies the condition (Bϵ) for
some ϵ > 0. Then there exists a neighborhood U of the rotation Rα in Diff+(S1)
such that any diffeomorphism f ∈ U is represented in the form

f = Rβ ◦
(
g ◦Rα ◦ g−1

)
for some g ∈ Diff+(S1) and β ∈ S1.

The proof of this Lemma can be found in [33], we shall only demonstrate how it
implies the Prop. 4.

Proof of Proposition 4. Let H be a normal subgroup in Diff+(S1), containing S1.
Take α ∈ S1 \ (Q/Z), satisfying the Diofantine condition (Bϵ) for some ϵ > 0. The
rotation Rα ∈ H (since H ⊃ S1), and Lemma 1 implies that the whole neighborhood
U of Rα belongs to H, due to the normality of H. Hence, the subgroup H is open
and so contains a neighborhood of the identity in the group Diff+(S1). It implies
that H is also closed, hence it should coincide with the whole group Diff+(S1), due
to the connectedness of Diff+(S1). The Proposition is proved.

Remark 4. We have proved in Prop. 3 from Subsec. 2.2.2 that there are diffeomor-
phisms from Diff+(S1), which cannot be represented as the exponentials of smooth
vector fields on the circle. Using Prop. 4, it’s easy to prove that, nevertheless,
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the exponentials of smooth vector fields generate the whole group Diff+(S1). More
precisely, any diffeomorphism f ∈ Diff+(S1) may be written as the composition

f = exp v1 ◦ · · · ◦ exp vk

for some vector fields v1, . . . , vk ∈ Vect(S1).

Another non-trivial corollary of Prop. 4 is that the group Diff+(S1) does not
admit the complexification. In other words, there is no complex Lie group, having
the complexified algebra VectC(S1) as its Lie algebra.

This statement is the corollary of the following Proposition.

Proposition 5. There are no non-trivial homomorphisms from the group Diff+(S1)
into a connected complex Lie group.

Proof. Take the Möbius group PSL(2,R) of fractional linear automorphisms of the
unit disc, which can be considered as a subgroup of Diff+(S1). Denote by Gn :=
PSL(n)(2,R) the n-fold covering group of PSL(2,R). More precisely, denote by λ the
n-fold covering map of S1, given by λ : z 7→ zn. Then, by definition, Gn consists of
the diffeomorphisms of S1, which are the n-fold coverings of diffeomorphisms from
PSL(2,R). It means that for any φ ∈ Gn there exists an element ψ ∈ PSL(2,R)
such that

λ ◦ φ = ψ ◦ λ .

On the level of Lie algebras, the Lie algebra sl(2,R) is generated by the vector
fields d

dθ
, sin θ d

dθ
, cos θ d

dθ
, and the Lie algebra of the group Gn (isomorphic to sl(2,R))

is generated by the vector fields d
dθ

, sin(nθ) d
dθ

, cos(nθ) d
dθ

.
The center of the group Gn consists of rotations {R2πk/n : k = 0, 1, . . . , n − 1}.

And it can be proved, as in Subsec.2.1.3, that any homomorphism from Gn to a
complex connected Lie group should factor through PSL(2,R). In other words, its
kernel contains all rotations from the centre of Gn. It follows that the kernel of any
homomorphism from Diff+(S1) into a complex connected Lie group should contain
all rotations of the form {R2πk/n : k = 0, 1, . . . , n− 1} for any n, hence, all rotations
from S1. But this kernel is a normal subgroup in Diff+(S1), and any normal subgroup
in Diff+(S1), containing S1, should coincide, according to Prop. 4, with the whole
group Diff+(S1). This proves that there are no non-trivial homomorphisms from
Diff+(S1) into a connected complex Lie group.
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proposed by V.V.Kruglov in [81]. The simplicity of the group of diffeomorphisms
Diff+(S1), as well as its weaker version, stated in Prop.4, is due to Herman [33, 34].
Prop.5 on the non-existence of the complexification of Diff+(S1) is proved in [65].





Chapter 3

Flag manifolds and representations

Flag manifolds are compact Kähler manifolds, homogeneous with respect to a Lie
group action. They can be characterized by the existence of two kinds of homoge-
neous space representations, namely, a ”real” one, as a quotient of a compact Lie
group G, and a ”complex” one, as a quotient of the complexified Lie group GC. The
real representation implies that the flag manifold is compact and homogeneous with
respect to the G-action by left shifts, and the complex representation implies that
it is a complex Kähler manifold.

Flag manifolds are closely related to the representation theory of the group G
via the Borel–Weil construction. We present this construction in Subsec. 3.2.2 to-
gether with a necessary background from the representation theory of semisimple
Lie groups, given in Subsec. 3.2.1. In the last Subsec. 3.2.3 we give an outline of
the orbit method, related to the coadjoint representation of G, which stands behind
many constructions in this book.

3.1 Flag manifolds

3.1.1 Geometric definition of flag manifolds

To define flag manifolds in Cn, we fix a decomposition of n into the sum of natural
numbers

n = k1 + · · ·+ kr

and denote k = (k1, . . . , kr).

Definition 21. A flag manifold of type k in Cn is the space

Flk(Cn) = {flags E = (E1, . . . , Er) : Ei are linear subspaces

in Cn: E1 ⊂ . . . ⊂ Er with dimEi = k1 + . . .+ ki} .
(3.1)

In particular, for k = (k, n− k) we obtain

Fl(k,n−k)(Cn) = {subspaces E ⊂ Cn of dimension k} = Grk(Cn) ,

i.e. the flag manifold in this case is the same as the Grassmann manifold of k-
dimensional subspaces in Cn. For k = 1 it coincides with the (n − 1)-dimensional
complex projective space Fl(1,n−1)(Cn) = CPn−1.

35
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For k = (1, . . . , 1) the manifold Flk(Cn) =: Fl(Cn) is called the full flag manifold

Fl(Cn) = {E1 ⊂ E2 ⊂ · · · ⊂ En−1 ⊂ En = Cn : dimEi = i} .

The unitary group U(n) acts transitively on the flag manifold Flk(Cn), so that
Flk(Cn) coincides with a homogeneous space of this group. In more detail, fix a
basis in Cn and denote by E0 the standard flag in Flk(Cn) with E0 = (E0

1 , . . . , E
0
r ),

where E0
i is the subspace in Cn, generated by the first k1 + · · · + ki vectors of our

basis. The isotropy subgroup of U(n) at the point E0 coincides with the direct
product

Uk(n) = U(k1)× · · · × U(kr) ,

so that the flag manifold Flk(Cn) is a homogeneous space of U(n) of the form

Flk(Cn) = U(n)/ Uk(n) = U(n)/ U(k1)× · · · × U(kr) . (3.2)

On the other hand, the complex general linear group GL(n,C) is also acting
on Flk(Cn) transitively. The isotropy subgroup at the standard flag E0 ∈ Flk(Cn)
coincides in this case with the subgroup Pk of blockwise upper-triangular matrices
of the form 

∗ r1 ∗ ∗ . . . ∗
r1

0 ∗ r2 ∗ . . . ∗

r2

...
. . .

...
rn

0 0 0 . . . rn ∗


So, along with the ”real” homogeneous representation (3.2), we obtain for Flk(Cn)

a ”complex” representation as a homogeneous space of the group GL(n,C):

Flk(Cn) = GL(n,C)/Pk . (3.3)

In the particular cases k = (k, n− k) and k = (1, . . . , 1) we get the well known
homogeneous representations for the Grassmann manifold

Grk(Cn) = U(n)/U(k)× U(n− k) = GL(n,C)/P(k,n−k)

and the full flag manifold

Fl(Cn) = U(n)/T n = GL(n,C)/B+ ,

where T n = U(1) × · · · × U(1) is the n-dimensional torus, and B+ = P(1,...,1) is the
standard Borel subgroup of upper-triangular matrices.

Note that the flag manifold Flk(Cn) can be represented also as a homogeneous
space of a complex semisimple Lie group by replacing the group GL(n,C) with
SL(n,C). The corresponding homogeneous representations will take the form

Flk(Cn) = SU(n)/SUk(n) = SL(n,C)/SPk ,
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where

SUk(n) = S [U(k1)× . . .× U(kn)] = U(k1)× . . .× U(kn) ∩ SL(n,C),

SPk(n) = Pk ∩ SL(n,C) .

3.1.2 Borel and parabolic subalgebras

To give an invariant definition of flag manifolds, we need some basic notions, related
to the Borel and parabolic subalgebras. We recall them here, assuming that a reader
is familiar with the basics of the theory of semisimple Lie algebras and groups,
presented, e.g., in [77, 76, 28, 68].

Let GC be a complex semisimple Lie group with the Lie algebra gC.

Recall that a Cartan subalgebra in gC is a maximal Abelian subalgebra hC in gC,
for which all the operators adx, x ∈ hC, are diagonal in gC. All Cartan subalgebras
in gC are conjugate to each other with respect to the adjoint action of the group GC
on its Lie algebra gC. A standard example of the Cartan subalgebra in the case of
the general matrix algebra gC = gl(n,C) is the algebra of all diagonal matrices in
gC.

We fix now a Cartan subalgebra hC in a complex semisimple Lie algebra gC and
consider the adjoint action ad of hC on the Lie algebra gC. Note that the operators
adh for different h ∈ hC commute with each other. The eigenspaces of the adjoint
representation, having the form

gα = {ξ ∈ gC : adh(ξ) = α(h)ξ} ,

where α is a linear functional on hC (i.e. an element of the dual space h∗
C), are

called the root subspaces . The linear functionals α, entering into this definition,
are called the roots of the algebra gC with respect to the Cartan subalgebra hC,
and the eigenvectors ξ are called the root vectors . In particular, the root subspace
g0, corresponding to the zero functional α = 0 ∈ h∗, coincides with the Cartan
subalgebra hC itself.

The Lie algebra gC decomposes into the direct sum of its root subspaces

gC = hC ⊕
⊕
α∈∆

gα , (3.4)

where ∆ denotes the set of all nonzero roots of the algebra gC with respect to the
Cartan subalgebra hC. This decomposition, called the root decomposition, deter-
mines a filtration in gC, since

[gα, gβ] ⊂ gα+β .

A subset Π ⊂ ∆ is called the set of simple roots, if any root α ∈ ∆ can be
represented as a linear combination of roots from Π with integer coefficients, such
that all of them are either positive, or (all of them are) negative. Such subsets Π,
forming bases in h∗

C, always exist. It can be shown that all of them are conjugate to
each other with respect to the coadjoint action of the group GC.
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Fix some set Π = {α1, . . . , αl} of simple roots of the algebra gC. The choice of
Π defines on h∗

C (hence, on ∆) a partial ordering, namely, for α, β ∈ h∗
C the relation

α ≥ β means that

α− β =
l∑

i=1

aiαi with ai ≥ 0 .

In particular, a root α ∈ ∆ is called positive (notation: α ∈ ∆+), if

α =
l∑

i=1

aiαi with ai > 0 .

Using the Killing form (·, ·) on gC, we can identify the dual space h∗
C with hC, so

that any root α can be considered also as an element α∗ of hC. We associate with
a root α of the algebra gC with respect to hC the dual root or co-root α∨ by the
formula

α∨ = 2
α∗

(α, α)
.

It is well known that a system of simple roots Π = {α1, . . . , αl} and its Cartan
matrix , defined by:

cij := (αi, α
∨
j ) ,

uniquely determine the Lie algebra gC.

Example 23. Consider as an example the complex semisimple Lie algebra sl(n,C).
Choose in sl(n,C) the standard Cartan subalgebra hC, consisting of diagonal matri-
ces. Denote by Eij the matrix, having 1 at the (i, j)th place, and zeros at all other
places. The matrices Eij are the root vectors of the algebra sl(n,C):

ad(z1, . . . , zn)Eij = (zi − zj)Eij ,

where we denote by (z1, . . . , zn) the diagonal matrix diag(z1, . . . , zn).
Introduce a functional ϵi ∈ h∗

C by the formula

ϵi(z1, . . . , zn) = zi .

Then the roots of the algebra sl(n,C) with respect to hC will have the form

∆ = {ϵi − ϵj : i ̸= j} .

The roots
Π = {ϵi − ϵi+1 : i = 1, . . . , n− 1}

form a system of simple roots, so that the set of positive roots is given by

∆+ = {ϵi − ϵj : i < j} .

By analogy with the Borel subalgebra of upper-triangular matrices in gl(n,C),
we can define a standard Borel subalgebra b+ of a complex semisimple Lie algebra
gC as

b+ = hC ⊕ n+ ,
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where n+ is a nilpotent subalgebra of the form

n+ =
⊕
α∈∆+

gα .

In the particular case of the algebra sl(n,C), considered in Ex. 23 above, the subal-
gebra n+ coincides with the subalgebra of above-diagonal matrices, while b+ is the
subalgebra of upper-triangular matrices.

Definition 22. A Borel subalgebra is a subalgebra b in gC, conjugate to the standard
Borel subalgebra b+ with respect to the adjoint action of the group GC on gC. (In
a more invariant way, a Borel subalgebra is a maximal solvable subalgebra in gC.)
Any subalgebra p in gC, containing a Borel subalgebra b, is called parabolic.

As in the case of Borel subalgebras, we could define the parabolic subalgebras p

as subalgebras in gC, which are conjugate to one of standard parabolic subalgebras.
These standard subalgebras (their explicit description is given below) are analogous
to the parabolic subalgebras pk of the algebra gl(n,C), being the Lie algebras of the
parabolic subgroups Pk from Subsec. 3.1.1.

Now we define the standard parabolic subalgebras in gC explicitly. For that fix
a set Π = {α1, . . . , αl} of simple roots of the algebra gC and an arbitrary ordered
subset π in the set {1, . . . , l}. We associate with π a subset of simple roots Ππ ⊂ Π
with indices from π. To define the corresponding standard parabolic subalgebra
pπ, we denote by ∆π the linear span of simple roots from Ππ in ∆ and introduce a
reductive Levi subalgebra of the form

lC = hC ⊕
⊕
α∈∆π

gα .

We define also a nilpotent subalgebra in gC by setting

u =
⊕

α∈∆+\∆π

gα .

The standard parabolic subalgebra pπ is by definition

pk = lC ⊕ u .

It contains the standard Borel subalgebra b+ and so is, indeed, parabolic. In the
case of the algebra sl(n,C) the subalgebra lC coincides with the subalgebra of block-
diagonal matrices in sl(n,C), while u is the subalgebra of blockwise above-diagonal
matrices.

3.1.3 Algebraic definition of flag manifolds

After this algebraic digression, we can give an invariant definition of flag manifolds
of a complex semisimple Lie group GC.

Definition 23. Let p be an arbitrary parabolic subalgebra in gC and P is the
corresponding parabolic subgroup in GC, having p as its Lie algebra. (Otherwise,
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P can be defined as the normalizer N(p) of the subalgebra p in GC with respect to
the adjoint representation.) A flag manifold of the group GC, associated with the
parabolic subalgebra p, is a homogeneous space of the form

F = GC/P . (3.5)

Along with the ”complex” representation (3.5), taken as the definition of the
flag manifold F , there exists also a ”real” representation of F as a homogeneous
space of a real Lie group. Namely, suppose that the group GC coincides with the
complexification GC of a compact Lie group G. Then G acts transitively on GC/P
and

F = G/G ∩ P = G/L , (3.6)

where the Levi subgroup L = G∩P in the case of the standard parabolic subalgebra
p has the Lie algebra, given by the real form l of the Levi subalgebra lC = lC,
introduced above in Subsec. 3.1.2. (In a more invariant way, the subgroup L can be
defined as the centralizer of a torus in G.)

Hence, we have obtained for the flag manifold F two different representations as
a homogeneous space

F = G/L = GC/P .

The complex representation (3.5) implies that F is a complex manifold, provided
with a G-invariant complex structure. The space of tangent vectors of type (1, 0) at
the origin with respect to this structure can be identified with the subalgebra u in
the decomposition

gC = lC ⊕ u⊕ u , p = lC ⊕ u ,

where the complex conjugation in gC has the property that g = g.

The real representation (3.6) implies that F is compact and Kähler. We note also
that F is simply connected, if the group G is simply connected. It can be shown
that flag manifolds F exhaust all simply connected compact Kähler G-manifolds
with the transitive action of a compact semisimple Lie group G (cf. [10, 78]).

Remark 5. The real representation (3.6) implies that that the Lie algebra p of the
parabolic group P has the form

p = lC ⊕ u

where lC is the Levi subalgebra and u is the nilpotent subalgebra of p, described
in Subsec. 3.1.2 for the case of the standard parabolic subalgebras. The parabolic
subalgebras can be defined also in terms of the so called canonical element.

Namely, for any parabolic subalgebra p there exists a unique element ξ (belong-
ing to the center of the Levi subalgebra lC), for which the operator ad ξ has only
imaginary integer eigenvalues, belonging to

√
−1Z. Such an element ξ is called the

canonical element of the parabolic subalgebra p. (This fact is proved, e.g., in [15],
Theor. 4.4.)

We use this equivalent definition of parabolic subalgebras for the construction of
a certain canonical bundle, associated with a flag manifold. The importance of the
canonical bundle will become clear in Sec. 7.5, where we show that the loop space
ΩG can be considered as a universal flag manifold of the group G.
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Denote by gj the eigenspace of the operator ad ξ with the eigenvalue
√
−1j. In

terms of gj the parabolic subalgebra p and nilpotent subalgebra u can be described
as

p =
⊕
i≥0

gi , u =
⊕
i≥1

gi .

We define now a symmetric space N = N(F ), canonically associated with the
flag manifold F , by setting

N = G/K ,

where K is a subgroup of G with the Lie algebra

k = g ∩

[⊕
i

g2i

]
.

Since the Lie algebra l of the Levi group L is contained in g0, there exists a homo-
geneous bundle

F = G/L −→ G/K = N

of the flag manifold F over the associated symmetric space N . So we have con-
structed for our flag manifold F the associated symmetric G-space N = N(F )
and canonical homogeneous bundle F → N . Note that the symmetric space N is
uniquely determined by F , while the canonical bundle F → N is not uniquely de-
fined, due to the fact that different points of N may have the same stabilizer K.
The number of such points is finite, so there exist only a finite number of canonical
bundles of the above type.

The importance of flag manifolds is due, in particular, to the fact that all ir-
reducible representations of the group G can be realized in spaces of holomorphic
sections of complex line bundles over the flag manifolds of G. This is the Borel–Weil
construction, given in Subsec. 3.2.2. To explain this construction, we need some ba-
sic facts from the representation theory of complex semisimple Lie groups, collected
in the next Subsec. 3.2.1 (cf. for a more detailed exposition [76, 77, 28, 39, 68]).

3.2 Irreducible representations

3.2.1 Irreducible representations of complex semisimple Lie
groups

Let hC be a Cartan subalgebra of a complex semisimple Lie algebra gC and ρ : gC →
EndV is a representation of the algebra gC in a complex vector space V .

A weight of the representation ρ is a linear functional λ ∈ h∗
C, for which there

exists a vector v ∈ V \ {0}, called the weight vector , such that

ρ(h)v = λ(h)v for any h ∈ hC .

The linear subspace Vλ, consisting of the vectors v ∈ V , satisfying the relation
ρ(h)v = λ(h)v for any h ∈ hC, is called the weight subspace of weight λ.
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Denote by ∆ρ(V ) ⊂ h∗
C the set of weights of the representation ρ. There is a

weight decomposition of ρ, analogous to the root decomposition (3.4) for the adjoint
representation ρ = ad from Subsec. 3.1.2. It has the form

V =
⊕

λ∈∆ρ(V )

Vλ ,

where Vλ is the weight subspace of weight λ.
Fix a system Π = {α1, . . . , αl} of simple roots of the algebra gC with respect to

hC. Among the weights of a representation the special role is played by the highest
weights , which are the maximal elements in the set of weights of a representation
with respect to the partial ordering on h∗

C, introduced in Subsec. 3.1.2. A highest
weight Λ of a representation ρ is characterized by the property that its weight vector
v is annihilated by the nilpotent subalgebra n+, i.e.

ρ(ξ)v = 0 for any ξ ∈ n+ .

We associate with a system Π = {α1, . . . , αl} of simple roots of the algebra gC
the dual system of weights {ω1, . . . , ωl}, defined by the relation

(ωi, α
∨
j ) = δij ,

where α∨
j is the co-root, associated with αj (cf. Subsec. 3.1.2). The elements

ω1, . . . , ωl ∈ h∗
C are called the fundamental weights and form a basis in the space of

weights, so that any weight λ ∈ h∗
C can be written in the form

λ =
∑
j

(λ, α∨
j )ωj

and is uniquely determined by the coefficients (λ, α∨
j ). A weight λ is called dominant ,

if all the coefficients (λ, α∨
j ) are non-negative integers.

The highest weight characterizes uniquely an irreducible representation of a com-
plex semisimple Lie algebra. More precisely, we have the following

Theorem 1. Let ρ be an irreducible representation of a complex semisimple Lie
algebra gC. Then it has a unique highest weight Λ. This weight is dominant and
any other weight λ ∈ ∆ρ(V ) can be written in the form

λ = Λ− αi1 − · · · − αik , where αij ∈ Π .

An irreducible representation is uniquely determined (up to equivalence) by its high-
est weight.

We add a comment on the last statement of the Theorem. An irreducible repre-
sentation can be reconstructed from its highest weight Λ in the following way. Let
vΛ be the weight vector, corresponding to the weight Λ. Then by definition

ρ(ξ)vΛ = 0 for any ξ ∈ n+ , (3.7)

ρ(h)vΛ = Λ(h)vΛ for any h ∈ hC . (3.8)



3.2. IRREDUCIBLE REPRESENTATIONS 43

Consider the vectors, which can be obtained by the action of elements of the nilpo-
tent subalgebra n− =

⊕
α∈∆+ g−α on the highest vector vΛ. More precisely, denote

vi1...ik = ρ(ξ−ik) · · · · · ρ(ξ−i1)vΛ ,

where ξ−i ∈ g−αi
. Then the vectors {vΛ, vi1...ik} generate a subspace V̂ with a natural

action of the representation ρ. The required representation space V is obtained
from V̂ by taking the quotient with respect to the maximal invariant subspace in V̂
(different from V̂ ) and providing it with the induced action of the representation ρ.

In the representation theory of loop groups LG it is customary to use, instead
of the highest and dominant weights, the lowest and antidominant weights , dual
to the introduced highest and dominant weights. The main reason for that is that
the Borel–Weil construction of irreducible representations of complex semisimple Lie
groups, presented in the next Subsec. 3.2.2, is naturally formulated in terms of the
lowest and antidominant weights. In order to switch to the lowest and antidominant
weights in the above definitions, it’s sufficient to replace the nilpotent subalgebra
n+ with its counter-part n−, defined by

n− =
⊕
α∈∆+

g−α .

It follows, in particular, that a weight λ is antidominant if and only if the weight
−λ is dominant. If V is a representation of an algebra gC with a highest weight
Λ, then the representation of gC with the lowest weight −Λ is realized in the dual
vector space V ∗. The above Theorem 1 admits an evident reformulation in terms of
antidominant lowest weights.

3.2.2 Borel–Weil construction

The Borel–Weil construction, presented in this Subsection, realizes the irreducible
representation of a complex semisimple Lie group, associated with a given lowest
weight (or a character of the Cartan subgroup), in a space of holomorphic sections
of a complex line bundle over the full flag manifold.

Suppose that a Lie group GC is the complexification of a compact Lie group G
and H is its Cartan subgroup. A character of H is a homomorphism λ : H → C∗

into the multiplicative group of nonzero complex numbers C∗. The group X(H) of
all characters of H is a free Abelian group of rank, equal to dimH. If λ ∈ X(H) is a
character of H, then the map λ∗, tangent to λ, is linear, hence, belongs to the dual
space h∗. This defines a monomorphism of the group X(H) into h∗, which allows to
identify a character λ with the corresponding linear functional λ∗.

Suppose now that the subgroup H is a maximal torus (i.e. H is a maximal
commutative subgroup in GC, isomorphic to the product of several copies of the
group C∗). Let R : GC → GL(V ) be a linear representation of the group GC. If
λ ∈ X(H) is a character of H, then, by analogy with Subsec. 3.2.1, it is called the
weight of the representation R, if there exists a vector v ∈ V \ {0}, called the weight
vector , such that

R(h)v = λ(h)v for any h ∈ H . (3.9)

The vectors v ∈ V , satisfying the relation (3.9), form the weight subspace Vλ, asso-
ciated with weight λ.
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Any representation R : GC → GL(V ) of the group GC admits a weight decompo-
sition

V =
⊕

weights λ of R

Vλ ,

where the summation is taken over the weights λ ∈ X(H) of the representation R.
This decomposition is analogous to the weight decomposition from Subsec. 3.2.1 in
the case of Lie algebras. Moreover, the weights of the representation R of the group
GC may be identified with the corresponding weights of the associated representation
R∗ : gC → EndV of the Lie algebra gC, and the associated weight subspaces coincide.

Assume now that the maximal complex torus H is the complexification of some
maximal torus T in G. By analogy with Subsec. 3.1.1, we define the full flag manifold
F , associated with T , as

F = G/T = GC/B+ , (3.10)

where B+ is the standard Borel subgroup in GC, having the standard Borel sub-
algebra b+ from Subsec. 3.1.2 as its Lie algebra. On the Lie algebra level the
homogeneous representations (3.10) correspond to the decompositions

gC = tC ⊕ n+ ⊕ n− = b+ ⊕ n− . (3.11)

Let λ ∈ X(H) be a character of H, associated with a lowest weight vector of
the algebra gC. It can be extended to a holomorphic homomorphism λ : B+ → C∗

of the Borel subgroup B+, by setting it equal to 1 on the subgroup N+, having the
nilpotent subalgebra n+ as its Lie algebra. We define a complex homogeneous line
bundle Lλ over the flag manifold F = GC/B+, associated with the character λ:

Lλ = GC ×B+ Cy
F = GC/B+ ,

where GC ×B+ C is identified with the quotient GC × C modulo the equivalence
relation: (gb, c) ∼ (g, λ(b)c) for any g ∈ GC, b ∈ B+ and c ∈ C. A section of the
line bundle Lλ is identified with a function f : GC → C, subject to the relation

f(gb) = λ(b−1)f(g) for all g ∈ GC, b ∈ B+ . (3.12)

Denote by Γλ the space of holomorphic sections of the bundle Lλ or, in other
words, the space of holomorphic functions on GC, satisfying the condition (3.12).
The group GC acts from the left on Lλ, hence, on the space Γλ.

Theorem 2 (Borel–Weil theorem). If the weight λ is antidominant, then the rep-
resentation of the group G in the space of holomorphic sections Γλ, constructed
above, is the irreducible representation with the lowest weight λ and all irreducible
representations of the group G can be realized in this way.

3.2.3 Orbit method and coadjoint representation

In this Subsection we outline briefly another method of constructing irreducible
representations of Lie groups, using the orbits of the coadjoint representation of the
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group on the dual space of its Lie algebra (the details may be found in Kirillov’s book
[39]). Though we do not use this method for the construction of representations, we
found it useful to explain its idea to motivate the study of coadjoint representations
of various infinite-dimensional groups in this book.

We recall first some basic facts on the characters of irreducible representations.
Let T : G → GL(V ) be a finite-dimensional representation of a Lie group G. We
define its character as a function χT : G→ C∗, given by the formula

χT (g) := TrT (g) , g ∈ G .

This function is constant on conjugacy classes and depends only on the equivalence
class of the representation T . Moreover, it is a homomorphism with respect to the
tensor product of representations, i.e. χT1⊗T2 = χT1χT2 . A character of an irreducible
representation determines it uniquely up to equivalence.

Let G be a compact Lie group and L2(G, dg) denotes the space of all square
integrable functions on G with respect to the Haar measure dg. Then the characters
of all its irreducible unitary representations form an orthonormal basis in a subspace
of L2(G, dg), consisting of functions, constant on conjugacy classes.

The definition of the character χT , given above, is valid, evidently, only for
finite-dimensional representations T . However, for an infinite-dimensional represen-
tation it’s often possible to define its character as a distribution on the group G.
Namely, denote by D(G) the space of C∞-smooth functions on G and suppose that
all operators of the form

T (f) :=

∫
G

f(g)T (g) dg , f ∈ D(G) ,

are of trace class (the definition of the trace class is given in Sec. 5.3 below). Then we
can define a character of the representation T as a distribution on the space D(G) of
test functions, or, in other words, as a continuous linear functional on D(G), acting
by the formula

χT (f) := TrT (f) , f ∈ D(G) .

If, in particular, the group G is semisimple, then the character χT can be given by
the formula

χT (f) =

∫
G

χT (g)f(g) dg ,

where χT is some measurable locally integrable function on G. As in the case of
finite-dimensional representations, the character χT (f) is constant on conjugacy
classes, i.e.

χT (f) = TrT (f) = Tr[T (g)T (f)T (g−1)]

for any f ∈ D(G), g ∈ G. Again, an irreducible representation is uniquely deter-
mined (up to equivalence) by its character.

We turn now to the coadjoint representation of the group G. Let g the Lie
algebra of G and g∗ is its dual space. The adjoint action Ad of the group G on its
Lie algebra g induces by duality the coadjoint action Ad∗ of the group G on the
space g∗.

Consider an orbit F = G·φ of an arbitrary point φ ∈ g∗ in g∗ under the coadjoint
action and denote by Gφ the isotropy subgroup at φ. Let gφ be the Lie algebra of
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the group Gφ. Then the tangent space to the orbit F at φ may be identified with
the quotient g/gφ.

The orbits F of the coadjoint representation turn out to be symplectic manifolds,
provided with a canonical Kirillov symplectic form ωF . This form is generated by a
Gφ-invariant 2-form ωφ on g, given by the formula

ωφ(ξ, η) := φ([ξ, η]) , ξ, η ∈ g .

The kernel of ωφ on g coincides with gφ, so the form ωφ can be pushed down to a
form on g/gφ (denoted by the same letter), which is a non-degenerate Gφ-invariant
2-form on g/gφ. So it can be extended to a non-degenerate G-invariant 2-form ωF
on F , which does not depend on the choice of the point φ on the orbit F . Moreover,
the form ωφ satisfies the Jacobi identity, hence, it is a cocycle on g. This implies
that the induced G-invariant 2-form ωF is closed on F , and so defines a symplectic
structure on F .

It may be proved that any G-homogeneous (with respect to the action of a
connected Lie group G by symplectic transformations) symplectic manifold M is

locally isomorphic to an orbit of the group G or its central extension G̃ in the
coadjoint representation (cf. [46]).

We explain now the idea of the orbit method . We want to construct an irreducible
unitary representation T from an orbit of the coadjoint representation in g∗.

Let F = G ·φ be such an orbit. We construct from it a one-dimensional unitary
representation of the group Gφ. In a neighborhood of the identity of Gφ we define
it by the formula

χ(exp ξ) = e2πiφ(ξ) ,

where exp : gφ → Gφ is the exponential map. It extends to a representation of
the isotropy group Gφ and induces an irreducible unitary representation TF of the
whole group G, if the orbit F is integral , i.e. the canonical symplectic form ωF
is an integral form on F (the precise definition of an integral form is given in the
beginning of Sec. 8.1).

The character of the irreducible unitary representation TF is given by the formula

χF (exp ξ) =
1

pF (exp ξ)

∫
F

e2πiφ(ξ)βF (φ) , ξ ∈ g , (3.13)

where βF is the Liouville volume form on F , generated by the symplectic form ωF ,
and pF is some smooth invariant (with respect to conjugations) function on G, equal
to 1 at e ∈ G. The formula (3.13) should be understood in the distributional sense,
i.e. for any test function f ∈ D(G) the integral

χF (f) = TrTF (f) =

∫
F

{∫
g

f(exp ξ)

pF (exp ξ)
e2πiφ(ξ) dξ

}
βF (φ) ,

converges (here dξ is the Lebesgue measure on g).

In particular, for compact groups G we have dimTF := χF (e) = Vol F <∞, and
the integral orbits in this case correspond to flag manifolds. In this case the orbit
method is equivalent to the Borel–Weil method from the previous Subsec. 3.2.2.
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Chapter 4

Central extensions and
cohomologies of Lie algebras and
groups

In the first Section of this Chapter (Sec. 4.1) we recall the definition and basic
properties of central extensions of Lie algebras and groups. In particular, we point
out a relation between central extensions of Lie groups and their projective repre-
sentations. In Sec. 4.2 we introduce the Lie algebra cohomologies and give several
important examples of this notion (including the cohomological interpretation of
central extensions). The last Sec. 4.3 is devoted to the Lie group cohomologies and
their relation to projective representations.

4.1 Central extensions of Lie groups and

projective representations

Definition 24. A central extension of a Lie algebra G (over the field R) is a Lie
algebra G̃, which can be included into the exact sequence of Lie algebra homomor-
phisms

0 −→ R −→ G̃ −→ G −→ 0 , (4.1)

where R is considered as an Abelian Lie algebra and the image of the monomorphism
R→ G̃ is contained in the center of the algebra G̃. Two central extensions G̃1 and
G̃2 of the same Lie algebra G are said to be equivalent, if there exist a commutative
diagram of Lie algebra homomorphisms

0 −−−→ R −−−→ G̃1 −−−→ G −−−→ 0

id

y y yid

0 −−−→ R −−−→ G̃2 −−−→ G −−−→ 0 .

The exact sequence (4.1) implies that the Lie algebra G̃, as a vector space, is
isomorphic to G̃ = G ⊕ R and the Lie bracket in G̃, due to the centrality of the
image of R→ G̃, has the form

[(ξ, s), (η, t)] = [(ξ, 0), (η, 0)] = ([ξ, η], ω(ξ, η)) ,

49
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where ω is a skew-symmetric bilinear form on G, called the cocycle of the central
extension.

By analogy with Def. 24, we can define central extensions of Lie groups.

Definition 25. A central extension of a Lie group G is a Lie group G̃, which can
be included into the exact sequence of Lie group homomorphisms

1 −→ S1 −→ G̃ −→ G → 1 ,

where the image of the circle group under the monomorphism S1 → G̃ is contained
in the center of the group G̃.

Topologically, the map G̃ → G is a principal S1-bundle. Consider the case, when
this S1-bundle is trivial, i.e. G̃ → G admits a global section σ : G → G̃. With the
help of this section, we can identify G̃ with the group G × S1, provided with the
multiplication

(g, λ) · (h, µ) = (gh, λµc(g, h)) ,

where c(g, h) = σ(g)σ(h)σ(gh)−1 is called the cocycle of the central extension G̃.
Central extensions of Lie groups are closely related to their projective represen-

tations.

Definition 26. A projective (unitary) representation of a Lie group G is a map

ρ : G → U(H)

of the group G into the group of unitary operators, acting in a complex Hilbert space
H, satisfying the relation

ρ(g1)ρ(g2) = c(g1, g2)ρ(g1g2) for all g1, g2 ∈ G ,

where c(g1, g2) is a complex number with modulus 1, which is called the cocycle of
the projective representation.

Another projective representation ρ′ : G → U(H) of the same group G is equiva-
lent to ρ, if

ρ′(g) = λ(g)ρ(g) , g ∈ G ,

for some λ : G → S1.

Any projective unitary representation ρ of a Lie group G determines a true
unitary representation ρ̃ of some central extension G̃ of the group G, which is a
topologically trivial S1-bundle with the cocycle, equal to the cocycle of the projective
representation. Namely, we define

ρ̃(g, λ) := λρ(g) for all g ∈ G, λ ∈ S1 .

Then we’ll have

ρ̃ ((g1, λ1) · (g2, λ2)) = λ1λ2c(g1, g2)ρ(g1g2) = λ1λ2ρ(g1)ρ(g2) = ρ̃(g1, λ1)ρ̃(g2, λ2)

for any g1, g2 ∈ G, λ1, λ2 ∈ S1.
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Conversely, any unitary representation ρ̃ of a topologically trivial central exten-
sion G̃, such that ρ̃(λ) = λ · id for any λ ∈ S1, determines a projective representation
ρ of the group G, which is defined in the following way. The cocycle c of the central
extension G̃ is given in terms of the trivializing section σ : G → G̃ by the formula

c(g1, g2) = σ(g1)σ(g2)σ(g1g2)
−1 , g1, g2 ∈ G .

Then the map ρ, defined by ρ(g) := ρ̃ (σ(g)), determines a projective representation
ρ : G → U(H), since

ρ(g1g2) = ρ̃ (σ(g1g2)) = ρ̃
(
c(g1, g2)

−1σ(g1)σ(g2)
)

= c(g1, g2)
−1ρ(g1)ρ(g2)

for any g1, g2 ∈ G.

4.2 Cohomologies of Lie algebras

Let G be a Lie algebra and ρ : G→ EndV is a representation of G in a vector space
V . In other words, V is a G-module.

Definition 27. A q-cochain of the algebra G with coefficients in V is a skew-
symmetric continuous q-linear functional on G with values in V , i.e. a continuous
map

α : G× · · · ×G︸ ︷︷ ︸
q

−→ V ,

which is skew-symmetric and q-linear. The set of all such cochains is denoted by
Cq(G, V ).

We define the differential (coboundary map)

δq : Cq(G, V ) −→ Cq+1(G, V )

by the formula

δqα(ξ1, . . . , ξq+1) =
∑

1≤i≤q+1

(−1)iξiα(ξ1, . . . , ξ̂i, . . . , ξq+1)+

+
∑

1≤i<j≤q+1

(−1)i+j−1α([ξi, ξj], ξ1, . . . , ξ̂i, . . . , ξ̂j, . . . , ξq+1)

(4.2)

for α ∈ Cq(G, V ), ξ1, . . . , ξq+1 ∈ G.
It’s easy to check that the coboundary maps have the property δq ◦ δq−1 = 0, so

we obtain a complex

. . . −→ Cq−1(G, V )
δq−1−→ Cq(G, V )

δq−→ Cq+1(G, V ) −→ . . . .

The cohomologies of this complex are called the cohomologies of the Lie algebra G

with coefficients in the G-module V and denoted by

Hq(G, V ) := Ker δq/ Im δq−1 =

=
{ξ ∈ Cq(G, V ) : δq ξ = 0}

{ξ ∈ Cq(G, V ) : ξ = δq−1 η for some η ∈ Cq−1(G, V )}
. (4.3)

In the particular case, when V is the basic number field k = R,C, considered as the
trivial G-module, the cohomologies Hq(G, k) are denoted by Hq(G).
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The above expression for the coboundary map looks like exterior derivative of a
differential form. This is because differential forms on a smooth manifold X may be
considered as cochains of the Lie algebra Vect(X) with coefficients in the module
C∞(X) of smooth functions on X, considered as a Vect(X)-module.

Here are several particular examples of Lie algebra cohomologies.

Example 24 (cohomology H0(G, V )). Setting C−1(G, V ) = 0, we get

H0(G, V ) = Ker
{
δ0 : C0(G, V ) = V −→ C1(G, V )

}
= {v ∈ V : ξv = 0 for any ξ ∈ G} . (4.4)

In other words, the cohomology H0(G, V ) coincides with the set of invariants of
G-module V .

Example 25 (cohomology H1(G)). In this case the differential δ0 : C0(G)→ C1(G)
is trivial, since the action of G on k is trivial. So

H1(G) = Ker
[
δ1 : C1(G) = G∗ −→ C2(G)

]
= {β ∈ G∗ : β([ξ, η]) = 0 for all ξ, η ∈ G} = (G/ [G,G])∗ . (4.5)

Otherwise speaking, the cohomology H1(G) consists of continuous linear functionals
on G/ [G,G].

Example 26 (cohomologyH1(G; G)). Consider a Lie algebra G as a G-module with
respect to the adjoint action ad of G on itself. The cohomology H1(G,G) is inter-
preted as the set of outer derivations of the algebra G. Recall that a homomorphism
ϕ : G→ G is called the derivation of G, if

ϕ([ξ, η]) = [ϕ(ξ), η] + [ξ, ϕ(η)] .

The inner derivations , defined by

ξ 7−→ [ξ, ξ0] = adξ0(ξ) ,

where ξ0 is a fixed element of G, may serve as an example.
The set of outer derivations coincides, by definition, with the quotient of the set

of all derivations of the algebra G modulo inner derivations.
Let us show that the cohomology H1(G,G) coincides with the set of outer deriva-

tions of the algebra G.
Indeed, cochains from C1(G,G) are given by linear maps ϕ : G → G. The

condition δ1ϕ = 0 means that ϕ is a derivation, since

δ1ϕ(ξ, η) = ϕ([ξ, η])− ξϕ(η) + ηϕ(ξ) = ϕ([ξ, η])− [ξ, ϕ(η)]− [ϕ(ξ), η] .

The cochains from C1(G,G), belonging to the image of the map δ0 : C0(G,G) →
C1(G,G), are inner derivations of the algebra G, since

ξ ∈ G = C0(G,G) =⇒ δ0ξ(η) = −ξ · η = [−ξ, η] .
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Example 27 (cohomology H2(G)). The cohomology H2(G) may be identified with
set of equivalence classes of central extensions of the Lie algebra G, considered in
the previous Sec. 4.1.

Indeed, associate with a cocycle ω ∈ C2(G) the central extension

0 −→ k −→ k ⊕G −→ G −→ 0 ,

where the map k → k ⊕ G is an embedding s 7→ (s, 0), and the map k ⊕ G → G

coincides with the projection (s, ξ) 7→ ξ. The bracket in the algebra G̃ = k ⊕ G is
given by the formula

[(s, ξ), (t, η)] = (ω(ξ, η), [ξ, η]) .

The Jacoby identity in the algebra G̃ is equivalent to the cocyclicity of ω. Moreover,
cohomologous cocycles correspond to equivalent central extensions, and the zero in
H2(G) corresponds to the trivial central extension G̃ = k ⊕G.

Example 28 (cohomology H3(G)). The cohomology H3(G) of a semisimple Lie
algebra G is interpreted as the set of invariant symmetric bilinear forms on G.

Indeed, with any such form ⟨· , ·⟩ we can associate an element of H3(G), given
by the 3-cocycle of the form

G×G×G ∋ (ξ, η, ζ) 7−→ ⟨ξ, [η, ζ]⟩ .

Apart from the above examples, demonstrating the importance of the coho-
mologies of Lie algebras, there is one more motivation to introduce such an object.
Namely, the cohomologies of a Lie algebra G are closely related to the de Rham co-
homologies of the corresponding Lie group G, considered as a smooth manifold. Let
us denote the latter cohomology groups by Hq

top(G, k). A relation between Hq
top(G, k)

and the cohomologies of the Lie algebra G is established in the following way.

Construct first a map of the cochain complex C•(G) into the de Rham complex
Ω•(G) of the group G. Denote by Ωq

inv(G) the subspace of differential forms of
degree q in Ωq(G), invariant under the right translations on G. A form in Ωq

inv(G) is
uniquely determined by its restriction to the tangent space TeG = G, i.e. there is
an isomorphism

Ωq
inv(G)

≈←→ Λq(G) = Cq(G) .

Moreover, the differential δq : Cq(G) → Cq+1(G) coincides with the restriction of
the exterior differential dq : Ωq(G) → Ωq+1(G) to Ωq

inv(G). So there is a canonical
map

Hq(G) −→ Hq
top(G, k) . (4.6)

This homomorphism is an isomorphism, when k = R and G is a compact Lie group
(in this case one can associate with any form on G a right-invariant form by averaging
the original form over G). In the complex case k = C the above homomorphism
is an isomorphism, if G is a complex semisimple Lie group. The isomorphism (4.6)
extends also to some infinite-dimensional Lie groups, in particular, to the loop group
LG = C∞(S1, G) of a compact Lie group G (k = R in this case).
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4.3 Cohomologies of Lie groups

Let G be a Lie group and V is a G-module, i.e. we have a representation ρ : G →
GL(V ) of the group G in the vector space V . There are two natural definitions of
the cochain complex with values in the G-module V . In the first definition cochains
are given by equivariant functions on G with values in V .

Definition 28. A q-cochain of the group G with values in V is a function

φ : G × · · · × G︸ ︷︷ ︸
q+1

−→ V ,

which has the following equivariance property

φ(gg0, . . . , ggq) = g · φ(g0, . . . , gq) ,

where ”·” in the right hand side denotes the action of the group G on V , given by
the representation ρ. The space of all q-cochains is denoted by Cq(G, V ) and the
differential

δq : Cq(G, V )→ Cq+1(G, V )

is given by the formula

δqφ(g0, . . . , gq+1) =

q+1∑
i=0

(−1)iφ(g0, . . . , ĝi, . . . , gq+1) .

In the second definition cochains are given by arbitrary functions on G with
values in V .

Definition 29. A q-cochain on the group G with values in V is a function

ψ : G × · · · × G︸ ︷︷ ︸
q+1

−→ V .

The space of all q-cochains on G with values in V is denoted again by Cq(G, V ), but
the differential

δq : Cq(G, V )→ Cq+1(G, V )

is given in this case by the formula

δqψ(g1, . . . , gq+1) = g1 · ψ(g2, . . . , gq+1)+

+

q∑
i=1

(−1)iψ(g1, . . . , gigi+1, . . . , gq+1) + (−1)q+1ψ(g1, . . . , gq) .

(4.7)

A relation φ ↔ ψ between these two definitions of cochains is established via
the formulas

φ(g0, . . . , gq) = g0 · ψ(g−1
0 g1, g

−1
1 g2, . . . , g

−1
q−1gq) , (4.8)

ψ(g1, . . . , gq) = φ(1, g1, g1g2, . . . , g1g2 · . . . · gq) . (4.9)
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The cohomologies of the group G with values in the G-module V in both cases
are defined as the cohomologies of the complex {Cq(G, V ), δq}, i.e.

Hq(G, V ) =
Ker [δq : Cq(G, V )→ Cq+1(G, V )]

Im [δq−1 : Cq−1(G, V )→ Cq(G, V )]
.

We consider now a relation between 2-dimensional cohomologies of the group G
with its projective representations and central extensions (cf. Sec. 4.1).

Let ρ : G → U(V ) be a projective representation of the Lie group G, satisfying
the relation

ρ(g1)ρ(g2) = c(g1, g2)ρ(g1g2) for any g1, g2 ∈ G ,

where c(g1, g2) is the cocycle of the representation ρ. The associativity of the multi-
plication in G and U(V ) implies that c is a 2-cocycle of the group G with values in the
multiplicative group S1 with the trivial action of the group G, given by ρ : G → 1.
In other words, for any three elements g1, g2, g3 of the group G we have the relation

c(g2, g3)c(g1g2, g3)
−1c(g1, g2g3)c(g1, g2)

−1 = 1 ,

which means that δ2c = 1 (we use here the multiplicative analog of δ2 from Def. 29).
On the other hand, an equivalent projective representation of the form

ρ′(g) = λ(g)ρ(g)

with λ : G → S1, corresponds to the cocycle

c′(g1, g2) = c(g1, g2)λ(g1g2)λ(g1)
−1λ(g2)

−1 ,

i.e. to the cocycle c′ ∈ C2(G, S1), cohomologous to the cocycle c ∈ C2(G, S1). So
the class [c] of the cocycle c in the cohomologies H2(G, S1) depends only on the
equivalence class of the projective representation ρ. Hence, the equivalence classes
of projective representations of the Lie group G in a Hilbert space V can be identified
with the cohomologies H2(G, S1).

On the other hand, in Sec. 4.1 we have assigned to any topologically trivial central
extension G̃ → G of the group G its cocycle c, which is the same as a 2-cocycle of
the group G with values in the trivial G-module S1. Moreover, equivalent central
extensions of the group G correspond to cohomologous cocycles in H2(G, S1). So,
the class [c] of the cocycle c in H2(G, S1) depends only on the equivalence class of the
central extension G̃ and we can identify the set of equivalence classes of (topologically
trivial) central extensions of the Lie group G with the cohomology H2(G, S1).

Bibliographic comments

The content of this Chapter is also of reference character and may be found in [31, 21,
22]. Central extensions and projective representations, together with cohomologies
of Lie algebras and groups, will play an important role in the study of loop groups
and diffeomorphism groups in Parts II and III.





Chapter 5

Grassmannians of a Hilbert space

In this Chapter we introduce infinite-dimensional Grassmann manifolds of closed
subspaces in a Hilbert spaceH. We assume thatH is polarized, i.e. decomposed into
the direct sum of closed (infinite-dimensional) subspacesH = H+⊕H−, and consider
Grassmannians, consisting of subspaces, ”close” to H+ in different senses. The
most important case is the so called Hilbert–Schmidt Grassmannian, introduced in
Sec. 5.2. It is a Hilbert Kähler manifold, which has many features of standard finite-
dimensional Grassmannians. In particular, it is the homogeneous space of a Hilbert
Lie group and can be provided with a natural determinant bundle, constructed in
Sec. 5.3.

5.1 Grassmannian Grb(H)

Let H be a complex (separable) Hilbert space. Suppose that H is polarized , i.e. it
is provided with a decomposition into the direct orthogonal sum

H = H+ ⊕H− (5.1)

of closed infinite-dimensional subspaces. Denote by pr+ (resp. pr−) the orthogonal
projection pr+ : H → H+ (resp. pr− : H → H−).

We usually have in mind a standard example of such a polarized Hilbert space H,
given by the Hilbert space L2

0(S
1,C) of L2-functions on the unit circle S1 with zero

average value. Functions f ∈ L2
0(S

1,C) have Fourier decompositions, converging in
L2-sense, of the form

f(z) =
+∞∑

k=−∞

fkz
k , f0 = 0 ,

where z = eiθ. For this particular realization of H we take for H+ (resp. H−) the
subspace, consisting of the functions f ∈ L2

0(S
1,C), which have vanishing Fourier

coefficients with negative (resp. positive) indices:

H+ = {f ∈ H : f(z) =
∞∑
k=1

fkz
k } , H− = {f ∈ H : f(z) =

−1∑
k=−∞

fkz
k } .

Definition 30. The Grassmannian Grb(H) consists of all closed subspaces W ⊂ H,
such that the orthogonal projection pr+ : W → H+ is a Fredholm operator.

57
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Recall that a linear operator T : H1 → H2, mapping a Hilbert space H1 into a
Hilbert space H2, is called Fredholm, if it has finite-dimensional kernel and cokernel.
For such an operator one can define its Fredholm index by the formula

indT := dim(KerT )− dim(CokerT ) .

The Fredholm index of T is a topological invariant of T , i.e. it does not change
under bounded continuous deformations of T . An equivalent definition: an operator
T is Fredholm, if it is invertible modulo compact operators, i.e. if there exists an
operator S : H2 → H1 such that the operators idH1−ST and idH2−TS are compact.

We can reformulate Def. 30 in an equivalent way as follows: a subspace W ∈
Grb(H) iff it coincides with the image of a bounded linear operator

w : H+ −→ H ,

such that the operator w+ := pr+ ◦ w is Fredholm.
With respect to the polarization H = H+ ⊕H− any linear operator w ∈ EndH

can be written in the block form

w =

(
a b
c d

)
=

(
a : H+ → H+ , b : H− → H+

c : H+ → H− , d : H− → H−

)
.

In these terms the subspace W ∈ Grb(H) iff a is Fredholm.
For any W ∈ Grb(H) denote by

UW = {W ′ ∈ Grb(H) : the orthogonal projection W ′ → W is an isomorphism} .

We want to define the structure of a complex Banach manifold on Grb(H), for
which the sets UW will play the role of coordinate neighborhoods. More precisely,
we have the following

Proposition 6. Grb(H) is a complex Banach manifold, having for its local model
the Banach space B(H+, H−) of bounded linear operators w : H+ → H−. The
coordinate neighborhoods

UW = {W ′ ∈ Grb(H) : the orthogonal projection W ′ → W is an isomorphism} ,

introduced above, form an atlas of Grb(H) and coordinate charts are given by the
maps

UW ∋ W ′ 7−→ w′ ∈ B(W,W⊥) .

Proof. The proof follows the proof of Proposition 7.1.2 from [65]. In order to show
that the atlas {UW} with given charts does define on Grb(H) the structure of a
complex Banach manifold, consider the intersection UW1∩UW2 ̸= ∅ of two coordinate
neighborhoods. The coordinate change in H, transforming the decomposition H =
W1 ⊕W⊥

1 into the decomposition H = W2 ⊕W⊥
2 , is given by the matrix

A =

(
a b
c d

)
: W1 ⊕W⊥

1 → W2 ⊕W⊥
2 ,

in which the operators a and d are Fredholm, while b and c are bounded. If a
subspace W ∈ UW1∩UW2 , then it can be represented, on one hand, as the graph of a
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bounded operator w1 : W1 → W⊥
1 , and, on the other hand, as the graph of a bounded

operator w2 : W2 → W⊥
2 . The orthogonal projection of W onto the subspaces W1

and W2 is an isomorphism, which defines an isomorphism v : W1 → W2, so that W
is the graph of the operator w2 ◦ v : W1 → W⊥

2 . It implies that(
a b
c d

)(
1

w1

)
=

(
v

w2 ◦ v

)
as operators from W1 to W2 ⊕W⊥

2 . In other words, the coordinate change

B(W1,W
⊥
1 ) −→ B(W2,W

⊥
2 ) , w1 7−→ w2 ,

which is given by the formula

w2 = (c+ dw1)(a+ bw1)
−1 ,

determines a holomorphic map, defined on the open subset UW1 ∩ UW2 , identified
with the subset {w1 ∈ B(W1,W

⊥
1 ) : a+ bw1 is invertible}.

Note that the manifold Grb(H) has a countable number of connected components,
numerated by the index of the Fredholm operator w+ for a subspace W ∈ Grb(H),
coinciding with the image of a linear operator w : H+ → H. We say that the
subspace W has the virtual dimension d, if the index of w+ is equal to d.

5.2 Hilbert–Schmidt Grassmannian GrHS(H)

Recall that a linear operator T : H1 → H2, acting from a complex Hilbert space H1

into another complex Hilbert space H2, is called a Hilbert–Schmidt operator , if for
some orthonormal basis {ei} in H1 the series∑

i

∥Tei∥ <∞

is converging. Note that this condition is satisfied for any orthonormal basis inH1, if
it is satisfied for some orthonormal basis {ei} in H1. We define the Hilbert–Schmidt
norm of the operator T by the formula

∥T∥2 =

(
∞∑
i=1

∥Tei∥2
)1/2

.

The Hilbert–Schmidt operators T : H1 → H2 form a complex Hilbert space HS(H1, H2)
with respect to the introduced norm. Moreover, the space HS(H,H) of Hilbert–
Schmidt operators, acting in a Hilbert space H, is a two-sided ideal in the algebra
B(H) of all bounded linear operators in H.

Denote by GL(H) the group of all linear bounded operators in H, having a
bounded inverse.
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Definition 31. The general linear Hilbert–Schmidt group GLHS(H) consists of linear
operators A ∈ GL(H), such that in their block representation (with respect to
polarization H = H+ ⊕H−)

A =

(
a b
c d

)
the ”off-diagonal” terms b and c are Hilbert–Schmidt operators (for brevity: HS-
operators). We denote by UHS(H) the intersection of the group GLHS(H) with the
group U(H) of all unitary operators in H.

In other words, the group GLHS(H) consists of operators A ∈ GL(H), for which
the ”off-diagonal” terms b and c are ”small” with respect to the ”diagonal” terms a
and d.

We introduce now the structure of a Banach Lie group on GLHS(H). Namely,
consider a subalgebra BHS(H) of the algebra B(H), consisting of operators of the
form

A =

(
a b
c d

)
∈ B(H) ,

for which the operators b and c are Hilbert–Schmidt. The algebra BHS(H) is a
Banach algebra with the norm, given by the formula

|||A||| := ∥A∥+ ∥b∥2 + ∥c∥2 .

The group GLHS(H) coincides with the group of invertible elements of the algebra
BHS(H) and is a complex Banach Lie group. Accordingly, UHS(H) is a real Banach
Lie group, whose complexification coincides with GLHS(H).

There is a Grassmann manifold GrHS(H), associated with the group GLHS(H).

Definition 32. The Hilbert–Schmidt Grassmannian GrHS(H) is the set of all closed
subspaces W ⊂ H, such that the orthogonal projection pr+ : W → H+ is a Fred-
holm operator, and the orthogonal projection pr− : W → H− is a Hilbert–Schmidt
operator.

In other words, GrHS(H) consists of the subspaces W ⊂ H, which differ ”little”
from the subspace H+ in the sense that pr+ : W → H+ is an ”almost isomor-
phism” (recall that Fredholm operators are invertible modulo compact operators,
cf. Sec. 5.1), and pr− : W → H− is ”small”.

Equivalently, a subspace W ∈ GrHS(H) iff it coincides with the image of a linear
operator

w : H+ −→ H ,

such that the operator w+ := pr+ ◦ w is Fredholm, and w− := pr− ◦ w is Hilbert–
Schmidt.

It’s easy to see that if W ∈ GrHS(H), then the graph of any HS-operator w′ :
W → W⊥ also belongs to GrHS(H). We denote the set of all such subspaces by UW :

UW = {W ′ ∈ GrHS(H) : W ′ is the graph of an HS-operator w′ : W → W⊥} .

As in Sec. 5.1, this definition can be rewritten in the form

UW = {W ′ ∈ GrHS(H) : the orthogonal projection W ′ → W is an isomorphism} .
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The group GLHS(H), introduced above, acts in a natural way on GrHS(H). Con-
sider, in particular, the action of its unitary subgroup UHS(H) on GrHS(H) and
show that it is transitive. It will allow us to obtain a realization of GrHS(H) as a
homogeneous space of the group UHS(H), analogous to the realization of the finite-
dimensional Grassmannian as a homogeneous space of the unitary group.

To prove that the action of UHS(H) on GrHS(H) is transitive, we should construct
for a given subspace W ∈ GrHS(H) an operator A ∈ UHS(H) such that A(H+) = W .
Consider an isometric operator w : H+ → H, which has the image, equal to W , and
denote by w⊥ : H− → H an isometric operator with the image W⊥. Then the
operator

A = w ⊕ w⊥ : H = H+ ⊕H− → H = W ⊕W⊥

defines an isometry of H onto itself and so is unitary. Moreover, it maps H+ onto
W and has the block representation of the form

A =

(
w+ w⊥

+

w− w⊥
−

)
.

Here, the operator w+ is Fredholm, and w− is Hilbert–Schmidt, because W ∈
GrHS(H). Since A is also unitary, it follows that A ∈ UHS(H).

The isotropy subgroup of UHS(H) at H+ ∈ GrHS(H) coincides with U(H+) ×
U(H−), hence we have the following

Proposition 7. The Grassmannian GrHS(H) is a homogeneous space of the group
UHS(H) of the form

GrHS(H) = UHS(H)/U(H+)× U(H−) .

The Hilbert–Schmidt Grassmannian GrHS(H) has the structure of a complex
Hilbert manifold, defined in the following way.

Proposition 8. The Grassmannian GrHS(H) is a complex Hilbert manifold, having
for its local model the Hilbert space of Hilbert Schmidt operators HS(H+, H−). The
coordinate neighborhoods

UW = {W ′ ∈ GrHS(H) : W ′ is the graph of an HS-operator w′ : W → W⊥}

form an atlas for GrHS(H), and the coordinate charts are given by the maps

UW ∋ W ′ 7−→ w′ ∈ HS(W,W⊥) .

This Proposition is proved in the same way, as Prop. 6 from Sec. 5.1.
There is another atlas on GrHS(H), which is more natural in some sense. To

construct it, we identify H with the Hilbert space L2(S1,C). This space has a
canonical basis, given by {zk}, k ∈ Z. The subspace H+ is generated by the elements
{zk}, k ∈ Z+, and H− by the elements {zk}, k ∈ Z−, where we denote by Z+ the
subset of nonnegative integers in Z, and by Z− its complement in Z.

We take for ”coordinate” subspaces in H the closed linear subspaces HS ⊂ H,
generated by vectors {zs}, s ∈ S, which are numerated by the subsets S ⊂ Z,
comparable with Z+. We say that a subset S ⊂ Z is comparable with Z+, if the sets
S − Z+ and Z+ − S consist of finite number of points. The ensemble of all such
subsets S ⊂ Z is denoted by S, and the number |S − Z+| − |Z+ − S| is called the
virtual cardinality of S. Note that the virtual dimension of the subspace HS is equal
precisely to the virtual cardinality of S.
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Lemma 2. For any W ∈ GrHS(H) there exists a subset S ∈ S, such that the
orthogonal projection

prS : W −→ HS

is an isomorphism.

Proof. Indeed, if W ∈ GrHS(H), then the orthogonal projection pr+ : W → H+ has
finite-dimensional kernel and cokernel, so there exists a subset S0 ∈ S, containing
Z+, for which the orthogonal projection

pr : W −→ HS0

is injective. If it’s not surjective, then one can find an s ∈ S0, such that zs does not
belong to pr(W ). In this case we replace S0 with S1 := S0 \ {s}. The projection
pr : W → HS1 still remains injective. If it’s not surjective, we repeat the described
procedure. Since the complement of pr+(W ) inH+ is finite-dimensional, after a finite
number of steps we shall arrive to a subset S, for which the projection prS : W → HS

is an isomorphism.

Based on the above Lemma, we can define an atlas on GrHS(H), formed by the
open sets {US}S∈S , where the coordinate neighborhood US = UHS

consists of the
subspaces, which are the graphs of Hilbert–Schmidt operators HS → H⊥

S = HS⊥

with S⊥ = Z− S.

Since UHS(H) acts transitively on the Grassmannian GrHS(H), one can construct
an UHS(H)-invariant Kähler metric on GrHS(H) from an inner product on the tan-
gent space TH+GrHS(H) at the origin H+ ∈ GrHS(H), invariant under the action of
the isotropy subgroup U(H+)× U(H−).

The tangent space TH+GrHS(H) coincides with the Hilbert space of Hilbert–
Schmidt operators HS(H+, H−), and an invariant inner product on it can be given
by the formula

(A,B) 7−→ Re {tr(AB∗)} , A,B ∈ HS(H+, H−) .

The imaginary part of the complex inner product tr(AB∗):

ω(A,B) := Im {tr(AB∗)}

defines a non-degenerate invariant 2-form on TH+GrHS(H), which extends to an
UHS(H)-invariant symplectic form on GrHS(H).

This defines on GrHS(H) a Kähler structure, making GrHS(H) into a Kähler
Hilbert manifold.

We shall use in Ch. 9 the ”smooth” part Gr∞(H) of the Grassmannian GrHS(H),
which can be defined in terms of the open covering {US}S∈S in the following way.

Definition 33. The Grassmannian Gr∞(H) consists of the graphs of all bounded
linear operators w : HS → H⊥

S , S ∈ S, whose matrix components wpq with p ∈ Z−S,
q ∈ S are rapidly decreasing, i.e. the quantities |p− q|rwpq are bounded for each r.
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5.3 Plücker embedding and determinant bundle

As in the finite-dimensional case, the Hilbert–Schmidt Grassmannian GrHS(H) may
be realized, with the help of the Plücker embedding, as a submanifold in a projective
Hilbert space.

In order to define this Plücker embedding, we introduce a notion of an admissible
basis for a subspace W ∈ GrHS(H). Suppose that W ∈ GrHS(H) has the virtual
dimension d. A model example for such a subspace in the case of H = L2

0(S
1,C) is

the subspace W = z−dH+.

Definition 34. A basis in W , consisting of elements {wk}k≥−d, is called admissible
if:

1. the linear map

w : z−dH+ −→ W ,

defined on the basis elements {zk}k≥−d by the formula zk 7→ wk, is a continuous
isomorphism;

2. the composition of w with the orthogonal projection onto the subspace z−dH+:

pr ◦ w : z−dH+ −→ z−dH+

is an operator with determinant.

We recall the definitions of the class Tr of operators with trace and related class
Det = 1+Tr of operators with determinant. A linear operator T : H1 → H2, acting
from a Hilbert space H1 into a Hilbert space H2, is called an operator with trace or
an operator of trace class, if for some orthonormal bases {ei} in the space H1 and
{fi} in the space H2 the series ∑

i

(Tei, fi)

converges. If this condition is satisfied for some orthonormal bases in H1 and H2,
then it is fulfilled also for any orthonormal bases {ei} in H1 and {fi} in H2 and the
sum ∑

i

(Tei, fi)

does not depend on the choice of bases. It is called the trace of the operator T and
denoted by TrT . Operators T : H → H of trace class, acting in a Hilbert space H,
form a two-sided ideal Tr(H,H) in the algebra B(H) of all bounded linear opera-
tors in H, which is contained in the ideal HS(H,H) of Hilbert–Schmidt operators.
Moreover, it’s easy to see that the product of two Hilbert–Schmidt operators from
HS(H,H) belongs to Tr(H,H), being an operator of trace class. The trace of an
operator T ∈ Tr(H,H) coincides with the sum of its eigenvalues

trT =
∑
i

λi(T ) .

and behaves like the matrix trace.
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If T : H → H is an operator of the trace class, then one can define for the
operator I − T , where I is the identity operator, its determinant by

det(I − T ) :=
∏
i

(1− λi(T )) .

The product in the right hand side is converging, since for an operator T : H → H of
the trace class the sum

∑
i |λi(T )| is always finite. Operators of the form A = I−T ,

where T ∈ Tr(H,H), are called the operators with determinant or operators of
determinant class , and the set of such operators is denoted by Det(H,H). It’s clear
that the class Det(H,H) is closed under the product of operators.

Coming back to the Def. 34, note that the second condition in this definition
means that the isomorphism w is ”sufficiently close” to the identity. Moreover, it
implies that the orthogonal projection prS ◦w : z−dH+ → HS onto any subspace HS

of virtual dimension d has a determinant, and any two admissible bases in a subspace
W ∈ GrHS(H) are related by the change of variables, which has a determinant.

Using the notion of the admissible basis, we can define the Plücker coordinate
of a subspace W ∈ GrHS(H).

Definition 35. Let W be a subspace of virtual dimension d, having an admissible
basis w. The Plücker coordinate of W is a function of S ∈ S of the following form

πS(w) =

{
det(prS ◦ w) for S ∈ S of virtual cardinality d ,

0 for S ∈ S of any virtual cardinality, other than d .

If w′ is another admissible basis in W , then

πS(w
′) = ∆ww′πS(w) ,

where ∆ww′ is the determinant of the change of variables, relating w with w′. Hence,
the projective class [πS(w)] does not depend on the choice of an admissible basis w
in the subspace W and is uniquely determined by the subspace itself.

In terms of the Plücker coordinate the neighborhoods US may be redefined as
follows:

W ∈ US ⇐⇒ πS(w) ̸= 0 for any admissible basis w in W .

Proposition 9. The Plücker map

π : GrHS(H) −→ P (H) , W 7−→ [πS(w)]S∈S ,

determines a holomorphic embedding of the Grassmannian GrHS(H) into the pro-
jectivization of the Hilbert space H = l2(S).

We omit the proof of this assertion (it may be found in [65], Prop. 7.5.2), and
only note that it is based on the relation∑

S∈S

|πS(w)|2 = det(w∗w) <∞ , (5.2)

satisfied for any admissible basis w in W ∈ GrHS(H).
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We shall construct now a holomorphic line bundle over GrHS(H), being an ana-
logue of the determinant bundle over the finite-dimensional Grassmannian.

Let a subspace W ∈ GrHS(H) has the virtual dimension d. Consider the linear
space, consisting of formal semi-infinite forms of the type

[λ,w] := λw−d ∧ w−d+1 ∧ . . . ,

where λ ∈ C, w = {wk}k≥−d is an admissible basis in W . If w′ is another admissible
basis in W , then we shall identify the pair [λ′, w′] with the pair [λ,w], if λ′ = λ∆ww′ ,
where ∆ww′ is the determinant of the change of variables, relating w with w′.

The linear space DetW , obtained by taking the quotient of the space of semi-
infinite forms of the type [λ,w] with respect to the above equivalence relation, is a
complex line.

We denote by Det the union of spaces DetW over all W ∈ GrHS(H).

Proposition 10. The natural projection

Det −→ GrHS(H)

is a holomorphic line bundle.

This Proposition follows from the fact that the restriction of Det to any coor-
dinate neighborhood US is trivial and the transition function for US1 ∩ US2 ̸= ∅ is
given (in the notation of Sec. 5.1) by the formula

[λ1, w1] 7−→ [λ2, w2] ,

where
w2 = (c+ dw1)(a+ bw1)

−1, λ2 = λ det(a+ bw1) .

This defines the structure of a holomorphic line bundle on Det.
We add several comments on the Plücker embedding and determinant bundle.

Remark 6. The bundle Det can be provided with a natural Hermitian metric, given
by

∥[λ,w]∥2 := |λ|2 det(w∗w)2 .

Remark 7. The Plücker embedding π : GrHS(H) → P (H) may be pulled up to a
holomorphic map

π̃ : Det→ H ,

which is linear on the fibres, so that the bundle Det will coincide with the inverse
image of the tautological line bundle over P (H) with respect to the embedding π.
Moreover, the pulled back map π̃ : Det → H will preserve the norms (it follows
from the relation (5.2) above).

Remark 8. The holomorphic line bundle Det has no non-trivial (global) sections,
on the contrary, the dual bundle Det∗ has many such sections. For example, all
Plücker coordinates πS determine holomorphic sections of Det∗. Indeed, the formula
[λ,w] 7→ λπS(w) defines a holomorphic function Det→ C, which is linear on fibres,
and induces a global holomorphic section of Det∗.

Note also that the symplectic form of the manifold GrHS(H), constructed in
Sec. 5.2, represents the Chern class of the complex line bundle Det→ GrHS(H). Oth-
erwise speaking, it is induced by the Fubini-Study form on P (H) under the Plücker
embedding π : GrHS(H)→ P (H).
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Chapter 6

Quasiconformal maps

In this Chapter we introduce quasiconformal maps and prove main existence and
uniqueness theorems for such maps. The quasiconformal maps will play a crucial
role in Ch. 11, where we study the universal Teichmüller space. For a detailed
exposition of the theory of quasiconformal maps cf. [1, 49].

6.1 Definition and basic properties

Let w : D → w(D) be a homeomorphism, mapping a domain D in the Riemann
sphere C onto another domain w(D) in C.

Definition 36. Suppose that w : D → w(D) is a homeomorphism and w has
locally L1-integrable derivatives (in the generalized sense) in D. Then w is called
quasiconformal , if there exists a measurable complex-valued function µ ∈ L∞(D)
with

∥µ∥∞ := ess supz∈D|µ(z)| =: k < 1 , (6.1)

such that the following Beltrami equation

wz̄ = µwz (6.2)

holds for almost all z ∈ D.
The function µ = µw is called the Beltrami differential or the complex dilatation

of w, and the constant k is often indicated in the name of the k-quasiconformal
maps.

In particular, for k = 0 the homeomorphism w determines a conformal map
from D onto w(D). For diffeomorphisms w the quasiconformality of w means that
infinitesimally it transforms small circles into ellipses, whose eccentricities (the ratio
of the large axis to the small one) are bounded by a common constant K < ∞,
related to the above constant k = ∥µ∥∞ by the formula

K =
1 + k

1− k
.

The least possible constant K is called the maximal dilatation of w and is often
included in the name of the K-quasiconformal maps.

67
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The term ”Beltrami differential” for the complex dilatation µ is motivated by
the behavior of µ under conformal changes of variables. Namely, it follows from
(6.2) that for a conformal change of variables f we should have

µ(f(z)) = µ(z)
fz(z)

fz(z)

for almost all z ∈ D. In general, we call a functional φw, defined on complex-valued
functions w, a differential of type (m,n) with m,n ∈ Z, if the quantity φw(z)dzmdz̄n

remains invariant under conformal changes of variables. In the sense of this definition
the complex dilatation µw is a differential of type (−1, 1).

The inverse of a K-quasiconformal map f is again K-quasiconformal. The com-
position of aK1-quasiconformal map f with aK2-quasiconformal map g is a (K1K2)-
quasiconformal map. This composition property may be deduced from the chain rule
for Beltrami differentials. Namely, if f and g are two quasiconformal maps of a do-
main D with Beltrami differentials µf and µg respectively, then the following chain
rule holds

µf◦g−1(g(z)) =
µf (z)− µg(z)
1− µf (z)µg(z)

· gz(z)
gz(z)

, (6.3)

for almost all z ∈ D. In particular,

µg−1(g(z)) = −µg(z) ·
gz(z)

gz(z)
,

so |µg−1(g(z))| = |µg(z)| for almost all z ∈ D.

From the chain rule (6.3) we can deduce the following transformation property
of Beltrami differentials µw with respect to compositions of w with conformal maps
f . If f is a conformal map (i.e. µf ≡ 0), then

µf◦w(z) ≡ µw(z) , µw◦f = (µw ◦ f)
fz
fz

.

These transformation rules for Beltrami differentials imply the following unique-
ness property of solutions of the equation (6.2).

Proposition 11. Suppose that two quasiconformal homeomorphisms w1 and w2 in
a domain D satisfy the same Beltrami equation

wz̄ = µwz

for almost all z ∈ D, where µ is a Beltrami differential in D, satisfying the condition
(6.1). Then w1◦w−1

2 and w2◦w−1
1 are conformal. Conversely, the composition f ◦w1

with any conformal map f , defined on w1(D), satisfies the same Beltrami equation,
as w1.

Quasiconformal homeomorphisms have a good behavior at the boundary, accord-
ing to the following
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Theorem 3 (Mori (cf. [1])). Let w : ∆ → ∆ be a K-quasiconformal homeomor-
phism of the unit disc onto itself, normalized by the condition: w(0) = 0. Then the
following sharp estimate

|w(z1)− w(z2)| < 16|z1 − z2|1/K

holds for any z1 ̸= z2 ∈ ∆. In other words, the homeomorphism w satisfies the
Hölder condition of order 1/K in the disc ∆.

Mori’s theorem implies, in particular, that w extends to a homeomorphism of the
closed unit disc ∆. Another corollary of Mori’s theorem is that K-quasiconformal
homeomorphisms w of the unit disc ∆ onto itself, normalized by the condition
w(0) = 0, form a compact family with respect to the topology of normal convergence
(i.e. uniform convergence on compact subsets). This result easily extends to general
domains D ⊂ C.

Proposition 12. Consider the family of all K-quasiconformal maps in D, nor-
malized by the condition that any map in the family sends two fixed distinct points
z1, z2 ∈ D to another two fixed distinct points ζ1, ζ2. Then this family is compact
with respect to the topology of normal convergence and any map w in this family
satisfies the Hölder condition

|w(z1)− w(z2)| < A|z1 − z2|1/K

on any compact subset in D, where the constant A depends only on K and the
compact subset.

In particular, any quasiconformal homeomorphism w : D1 → D2 extends to a
homeomorphism w : D̄1 → D̄2 of the closures and so defines a homeomorphism of
the boundaries.

We can ask the converse question: when a given homeomorphism w : ∂D1 → ∂D2

extends to a quasiconformal homeomorphism D1 → D2. It’s convenient to study
this problem first in the partial case, when both domains coincide with the upper
half-plane: D1 = D2 = H.

Suppose that f : R → R is a monotone-increasing homeomorphism of the ex-
tended real line R ⊂ C, satisfying the condition: f(∞) = ∞. We call it quasisym-
metric, if there exists a constant A > 0, such that the following finite-difference
condition

1

A
≤ f(x+ t)− f(x)

f(x)− f(x− t)
≤ A (6.4)

is satisfied for all x ∈ R and all t > 0.
This condition can be considered as a variant of the cross ratio condition for

quadruples of points. Recall that the cross ratio of four different points z1, z2, z3, z4

on the complex plane is given by the quantity

ρ = ρ(z1, z2, z3, z4) :=
z4 − z1

z4 − z2

:
z3 − z1

z3 − z2

.

The equality of two cross ratios ρ(z1, z2, z3, z4) = ρ(ζ1, ζ2, ζ3, ζ4) is a necessary and
sufficient condition for the existence of a fractional-linear map of the complex plane,
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transforming the quadruple z1, z2, z3, z4 into the quadruple ζ1, ζ2, ζ3, ζ4. In the case
of quasiconformal maps the cross ratios of quadruples may change but in a controlled
way. The quasisymmetricity condition (6.4) expresses this control in a convenient
form. Namely, we choose for a given homeomorphism f : R → R a quadruple of
points on R in the form x⃗ := (x− t, x, x + t,∞) with the cross ratio ρ(x⃗) =: ρ and
associate with it the quantity

M(ρ(x⃗)) = M(ρ) :=
ρ

1− ρ
.

If, in particular, ρ = 1/2, then M(ρ) = 1. In this case the condition (6.4) means that
the corresponding cross ratio of the quadruple f(x⃗) := (f(x− t), f(x), f(x+ t),∞)
satisfies the inequality

1

A
≤M(ρ(f(x⃗)) ≤ A .

The same condition in terms of ρ(f(x⃗)) can be rewritten as

1

A+ 1
≤ ρ(f(x⃗)) ≤ A

A+ 1

or as
1

2
− ϵ ≤ ρ(f(x⃗)) ≤ 1

2
+ ϵ ,

where ϵ = ϵ(A) := 1
2
− 1

A+1
.

Theorem 4 (Beurling–Ahlfors (cf. [1, 49])). Suppose that f : R→ R is a monotone-
increasing homeomorphism of the extended real line R onto itself, satisfying the
condition: f(∞) =∞. Then it can be extended to a quasiconformal homeomorphism
w : H → H if and only if f is quasisymmetric, i.e. if there exists a constant A > 0,
such that

1

A
≤ f(x+ t)− f(x)

f(x)− f(x− t)
≤ A

for all x ∈ R, t > 0.

We have already explained above, where the necessity of the condition (6.4)
comes from. The sufficiency of this condition is based on the following remarkable
Beurling–Ahlfors formula, which gives a quasiconformal extension w to H of the
quasisymmetric homeomorphism f :

w(x+ iy) =
1

2

∫ 1

0

(f(x+ ty) + f(x− ty)) dt+ i

∫ 1

0

(f(x+ ty)− f(x− ty)) dt

for x+ it ∈ H.
We formulate also an analogue of the above Theorem for the case of the cir-

cle S1. We say that an orientation-preserving homeomorphism f : S1 → S1 is
quasisymmetric, if it satisfies for some 0 < ϵ < 1 the inequality

1

2
(1− ϵ) ≤ ρ(f(z1), f(z2), f(z3), f(z4)) ≤

1

2
(1 + ϵ) (6.5)

for any quadruple z1, z2, z3, z4 ∈ S1 with cross ratio ρ(z1, z2, z3, z4) = 1
2
.
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An analogue of the Beurling–Ahlfors theorem for S1 asserts that an orientation-
preserving homeomorphism f : S1 → S1 can be extended to a quasiconformal home-
omorphism w : ∆ → ∆ if and only if it is quasisymmetric. Douady and Earle (cf.
[19]) have found an explicit extension operator E, which assigns to a quasisymmetric
homeomorphism f its extension to a quasiconformal homeomorphism w of ∆ and is
conformally invariant in the sense that E(w ◦f) = w ◦E(f) for any fractional-linear
automorphism of ∆.

The image C of the circle S1 under a quasiconformal homeomorphism of C is
called a quasicircle and the domains D1, D2, complementary to C in C, are called
quasidiscs . All quasicircles have zero area and their Hausdorff dimension is always
less than 2. However, it can be equal to any λ with 1 ≤ λ < 2 (cf. [24]).

Remark 9. There is a natural description of quasicircles in terms of quasiconformal
reflections. Recall that a reflection across a Jordan curve C on C, dividing C \ C
into two domains D1, D2, is an orientation-preserving involutive homeomorphism φ
of C, which maps D1 onto D2 (and vice versa) and fixes every point of C. The
quasicircles are characterized by the following

Proposition 13. A Jordan curve C on C is a quasicircle if and only if it admits a
quasiconformal reflection across it.

We omit the proof of this Proposition, referring to the book [49], Theor. 6.1.
There is a simple geometric criterion for the quasicircles, passing through∞ ∈ C.

Namely, a Jordan curve C, passing through ∞, is a quasicircle if and only if there
exists a constant c > 0, for which the following condition is satisfied: for any three
finite points z1, z2, z3 on C, such that z2 lies between z1 and z3, we have an inequality

|z1 − z2|+ |z2 − z3| < c|z1 − z3|

(cf. [1, 49]).

6.2 Existence of quasiconformal maps

A key role in the theory of quasiconformal maps is played by the following existence
theorem for solutions of the Beltrami equation (6.2).

Theorem 5 (Existence theorem). For any measurable function µ in a domain D ⊂
C, such that ∥µ∥∞ = k < 1, there exists a quasiconformal map on D, whose complex
dilatation agrees with µ almost everywhere on D. In other words, there exists a
solution w of the Beltrami equation

wz̄ = µwz ,

satisfied for almost all z ∈ D.

As we have already pointed out earlier (cf. Prop. 11 in Sec. 6.1), any other
solution w̃ of the above Beltrami equation has the form

w̃ = w ◦ f ,

where f is a conformal map.
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The existence theorem implies the following generalization of the Riemann map-
ping theorem: Let D1 and D2 be two domains in C, whose boundaries consist of
more than one point. If µ is a measurable function on D1 with ∥µ∥∞ < 1, then there
exists a quasiconformal map of D1 onto D2, whose complex dilatation agrees with µ
almost everywhere.

Proof. A detailed proof of Theorem 5 is given in [1], here we only point out its main
points. First of all, it’s sufficient to prove the existence theorem for the whole plane,
since any µ ∈ L∞(D) with ∥µ∥∞ < 1 can be extended (by setting it equal to zero
outside D) to the whole plane, preserving the estimate ∥µ∥∞ < 1.

Starting the proof of the existence theorem for the complex plane, we restrict
first to the case, when the complex dilatation µ has a compact support.

We show under this hypothesis that there exists a unique solution of the Beltrami
equation (6.2):

wz̄ = µwz ,

satisfying the conditions:

w(0) = 0 and wz − 1 ∈ Lp ,

where p > 2 is a number, sufficiently close to 2, which will be chosen later.
Introduce the Cauchy–Green operator

Ph(ζ) := − 1

π

∫
h(z)

(
1

z − ζ
− 1

z

)
dx dy ,

where the integral is taken over the complex plane. This operator is correctly defined
for functions h ∈ Lp with p > 2 and determines a continuous function (the function
Ph(ζ) is even Hölder-continuous in ζ with Hölder exponent 1− 2

p
).

The partial derivatives of Ph (in the generalized sense) satisfy the equations

(Ph)z̄ = h , (Ph)z = Th ,

where T is the Calderon–Zygmund integral operator , defined by

Th(ζ) := − 1

π
P.V.

∫
h(z)

1

(z − ζ)2
dx dy .

Here the integral is taken in the principal value sense, i.e.

Th(ζ) := − 1

π
lim
ϵ→0

∫
|z−ζ|>ϵ

h(z)
1

(z − ζ)2
dx dy .

The operator Th is correctly defined on functions h of class C2
0 (i.e. C2-smooth with

compact supports). For such h, the function Th(ζ) is C1-smooth. The operator T
is also isometric in L2-sense, i.e.

∥Th∥2 = ∥h∥2 .

It follows that it can be extended to a bounded linear operator on L2. Moreover,
it can be proved, using the Calderon–Zygmund inequality, that T is bounded on
functions h ∈ Lp with p > 1:

∥Th∥p ≤ Cp∥h∥p ,
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and Cp → 1 for p → 2. We choose now p > 2 in such a way that the inequality
∥µ∥∞Cp < 1 is satisfied.

We return to the construction of a solution w of the Beltrami equation (6.2),
satisfying the conditions: w(0) = 0 and wz − 1 ∈ Lp.

We show first that there could be only one such solution. Suppose that w is such
a solution and consider the function

W := w − P (wz̄) .

Then its partial derivative with respect to z̄ is equal to zero, hence W is an entire
function. On the other hand, the condition wz − 1 ∈ Lp implies that the derivative
of W , equal to W ′ = wz−T (wz̄), satisfies the condition W ′−1 ∈ Lp, since wz̄ = µwz
belongs to Lp. This is possible only if W ′ ≡ 1, i.e. W (z) ≡ z + const. The constant
is equal to zero because of the normalization, so W (z) ≡ z and

w = P (wz̄) + z .

By differentiating this equality in z, we get for wz an integral equation

wz = T (wz̄) + 1 = T (µwz) + 1 ,

in which the operator h 7→ T (µh) is contractible, since

∥T ◦ µ∥p ≤ ∥µ∥∞Cp < 1 .

Suppose now that w̃ is another solution of (6.2), satisfying the conditions w̃(0) = 0
and w̃z − 1 ∈ Lp. Then w̃ − w satisfies the equation

w̃z − wz = T (µ(w̃z − wz))

which implies, because of the uniqueness of its solution, that w̃z = wz almost every-
where. It follows from the Beltrami equation that also w̃z̄ = wz̄ almost everywhere.
Hence, w̃ − w is a constant, which is equal to zero, due to the normalization.

To prove the existence of a solution w of (6.2), satisfying the conditions w(0) = 0
and wz − 1 ∈ Lp, we use the integral equation

h = T (µh) + Tµ .

Its unique Lp-solution yields a desired solution of the Beltrami equation (6.2), given
by the formula

w = P (µ(h+ 1)) + z . (6.6)

Indeed, since µ(h + 1) ∈ Lp (recall that µ has a compact support), the function
P (µ(h+ 1)) is correctly defined and continuous. The derivatives of w (in the gener-
alized sense) are equal to

wz̄ = µ(h+ 1) , wz = T (µ(h+ 1)) + 1 = h+ 1

and wz − 1 = h ∈ Lp. Hence, w, given by (6.6), satisfies the equation (6.2) and
additional conditions w(0) = 0 and wz − 1 ∈ Lp. According to the uniqueness
assertion in Prop. 11, the constructed solution w of (6.2) will be uniquely defined, if
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we suppose additionally that it fixes not only the origin 0, but also two other points,
say, z = 1 and z =∞. We denote such a normalized solution by w[µ].

To end the proof, we should get rid of the compactness of the support of the
complex dilatation µ. This can be done, using the following trick from [1], Sec. VB.

Note that the case, when µ ≡ 0 in a neighborhood of 0, which is opposite to
the case, when µ has a compact support, can be settled down by the reflection with
respect to the unit circle S1. More precisely, given a µ, vanishing in a neighborhood
of 0, we set

µ̃(z) := µ(
1

z
) · z

2

z̄2
.

Then µ̃ has a compact support, so we can find a normalized solution w̃ = w[µ̃]
of the Beltrami equation with the complex dilatation µ̃, satisfying the additional
conditions, indicated in the proof above. Then the ”reflected” function

w(z) :=
1

w̃(1
z
)

will coincide with the normalized solution w[µ] of the Beltrami equation (6.2).
In the general case we decompose a given complex dilatation µ into the sum

µ = µ∞ + µ0 of complex dilatations µ∞, having a compact support, and µ0, equal
to zero in a neighborhood of 0. We would like to write w[µ] as the composition
w[µ∞] ◦w[µ0] of the corresponding normalized solutions w[µ∞] and w[µ0]. But this
is not possible, unfortunately, due to the composition formula (6.3) for complex
dilatations. However, taking into account the formula (6.3), we can write w[µ] as
the composition

w[µ] = w[λ] ◦ w[µ0] ,

where the complex dilatation

λ :=

[(
µ− µ0

1− µµ̄0

)(
w[µ0]z
w̄[µ0]z̄

)]
◦ (w[µ0])

−1

still has a compact support. This concludes the proof of the existence theorem.

Due to the uniqueness theorem (Prop. 11 in Sec. 6.1), we have the following

Corollary 1. For any measurable function µ on extended complex plane C with
∥µ∥∞ < 1, there exists a unique normalized quasiconformal map on C, fixing the
points 0, 1,∞, whose complex dilatation agrees with µ almost everywhere on C.

Using the existence Theor. 5, it’s easy to construct a solution of the Beltrami
equation (6.2) in the upper half-plane H = H+, preserving H. For that it’s sufficient
to extend the dilatation µ to the lower half-plane H∗ = H− by symmetry, setting

µ̂(z) := µ(z̄) for z ∈ H− . (6.7)

Then, applying the existence theorem to the Beltrami equation with the dilatation
µ̂, we obtain a unique solution wµ of this equation, fixing the points 0, 1,∞. It
follows from the uniqueness of the solution that wµ satisfies the relation

wµ(z̄) = wµ(z) .
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So wµ maps the real axis onto itself and, consequently, preserves the upper half-plane
H+.

On the other hand, one can use the method, proposed in the beginning of the
proof of existence Theor. 5, extending the given potential µ to the whole plane C
by zero outside H:

µ̌(z) = 0 for z ∈ H− .

Applying the existence theorem to the Beltrami equation with the dilatation µ̌, we
obtain a solution wµ, which is conformal in the lower half-plane H− and fixes the
points 0, 1,∞.

The first method of constructing the solution wµ of the Beltrami equation in
H+ is called real-analytic, since in this case wµ depends real-analytically on µ.
Respectively, the second method is called complex-analytic, since wµ depends on
µ holomorphically (cf. [56], Ch. 1.2, for a rigorous proof of these assertions).

Both methods are naturally transferred to the Beltrami equation in the unit disc
∆. For that in the first method one should substitute the symmetry transformation
(6.7) by the reflection with respect to the unit circle S1 := ∂∆. In other words, the
dilatation µ, defined in the unit disc ∆ = ∆+, is extended to its exterior ∆− by the
formula

µ̂(
1

z̄
) := µ(z) · z

2

z̄2
for z ∈ ∆ .

The existence theorem for the extended dilatation µ̂ yields a quasiconformal home-
omorphism wµ : C → C, which preserves ∆+ and ∆− and fixes the points ±1,−i.
The second method provides a quasiconformal homeomorphism wµ : C→ C, which
is conformal on ∆− and fixes the points ±1,−i.
Remark 10. There is an interesting assertion, due to Mañé, Sad and Sullivan, charac-
terizing quasiconformal homeomorphisms as holomorphic perturbations of the iden-
tity. More precisely, we say that a homeomorphism f : C → C is a holomorphic
perturbation of the identity, if it can be included into a family of homeomorphisms
fλ : C→ C, depending on a parameter λ ∈ ∆, such that for every fixed z0 ∈ C the
function fλ(z0) is holomorphic in λ ∈ ∆, and

f0 = id , fλ0 = f for some λ0 ∈ ∆ .

It is proved in [52] that any member fλ of such a family necessarily extends to a
quasiconformal homeomorphism f̃λ of the extended complex plane C with complex
dilatation, not exceeding (1 + |λ|)/(1− |λ|).

Conversely, any quasiconformal homeomorphism f of the extended complex
plane C is a holomorphic perturbation of the identity. Indeed, if f = wµ for some
Beltrami differential µ with ∥µ∥∞ = k < 1, then we can include f into a holomorphic
family of quasiconformal homeomorphisms, defined by

fλ := wλµ/k .
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In particular, we follow Ahlfors’ lectures in proving the main existence theorem for
quasiconformal maps.


