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4. Fundamental groups

In this section we give a review of some background material
relating to fundamental groups and covering spaees. Since these serve
primarily as illustrative examples, our presentation will be informal,
and we omit proofs. We will describe some consequences for free
groups.

4.1. Definition of fundamental groups.

The fundamental group is an invariant of a topological space. We
are not interested here in “pathological” examples. We will generally
assume that our spaces are reasonably “nice” For example, manifolds
and simplicial complexes are all “nice”, and in practice that is all we
care about.

Let $X$ be a topological space. Fix a “basepoint” $p\in X.$ $A$ loop
based at $p$ is a path $\alpha$ : $[0,1]\rightarrow X$ with $\alpha(0)=\alpha(1)=p$ . Two
such loops, $\alpha,$

$\beta$ , are homotopic if one can be deformed to the other
through other loops; more precisely, if there is a map $F:[0,1]^{2}\rightarrow X$

with $F(t, 0)=\alpha(t),$ $F(t, 1)=\beta(t)$ and $F(O,u)=F(1, u)=p$ for all
$t,$ $u\in[0,1]$ . This defines an equivalence relation on the set of paths.
Write $[\alpha]$ for the homotopy class of $\alpha.$

Given loops $\alpha,$
$\beta$ , write $\alpha*\beta$ for the path that goes around $\alpha$

(twice as fast) then around $\beta$ (i.e. $\alpha*\beta(t)$ is $\alpha(2t)$ for $t\leq 1/2$ and
$\beta(2t-1)$ for $t\geq 1/2$ ) (Figure $4a$). Write $[\alpha][\sqrt{}]=[\alpha*\beta].$

Figure $4a.$
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Exercise: This is well-defined and gives the set of homotopy classes
of loops based at $p$ the structure of a group.

Definition : We call this group the fundamental group of $X$ (based
at $p)$ .

It is denoted by $\pi_{1}(X,p)$ .
The following is not hard to see:

Fact: If the points $p,$ $q\in X$ are connected by a path, then $\pi_{1}(X,p)$

$\cong\pi_{1}(X, q)$ .

To define the isomorphism, given aloop based at $p$ , we can obtain
a loop based at $q$ by following the path from $q$ to $p$ , then going around
the loop, and then following the same path back to $q$ . We leave the
details as an exercise.

Definition : $A$ space $X$ is path connected if any two points are
connected by a path.

Note that any path-connected space is connected, and any “nice”
connected space will also be path-connected. (There are counterex-
amples to the latter statement, but these are not nice.)

Thus if $X$ is path-connected, then the fundamental group is well-
defined up to isomorphism. It is denoted $\pi_{1}(X)$ . Clearly homeomor-
phic spaces have isomorphic fundamental groups.

Examples.

(1) $\pi_{1}$ (point) $=\{1\}.$

(2) $\pi_{1}(S^{1})=Z.$

(3) $\pi_{1}(S^{1}\times[0,1])=Z.$

(4) $\pi_{1}(S^{1}\times R)=Z.$

(5) $\pi_{1}$ (torus) $=Z^{2}$ . This is generated by two (homotopy classes of)

loops, $a,$
$b$ , on the torus that cross just once at $p$ (Figure $4b$). It is

easily seen that $aba^{-1}b^{-1}=1$ . This gives us a presentation of $Z^{2}.$

Of course, a lot more work would be needed to prove directly that
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Figure $4b.$

this is actually the fundamental group. This will follow from a result
stated below.

(6) $\pi_{1}$ (figure of eight) $=F_{2}$ . The two generators $\infty rrespond$ to the
two loops. This time there is no relation.

(7) More generally the fundamental group of a wedge of circles is free.
($A$ “wedge” is constructed by gluing together a collection of spaces
at a single point.) For a finite wedge of $n$ circles, we get $F_{n}.$ $A$ wedge
of 5 circles is illustrated in Figurc $4c.$ $A$ “figure of eight” is a wedge
of 2 circles.

Definition : $A$ space $X$ is simply $\omega nnected$ if it is $path-\infty mected$

and $\pi_{1}(X)$ is trivial.

This means that every closed path bounds a disc. More precisely, if
$D$ is the unit disc in $R^{2}$ then any map $f$ : $\partial D\rightarrow X$ extends to a
map $f:D\rightarrow X.$

Examples: $A$ point is simply connected! So is $R^{n}$ for any $n$ . So is
any tree. So is the $n$-sphere for any $n\geq 2.$

Suppose $X$ is “nice” and $Y\subseteq X$ is a “nice” closed simply con-
nected subset. Then it turns out that the fundamenal group is un-
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Figure $4c.$

changed by collapsing $Y$ to a point.
For example, if $X$ is a graph, and $Y$ is a subtree (a subgraph that

is a tree) then we can collapse $Y$ to a single vertex and get another
graph. If we take $Y$ to be a maximal tree, we get a wedge of circles
(Figure $4d$).

$\leftrightarrow$

Figure $4d.$

Since a maximal tree always exists (if you believe the Axiom of

Choice in the case of an infinite graph) we can deduce the following

facts:
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Facts:

(1) The fundamental group of a graph is free.

(2) The fundamental group of a finite graph is $F_{n}$ for some $n.$

4.2. Covering spaces.

Covering spaces give an alternative viewpoint on fundamental
groups for nice spaces. Indeed the discussion here could serve to give
an equivalent definition of fundamental group, suited to our purposes.
We shall not approach the subject systematically here. We just say
enough to give the general ideas needed for subsequent applications.

Suppose that a group $\Gamma$ acts properly discontinuously on a proper
space $X$ . For our purposes here, we can take $X$ to be a proper
geodesic space and assume that $\Gamma$ acts by isometry. We shall also
assume the action is free (i.e. no element of $\Gamma$ has any fixed points.)
This is yet another usage of “free” Here it means there are no fixed
points, i.e. if $gx=x$ for some $x\in X$ , then $g=1$ . We can form the
quotient space $ X/\Gamma$ . The space $X$ , together with the quotient map
to $ X/\Gamma$ is $a$ (particular) example of a ”covering space” as we discuss
below.

Of particular interest is the case where $X$ is simply connected.
In this case, we have the following:

Fact: In the above situation, $\pi_{1}(X/\Gamma)\cong\Gamma.$

The isomorphism can be seen by fixing some $p\in X$ . Given $g\in\Gamma,$

eonnect $p$ to $gp$ by some path $\alpha$ in X. (Since $X$ is simply connected,
it doesn’t really matter which one.) This projects to a loop in $ X/\Gamma$

with a fixed basepoint, and hence determines an element of $\pi_{1}(X/\Gamma)$ .
This gives a homomorphism from $\Gamma$ to $\pi_{1}(X/\Gamma)$ , which turns out to
be an isomorphism.

Conversely, given a nice space, $Y$ , one can construct a simply
connected space $X$ , and free p.d. action of $\Gamma=\pi_{1}(Y)$ on $X$ such
that $ Y=X/\Gamma$ . Then, $X$ is called the universal cover of $Y$ . (It is
well-defined up to homeomorphism.) It is often denoted $\tilde{Y}.$
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Examples.

(1) $\Gamma=Z.$ $X=R,$ $Y=S^{1}.$

(2) $\Gamma=Z,$ $X=R\times[O, 1],$ $Y=S^{1}\times[0,1].$

(3) $\Gamma=Z,$ $X=R^{2},$ $Y=S^{1}\times R.$

(4) $\Gamma=Z^{2},$ $X=R^{2},$ $Y=S^{1}\times S^{1}$ is the torus.

(5) $\Gamma=F_{n},$ $X=T_{2n},$ $Y$ is a wedge of $n$ circles. We are taking the
action of $F_{n}$ on its Cayley graph, $T_{2n}$ , which here happens to be the
universal cover.

Note that if $ G\leq\Gamma$ is a subgroup, we also gct a natural map from
$Z=X/G$ to $ Y=X/\Gamma$ . This is a more general example of a ”covering
space” Formally we say that a map $p:Z\rightarrow Y$ is a covering map
if every point $y\in Y$ has a neighbourhood $U$ such that if we restrict
$p$ to any connected component of $p^{-1}U$ we get a homeomorphism of
this component to $U$ . In this situation, $Z$ is called a covering space.
We will not worry too much about this formal definition here. The
following examples illustrate the essential points:

(1) Consider the action of $Z$ on $R$ , and the subgroup $ nZ\leq$ Z. We
get a covering $R/nZ\rightarrow R/$Z. This is a map from the circle to itself
wrapping around $n$ times.

(2) We get a covering map of the cylinder to the torus, $R^{2}/Z\rightarrow$

$R^{2}/Z^{2}.$

The main point to note is that the fundamental group of a cover is a
subgroup of the fundamental group of the quotient. If both spaces are
compact, then the subgroup will have finite index. These statements
can be thought of in terms of the actions on the universal cover.

Exercise. If $G$ happens to be normal in $\Gamma$ , thm there is a natural
action of the group $\Gamma/G$ on $Z$ , and $Y$ can be naturally identified as
the quotient of $Z$ by this action. The covering space $Z\rightarrow Y$ is then
the quotient map.

If $G$ is not normal, then the cover will not arise from a group
action; so the notion of a covering space is more general than that
of a free p.d. group action. An example described at the end of this
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section illustrates this.

4.3. Applications to free groups.

As well as being useful to illustrate later results, these construc-
tions have implications for free groups.

Theorem 4.1 Any subgroup of a $A\cdot ae$ group is $bee.$

Proof: Suppose $F$ is free, and $G\leq F$ . Its universal cover, $X$ , is
a tree. (It will only be a proper space if $F$ is finitely generated, but
that doesn’t really matter here.) Now $G$ acts on $T$ and $T/G$ is a
graph. By the earlier discussion, $G\cong\pi_{1}(T/G)$ is free. $\Diamond$

This is a good example of a result that is relatively easy by
topological/geometric means, but quite hard to prove by direct com-
binatorial means.

We note that $G$ need not be f.g. even if $F$ is. As an example
consider the $F_{2}=\langle a,$ $ b\rangle$ and let $ G=\langle\{b^{n}ab^{-n}|n\in Z\}\rangle$ . In this case,
the $\infty vering$ space, $K=T_{4}/G$ , is the real line with a loop attached
to each integer point (Figure $4e$).

Figure $4e.$

Collapsing the real line to a point we get an infinite wedge of
circles, and so $G$ is frce on an infinite set, and so cannot bc finitcly

generated (this was an exercise in Section 1). In fact, $\{b^{n}ab^{-n}|n\in$
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$Z\}$ is a free generating set. This is one of the simplest examples of
an infinitely generated subgroup of a finitely generated group.

Exercise. $ G=\langle\langle a\rangle\rangle$ . In particular, $G\triangleleft F$ . In fact, $G$ corresponds
to the set of words in $a,$

$a^{-1},$ $b,$
$b^{-1}$ with the same number of $b$’s and

$b^{-1\prime}s$ . Writing $J=F/G$ , we have $ J\cong$ Z. Now $J$ acts by translation
on the graph $K$ , and the quotient graph, $K/J$ , is a “figure of eight”,
which is naturally identified with $T_{4}/F.$

The map $K\rightarrow K/J$ is another example of a covering space.

The subgroup $H=\langle a,$ $bab^{-1},$ $b^{2}ab^{-2},$ $\ldots\rangle$ is also infinitely gener-
ated (but not normal). In this case, the covering space $T_{4}/H$ is a bit
more comphcated, and the covering map to the figure of eight does
not arise from a group action.

Theorem 4.2 If $p,$ $q\geq 2$ , then $F_{p}\approx F_{q}.$

Proof: Let $K_{n}$ be the graph obtained by taking the circle, $R/nZ,$

and attaching a loop at each point of $Z/nZ$ – that is $n$ additional
circles $(see Figure 4f, where n=5)$ .

Figure $4f.$

We can collapse down a maximal subtree of $K_{n}$ to give us a
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wedge of $n+1$ circles. Thus $\pi_{1}(K_{n})=F_{n+1}$ . (The universal cover of
$K_{n}$ is $T_{4}.)$ We also note that for any $m\in N,$ $K_{mn}$ is a cover of $K_{n}.$

Now given $p,$ $q\geq 2$ , set $r=pq-p-q+2=(p-1)(q-1)+1,$
and note that $K_{r-1}$ covers both $K_{p-1}$ and $K_{q-1}$ . Since these are all
compact, we see that $F_{r}$ is a finite index subgroup of both $F_{p}$ and
$F_{q}.$

$\Diamond$

This proves something we commented on earlier, namely that
two f.g. free groups are q.i. if and only if they are commensurable.
There are three classes: $F_{0}=\{1\},$ $F_{1}=Z$ , and $F_{n}$ for $n\geq 2.$
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