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5. Hyperbolic geometry.

Here we give a brief outline of some of the main features of
hyperbolic geometry. Again, this will serve mainly as a source of
examples and motivation, and we will not give detailed proofs. One-
dimensional hyperbolic space is just the real line, so we begin in
dimension 2. The main ideas generalise to higher dimensions.

5.1. The hyperbolic plane.

We describe the “Poincar\’e model” for the hyperbolic plane. For
this it is convenient to use complex coordinates. Let $D=\{z\in C|$

$|z|<1\}$ . Suppose $\alpha$ : $I\rightarrow D$ is a smooth path. We write $\alpha’(t)\in C$

for the complex derivative at $t$ . Thus, $|\alpha’(t)|$ is the $u_{Speed’}$ at time
$t$ . The euclidean length of $\alpha$ is thus given by the formula $l_{E}(\alpha)=$

$\int_{I}|\alpha’(t)|dt$ . This is cqual to the “rectifiable” length $a_{\llcorner S}$ defincd in
Section 3.

We now modify this by the introduction a scaling factor, $\lambda$ :
$D\rightarrow(0, \infty)$ . The appropriate formula is: $\lambda(z)=2/(1-|z|^{2})$ . The
hyperbolic length of $\alpha$ is thus given by $l_{H}(\alpha)=\int_{I}\lambda(\alpha(t))|\alpha’(t)|dt.$

Note that as $z$ approaches $\partial D$ in the euclidean sense, then $\lambda(z)$

$\rightarrow\infty$ . Thus close to $\partial D$ , things big in hyperbolic space may look
very small to us in euclidean space. Indeed, since $\int_{0}^{\infty}\frac{2}{1-x^{2}}dx=\infty,$

one needs to travel an infinite hyperbolic distance to approach $\partial D.$

For this reason, $\partial D$ is often referred to as the ideal boundary - we
never actually get there.

Given $x,$ $y\in D$ , write $\rho(x, y)=\inf\{l_{H}(\alpha)\}$ as $\alpha$ varies over all
smooth paths from $x$ to $y$ . In fact, the minimum is attained – there
is always a smooth geodesic from $x$ to $y$ . The remark about the ideal
boundary in the previous paragraph boils down to saying that this
metric is complete. Moreover, if we want to get between two points
$x$ and $y$ as quickly as possible, it would seem a good idea to move a
little towards the centre of the disc, in the euclidean sense. Thus we
would expect hyperbolic geodesics approach the middle of the disc
relative to their euclidean counterparts.

For a more precise analysis, we need the notion of a Mobius

transformation. This is a map $f$ : $C\cup\{\infty\}\rightarrow C\cup\{\infty\}$ of the
form $f(z)=\frac{az+b}{cz+d}$ for $\infty nstantsa,$ $b,$ $c,$ $d\in C$ with $ad-bc\neq 0$ . We
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set $f(\infty)=a/c$ and $ f(-c/d)=\infty$ (though we don’t really have to
worry about $\infty$ here). It is usual to normalise so that $ad-bc=1.$ $A$

M\"obius transformation is bijective, and one sees easily that the set
of such transformations forms a group under composition. Since it
is complex analytic, any M\"obius tranformation is conformal, i.e. it
preserves angles.

Here are some useful observations about M\"obius transforma-
tions, which we can leave as exercises:

Exercises

(1) $AM6bius$ transformation sends euclidean circles to euclidean cir-
cles, where we allow a straight line umion $\infty$ to be a “circle”. (Warn-
ing: it need not preserve centres of circles.)

(2) If $d=aandc=\overline{b}$ (the complex conjugates) and $|a|^{2}-|b|^{2}>0$

then $f(D)=D$ . (We shall normalise so that $|a|^{2}-|b|^{2}=1.$ ) In fact,
any M\"obius tranformation preserving $D$ must have this form.

(3) Such an $f$ (as in (2)) is an isometry of $(D, \rho)$ . For this, one needs
to che& that if $\alpha$ is a smooth path, then $l_{H}(f\circ\alpha)=l_{H}(\alpha)$ . This
foUows ffom the formula, $\lambda(f(z))|f’(z)|=\lambda(z)$ , which can be verified
by direct calculation.

(4) If $z,w\in D$ , then there is some such $f$ sending $z$ to $w$ . (Without
loss of generality, $w=0.$ )

(5) If $p,$ $q,$
$r\in\partial D$ are distinct, and $p’,$ $q’,$ $r’\in\partial D$ are distinct, and the

orientation of $p,$ $q,r$ is the same as that of $p’,$ $q’,$ $r’$ , then there is some
such $f$ with $f(p)=p’,$ $f(q)=q’$ and $f(r)=r’$ . Here is one way to see
this. First show there is $a$ (unique) M\"obius transformation taking any
three distinct points of $C\cup\{\infty\}$ to any other three distinct points.
$(Since they form a group, we could take one set to be \{0,1, \infty\}.)$ By
(1), if all six points lie in $\partial D$ then the M\"obius transformation must
preserve $\partial D$ , since three points determine a euclidean circle. The
condition about orientation is needed so that $f$ sends the interior of
$D$ to the interior, rather than the exterior.

Putting together (3) and (4), we see that $(D, \rho)$ is homogeneous
that is, there is an isometry taking any point to any other point.
It thus looks the same everywhere. In fact, any rotation about the
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origin is clearly an isometry (and a M\"obius tranformation). Thus
$(D, \rho)$ is also isotropic – it looks the same in all directions. It thus
shares these properties with the euclidean plane.

Now by symmetry it is easily seen that any euculidean diameter
of $D,$ $(for example, the interval (-1,1)$ ) is a bi-infinite geodesic with
respect to the metric $\rho$ . Indeed it is the umique geodesic between any
pair of points on it. Under isometries of the above type it is mapped
onto arcs of euclidean circles othogonal to $\partial D$ . Since any pair of
points of $D$ lie on such a circle, we see that all geodesics must be of
this type, and so we conclude (Figure $5a$):

Proposition 5.1 : $Bi$-infinite geodesics in the Poincare disc are
arcs of euclidean circles othogonal to the $\partial D$ (including diameters of
the disc). $\Diamond$

Figure $5a.$

We remark that, in fact, all orientation preserving isometries of
$(D, \rho)$ are M\"obius transformations of the above type. This is not very
hard to deduce given our description of geodesics, but we shall not
formally be needing it.

The isometry type of space we have just constructed is generally
referred to as the hyperbohc plane, and denoted $H^{2}$ . It has many
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descriptions. The one we have given is called the Poincar\’e model

Hyperbolic geometry has its roots in attempts to understand the
$u_{P^{aralle1}}$ postulate” as formulated by Euclid about 2300 years ago.
Its discovery, due to Bolyai, Lobachevsky and Gau3 in the $1830s$ is
one of the great landmarks in mathematics. Varous explicit models
of hyperbolic geometry were subsequently discovered by Beltrami,
Poincar\’e, Klein etc.

5.2. Some properties of the hyperbolic plane.

(1) In general angles in hyperbolic geometry are “smaller” than in
the $\infty rresponding$ situation in Euclidean geometry. For example, if
$T$ is a triangle with angles $p,$ $q,$ $r$ , then $ p+q+r<\pi$ . In fact, one can
show that the area of $T$ is $\pi-(p+q+r)$ . One can allow for one or
more of the vertices to lie in the ideal boundary, $\partial D$ , in which case
the corresponding angle is deemed to be $0$ . An ideal triangle is one
where all three vertices are ideal. Its area is $\pi.$

(2) Triangles are “thin”. One way of expressing this is to say that
there is some fixed constant $k>0$ , so that if $T$ is any triangle there is
some point, $x\in H^{2}$ , whose distance from all three sides is at most $k.$

$(One can, in fact, take x in the interior of T.)$ To verify this, one can
first deal with case of an ideal triangle. By exercise (5) above, we see
that there is a hyperbolic isometry carrying any ideal triangle to any
other. In particular, we ean suppose that its vertices are three equally
spaced points in $\partial D.$ $A$ calculation now shows that the centre, $0$ , of
this triangle is a distance $\frac{1}{2}$ log3 from each of the three sides. In fact,
the largest disc in the interior of an ideal triangle is the one of radius

$\frac{1}{2}$ log3 about the centre. It touches all three sides. Now, for a general
triangle, take a disc in the interior of maximal radius, $r$ , say. This
must touch all three sides, otherwise we could make it bigger. The
centre of the disc is thus a distance $r$ from all three sides. Now by
pushing the three vertices of the triangle towards the ideal boundary,
we can place our triangle inside an ideal triangle. It therefore follows
that $r\leq\frac{1}{2}$ log3, and so the same constant, $k=\frac{1}{2}$ log3, works for all
triangles (Figure $5b$).

(3) $A$ (round) circle of radius $r$ in $H^{2}$ has length $2\pi\sinh r.$ $A$ round
dise $B(r)$ , of radius $r$ has area $2\pi(\infty shr-1)$ . (This is an exercise in
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Figure $5b.$

integration: note that a hyperbolic circle about the origin, $0$ , of the
Poincar\’e model is also a euclidean circle.) We note in particular, that
area$(B(r))\leq$ length $(\partial B(r))$ . In fact, if $B$ is any topological disc in
$H^{2}$ , one can show with a little bit ofwork that area$(B)\leq$ length $(\partial B)$ .
(It turns out that the round disc is the “worst case”, but this is
much harder to show.) This is in contrast to the euclidean plane,
where such bounds are quadratic. Inequalities of this sort are called
“isoperimetric inequalities” We will briefly mention this again in
Section 6.

5.3. Tessellations of $H^{2}.$

Suppose that $n\in N,$ $n\geq 3$ . The regular euclidean $n$-gon has all
angles equal to $(1-\frac{2}{n})\pi$ . If $ 0<\theta<(1-\frac{2}{n})\pi$ , then one can construct
a regular hyperbolic $n$-gon with all angles equal to $\theta$ . This can be
seen simply by using a continuity argument: start with a very small
regular $n$-gon centred at the origin of the Poincar\’e disc. Now push all
the vertices out to the ideal boundary at a uniform rate. The angles
must all tend to $0$ . Thus at some intermediate point, they will all
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equal $\theta$ . (In fact the angles decrease monotonically, so the polygon
is unique.) Now if $\theta$ has the form $2\pi/m$ for some $m\in Nn\geq 3,$

we get a regular tessellation of the hyperbolic plane by repeatedly
reflecting the polygon in its edges. (This requires some sort of formal
argument, for example, applying “Poincar\’e’s Theorem”, but there
are lots of pretty computer images to demonstrate that it works.)

Note that the condition $\frac{2\pi}{m}<(1-\frac{2}{n})\pi$ reduces to $\frac{1}{m}+\frac{1}{n}<\frac{1}{2}$ . Thus
we get:

Proposition 5.2 : If $m,$ $n\in N$ with $\frac{1}{m}+\frac{1}{n}<\frac{1}{2}$ , then there is a
regular tessellation of the hyperbolic plane by regular $n$-gons so that
$m$ such $n$-gons meet at every vertex. $\Diamond$

We remark that in the euclidean situation, the corresponding
condition is $\frac{1}{m}+\frac{1}{n}=\frac{1}{2}$ . In this case, we just get the three familiar
tilings where $(m, n)=(3,6),$ $(4,4),$ $(6,3)$ .

5.4. Surfaces.

This has consequences for the geometry and topoloy of surfaces.
For simplicity, we consider here only closed orientable surfaces. These
are classified by their ”genus”, which is a non-ncgative integer.

The sphere (genus $0$) clearly has $u_{Spherica1}$ geometry” – as the
unit sphere in $R^{3}$ . It is simply $\infty mected$ . In other words, its fun-
damental group is trivial. Moreover, it is compact, and therefore
quasi-isometric to a point. At this point, geometric group theorists
start to lose interest in spherical geometry.

The torus, $T$ , (genus 1) is a bit more interesting. We can think
of the torus topologically as obtained by gluing together the opposite
edges of the unit square, $[0,1]^{2}$ . Note that at the vertex we get a
total angle of $ 4(\pi/2)=2\pi$ , so there is no singularity there. We get a
metric on the torus which is locally euclidean (i.e. every point has a
neighbourhood isometric to an open subset of the euclidean plane).
Such a metric is often referred to simply as a ”euclidean structure”.
The universal cover of the torus is then, in a natural way, identified
with the euclidean plane, $R^{2}$ , with the fundamental group acting by
translations. (Given the remarks on universal covers in Section 4,
this in fact gives a proof that $\pi_{1}(T)\cong Z^{2}.)$ The square we used to
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construct $T$ lifts to a regular square tiling of the plane. Note that
the edges of the square project to loops representing generators, $a,$

$b$

of $\pi_{1}(T)$ (Figure $4b$). Reading around the boundary of the square
we see that $[a, b]=aba^{-1}b^{-1}=1$ . The 1-skeleton of the square
tessellation of the plane can be identified with the Cayley graph of
$\pi_{1}(T)$ with respect to these generators. In particular, we see that
$\pi_{1}(T)$ is quasi-isometric to the euclidean plane.

We have made most of the above observations, in some form,
before. We now move into new territory.

Let $S$ be the closed surface of genus 2. We can construct $S$

by taking $a$ (regular) octagon and gluing together its edges. We do
this according to the cyclic labelling $ABA^{-1}B^{-1}CDC^{-1}D^{-1}$ , so that
the first edge gets mapped to the third with opposite orientation etc.
(Figure $5c$).

$C$

Figure $5c.$

If we try the above constuction with a euclidean octagon we
would end up with an angle of $ 8(3\pi/4)=6\pi>2\pi$ at the vertex, so
our euclidean structure would be singular. It is therefore very natural
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to take instead the regular hyperbolic octagon all of whose angles are
$\pi/4$ . In this way we get a metric on $S$ that is locally hyperbolic,
generally termed a hyperbolic structure in $S$ . The umiversal cover
is $H^{2}$ and our octagon lifts to a tessellation of the type $(m, n)=$

$(8,8)$ described above. The edges of the octagon project to loops
$a,$ $b,$ $c,$

$d$ , and reading around the boundary, we see that $[a, b][c, d]=$

$aba^{-1}b^{-1}cdc^{-1}d^{-1}=1$ (Figure $5d$).

Figure $5d.$

In fact, it turns out that $\langle a,$ $b,$ $c,$ $ d|[a, b][c, d]=1\rangle$ is a presenta-
tion for $\pi_{1}(S)$ . Its Cayley graph can be identified with the 1-skeleton
of our (8, 8) tessellation of $H^{2}$ . We see that $\pi_{1}(S)\sim H^{2}$ . Indeed, for
this, it is enough, by Theorem 3.6, to note that $S$ is the quotient of
a p.d. $c$ . isometric action on $H^{2}.$

More generally, if $S$ is a closed surface of genus, $g\geq 2$ , we get a
similar story talcing a regular 4$g$-gon with $\infty ne$ angles $\pi/2g$ . We get

$\pi_{1}(S)\cong\langle a_{1},$ $b_{1},$ $a_{2},$
$b_{2},$

$\ldots,$ $a_{g},$
$b_{g}|[a_{1}, b_{1}][a_{2}, b_{2}]\cdots[a_{g}, b_{g}]=1\rangle.$

The Cayley graph is the 1-skeleton of $a(4g, 4g)$ tesselation of $H^{2}.$

In summary we see:

Proposition 5.3 : If $S$ is a closed surface ofgenus at least 2, then
$\pi_{1}(S)\sim H^{2}.$ $\Diamond$
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Remark: We just showed that such a surface admits some hyperbolic
structure. However, there are lots of variations on this construction,

and in fact, thcre are many $($liffercnt hyperbolic structures one could
put on such a surface. Indeed there is a whole ”Teichmiiller space”
of them, and Teichm\"uller theory is a vast subject in itself.

We also note:

Proposition 5.4 : If $S$ and $S’$ are closed orientable surfaces of
genus at least 2, then $\pi_{1}(S)\approx\pi_{1}(S’)$ .

Proof: We can do this by a similar argument to Theorem 4.2.
Imagine embedding the graph $K_{n}$ in $R^{3}$ , and thickenning it up to a
3-dimensional object (called a “handlebody”) whose boundary is a
surface of genus $n+1.$ $(See Figure 5e, where n=5.)$ Now we do
essentially the same construction, to see that a surface of genus $p\geq 2$

and a surface of genus $q\geq 2$ are both covered by a surface of genus
$pq-p-q+2.$ $\Diamond$

Figure $5e.$

(Note that the above was a topological not a geometric constmc-
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tion. The $\infty vers$ need not respect any given hyperbolie structures.)

Theorem 5.5 : Suppose $S$ and $S’$ are closed orientable sufaces. $ff$

$\pi_{1}(S)\sim\pi_{1}(S’)$ then $\pi_{1}(S)\approx\pi_{1}(S’)$ .

If we believe that the euclidean plane is not quasi-isometric to the
hyperbolic plane, then there are exactly three quasi-isometry classes
– one each for the sphere, the torus, and all higher genus surfaces.
The result then follows by Propostion 5.4. The fact that $R^{2}\oint H^{2}$

will follow from our discussion of hyperbolicity in Section 6.
Alternatively you believe that a higher genus surface group is

not (virtually) $Z^{2}$ , then the fact that $R^{2}\not\simeq H^{2}$ also follows from the
q.i. invariance of virually abelian groups, cited but not proven, in
Section 3. This is, however, much more work than is necessary for
this result.

Fundamental groups of closed surfaces, other than the 2-sphere,
are generally just referred to as surface groups. (Any non-orientable
surface is double covered by an orientable surface, and so non-orient-
able surfaces can easily be brought into the above discussion.)

Fact: Any f.g. group quasi-isometric to a surface group is a virtual
surface group.

The case of the torus was already discussed in Section 3. The
hyperbolic case (genus at least 2) is a difficult result of Tukia, Gabai
and Casson and Jungreis.

In fact any group quasi-isometric to a complete riemannian plane
is a virtual surface group. This was shown by Mess (modulo the
completion of the above theorem which came later).

5.5. -dimensional hyperbolic geometry.

Our construction of the Poincar\’e model makes sense in any di-
mension $n$ , except that we don’t have such convenient $\infty mplex$ coor-
dinates. In this case, we take the disc $D^{n}=\{\underline{x}\in R^{n}|||\underline{x}||<1\}$ . We
scale the metric by the same factor $\lambda(\underline{x})=\frac{2}{1-||\lrcorner|^{2}}$ . We get a com-
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plete geodesic metric, $\rho$ , and the isometry class of $(D, \rho)$ is referred
to as “hyperbolic $n$-space”, $H^{n}$ . It is homogeneous and isotropic.
Its ideal boundary, $\partial D$ , is an $(n-1)$-spherc. Once again, bi-infinitc
geodesics are arcs of euclidean circles (or diameters) orthogonal to
$\partial D$ . More generally any euclidean sphere of any dimension, meeting
$\partial D$ othogonally intersects $D$ in a hyperbolic subspace isometric to
$H^{m}$ for some $m<n$ – there is an isometry of $(D, \rho)$ that maps it
to a euclidean subspace through the origin, thereby giving us a lower
dimensional Poincar\’e model.

There has been an enormous amount of work on 3-dimensional
hyperbolic geometry, going back over a hundred years. One can con-
struct lots of examples of polyhedra and tessellations, though the
situation becomes more complicated. One can also use these to con-
struct examples of compact hyperbolic 3-manifolds. The “Seifert-
Weber space” is a nice example made out of a dodecahedron. In the
$1970s$ people, such as Riley, started to notice that “many” 3-manifolds
admitted hyperbolic structures. In the late $1970s$ Thurston revolu-
tionised the subject by making the conjecture that every compact
3-manifold can be cut into pieces in a natural way so that each piece
has a geometric structure. There are eight geometries in dimension
3, but by far the richest source of examples is hyperbolic geometry.
In 2003, Perelman claimed a proof of Thurston’s conjecture, building
on earlier work of Hamilton.

This is a vast subject, we won’t have time to look into here.
$We’ 11$ just mention a few facts relevant to group theory.

Let $M$ be a closed hyperbolic 3-manifold, and $\Gamma=\pi_{1}(M)$ . Then
$\Gamma$ is finitely generated (in fact, finitely presented), and $\Gamma\sim H^{3}$ . Thus
any two such groups are q.i. There are however examples of closed
hypcrbolic 3-manifolds which do not have any common finite cover.
(In contrast to the 2-dimenional case, the hyperbolic structure on a
closed 3-mamifold is unique, and it follows that covers are forced to
respect hyperbolic metrics.) The verification of this involves algebraic
number theory, so we won’t describe it here. The point is that a
closed hyperbolic 3-manifold has associated to it “stable trace field”,

a finite extention of the rationals, which one can compute. If these
are different, then the groups are incommensurable. (It is likely that,

in some sense, one would expect a “random” pair of hyperbolic 3-
manifolds to be incommensurable.) This is therefore again in contrast



60 5. Hyperbolic geometry

to the 2-dimensional case, where any two surface groups of genus at
least 2 are commensurable.
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