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General Theory of DPN surfaces and K3
surfaces with non-symplectic involution

2.1. General remarks

As it was shown in Chapter 1, a description of $\log$ del Pezzo surfaces of
index $\leq 2$ is reduced to a description of rational surfaces $Y$ containing a
nonsingular curve $C\in|-2K_{Y}|$ and a certain configuration of exceptional
curves. Such surfaces $Y$ and exceptional curves on them were studied in
the papers [Nik79, Nik83, Nik84a, Nik87] of the second author. They are
one of possible generalizations of del Pezzo surfaces.

Many other generalizations of del Pezzo surfaces were proposed, see
e.g. $[$Dem80, Har85a, Har85b, Loo81], and most authors call their surfaces
”generalized del Pezzo surfaces”. Therefore, we decided following [Nik87]

to call our generalization DPN surfaces. One can consider DPN surfaces to

be some appropriate non-singular models of log del Pezzo surfaces of index
$\leq 2$ and some their natural generalizations.

Definition 2.1. $A$ nonsingular projective algebraic surface $Y$ is called a
DPN surface if its irregularity $q(Y)=0,$ $K_{Y}\neq 0$ and there exists an
effective divisor $C\in|-2K_{Y}|$ with only simple rational, i.e. $A,$ $D,E$-

singulanities. Such a pair $(Y, C)$ is called a DPN pair. A DPN surface $Y$ is
called right if there exists a nonsingular divisor $C\in|-2K_{Y}|$ ; in this case
the pair $(Y, C)$ is called right DPN pair or nonsingular DPN pair.

The classification of algebraic surfaces implies that if $ C=\emptyset$ then a
DPN surface $Y$ is an Enriques surface $(x=p=q=0)$ . If $ C\neq\emptyset$ then $Y$

is a rational surface $(x=-1, p=q=0)$ , e.g. see [Shaf65].

Using the well-known properties of blowups, the following results are
easy to prove. Let $(Y, C)$ be a DPN pair, $E\subset Y$ be an exceptional curve of
the lst kind on $Y$ and $\sigma:Y\rightarrow Y’$ be the contraction of $E$ . Then $(Y’, \sigma(C))$

is also a DPN pair. In this way, by contracting exceptional curves of the lst
kind, one can always arrive at a DPN pair $(Y’, C’)$ where $Y’$ is a relatively
minimal (i.e. without exceptional curves of the lst kind) rational surface. In
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this case, the only possibilities for $Y’$ are $\mathbb{P}^{2},$ $\mathbb{F}_{0},$ $\mathbb{F}_{2},$ $\mathbb{F}_{3}$ and $\mathbb{F}_{4}$ , since only
for them $|-2K_{Y’}|$ contains a reduced divisor. If $Y’=\mathbb{P}^{2}$ then $C’$ is a curve
of degree 6; if $Y’=\mathbb{F}_{0}=\mathbb{P}^{1}\times \mathbb{P}^{1}$ then $C’$ is a curve of bidegree (4, 4);
if $Y’=\mathbb{F}_{2}$ then $C’\in|8f+4s_{2}|$ ; if $Y’=\mathbb{F}_{3}$ then $D’=C_{1}+s_{3}$ , where
$C_{1}\in|10f+3s_{3}|$ ; if $Y’=\mathbb{F}_{4}$ then $C’=D_{1}+s_{4}$ , where $D_{1}\in|12f+3s_{4}|.$

Here, the linear system $|f|$ is a pencil of rational curves on surface $\mathbb{F}_{n}$ with
a section $s_{n},$ $s_{n}^{2}=-n$ . Vice versa, if $(Y’, C’)$ is a DPN pair, $P$ is a singular
point of $C’$ and $\sigma$ : $Y\rightarrow Y’$ is a blowup of $P$ with an exceptional $(-1)-$

curve $E$ then $(Y, C)$ is a DPN pair, where

$C=\left\{\begin{array}{ll}\sigma_{*}^{-1}(C’) & if P has multiplicity 2 on C’\\\sigma_{*}^{-1}(C’)+E & if P has multiplicity 3 on C’\end{array}\right.$

Here $\sigma_{*}^{-1}(C’)$ denotes the proper preimage (or the strict transform) of $C’,$ $i.$

$e.$ $\sigma_{*}^{-1}(C’)$ is the closure of the set-theoretic preimage $\sigma^{-1}(C’-\{P\})$ in $Y.$

In this way, by blowups, from an arbitrary DPN pair $(Y’, C’)$ one can
always pass to a right DPN pair $(Y, C)$ , i.e. with a nonsingular $C.$ $A$ de-
scription of arbitrary DPN pairs and surfaces is thus reduced to a description
of right (or nonsingular) DPN pairs $(Y, C)$ , and to right DPN surfaces $Y$ and
exceptional curves on them. Here, a curve $E\subset Y$ is called exceptional if
$E$ is irreducible and $E^{2}<0.$

We shall need a small, elementary, and well-known fact about ramified
double covers. Let $\pi$ : $X\rightarrow Y$ be a finite morphism of degree 2 between
smooth algebraic varieties. Then $\pi$ is Galois with group $\mathbb{Z}/2$ . Therefore,

the $\mathcal{O}_{Y}$ -algebra $\pi_{*}\mathcal{O}_{X}$ splits into $(\pm 1)$ -eigenspaces as $\mathcal{O}_{Y}\oplus L$ . Since $\pi$

is flat, $L$ is flat and hence invertible. The algebra stmcture is given by a
homomorphism $L^{2}\rightarrow \mathcal{O}_{Y}$ , i.e. by a section $s\in H^{0}(Y, L^{-2})$ . Locally, $X$

is isomorphic to $y^{2}=s(x)$ . Since $X$ is smooth, the ramification divisor
$C=(s)$ must be smooth.

Vice versa, let $L^{-1}$ be a sheaf dividing by two the sheaf $\mathcal{O}_{Y}(C)$ for an
effective divisor $C$ in Pic $Y$ and let $s$ be a section of $\mathcal{O}_{Y}(C)$ with $(s)=$

$C$ . Then $s$ defines an algebra stmcture on $\mathcal{A}=\mathcal{O}_{Y}\oplus L$ , and $\pi$ : $X$ $:=$

$Spec\mathcal{A}\rightarrow Y$ is a double cover ramified in $C$ . The representation of $\mathcal{A}$ as a
quotient of $\oplus_{d\geq 0}L^{d}$ gives an embedding of $X$ into a total space of the line
bundle $L^{-1}$ and a section of $\pi^{*}L^{-1}$ ramified along $\pi^{-1}(C)$ with multiplicity
one. Hence $\pi^{-1}(C)\sim\pi^{*}L^{-1}$

Let $(Y, C)$ be a right DPN pair. Since $C\in|-2K_{Y}|$ , there exists a
double cover $\pi$ : $X\rightarrow Y$ defined by $L^{-1}=-K_{Y}$ , branched along $C$ . By
the above, we have $\pi^{*}(-K_{Y})\sim\pi^{-1}(C)$ .

Let $\omega_{Y}$ be a rationa12-dimensional differential form on $Y$ with the divi-
sor $(\omega_{Y})$ whose components do not contain components of $C$ . Then $(\omega_{Y})\sim$

$K_{Y}$ , and the divisor $(\pi^{*}\omega_{Y})=\pi^{*}(\omega_{Y})+\pi^{-1}(C)\sim\pi^{*}(\omega_{Y})+\pi^{*}(-K_{Y})\sim$

$0$ . Thus, $K_{X}=0$ . Then $X$ is either a K3 surface $(i. e. q(X)=0)$ or an
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Abelian surface $(i. e. q(X)=2)$ , e.g. see [Shaf65]. Let $X$ be an Abelian
surface. Then $C$ is not empty (otherwise, $Y$ is an Enriques surface and then
$X$ is a K3 surface, [Shaf65] $)$ , and $Y$ is rational. It follows that there ex-
ists a non-zero regular 1-dimensional differential form $\omega_{1}$ on $X$ such that
$\theta^{*}(\omega_{1})=\omega_{1}$ for the involution $\theta$ of the double cover $\pi$ . Then $\omega_{1}=\pi^{*}\tilde{\omega}_{1}$

where $\tilde{\omega}_{1}$ is a regular 1-dimensional differential form on $Y$ . It contradicts
$q(Y)=0$ . This proves that $X$ is a K3 surface.

Let $\omega_{X}$ be a non-zero regular 2-dimensional differential form on $X$ . If
$\theta^{*}(\omega_{X})=\omega_{X}$ , then $\omega_{X}=\pi^{*}(\omega_{Y})$ where $\omega_{Y}$ is a regular 2-dimensional
differential form on $Y$ . This contradicts the fact that $Y$ is an Enriques or
rational surface (e.g. see [Shaf65]). Thus, $\theta^{*}(\omega_{X})=-\omega_{X}$ , and then $\theta$ is a
non-symplectic involution of the K3 surface $X.$

Vice versa, assume that $(X, \theta)$ is a K3 surface with a non-symplectic
involution. Then the set $X^{\theta}$ of fixed points of the involution is a nonsingular
curve $(otherwise, \theta is symplectic, i. e. \theta^{*}(\omega_{X})=\omega_{X}$ for any regular 2-
dimensional differential form on $X$ ). It follows (reversing arguments above)
that the pair $(Y=X/\{1, \theta\}, C=\pi(X^{\theta}))$ is a right DPN pair where $\pi$ :
$X\rightarrow Y$ is the quotient molphism.

Thus, a description of right DPN pairs $(Y, C)$ is reduced to a description
of K3 surfaces with a non-symplectic involution $(X, \theta)$ .

2.2. Reminder of basic facts about K3 surfaces

Here we remind basic results about K3 surfaces that we use. We follow
[Shaf65], [PS-Sh71], [Ku177] and also $[Nik80a,$ . Nik83, $Nik84b]$ . Of course,
all these results are well-known.

Let $X$ be an algebraic K3 surface. We recall that this means that $X$ is a
projective non-singular algebraic surface, the canonical class $K_{X}=0$ (i.e.

there exists a non-zero regular 2-dimensional differential form $\omega_{X}$ on $X$

with zero divisor), and $q(X)=\dim\Gamma(X, \Omega^{1})=0$ (i.e. $X$ has no non-zero
regular 1-dimensional differential forms). From definition, $\omega_{X}$ is unique up
to multiplication by $\lambda\in \mathbb{C},$ $\lambda\neq 0.$

Let $F\subset X$ be an irreducible algebraic curve. By genus formula,

(10) $p_{a}(F)=\frac{F^{2}+(F\cdot K_{X})}{2}+1=\frac{F^{2}}{2}+1\geq 0.$

It follows that $F^{2}\equiv 0mod 2,$ $F^{2}\geq-2$ , and $F$ is non-singular rational if
$F^{2}=-2$ . In particular, any exceptional curve $F$ on $X(i.$ $e.$ $F$ is irreducible
and $F^{2}<0)$ is non-singular rational with $F^{2}=-2.$

By Riemann-Roch Theorem, for any divisor $D\subset X$ we have

$l(D)+l(K_{X}-D)=h^{1}(D)+\frac{D\cdot(D-K_{X})}{2}+\chi(\mathcal{O}_{X})$ ,
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which gives for a K3 surface $X$ that

(11) $l(D)+l(-D)=h^{1}(D)+\frac{D^{2}}{2}+2\geq\frac{D^{2}}{2}+2.$

It follows that one of $\pm D$ is effective if $D^{2}\geq-2.$

All algebraic curves on $X$ up to linear equivalence generate the Picard
lattice $S_{X}$ of $X$ . For K3 surfaces linear equivalence is equivalent to nu-
merical, and $S_{X}\subset H^{2}(X, \mathbb{Z})$ where $H^{2}(X, \mathbb{Z})$ is an even unimodular lat-
tice of the signature (3, 19). Here, “even” means that $x^{2}$ is even for any
$x\in H^{2}(X, \mathbb{Z})$ . Unimodular means that for a basis $\{e_{i}\}$ of $H^{2}(X, \mathbb{Z})$ the
determinant $\det(e_{i}\cdot e_{j})=\pm 1$ . Such even unimodular lattice is unique up
to an isomorphism, see e.g. [Ser70]. By Hodge Index Theorem, the Picard
lattice $S_{X}$ is hyperbolic, i. e. it has signature $(1, \rho-1)$ where $\rho=$ rk $S_{X}.$

Let

(12) $V(S_{X})=\{x\in S_{X}\otimes \mathbb{R}|x^{2}>0\}.$

Since $S_{X}$ is hyperbolic, $V(S_{X})$ is an open cone which has two convex
halves. One of these halves $V^{+}(X)$ is distinguished by the fact that it con-
tains the ray $\mathbb{R}^{+}h$ of a polarization $h$ ($i.$ $e$ . a hyperplane section) of $X,$

where $\mathbb{R}^{+}$ denotes the set of all non-negative real numbers.
Let

(13) NEF( $X$ ) $=$ { $ x\in S_{X}\otimes \mathbb{R}|x\cdot C\geq 0\forall$ effective curve $C\subset X$ }

be the nef cone of $X$ . Since $S_{X}$ is hyperbolic, for any irreducible curve $C$

with $C^{2}\geq 0$ we have that $C\in V^{+}(X)$ , and $C\cdot V^{+}(X)>0$ . It follows that

(14) NEF( $X$ ) $=\{x\in\overline{V^{+}(X)}|x\cdot P(X)\geq 0\}$

where $P(X)\subset S_{X}$ denotes the set of all divisor classes of irreducible non-
singular rational ($i.$ $e$ . all exceptional) curves on $X.$

Let $ h\in$ NEF(X) be a hyperplane section. By Riemann-Roch Theorem
above, $f\in S_{X}$ with $f^{2}=-2$ is effective if and only if $h$ $f>0$ . It
follows that NEF($X$ ) is a fundamental chamber $($in $V^{+}(X))$ for the group
$W^{(2)}(S_{X})$ generated by reflections in all elements $f\in S_{X}$ with $f^{2}=-2.$

Each such $f$ gives a reflection $s_{f}\in O(S_{X})$ where

(15) $s_{f}(x)=x+(x\cdot f)f, x\in S_{X},$

in particular, $s_{f}(f)=-f$ and $s_{f}$ is identical on $f^{\perp}.$

Since all $F\in P(X)$ have $F^{2}=-2$ , the nef cone NEF( $X$ ) is locally
finite in $V^{+}(X)$ , all its faces of codimension one are orthogonal to elements
of $P(X)$ . This gives $a$ one-to-one correspondence between the faces of
codimension one ofNEF( $X$ ) and the elements of$P(X)$ . Indeed, let $\gamma$ be a
codimension one face of NEF(X). Assume $F\in P(X)$ is orthogonal to $\gamma,$

$i.$

$e.$ $\gamma$ belongs to the edge of the half-space $F\cdot x\geq 0,$ $x\in S_{X}\otimes \mathbb{R}$ , containing
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NEF($X$ ). Such $F\in S_{X}$ with $F^{2}=-2$ is obviously unique because any
element $f\in S_{X}$ which is orthogonal to $\gamma$ is evidently $\lambda F,$ $\lambda\in \mathbb{R}^{+}$ . We have
$(\lambda F)^{2}=\lambda^{2}F^{2}=\lambda^{2}(-2)$ , and $F$ is distinguished by the condition $F^{2}=$

$-2$ . In such a way, all faces of codimension one of NEF( $X$ ) give a subset
$P(X)’\subset P(X)$ of elements of $P(X)$ which are orthogonal to codimension
one faces of NEF( $X$ ). Let us show that $P(X)’=P(X)$ . Obviously it will
be enough to show that for any $E\in P(X)$ , the orthogonal projection of
NEF($X$ ) into hyperplane $E^{\perp}$ belongs to NEF($X$ ). The projection is given
by the formula $H\mapsto\tilde{H}=H+(H\cdot E)E/2$ for $ H\in$ NEF( $X$ ). Let us show
that $\tilde{H}\in$ NEF($X$ ). Let $C$ be an irreducible curve on $X$ . If $C\neq E$ , then
$C\cdot\tilde{H}=C\cdot H+(H\cdot E)(C\cdot E)/2\geq 0$ because $H$ is nef and $C$ is different
from $E$ . If $C=E$ , then $C\cdot\tilde{H}=E\cdot\tilde{H}=E\cdot H+(H\cdot E)(E^{2})/2=0\geq 0.$

Thus, $\tilde{H}\in$ NEF($X$).
Therefore, we obtain a group-theoretic description of the nef cone of

$X$ and all exceptional curves of $X$ : NEF( $X$ ) is the fundamental chamber
for the reflection group $W^{(2)}(S_{X})$ acting on $V^{+}(X)$ , this chamber is dis-
tinguished by the condition that it contains a hypelplane section of $X$ . The
set $P(X)$ of all exceptional curves on $X$ consists of all elements $f\in S_{X}$

which have $f^{2}=-2$ and which are orthogonal to codimension one faces
of NEF($X$ ) and directed outwards $(i.$ $e.$ $ f\cdot$ NEF $(X)\geq 0)$ .

It is more convenient to work with the corresponding hyperbolic space

(16) $\mathcal{L}(X)=V^{+}(X)/\mathbb{R}^{+}$

Elements of this space are rays $\mathbb{R}^{+}x$ , where $x\in S_{X}\otimes \mathbb{R},$ $x^{2}>0$ and
$x\cdot h>0$ . Each element $\beta\in S_{X}\otimes \mathbb{R}$ with square $\beta^{2}<0$ defines a half-
space

(17) $\mathcal{H}_{\beta}^{+}=\{\mathbb{R}^{+}x\in \mathcal{L}(X)|\beta\cdot x\geq 0\},$

so that $\beta$ is perpendicular to the bounding hyperplane

(18) $\mathcal{H}_{\beta}=\{\mathbb{R}^{+}x\in \mathcal{L}(X)|\beta\cdot x=0\},$

and faces outward. The set $\iota$

(19)
$\mathcal{M}(X)=NEF(X)/\mathbb{R}^{+}=\bigcap_{f\in s_{X},J^{2}=-2 fiseffective}\mathcal{H}_{f}^{+}=\bigcap_{f\in P(X)}\mathcal{H}_{f}^{+}$

is a locally finite convex polytope in $\mathcal{L}(X)$ . The set $P(\mathcal{M}(X))$ of vectors
with square $-2$ , perpendicular to the facets of $\mathcal{M}(X)$ and directed out-
ward, is exactly the set $P(X)$ of divisor classes of exceptional curves on $X.$

Moreover, $\mathcal{M}(X)$ admits a description in terms of groups. Let $O’(S_{X})$ be
the subgroup of index two of the full automorphism group $O(S_{X})$ of the lat-
tice $S_{X}$ which consists of automorphisms preserving the half-cone $V^{+}(X)$ .
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Let $W^{(2)}(S_{X})\subset O’(S_{X})$ be the subgroup of $O’(S_{X})$ generated by reflec-
tions $s_{f}$ with respect to all elements $f\in S_{X}$ with square $(-2)$ . The action
of the group $W^{(2)}(S_{X})$ , as well as $O’(S_{X})$ , on $\mathcal{L}(X)$ is discrete. $W^{(2)}(S_{X})$

is the group generated by reflections in all hyperplanes $\mathcal{H}_{f},$ $f\in S_{X}$ and
$f^{2}=-2$ . The set $\mathcal{M}(X)$ is a fundamental chamber for this group, i.e.
$W^{(2)}(S_{X})(\mathcal{M}(X))$ defines a decomposition of $\mathcal{L}(X)$ into polytopes which
are congment to $\mathcal{M}(X)$ , and $W^{(2)}(S_{X})$ acts transitively and without fixed
elements on this decomposition (cf. [PS-Sh71, Vin85]). The fundamental
chamber $\mathcal{M}(X)$ is distinguished from other fundamental chambers by the
fact that it contains the ray $\mathbb{R}^{+}h$ of polarization.

By Hodge decomposition, we have the direct sum

(20) $H^{2}(X, \mathbb{Z})\otimes \mathbb{C}=H^{2}(X, \mathbb{C})=H^{2,0}(X)+H^{1,1}(X)+H^{0,2}(X)$

where $H^{2,0}(X)=\mathbb{C}\omega_{X},$ $H^{0,2}(X)=\overline{H^{2,0}(X)}$ and $H^{1,1}(X)=(H^{2,0}(X)+$

$H^{0,2}(X))^{\perp}$ . Then the Picard lattice of $X$ is

(21) $S_{X}=H^{2}(X, \mathbb{Z})\cap H^{1,1}(X)=\{x\in H^{2}(X, \mathbb{Z})|x\cdot H^{2,0}(X)=0\}.$

The triplet

(22) $(H^{2}(X, \mathbb{Z}), H^{2,0}(X), \mathcal{M}(X))$

is called the periods of $X.$

An isomorphism
(23)

$\phi:(H^{2}(X, \mathbb{Z}), H^{2,0}(X), \mathcal{M}(X))\rightarrow(H^{2}(X’, \mathbb{Z}), H^{2,0}(X’), \mathcal{M}(X’))$

of periods of two K3 surfaces means an isomorphism $\phi$ : $ H^{2}(X, \mathbb{Z})\rightarrow$

$H^{2}(X’, \mathbb{Z})$ of cohomology lattices ( $i.$ $e$ . modules with pairing) such that
$\phi(H^{2,0}(X))=H^{2,0}(X’),$ $\phi(\mathcal{M}(X))=\mathcal{M}(X’)$ for the corresponding in-
duced maps which we denote by the same letter $\phi$ . By Global Torelli The-
orem for K3 surraces [PS-Sh71], $\phi$ is defined by a unique isomorphism
$f$ : $X’\rightarrow X$ of the K3 surfaces: $\phi=f^{*}$

As an application ofthe Global Torelli Theorem, let us consider the de-
scription ofAut(X) from [PS-Sh71]. By Serre duality, $h^{0}(\mathcal{T}_{X})=h^{2}(\Omega_{X}^{1})=$

$h^{1,2}=0$ . Thus, $X$ has no regular vector-fields. It follows, that Aut(X) acts
on $S_{X}$ with only a finite kemel. Let

(24) Sym $(\mathcal{M}(X))=\{\phi\in O’(S_{X})|\phi(\mathcal{M}(X))=\mathcal{M}(X)\}$

be the symmetry group of the fundamental chamber $\mathcal{M}(X)$ . Let us de-
note by Sym $(\mathcal{M}(X))^{0}$ its subgroup of finite index which consists of all
symmetries which are identical on the discriminant group $(S_{X})^{*}/S_{X}$ . Ele-
ments $\phi\in$ Sym $(\mathcal{M}(X))^{0}$ can be extended to automolphisms of $H^{2}(X, \mathbb{Z})$

which are identical on the transcendental lattice $T_{X}=(S_{X})^{\perp}\subset H^{2}(X, \mathbb{Z})$

(see Propositions A.3, A.4 in Appendix). We denote this extension by
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the same letter $\phi$ since it is unique. We have $H^{2,0}(X)\subset T_{X}\otimes \mathbb{C}$ since
$H^{2,0}(X)\cdot S_{X}=0$ . Thus, $\phi(H^{2,0}(X))=H^{2,0}(X)$ , and $\phi$ is an automor-

phism of periods of $X$ . Thus, $\phi=f^{*}$ where $ f\in$ Aut(X). Thus, the natural
contragradient representation

(25) Aut $(X)\rightarrow$ Sym $(\mathcal{M}(X))$

has a finite kemel and a finite cokemel. It follows that the groups Aut $(X)\approx$

Sym $(\mathcal{M}(X))$ are naturally isomorphic up to finite groups. Since we have
a natural isomorphism Sym $(\mathcal{M}(X))\cong O’(S_{X})/W^{(2)}(S_{X})$ , we also obtain
that

(26) Aut $(X)\approx O’(S_{X})/W^{(2)}(S_{X})$ .

In particular, Aut(X) is finite if and only if $[O(S_{X}) : W^{(2)}(S_{X})]<\infty$ . See
[Nik83], $[Nik84a]$ , [Nik87] about the enumeration of all these cases.

Periods $(H^{2}(X, \mathbb{Z}), H^{2,0}(X), \mathcal{M}(X))$ of a K3 surface $X$ satisfy the Rie-
mann relations: $H^{2,0}(X)\cdot H^{2,0}(X)=0$ and $\omega_{X}\cdot\overline{\omega_{X}}>0$ for $ 0\neq\omega_{X}\in$

$H^{2,0}(X)$ (shortly we will be able to write $H^{2,0}(X)\cdot H^{2,0}(X)>0$).

Abstract K3 periods is a triplet

(27) $(L_{K3}, H^{2,0}, \mathcal{M})$

where $L_{K3}$ is an even unimodular lattice of signature (3, 19), $ H^{2,0}\subset L_{K3}\otimes$

$\mathbb{C}$ is a one dimensional complex linear subspace satisfying $H^{2,0}\cdot H^{2,0}=0,$

$H^{2,0}\cdot\overline{H^{2,0}}>0$ , and $\mathcal{M}$ is a fundamental chamber of $W^{(2)}(M)\subset \mathcal{L}(M)$

where $M=\{x\in L_{K3}|x\cdot H^{2,0}=0\}$ is an abstract Picard lattice. By the
surjectivity ofTorelli mapfor $K3$ surfaces [Ku177], any abstract K3 periods
are isomorphic to periods of an algebraic K3 surface.

As an application of Global Torelli Theorem and Surjectivity of Torelli
map for K3 surfaces, let us describe moduli spaces ofK3 surfaces with con-
dition on Picard lattice. For details see [Nik80a] and for real case [Nik84b].

Let $M$ be an even (i. e. $x^{2}$ is even for any $x\in M$) hyperbolic (i. e. of
signature $(1, rk M-1)$ ) lattice. Like for $S_{X}$ above, we consider the light
cone

(28) $V(M)=\{x\in M\otimes \mathbb{R}|x^{2}>0\}$

of $M$ , and we choose one of its half $V^{+}(M)$ defining the corresponding hy-
perbolic space $\mathcal{L}(M)=V^{+}(M)/\mathbb{R}^{+}$ . We choose a fundamental chamber
$\mathcal{M}(M)\subset \mathcal{L}(M)$ for the reflection group $W^{(2)}(M)$ generated by reflections
in all elements $f\in M$ with $f^{2}=-2$ . Note that the group $\pm W^{(2)}(M)$ acts
transitively on all these additional data $(V^{+}(M), \mathcal{M}(M))$ which shows that

they are defined by the lattice $M$ itself (i. e. by its isomorphism class), and
we can fix these additional data $(V^{+}(M), \mathcal{M}(M))$ without loss of general-
ity.
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We consider K3 surfaces $X$ such that a primitive sublattice $M\subset S_{X}$ is
fixed, $V^{+}(X)\cap(M\otimes \mathbb{R})=V^{+}(M),$ $\mathcal{M}(X)\cap \mathcal{L}(M)\neq\emptyset$ , and $\mathcal{M}(X)\cap$

$\mathcal{L}(M)\subset \mathcal{M}(M)$ . (This is one of the weakest possible conditions of degen-
eration.) Such a K3 surface $X$ is called a K3 surface with the condition $M$

on Picard lattice. $A$ general K3 surface $X$ with the condition $M$ on Picard
lattice ( $i.$

$e$. with moduli or periods general enough) has $S_{X}=M$ , as we
will show later. Then $S_{X}=M,$ $V^{+}(X)=V^{+}(M)$ , and $\mathcal{M}(X)=\mathcal{M}(M)$ .
One can consider this condition as a marking of elements of the Picard lat-
tice $S_{X}$ by elements of the standard lattice $M.$

Let $(X, M\subset S_{X})$ be a K3 surface with the condition $M$ on the Picard
lattice. Then $M\subset S_{X}\subset H^{2}(X, \mathbb{Z})$ defines a primitive sublattice $ M\subset$

$H^{2}(X, \mathbb{Z})$ . Depending on the isomorphism class of this primitive sublattice,
we obtain different irreducible components of moduli of K3 surfaces with
the condition $M$ on Picard lattice.

We fix a primitive embedding $M\subset L_{K3}$ . We consider marked K3
surfaces $(X, M\subset S_{X})$ with the condition $M$ on Picard lattice and the class
$M\subset L_{K3}$ of the condition $M$ on cohomology. Here marking means an
isomorphism $\xi$ : $H^{2}(X, \mathbb{Z})\cong L_{K3}$ of lattices such that $\xi|M$ is identity.
Taking

(29) $(L_{K3}, H^{2,0}=\xi(H^{2,0}(X)), \mathcal{M}=\xi(\mathcal{M}(X)))$

we obtain periods of a marked K3 surface $(X, M\subset S_{X}, \xi)$ with condition
$M$ on Picard lattice. By the surjectivity of Torelli map, any abstract periods

$(L_{K3}, H^{2,0}, \mathcal{M})$

where $H^{2,0}\cdot M=0,$ $\mathcal{M}\cap \mathcal{L}(M)\neq\emptyset$ , and $\mathcal{M}\cap \mathcal{L}(M)\subset \mathcal{M}(M)$ correspond
to a marked K3 surface with the condition $M$ on Picard lattice. Let us
denote by $\tilde{\Omega}_{M\subset L_{K3}}$ the space of all these abstract periods. It is called the
period domain of K3 surfaces $(X, M\subset S_{X})$ with the condition $M$ on
Picard lattice and with the type $M\subset L_{K3}$ of this condition on cohomology.
Let
(30)
$\Omega_{M\subset L_{K3}}=\{H^{2,0}=\mathbb{C}\omega\subset L_{K3}\otimes \mathbb{C}|\omega\cdot M=0,$ $\omega^{2}=0$ and $\omega\cdot\overline{\omega}>0\}.$

We have the natural projection $p$ : $\tilde{\Omega}_{M\subset L_{K3}}\rightarrow\Omega_{M\subset L_{K3}}$ forgetting $\mathcal{M}.$

The space $\Omega_{M\subset L_{K3}}$ is an open subset of a projective quadric of dimension
rk $L_{K3}-$ rk $M-2=20-$ rk $M$ . It follows that for a general K3 surface
$X$ with the condition $M$ on Picard lattice we have $S_{X}=M$ . Indeed, if
rk $S_{X}>$ rk $M$ for all K3 surfaces $X$ with the condition $M\subset L_{K3}$ , then,

since $H^{2,0}\cdot\xi(S_{X})=0$ , periods $H^{2,0}$ define a quadric of smaller dimension
20-rk $S_{X}<20-$ rk $M$ which leads to a contradiction. It also follows that
the forgetful map $p$ : $\tilde{\Omega}_{M\subset L_{K3}}\rightarrow\Omega_{M\subset L_{K3}}$ is an isomorphism in general
points: e.g. it is isomorphism in all points with $S_{X}=M$ . In fact, $p$ gives an
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\’etale covering which makes $\tilde{\Omega}_{M\subset L_{K3}}$ non-Hausdorff in special points (see

Bums and Rapoport [BR75] about constmction and use of this covering).
Considerations above also show that an even hyperbolic lattice $M$ is

isomorphic to a Picard lattice $S_{X}$ of some K3 surface $X$ if and only if $M$ has
a primitive embedding $M\subset L_{K3}$ . In particular, such an embedding always
exists if rk $ M\leq$ rk $L_{K3}/2=11$ $($see [Nik80b]) ; any even hyperbolic lattice
$M$ of rk $M\leq 11$ is Picard lattice of some K3 surface. See other sufficient
and necessary conditions in Theorems A.5 and Corollary A.6 of Appendix.

The period space $\Omega_{M\subset L_{K3}}$ is a Hermitian symmetric domain of type IV
in the classification by \’E. Cartan. The domains $\Omega_{M\subset L_{K3}}$ and hence also
$\tilde{\Omega}_{M\subset L_{K3}}$ have two connected components which are complex conjugate.
Indeed, $H^{2,0}\subset L_{K3}\otimes \mathbb{C}$ is equivalent to an oriented positive definite real
subspace $(H^{2,0}+\overline{H^{2,0}})\cap(L_{K3}\otimes \mathbb{R})\subset L_{K3}\otimes \mathbb{R}$ which is orthogonal to
$M\subset L_{K3}$ . Let us consider the orthogonal complement $T=M^{\perp}$ in $L_{K3}$

and the automorphism group $O(2, 20-- rk M)$ of $T\otimes \mathbb{R}$ . Then

(31) $\Omega_{M\subset L_{K3}}=O(2,20- rk M)/(SO(2)\times O(20- rk M))$

has two connected components since $SO$ (2) $\times O(20- rk M)$ has index two
in the maximal compact subgroup $O(2)\times O(20-rk M)$ of $O(2,20-rk M)$ .
The number of connected components of $O(2, 20-- rk M)$ and $ O(2)\times$

$O$(20–rk $M$ ) coincide.
Let

(32) $o(M\subset L_{K3})=\{\phi\in O(L_{K3})|\dot{\phi}|M=$ identity $\}$

be the automorphism group of the period domain $\tilde{\Omega}_{M\subset L_{K3}}$ . By Global
Torelli Theorem, the corresponding K3 surfaces are isomorphic if and only
if their periods are conjugate by this group. This group is discrete. Thus

(33) $Mod_{M\subset L_{K3}}=\tilde{\Omega}_{M\subset L_{K3}}/O(M\subset L_{K3})$

gives the coarse moduli space of K3 surfaces with the condition $M$ on
Picard lattice and with the type $M\subset L_{K3}$ of the embedding in co-
homology. Usually $O(M\subset L_{K3})$ contains an automorphism which per-
mutes the two connected components of periods (equivalently it has the
spinor norm $-1$ , i. e. it does not belong to a connected component of
$SO$ (2) $\times O(20- rk M)$ of $O(2,20- rk M)$ above). Then the moduli space
(33) is irreducible.

Two primitive embeddings $a$ : $M\subset L_{K3},$ $b$ : $M\subset L_{K3}$ give the same
moduli space (33), if they are conjugate by an automolphism of the lattice
$L_{K3}$ , i. e. they are equivalent. Taking disjoint union of moduli spaces
$Mod_{M\subset L_{K3}}$ for all equivalence classes $M\subset L_{K3}$ of primitive embeddings
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of lattices, we obtain the moduli space

(34)
$Mod_{M}=\bigsqcup_{class of M\subset L_{K3}}Mod_{M\subset L_{K3}}$

of K3 surfaces with the condition $M$ on Picard lattice. If the primitive
embedding $M\subset L_{K3}$ is unique up to isomolphisms, and if $O(M\subset L_{K3})$

has an automorphism of spinor norm $-l$ , then the moduli space $Mod_{M}$ is
irreducible. We remark that the same results about components of moduli
of K3 surfaces with conditions on Picard lattice can be obtained using only
Global Torelli Theorem and local surjectivity ofTorelli map for K3 surfaces
(see the paper [Nik80a] which had been written before the surjectivity of
Torelli map for K3 was established).

2.3. The lattice $S$, and the main invariants $(r, a, \delta)$ ,
$(k, g, \delta)$

All results of this Section were obtained in [Nik80a, Nik80b, Nik79, Nik83]
(see also [Nik87]). Here we omit some technical proofs. They will be given
in Section A.2 of Appendix.

Let $X$ be an algebraic K3 surface with a non-symplectic involution $\theta.$

(We remark that existence of a non-symplectic involution on a Kahler K3
surface $X$ implies that $X$ is algebraic (see [Nik80a])) .

For a module $Q$ with action of $\theta$ we denote by $ Q\pm$ the $\pm 1$ eigenspaces
of $\theta.$

The lattice (i. e. a free $\mathbb{Z}$-module with a non-degenerate symmetric
bilinear fonn)

$S=H^{2}(X, \mathbb{Z})_{+}$

considered up to isomorphisms is called the main invariant of $(X, \theta)$ .
Since $\theta$ is non-symplectic, we have $H^{2,0}(X)\subset H^{2}(X, \mathbb{Z})_{-}\otimes \mathbb{C}$ . It follows
that $S\cdot H^{2,0}(X)=0$ . Thus, $S\subset S_{X}$ is a sublattice of the Picard lattice
$S_{X}$ of $X$ . Let $h\in S_{X}$ be a polarization of $X$ . Then $h_{1}=h+\theta^{*}h\in S$ is
also a polarization of $X$ , and $h_{1}^{2}>0$ . It follows that $S$ is hyperbolic like the
Picard lattice $S_{X}$ . The rank $r=$ rk $S$ is one of main invariants of $S.$

The following property of the sublattice $S\subset S_{X}$ is very important: The
lattice $(S_{X})_{-}$ (i. e. the orthogonal complement to $S$ in $S_{X}$) has no elements
$f$ with $f^{2}=-2$ . Indeed, by Riemann-Roch Theorem for K3, then $\pm f$ is
effective and $\theta^{*}(\pm f)=\mp f$ , which is impossible.

Let $T=S^{\perp}$ be the olthogonal complement to $S$ in $H^{2}(X, \mathbb{Z})$ . Canon-
ical epimorphisms $H^{2}(X, \mathbb{Z})\rightarrow S^{*}$ and $H^{2}(X, \mathbb{Z})\rightarrow\tau*$ defined by inter-
section pairing give canonical $\theta$-equivariant epimorphisms

$S^{*}/S\cong H^{2}(X, \mathbb{Z})/(S\oplus T)\cong T^{*}/T$
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because $H^{2}(X, \mathbb{Z})$ is an unimodular lattice. The involution $\theta$ is $+1$ on $S^{*}/S,$

and it is-l on $\tau*/T$ . It follows that the groups $S^{*}/S\cong T^{*}/T\cong(\mathbb{Z}/2\mathbb{Z})^{a}$

are 2-elementary. Only in this case multiplications by $\pm 1$ coincide. Thus,

the lattice $S$ is 2-elementary, which means that its discriminant group $\mathfrak{U}s=$

$S^{*}/S\cong(\mathbb{Z}/2\mathbb{Z})^{a}$ is 2-elementary where $a$ gives another important invariant
of $S.$

There is one more invariant $\delta$ of $S$ which takes values in $\{0,1\}$ . One
has $\delta=0\Leftrightarrow$ $(x^{*})^{2}\in \mathbb{Z}$ for every $ x^{*}\in S^{*}\Leftrightarrow$ the discriminant
quadratic form

$q_{S}:\mathfrak{U}_{S}=S^{*}/S\rightarrow \mathbb{Q}/2\mathbb{Z}, q_{S}(x^{*}+S)=(x^{*})^{2}+2\mathbb{Z}$

of $S$ is even: it takes values in $(\mathbb{Z}/2\mathbb{Z})$ . See Appendix, Section A. 1 about
discriminant forms of lattices.

The invariants $(r, a, \delta)$ of $S$ define the isomorphism class ofa 2-elemen-
tary even hyperbolic lattice $S$ . See more general statement and the proof in
Appendix, Section A.2 and Theorem A.9.

Thus, any two even hyperbolic 2-elementary lattices with the same in-
variants $(r, a, \delta)$ are isomorphic. The invaniants $(r, a, \delta)$ of $S$ are equivalent
to the main invariant $S$ , and we later call them the main invariants of a K3
surface $X$ with non-symplectic involution $\theta.$

Vice versa, let $S$ be a hyperbolic even 2-elementary lattice having a
primitive embedding to $L_{K3}$ . Let $S\subset L_{K3}$ be one ofprimitive embeddings.
Considering $T=S^{\perp}$ in $L_{K3}$ and the diagram similar to above,

$S^{*}/S\cong L_{K3}/(S\oplus T)\cong T^{*}/T,$

we obtain that there exists an involution $\theta^{*}$ of $L_{K3}$ which is $+1$ on $S$ , and
$-1$ on $T$ . Let us consider the moduli space

(35) $Mod_{s}’\subset Mod_{S}$

of K3 surfaces $(X, S\subset S_{X})$ with condition $S$ on Picard lattice (see (34))

where for $(X, S\subset S_{X})$ from $Mod_{s}’$ we additionally assume that the or-
thogonal complement $S^{\perp}$ to $S$ in $S_{X}$ has no elements with square $(-2)$ .
One can easily see that $Mod_{S}’$ is Zariski open subset in $Mod_{S}$ . Any general
$(X, S\subset S_{X})(i.$ $e$ . when $S=S_{X})$ belongs to $Mod_{s}’$ . Thus, the differ-
ence between $Mod_{s}’$ and $Mod_{S}$ is in complex codimension one, and they
have the same irreducible components. By Global Torelli Theorem, the ac-
tion of $\theta^{*}$ on $L_{K3}$ can be lifted to a non-symplectic involution $\theta$ on $X$ with
$H^{2}(X, \mathbb{Z})_{+}=S$ . Thus, the moduli space $Mod_{s}’$ in (35) can be considered
as moduli space of K3 surfaces with non-symplectic involution and the
main invariant $S$ . Since $S$ is defined by the main invariants $(r, a, \delta)$ , it can
also be denoted as

(36) $Mod_{(r,a,\delta)}=Mod_{S}’$
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FIGURE 1. All possible main invariants $(r, a, \delta)$

and can be considered as moduli space of K3 surfaces with non-symplec-
tic involution and the main invariants $(r, a, \delta)$ . Any even hyperbolic 2-
elementary lattice $S$ has a unique primitive embedding to $L_{K3}$ (up to iso-
morphisms) if it exists. Moreover, the group $O(S\subset L_{K3})$ always has an
automorphism of spinor norm $-1$ . Thus, the moduli space Mod $(r,a,\delta)$ is
irreducible.

Evidently, to classify all possible main invariants $S$ (equivalently $(r,$ $a,$

$\delta))$ one just needs to classify all even hyperbolic 2-elementary lattices $S$

having a primitive embedding $S\subset L_{K3}$ . All such possibilities for $(r, a, \delta)$

(equivalently,$ (k=(r-a)/2,$ $g=(22-r-a)/2,$ $\delta)$ , see below) are known
and are shown on Figure 1.

The triple $(r, a, \delta)$ admits an interpretation in terms of $X^{\theta}=C$ . If
$(r, a, \delta)\neq(10,8,0)$ or $(10, 10, 0)$ then

$X^{\theta}=C=C_{g}+E_{1}+\cdots+E_{k},$

where $C_{g}$ is a nonsingular irreducible curve of genus $g$ , and $E_{1},$ $\ldots E_{k}$ are
nonsingular irreducible rational curves, the curves are disjoint to each other,

$g=(22-r-a)/2, k=(r-a)/2$

(we shall formally use the same formulae for$ g $and $k $even in cases$ (r, a, \delta)=$

$(10,8,0)$ or $(10, 10, 0))$ . If $(r, a, \delta)=(10,8,0)$ then $X^{\theta}=C=C_{1}^{(1)}+C_{1}^{(2)},$

where $C_{1}^{(i)}$ are elliptic (genus 1) curves. If $(r, a, \delta)=(10,10,0)$ then
$ X^{\theta}=C=\emptyset$ , i.e. in this case $Y$ is an Enriques surface. One has
(37)

$\delta=0\Leftrightarrow X^{\theta}\sim 0$ $mod 2$ in $S_{X}$ (equivalently in$ H_{2}(X, \mathbb{Z})$ ) $\Leftrightarrow$
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there exist signs $(\pm)_{i}$ for which

(38) $\frac{1}{4}\sum_{i}(\pm)_{i}d(C^{(i)})\in S_{Y}=H^{2}(Y, \mathbb{Z})$ ,

where $C^{(i)}$ go over all irreducible components of $C$ . Signs $(\pm)_{i}$ for $\delta=0$

are defined uniquely up to a simultaneous change. They define a new natural
orientation (different from the complex one) of the components of $C$ ; a
positive $sign$ gives the complex orientation and a negative $sign$ the opposite
orientation.

The main invariants $S$ , equivalently $(r, a, \delta)$ $(or (k, g, \delta))$ ofK3 surfaces
with non-symplectic involution, and the corresponding DPN pairs and DPN
surfaces play a cmcial role in our classification.

2.4. Exceptional curves on $(X, \theta)$ and $Y$

A description of exceptional curves on a DPN surface $Y$ can also be reduced
to the K3 surface $X$ with a non-symplectic involution $\theta$ considered above.

Let $(X, \theta)$ be a K3 surface with a non-symplectic involution and $(Y=$

$X/\{1, \theta\},$ $C=\pi(X^{\theta}))$ the corresponding DPN pair. If $E\subset Y$ is an ex-
ceptional curve, then the curve $F=\pi^{*}(E)_{red}$ is either an irreducible curve
with negative square on the K3 surface $X$ , or $F=F_{1}+\theta(F_{1})$ , where

$F^{2}=F_{1}^{2}+\theta(F_{1})^{2}+2F_{1}\cdot\theta(F_{1})=2E^{2}<0.$

The curves $F_{1}$ and $\theta(F_{1})$ are irreducible and have negative square (i.e. equal
to $(-2)$ , see Section 2.2). Using this, in an obvious way we get the follow-
ing four possibilities for $E$ and $F$ (see Fig. 2)

$I$ $E^{2}=-4,$ $E$ is a component of $C$ ; respectively $F$ is a component
of $X^{\theta}$ , and $F^{2}=-2.$

$\Pi aE^{2}=-1,$ $E\cdot C=2$ and $E$ intersects $C$ transversally at two points;
respectively $F$ is irreducible and $F^{2}=-2.$

IIb $E^{2}=-1,$ $E\cdot C=2$ and $E$ is tangent to $C$ at one point; respec-
tively $F=F_{1}+\theta(F_{1})$ , where $(F_{1})^{2}=-2$ and $F_{1}\cdot\theta(F_{1})=1.$

$mE^{2}=-2,$ $ E\cap C=\emptyset$ ; respectively $F=F_{1}+\theta(F_{1})$ , where
$(F_{1})^{2}=-2$ and $F_{1}\cdot\theta(F_{1})=0.$

If $Y$ is an Enriques surface, we let $S_{Y}$ be the Picard lattice of $Y$ modulo
torsion. Let $P(Y)\subset S_{Y}$ be the subset of divisor classes of all exceptional
curves $E$ on $Y$ , and $P(X)_{+}\subset S=(S_{X})_{+}$ be the set of divisor classes of
all $F=\pi^{*}(E)_{red}$ . We call them exceptional classes of the pair $(X, \theta)$ .
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FIGURE 2. Pictures of exceptional curves.

By what we said above, $P(Y)$ and $P(X)_{+}$ are divided into subsets:

(39) $P(Y)$ $=$ $P(Y)_{I}uP(Y)_{IIa}uP(Y)_{IIb}uP(Y)_{III}.$

(40) $P(X)_{+}$ $=$ $P(X)_{+I}uP(X)_{+IIa}uP(X)_{+IIb}\square P(X)_{+III}.$

By projection formula,

$\pi^{*}(NEF(Y))=$ NEF $(X)\cap(S\otimes \mathbb{R})=$ NEF $(X)_{+}.$

In the same way as for K3 surfaces $X$ in Section 2.2, we have

(41) NEF $(Y)=\{y\in\overline{V^{+}(Y)}|y\cdot P(Y)\geq 0\},$

a locally finite polyhedron in $V^{+}(Y)$ whose facets are orthogonal and nu-
merated by elements of $P(Y)$ . Since $\pi^{*}$ (NEF $(Y)$ ) $=$ NEF $(X)\cap(S\otimes \mathbb{R})=$

NEF $(X)_{+}$ , we obtain that

(42) NEF $(X)_{+}=$ NEF $(X)\cap(S\otimes \mathbb{R})=\{x\in\overline{V^{+}(S)}|x\cdot P(X)_{+}\geq 0\}$

is a locally finite polyhedron whose facets are orthogonal and numerated by
elements of $P(X)_{+}$ . Here $V^{+}(S)=V^{+}(X)\cap(S\otimes \mathbb{R})$ .

As for K3 surfaces in Section 2.2, we can interpret the above results
using hyperbolic spaces. Since the lattice $S=(S_{X})_{+}$ is hyperbolic, and
$S\subset S_{X}$ , we have embeddings of cones

$V(S)\subset V(S_{X}) , V^{+}(S)\subset V^{+}(S_{X})=V^{+}(X)$

and hyperbolic spaces $\mathcal{L}(S)=V^{+}(S)/\mathbb{R}^{+}\subset V^{+}(X)/\mathbb{R}^{+}=\mathcal{L}(X)$ .
If $h$ is a polarization of $X$ , the set $\mathcal{L}(S)$ contains the polarization ray

$\mathbb{R}^{+}(h+\theta^{*}h)$ of $X$ . Therefore, $\mathcal{M}(X)_{+}=$ NEF $(X)_{+}/\mathbb{R}^{+}=\mathcal{M}(X)\cap$

$\mathcal{L}(S)$ is a non-degenerate (i.e. containing a nonempty open subset of $\mathcal{L}(S)$ )

convex locally finite polytope in $\mathcal{L}(S)$ . Since $S$ is even, it is easy to see
that $P(X)_{+}$ is precisely the set of primitive elements of $S$ , perpendicular to
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facets of $\mathcal{M}(X)_{+}$ and directed outward. One has

(43) $P^{(2)}(X)_{+} Def=\{f\in P(X)_{+}|f^{2}=-2\}$

(44) $= P(X)_{+I}uP(X)_{+IIa}uP(X)_{+IIb},$

(45) $P^{(4)}(X)_{+}Def=\{f\in P(X)_{+}|f^{2}=-4\}=P(X)_{+III}.$

Moreover, $\mathcal{M}(X)_{+}$ , like $\mathcal{M}(X)$ for K3 surfaces in Section 2.2, admits a
description in terms of groups.

Indeed, by Section 2.2

(46) $\mathcal{M}(X)_{+}=\{\mathbb{R}^{+}x\in \mathcal{L}(S)|x\cdot f\geq 0\}$

for any effective $f\in S_{X}$ with $f^{2}=-2$ . Let us write $f=f_{+}^{*}+f_{-}^{*}$

where $f_{+}^{*}\in S^{*}$ and $f_{-}^{*}\in(S_{X})_{-}^{*}$ . We have 2$f_{+}^{*}=f+\theta^{*}(f)\in S$ and
2 $f_{-}=f-\theta^{*}(f)\in(S_{X})_{-}$ . It follows that $f=(f_{+}+f_{-})/2$ where $f_{+}\in S$

and $f_{-}\in(S_{X})_{-}$ . If $f_{+}^{2}\geq 0$ , then $f_{+}\cdot V^{+}(S)\geq 0$ , and $f$ does nothing in
(46). Thus, in (46) we can assume that $f_{+}^{2}<0$ . Since $(S_{X})_{-}$ is negative

definite and the lattice $S_{X}$ is even, we then obtain that $f_{+}\in\triangle_{+}^{(2)}\cup\Delta_{+}^{(4)},$

defined below.
Let

$\triangle_{\pm}^{(4)}$

$=$ $\{f\pm\in(S_{X})_{\pm}|f_{\pm}^{2}=-4$ , and $\exists f_{\mp}\in(S_{X})_{\mp},$

for which $f_{\mp}^{2}=-4$ and $(f\pm+f_{\mp})/2\in S_{X}\}$ ;

$\Delta_{+}^{(2)} = \Delta^{(2)}(S)=\{f_{+}\in S|f_{+}^{2}=-2\}$ ;

$\triangle_{+t}^{(2)} = \{f_{+}\in\triangle^{(2)}(S)|\exists f_{-}\in(S_{X})_{-},$

for which $f_{-}^{2}=-6$ and $(f_{+}+f_{-})/2\in S_{X}\}$ ;

$\Delta_{-}^{(6)}$

$=$ $\{f_{-}\in(S_{X})_{-}|f_{-}^{2}=-6$ and $\exists f_{+}\in\triangle_{+t}^{(2)},$

for which $(f_{+}+f_{-})/2\in S_{X}\}.$

If $f\pm\in\triangle_{\pm}^{(4)}$ , then $f\pm\cdot(S_{X})_{\pm}\equiv 0mod 2$ . Hence, $f\pm\in\triangle_{\pm}^{(4)}$ are roots
of $(S_{X})_{\pm}$ , and there exists a reflection $s_{f\pm}\in O’((S_{X})_{\pm})$ with respect to
element $ f\pm$ :

$s_{f\pm}(x)=x+\frac{(x\cdot f_{\pm})}{2}f\pm, x\in(S_{X})_{\pm}.$

One has a $veIy$ important property:

(47) $s_{f\pm}(\Delta^{(2)}\cup\triangle^{(4)})=\Delta_{\pm}^{(2)}\cup\Delta_{\pm}^{(4)}\forall f\pm\in\triangle_{\pm}^{(2)}\cup\Delta_{\pm}^{(4)}$

where we formally put $\Delta_{-}^{(2)}=\emptyset$ because the lattice $(S_{X})$ -has no elements
$f_{-}$ with $f^{\underline{2}}=-2$ (see the previous section).
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Let us prove (47). Assume $f_{+}\in\triangle_{+}^{(2)}$ . The reflection $s_{f+}\in O(S_{X})$ and

$s_{f+}((S_{X})_{\pm})=(S_{X})_{\pm}$ . This implies (47) for such $s_{f+}$ . Assume $f_{+}\in\triangle_{+}^{(4)}$

Then there exists $f_{-}\in A_{-}^{(4)}$ such that $\alpha_{1}=(f_{+}+f_{-})/2\in S_{X}$ . The
element $\alpha_{2}=(f_{+}+f_{-})/2-f_{-}=(f_{+}-f_{-})/2$ also belongs to $S_{X}$ . We
have $\alpha_{1}^{2}=\alpha_{2}^{2}=-2$ . Thus, the reflections $s_{\alpha_{1}}$ and $s_{\alpha_{2}}$ belong to $O(S_{X})$ . It
follows that $s=s_{\alpha_{2}}s_{\alpha_{1}}\in O(S_{X})$ . On the other hand, a simple calculation
shows that $s((S_{X})_{\pm})=(S_{X})_{\pm}$ , and $s$ in $(S_{X})_{\pm}$ coincides with the reflection
$s_{J\pm}$ . It follows that

$s_{f+}(\triangle_{+}^{(2)}\cup\triangle_{+}^{(4)})=s(\triangle_{+}^{(2)}\cup\triangle_{+}^{(4)})=\triangle_{+}^{(2)}\cup\triangle_{+}^{(4)}$

For $f_{-}\in\triangle_{-}^{(2)}\cup\Delta_{-}^{(4)}$ the arguments are the same. This simple but very
important trick had been first used by Dolgachev [Do184] for Enriques sur-
faces.

By (47), reflections with respect to all the elements of $\triangle^{(2)}(S)\cup\triangle_{+}^{(4)}=$

$\triangle_{+}^{(2,4)}(S)$ generate a group $W_{+}^{(2,4)}\subset O’(S)$ which geometrically is the

group generated by reflections in the hypelplanes of $\mathcal{L}(S)$ which are or-
thogonal to $\triangle_{+}^{(2,4)}(S)$ , any reflection in a hyperplane of $\mathcal{L}(S)$ from this

group is reflection in an element of $\triangle_{+}^{(2,4)}(S)$ . It follows (by exactly the

same considerations as for the K3 surface $X$ in Section 2.2) that $\mathcal{M}(X)_{+}$ is

a fundamental chamber for $W_{+}^{(2,4)}$ . Thus,

$P(X)_{+}=P(\mathcal{M}(X)_{+})$

is the set of primitive elements of $S$ , which are orthogonal to facets of
$\mathcal{M}(X)_{+}$ and directed outward. We obtain the description of $P(X)_{+}$ and

$P(Y)$ using the reflection group $W_{+}^{(2,4)}.$

Denote by

$A(X, \theta)=\{\phi\in O’(S)|\phi(\mathcal{M}(X)_{+})=\mathcal{M}(X)_{+}\}$

the subgroup of automorphisms of $\mathcal{M}(X)_{+}$ in $O’(S)$ and by Aut $(X, \theta)$ the

normalizer of the involution $\theta$ in Aut $X$ . The action of Aut $(X, \theta)$ on $S_{X}$

and $S$ defines a contravariant representation

(48) Aut $(X, \theta)\rightarrow A(X, \theta)$ .

Like for K3 surfaces $X$ in Section 2.2, Global Torelli theorem for K3 sur-
faces [PS-Sh71] implies that this representation has a finite kemel and cok-
emel. Therefore, it defines an isomorphism up to finite groups: Aut $(X, \theta)\approx$

$A(X, \theta)$ .
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2.4.1. Computing $P(X)_{+}$

First, we consider calculation of the fundamental chamber $\mathcal{M}^{(2)}\subset \mathcal{L}(S)$ of
$W^{(2)}(S)$ .

For that, it is important to consider a larger group $W^{(2,4)}(S)$ generated
by reflections in all elements of $\Delta^{(2)}(S)$ and all elements of

(49) $\Delta^{(4)}(S)=\{f\in S|f^{2}=-4$ and $ f\cdot S\equiv$ Omod2 $\}$

of all roots with square $(-4)$ of the lattice $S$ . Both sets $\Delta^{(2)}(S)$ and $\Delta^{(4)}(S)$

are invanant with respect to $W^{(2,4)}(S)$ . It follows that every reflection from
$W^{(2,4)}(S)$ gives a hyperplane $\mathcal{H}_{f}$ where $f\in\Delta^{(2)}(S)\cup\triangle^{(4)}(S)$ . The sub-
group $W^{(2)}(S)\triangleleft W^{(2,4)}(S)$ is normal, and any reflection from $W^{(2)}(S)$ is
reflection in an element of $\Delta^{(2)}(S)$ . Similarly, the subgroup $ W^{(4)}(S)\triangleleft$

$W^{(2,4)}(S)$ , generated by reflections in $\Delta^{(4)}(S)$ , is normal and any reflection
from $W^{(4)}(S)$ is reflection in an element of $\Delta^{(4)}(S)$ .

This implies the following description of a fundamental chamber $\mathcal{M}^{(2)}$

of $W^{(2)}(S)$ . Let $\mathcal{M}^{(2,4)}\subset \mathcal{L}(S)$ be a fundamental chamber of $W^{(2,4)}(S)$ . It
will be extremely important for our further considerations. Let $P^{(2)}(\mathcal{M}^{(2,4)})$

and $P^{(4)}(\mathcal{M}^{(2,4)})$ be elements of $\Delta^{(2)}(S)$ and $\Delta^{(4)}(S)$ respectively directed
outwards and orthogonal to $\mathcal{M}^{(2,4)}$ ($i.$ $e$ . to facets of $\mathcal{M}^{(2,4)}$ ).

Proposition 2.2. Let $W^{(4)}(\mathcal{M}^{(2)})$ be the group genemted by reflections in
all elements of $P^{(4)}(\mathcal{M}^{(2,4)})$ .

Then thefundamental chamber $\mathcal{M}^{(2)}$ of $W^{(2)}(S)$ containing $\mathcal{M}^{(2,4)}$ is
equal to

$\mathcal{M}^{(2)}=W^{(4)}(\mathcal{M}^{(2)})(\mathcal{M}^{(2,4)})$ ,

$P(\mathcal{M}^{(2)})=W^{(4)}(\mathcal{M}^{(2)})(P^{(2)}(\mathcal{M}^{(2,4)}))$ .

Moreover,

$W^{(4)}(\mathcal{M}^{(2)})=\{w\in W^{(4)}(S)|w(\mathcal{M}^{(2)})=\mathcal{M}^{(2)}\}.$

Reflections which are contained in $W^{(4)}(\mathcal{M}^{(2)})$ are exactly the reflections
in elements

$\Delta^{(4)}(\mathcal{M}^{(2)})=$ { $f\in\Delta^{(4)}(S)|\mathcal{H}_{f}$ intersects the interior of $\mathcal{M}^{(2)}$ }.

Proof. This easily follows from the facts that $W^{(2)}(S)\triangleleft W^{(2,4)}(S)$ and
$W^{(4)}(S)\triangleleft W^{(2,4)}(S)$ are normal subgroups, and $\Delta^{(2)}(S)\cap\Delta^{(4)}(S)=\emptyset.$

We leave details to the reader. $\square $

Example 1. $\dot{L}et$ us consider the hyperbolic 2-elementaly lattice $ S=\langle 2\rangle\oplus$

$ 5\langle-2\rangle$ with the invariants $(r, a, \delta)=(6,6,1)$ . Here and in what follows we
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denote by $\langle A\rangle$ the integral lattice given by an integral symmetric matrix $A$

in some its basis. We denote by $\oplus$ the orthogonal sum of lattices.
The Dynkin diagram of $W^{(2,4)}(S)$ (which is equivalent to the Gram ma-

trix of all elements of $P(\mathcal{M}^{(2,4)}))$ is

(see [Vin85]). Here black vertices correspond to elements from
$P^{(4)}(\mathcal{M}^{(2,4)})$ and white vertices correspond to elements from
$P^{(2)}(\mathcal{M}^{(2,4)})$ (see Section 3.1 below about edges). From the diagram, one
can see that $W^{(4)}(\mathcal{M}^{(2)})$ is the Weyl group of the root system $D_{5}$ , the
$\triangle^{(4)}(\mathcal{M}^{(2)})$ is the root system $D_{5}$ , the set $P(\mathcal{M}^{(2)})=P^{(2)}(\mathcal{M}^{(2)})$ is the or-
bit of the Weyl group of $D_{5}$ applied to the unique element of $P^{(2)}(\mathcal{M}^{(2,4)})$

which corresponds to the white vertex. Calculations show that $P(\mathcal{M}^{(2)})$

consists of 16 elements, and it is not easy to draw their Dynkin (or Gram)

diagram, but it is completely defined by the diagram above which has only
6 vertices.

Now let us consider a subset $\triangle_{+}^{(4)}\subset\triangle^{(4)}(S)$ and the subgroup $W_{+}^{(2,4)}$ of
reflections generated by this subset and by the set $\triangle^{(2)}(S)$ . As in our case
(47), we shall assume that the set $\triangle_{+}^{(4)}$ is $W_{+}^{(2,4)}$ -invariant. Then each re-
flection from $W_{+}^{(2,4)}$ is a reflection in a hyperplane $\mathcal{H}_{f},$

$f\in\triangle^{(2)}(S)\cup\triangle_{+}^{(4)}.$

As before, $W^{(2)}(S)\triangleleft W_{+}^{(2,4)}$ is a normal subgroup. We denote by $W_{+}^{(4)}$

the group generated by reflections in $\triangle_{+}^{(4)}$ , it is normal in $W_{+}^{(2,4)}$ as well.

Thus, for a fundamental chamber $\mathcal{M}_{+}^{(2,4)}\subset \mathcal{M}^{(2)}$ of $W_{+}^{(2,4)}$ we can simi-
larly define $P^{(4)}(\mathcal{M}_{+}^{(2,4)}),$ $P^{(2)}(\mathcal{M}_{+}^{(2,4)})$ (which are the sets of all elements

in $\triangle_{+}^{(4)}$ and $\triangle^{(2)}(S)$ respectively which are orthogonal to $\mathcal{M}_{+}^{(2,4)}$ ), the group
$W_{+}^{(4)}(\mathcal{M}^{(2)})$ generated by reflections in $P^{(4)}(\mathcal{M}_{+}^{(2,4)})$ , the set

$\triangle_{+}^{(4)}(\mathcal{M}^{(2)})=W_{+}^{(4)}(\mathcal{M}^{(2)})(P^{(4)}(\mathcal{M}_{+}^{(2,4)}))$

We get similar statements to Proposition 2.2:

(50) $W_{+}^{(4)}(\mathcal{M}^{(2)})=\{w\in W_{+}^{(4)}|w(\mathcal{M}^{(2)})=\mathcal{M}^{(2)}\},$

(51) $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})=$ { $f\in\triangle_{+}^{(4)}|\mathcal{H}_{f}$ intersects the interior of $\mathcal{M}^{(2)}$ },

the group $W_{+}^{(4)}(\mathcal{M}^{(2)})$ is generated by reflections in the $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})$ , and

every reflection from $W_{+}^{(4)}(\mathcal{M}^{(2)})$ is a reflection in a hyperplane $\mathcal{H}_{f},$ $ f\in$

$\triangle_{+}^{(4)}(\mathcal{M}^{(2)})$ .
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Obviously, the fundamental chamber $\mathcal{M}_{+}^{(2,4)}\subset \mathcal{M}^{(2)}$ for $W_{+}^{(2,4)}$ is the

fundamental chamber of the group $W_{+}^{(4)}(\mathcal{M}^{(2)})$ considered as a group act-

ing on $\mathcal{M}^{(2)}.$

Let us show how one can calculate a fundamental chamber $\mathcal{M}_{+}^{(2,4)}$ of
$W_{+}^{(2,4)}$ contained in the fixed fundamental chamber $\mathcal{M}^{(2)}$ of $W^{(2)}(S)$ .

Proposition 2.3. We have:

$P(\mathcal{M}^{(2)})=W_{+}^{(4)}(\mathcal{M}^{(2)})(P^{(2)}(\mathcal{M}_{+}^{(2,4)}))$

and
$P^{(2)}(\mathcal{M}_{+}^{(2,4)})=\{f\in P(\mathcal{M}^{(2)})|f\cdot P^{(4)}(\mathcal{M}_{+}^{(2,4)})\geq 0\}.$

Proof. The first statement is analogous to Proposition 2.2. We denote the
right hand side of the proving second equality as $P^{(2)}$ . Since $ P^{(2)}\subset$

$P(\mathcal{M}^{(2)})$ and $\mathcal{M}^{(2)}$ has acute angles, $f\cdot f’\geq 0$ for any two different el-

ements $f,$ $f’\in P^{(2)}\cup P^{(4)}(\mathcal{M}_{+}^{(2,4)})$ . It follows that $ P(\mathcal{M}_{+}^{(2,4)})\subset P^{(2)}\cup$

$P^{(4)}(\mathcal{M}_{+}^{(2,4)})$ because the fundamental chamber $\mathcal{M}_{+}^{(2,4)}$ must have acute an-
gles. Then

$f\in P\cup P^{(4)}(\mathcal{M}_{+}^{(2,4)})\bigcap_{(2)}\mathcal{H}_{f}^{+}\subset \mathcal{M}_{+}^{(2,4)}$

where the left hand side is not empty. Indeed, it contains the non-empty
subset

$J\in P(\mathcal{M}^{(2)})(\mathcal{M}_{+}^{(2,4)})\bigcap_{\cup P(4)}\mathcal{H}_{f}^{+}=\mathcal{M}^{(2)}\cap(_{f\in P(4)}\bigcap_{(\mathcal{M}_{+}^{(2,4)})}\mathcal{H}_{f}^{+})\supset \mathcal{M}_{+}^{(2,4)}.$

It follows (see Proposition 3.1 in [Vin85]) that

$P(\mathcal{M}_{+}^{(2,4)})=P^{(2)}\cup P^{(4)}(\mathcal{M}_{+}^{(2,4)})$

because for all $f\neq f’\in P^{(2)}\cup P^{(4)}(\mathcal{M}_{+}^{(2,4)})$ we have $f\cdot f’\geq 0.$ $\square $

Propositions 2.2 and 2.3 imply the result which will be very important
in further considerations.

Theorem 2.4. Let $\mathcal{M}^{(2,4)}$ be afundamental chamber of $W^{(2,4)}(S)$ in $\mathcal{L}(S)$ ,

and $W^{(4)}(\mathcal{M}^{(2)})$ the group genemted by reflections in all elements of
$P^{(4)}(\mathcal{M}^{(2,4)})$ , and $\Delta^{(4)}(\mathcal{M}^{(2)})=W^{(4)}(\mathcal{M}^{(2)})(P^{(4)}(\mathcal{M}^{(2,4)}))$ .

Then
(1) Subsets $\Delta_{+}^{(4)}\subset\triangle^{(4)}(S)$ which are invariant for the group $W_{+}^{(2,4)}$

genemted by reflections in all elements of $\triangle^{(2)}(S)\cup\triangle_{+}^{(4)}$ are in one-to-one
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correspondence with subsets $\Delta_{+}^{(4)}(\mathcal{M}^{(2)})\subset\triangle^{(4)}(\mathcal{M}^{(2)})$ which are invari-

ant for the gmup $W_{+}^{(4)}(\mathcal{M}^{(2)})$ genemted by reflections in all elements of
$\triangle_{+}^{(4)}(\mathcal{M}^{(2)})$ . This correspondence is given by

$\triangle_{+}^{(4)}(\mathcal{M}^{(2)})=\triangle_{+}^{(4)}\cap\Delta^{(4)}(\mathcal{M}^{(2)});\Delta_{+}^{(4)}=W^{(2)}(S)(\triangle_{+}^{(4)}(\mathcal{M}^{(2)}))$ .

(2) The fundamental chamber $\mathcal{M}^{(2)}$ of $W^{(2)}(S)$ containing $\mathcal{M}_{+}^{(2,4)}$ is
$\mathcal{M}^{(2)}=W_{+}^{(4)}(\mathcal{M}^{(2)})(\mathcal{M}_{+}^{(2,4)})$ . Moreover,

$P(\mathcal{M}^{(2)})=W_{+}^{(4)}(\mathcal{M}^{(2)})(P^{(2)}(\mathcal{M}_{+}^{(2,4)}))$ .

(3) Under the one-to-one correspondence in (1), anyfundamental cham-

ber $\mathcal{M}_{+}^{(2,4)}\subset \mathcal{M}^{(2)}$ of $W_{+}^{(2,4)}$ can be obtained asfollows: Let $\mathcal{M}_{+}^{(4)}(\mathcal{M}^{(2)})$

be afundamental chamberfor $W_{+}^{(4)}(\mathcal{M}^{(2)}).$ Ihen

$\mathcal{M}_{+}^{(2,4)}=\mathcal{M}^{(2)}\cap \mathcal{M}_{+}^{(4)}(\mathcal{M}^{(2)})$ and $P^{(4)}(\mathcal{M}_{+}^{(2,4)})=P^{(4)}(\mathcal{M}_{+}^{(4)}(\mathcal{M}^{(2)}))$ ,

$P^{(2)}(\mathcal{M}_{+}^{(2,4)})=\{f\in W_{+}^{(4)}(\mathcal{M}^{(2)})(P^{(2)}(\mathcal{M}_{+}^{(2,4)}))|f\cdot P^{(4)}(\mathcal{M}_{+}^{(2,4)})\geq 0\}.$

Proof. Only the statement (1) requires some clarification. Assume that
$\triangle_{+}^{(4)}(\mathcal{M}^{(2)})$

$\subset$ $\triangle^{(4)}(\mathcal{M}^{(2)})$ is invariant with respect to the subgroup
$W_{+}^{(4)}(\mathcal{M}^{(2)})$ generated by reflections in $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})$ . Note that $\mathcal{M}^{(2)}$ is in-

variant with respect to $W_{+}^{(4)}(\mathcal{M}^{(2)})$ . It follows that the fundamental cham-

ber $\mathcal{M}_{+}^{(2,4)}$ for $W_{+}^{(4)}(\mathcal{M}^{(2)})$ acting on $\mathcal{M}^{(2)}$ will be the fundamental chamber

for the group $W_{+}^{(2,4)}$ generated by reflections in all elements of $\triangle^{(2)}(S)$ and
$\triangle_{+}^{(4)}(\mathcal{M}^{(2)})$ . It follows that $\triangle_{+}^{(4)}=W^{(2)}(S)(\triangle_{+}^{(4)}(\mathcal{M}^{(2)}))$ is invariant with

respect to $W_{+}^{(2,4)}$ . It follows that $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})=\triangle_{+}^{(4)}\cap\triangle^{(4)}(\mathcal{M}^{(2)})$ .
The remaining statements are obvious. $\square $

In Chapter 3 we apply this theorem to describe DPN surfaces of elliptic
type.

2.5. The root invariant of a pair $(X, \theta)$

To describe the group $W_{+}^{(2,4)}$ and sets $P(X)_{+III}$ , and $P(X)_{+IIa},$ $P(X)_{+IIb},$

one should add to the main invariants $(r, a, \delta)$ $(equivalently (k, g, \delta)$ ) of
$(X, \theta)$ the so-called root invariants. We describe them below. The root

invariants for DPN surfaces had been introduced and considered in $[Nik84a]$

and [Nik87].

Everywhere below we follow Appendix, Section A. 1 about lattices and
discriminant forms of lattices.
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Let $M$ be a lattice $(i.$ $e$ . a non-degenerate integral symmetric bilinear
fonn). Following $[Nik80b],$ $M(k)$ denotes a lattice obtained from $M$ by
multiplying the form of $M$ by $k\in \mathbb{Q}.$

Let $K(2)$ be the sublattice of $(S_{X})$ -generated by $\Delta_{-}^{(4)}\subset(S_{X})_{-}$ . Since
$\triangle_{-}^{(4)}$

$(S_{X})_{-}\equiv 0mod 2$ , the lattice $K=K(2)(1/2)$ is integral and is

generated by its subset $\Delta_{-}^{(4)}\subset K$ of elements with square $(-2)$ defining

in $K$ a root system, since reflections with respect to elements of $\Delta_{-}^{(4)}$ send
$\Delta_{-}^{(4)}$ to itself. If follows that the lattice $K$ is isomorphic to the orthogonal
sum of root lattices $A_{n},$ $D_{m}$ and $E_{k}$ corresponding to the root systems $A_{n},$

$D_{m},$ $E_{k}$ (or their Dynkin diagrams), and $\triangle_{-}^{(4)}=\triangle^{(2)}(K)$ is the set of all

elements of $K$ with square $(-2)$ . Equivalently, $\triangle_{-}^{(4)}=\triangle^{(4)}(K(2))$ is the
set of all elements with square $(-4)$ of $K(2)$ . Moreover, we have a natural
homomorphism of groups

(52) $\xi$ : $Q=\frac{1}{2}K(2)/K(2)\rightarrow \mathfrak{U}s=S^{*}/S$

such that $\xi(\frac{1}{2}f_{-}+K(2))=\frac{1}{2}f_{+}+S$ , if $f_{\mp}\in\Delta_{\mp}^{(4)}$ and $(f_{-}+f_{+})/2\in S_{X}.$

This defines a homomorphism of finite quadratic forms $\xi$ : $q_{K(2)}|Q\rightarrow-q_{S}$

with values in $\frac{1}{2}\mathbb{Z}/2\mathbb{Z}\subset \mathbb{Q}/2\mathbb{Z}$ . (Here $q_{M}$ : $\mathfrak{U}_{M}=M^{*}/M\rightarrow \mathbb{Q}/2\mathbb{Z}$

denotes the discriminant quadratic form of an even lattice $M.$ ) The homo-
morphism $\xi$ is equivalent to the homomolphism (which we denote by the
same letter $\xi$) of the finite quadratic forms

(53) $\xi:K mod 2\rightarrow-q_{S},$

by the natural isomorphism $\frac{1}{2}K(2)/K(2)\cong K/2K$ , where $q_{K(2)}|Q$ is re-
placed by the finite quadratic form $\frac{1}{2}x^{2}mod 2$ for $x\in K.$

We define the root invariant of the pair $(X, \theta)$ or the corresponding
DPN pair $(Y, C)$ as the equivalence class of the triplet

(54) $R(X, \theta)=(K(2), \Delta_{-}^{(4)}, \xi)\cong(K(2), K(2)^{(4)}, \xi)\cong(K, \triangle^{(2)}(K), \xi)$ ,

up to isomorphisms of lattices $K$ and automorphisms of the lattice $S$ . Clearly,
similarly we can introduce abstract root invariants, without any relation to
K3 surfaces with involutions and DPN pairs; see beginning of Section 2.7
below.

We have the following statement from [Nik80b].

Lemma 2.5. Let $S$ be an even hyperbolic 2-elementa,y lattice.
Then the natuml homomorphism $O(S)\rightarrow O(q_{S})$ is surjective.

Proof. We remind the proof from [Nik80b]. If rk $S\geq 3$ , this follows from
the general theorem 1.14.2 in [Nik80b]. If rk$S=2$ , then $S\cong U=$
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$\langle 01$ $01\rangle,$ $U(2),$ $\langle 2\rangle\oplus\langle-2\rangle$ . If rk $S=1$ , then $ S=\langle 2\rangle$ . For all these

lattices one can check the statement directly. See Appendix, Theorems A.7,

A.9 for more details. $\square $

Lemma 2.6. Let $S$ be an even hyperbolic 2-elementary lattice and rk $ S\geq$

$2$ . Then every $x\in \mathfrak{U}s$ with $q_{S}(x)=n/2mod 2,$ $n\in \mathbb{Z}$, can be represented
as $x=u/2mod$ Swhere $u\in S$ and $u^{2}=2n.$

Proof. If rk $S=2$ , then $S\cong U,$ $U(2),$ $\langle 2\rangle\oplus\langle-2\rangle$ , and the statement
can be checked directly. Assume that the statement is valid for rk $S\leq k$

where $k\geq 2$ . Let rk $S=k+1$ . By Theorem 1.12.2 from [Nik80b] about
existence of an even lattice with a given discriminant quadratic form (see

Appendix, Theorem A. 1), we get that $S=S’\oplus T$ where $S’$ is a hyperbolic
2-elementary lattice of the rank rk $S’\geq 2$ , and $T$ is a negative definite 2-
elementary lattice of the rk $T\geq 1$ . Let $x=y\oplus z,$ $x\in \mathfrak{U}s,$ $y\in \mathfrak{A}\tau,$

and assume $z=u/2mod T$ where $u\in T$ and $u^{2}=2m,$ $m\in \mathbb{Z}$ By
the induction assumption, there exists $v\in S’$ with $y=v/2mod S’$ and
$v^{2}=2n-2m$ since $q_{S’}(y)=q(x)-q(z)=(n-m)/2mod 2.$ $\square $

Lemma 2.7. Let $q:A\rightarrow \mathbb{Q}/2\mathbb{Z}$ be a non-degenemte quadraticform on a

finite $2$-elementary group $A$ and $\phi$ : $H_{1}\cong H_{2}$ be an isomorphism of two
subgmups in A whichpreserves $q|H_{1}$ and $q|H_{2}$ . Assume that the chamcter-
istic element $a_{q}$ of $q$ on $A$ either does not belong to both subgmups $H_{1}$ and
$H_{2}$ or belongs to both of them. In the second case we additionally assume
that $\phi(a_{q})=a_{q}.$

Then $\phi$ can be extended to an automorphism of $q.$

Proof. See Proposition 1.9.1 in [Nik84b] (we repeated the proof in Ap-
pendix, Proposition A. 11). We remind that $a_{q}\in A$ is the characteristic

element of $q$ , if $q(x)\equiv b_{q}(x, a_{q})mod 1$ for any $x\in A$ . Here $b_{q}$ is the

bilinear form of $q$ . This defines the characteristic element $a_{q}$ uniquely. $\square $

Lemmas 2.5–2.7 imply

Proposition 2.8. The root invariant $R(X, \theta)$ of $(X, \theta)$ $(or (Y, C))$ is equiv-
alent to the triplet

$R(X, \theta)=(K(2);H;\alpha, \overline{a})\cong(K;H;\alpha,\overline{a})$ .

Here $ H=Ker\xi$ is an isotropic for $q_{K(2)}$ subgmup in $Q$ (equivalently in
$Kmod 2);\alpha=0,$ $lf\xi(Q)=\xi(Kmod 2)$ contains the characteristic
element $a_{qs}$ of the quadratic form $q_{S}$ , and $\alpha=1$ otherwise; $\iota f\alpha=0$, the

element $\overline{a}=\xi^{-1}(a_{qS})+H\in Q/H$ ; $\iota f\alpha=1$ , the element $\overline{a}$ is not defined
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The root invariant $R(X, \theta)$ is important because it defines

$\Delta_{+}^{(4)}=\{f_{+}\in S|f_{+}^{2}=-4, f_{+}/2 mod S\in$

$\xi(\frac{1}{2}\Delta^{(4)}(K(2)) mod K(2))=\xi(\triangle^{(2)}(K) mod 2K)\},$

and $W_{+}^{(2,4)},$ $\mathcal{M}(X)_{+},$ $P(\mathcal{M}(X)_{+})=P(X)_{+}$ , up to the action of $O(S)$ .
Moreover, for $f_{+}\in P(X)_{+}^{(4)}$ , the root invariant defines the decomposition
$f_{+}=f+\theta^{*}(f),$ $f\in P(X)$ , uniquely up to permutation of $f$ and $\theta^{*}(f)$ .
More precisely, we have the following. Let $f_{-}\in\triangle^{(4)}(K(2))$ and $\xi(f_{-}/2$

$mod K(2))=f_{+}/2mod S$ . Then $f=(f_{+}\pm f_{-})/2,$ $\theta(f)=(f_{+}\mp$

$f_{-})/2$ . Indeed, if $f_{-}’\in\triangle^{(4)}(K(2))$ satisfies the same conditions, then
$(f_{-}+f_{-}’)/2\in K(2)$ . In $K(2)$ , if $f_{-}’\neq\pm f_{-}$ then either $f_{-}\cdot f_{-}’=0$ or
$f_{-}\cdot f_{-}’=\pm 2$ . If $f_{-}\cdot f_{-}’=0$ then $((f_{-}+f_{-}’)/2)^{2}=-2$ , and we get a
contradiction since $(S_{X})_{-}$ does not have elements with the square $(-2)$ . If
$f_{-}\cdot f_{-}’=\pm 2$ then $f_{-}\cdot(f_{-}+f_{-}’)/2=-2\pm 1$ , and we get a contradiction
since $f_{-}(S_{X})_{-}\equiv 0mod 2$ . Thus, $f_{-}’=\pm f_{-}$ , and the pair of elements
$f$ and $\theta^{*}(f)$ is defined uniquely.

Similarly one can define a generalized root invariant

$ R_{gen}(X, \theta)=(K_{gen}(2), \Delta_{-}^{(4)}\cup\triangle_{-}^{(6)}, \xi_{gen})\cong$

$(K_{gen}, \Delta_{-}^{(2)}\cup\triangle_{-}^{(3)}, \xi_{gen})$ ,

where for $f_{-}\in\Delta^{(6)}$ one has

$\xi_{gen}(f_{-}/2 mod K_{gen}(2))=f_{+}/2 mod S$

where $f_{+}\in\Delta_{+t}^{(2)}(S)$ and $(f_{+}+f_{-})/2\in S_{X}$ . Here $K_{gen}(2)\subset(S_{X})_{-}$ is

generated by $\Delta^{\underline{(4})}\cup\Delta_{-}^{(6)}.$

Using Lemmas 2.5–2.7, one can similarly prove that it is equivalent
to the tuple

(55) $ R_{gen}(X, \theta)=(K_{gen}(2), \triangle_{-}^{(4)}\cup\triangle_{-;}^{(6)}H_{gen};\alpha_{gen}, \overline{a}_{gen})\cong$

$(K_{gen}, \triangle_{-}^{(2)}\cup\triangle_{-}^{(3)};H_{gen};\alpha_{gen}, \overline{a}_{gen})$ .

It is defined similarly to the root invariant.
Importance of the generalized root invariant is that it contains the root

invariant $R(X, \theta)$ . Thus, it defines $W_{+}^{(2,4)},$ $\mathcal{M}(X)_{+}$ and also
$P(\mathcal{M}(X)_{+})=P(X)_{+}$ , up to the action of $O(S)$ . But, it also defines

$\triangle_{+t}^{(2)}=\{f_{+}\in S|(f_{+})^{2}=-2, f_{+}/2 mod S\in$

$\xi_{gen}(\frac{1}{2}\triangle_{-}^{(6)} mod K_{gen}(2))=\xi(\triangle_{-}^{(3)} mod 2K_{gen})\},$
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and then it defines

$P(X)_{+IIb}=P^{(2)}(X)_{+t}=\{f_{+}\in P(X)_{+}|f_{+}\in\triangle_{+t}^{(2)}\}.$

Thus, using root invariants, we know how to find $P(X)_{+III}=P^{(4)}(X)_{+},$

$P(X)_{+IIb}=P^{(2)}(X)_{+t}$ , and hence, we know $P(X)_{+I}\cup P(X)_{+IIa}=$

$P^{(2)}(X)_{+}-P^{(2)}(X)_{+t}$ . To distinguish $P(X)_{+I}$ and $P(X)_{+IIa}$ , it is suffi-
cient to know $P(X)_{+I}.$

2.6. Finding the locus $X^{\theta}$

Here we show how one can find $P(X)_{+I}$ . This is based on the following
considerations (similar to [Nik83]):

1) Since $W^{(2)}(S)\triangleleft W_{+}^{(2,4)}$ is a normal subgroup, the fundamental cham-

ber $\mathcal{M}_{+}^{(2,4)}$ is contained in one fundamental chamber $\mathcal{M}^{(2)}$ of $W^{(2)}(S)$ ; we
have $\mathcal{M}_{+}^{(2,4)}\subset \mathcal{M}^{(2)}$ . One can consider replacing $\mathcal{M}_{+}^{(2,4)}$ by $\mathcal{M}^{(2)}$ as a
deformation of a pair $(X, \theta)$ to a general pair $(\tilde{X},\tilde{\theta})$ having $S_{\tilde{X}}=S,$

$\mathcal{M}(\tilde{X})=\mathcal{M}^{(2)}$ and $P(\tilde{X})=P(\mathcal{M}^{(2)})$ . See Section 2.3 on correspond-
ing results about moduli.

The divisor classes of fixed points of the involution do not change under

this deformation, thus $P(X)_{+I}=P(\tilde{X})_{+I}$ . In particular, $P(X)_{+I}$ does not
change when a root invariant changes (with fixed main invariants$ (r, a, \delta)$

equivalent to the lattice $S$).

2) Let $\delta_{1},$ $\delta_{2}$ belong to $P^{(2)}(X)_{+}$ and $\delta_{1}\cdot\delta_{2}=1$ , i. e. the curves $D_{1},$ $D_{2}$

corresponding to them intersect transversally. Then one of $\delta_{1},$ $\delta_{2}$ belongs to
$P(X)_{+I}$ , and another to $P(X)_{+II}=P(X)_{+IIa}\cup P(X)_{+IIb}=P(X)_{+IIa}$

for the general case we consider. See the diagrams below where an element
of $P(X)_{+I}$ is denoted by a double transparent vertex, and an element of
$P(X)_{+II}$ by a single transparent vertex.

Indeed, the intersection point $D_{1}\cap D_{2}$ is a fixed point of $\theta$ , tangent
directions of $D_{1}$ and $D_{2}$ at this point are eigenvectors of $\theta_{*}$ . We know that
they have eigenvalues $+1$ and-l.

3) If the Gram diagram of elements $\delta_{0},$ $\delta_{1},$ $\delta_{2}$ and $\delta_{3}$ from $P^{(2)}(X)_{+}$ has

the form as shown
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then $\delta_{0}\in P(X)_{+I}$ , and $\delta_{1},$ $\delta_{2},$ $\delta_{3}\in P(X)_{+II}=P(X)_{+IIa}$ (for the general
case we consider). Indeed, the rational curve corresponding to $\delta_{0}$ has three
different fixed points of $\theta$ , and hence belongs to $X^{\theta}.$

4) If $\delta\in P(X)_{+III}=P^{(4)}(X)_{+}$ and $\delta_{1}\in P(X)_{+I}$ , then $\delta_{1}\cdot\delta=0.$

This is obvious from the definition of $P(X)_{+III}.$

Considering all possible lattices $S$ , it is not difficult to see that state-

ments 1) -3) are sufficient for finding $P(X)_{+I}$ and the divisor class of the
irreducible component $C_{g}$ of the curve $X^{\theta}$ of fixed points. The statement 4)

simplifies these considerations, if some elements of $P^{(4)}(X)_{+}$ are known.

2.7. Conditions for the existence of root invariants

Assume that the main invariants $(r, a, \delta)$ (equivalently$ (k, g, \delta)$ ) of $(X, \theta)$

are known and fixed. Here we want to give conditions which are necessary
and sufficient for the existence of a pair $(X, \theta)$ with a given root or gen-
eralized root invariant. We consider the root invariant. Similarly, one can
consider the generalized root invariant.

Assume that $(K, \Delta^{(2)}(K), \xi)$ is the root invariant of a pair $(X, \theta)$ .
Then the conditions 1 and 2 below must be satisfied:

Condition 1. The lattice

(56) $K_{H}=[K;x/2$ where $x+2K\in H]$

does not have elements with the square $(-1)$ . Equivalently, the lattice

$K_{H}(2)=[K(2);x/2$ where $x/2+K(2)\in H]$

does not have elements with square $(-2)$ . We remind that $H=Ker\xi.$

Indeed, the lattice $K_{H}(2)\subset(S_{X})_{-}$ , but the lattice $(S_{X})$ -does not have
elements with square $(-2)$ .

Condition 2. rk $S+$ rk $K=r+$ rk $K\leq 20.$

Indeed, $S\oplus K(2)\subset S_{X}$ and rk $S_{X}\leq 20.$

A pair $(X, \theta)$ (or the corresponding DPN pair $(Y, C)$ , or right DPN sur-
face $Y$ ) is called standard, if $K_{H}(2)$ is a primitive sublattice of $(S_{X})_{-},$
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and the primitive sublattice $[S\oplus K(2)]_{pr}$ in $S_{X}$ generated by $S\oplus K(2)$ is
defined by the homomorphism $\xi$ , i. e. it is equal to

$M=[S\oplus K(2);\{a+b|\forall a\in S^{*}, \forall b\in K(2)/2,$

(57)
such that $\xi(b+K(2))=a+S\}].$

Clearly, $M\subset[S\oplus K(2)]_{pr}$ is always a sublattice of finite index.

Let $l(\mathfrak{U})$ be the minimal number of generators of a finite Abelian
group $\mathfrak{A}$ . Let $\mathfrak{U}_{M}=M^{*}/M$ be the discriminant group of a lattice $M.$

Let us consider an abstract root invariant $(K(2), \xi)$ . This means that
$K$ is a negative definite lattice generated by its elements with square $(-2)$ ,

and $K(2)$ is obtained by multiplying the form of $K$ by 2. The map

$\xi:q_{K(2)}|Q=\frac{1}{2}K(2)/K(2)\rightarrow-q_{S}$

is a homomorphism of finite quadratic forms. We assume that for each
$f_{-}\in\triangle^{(4)}(K(2))$ there exists $f_{+}\in\triangle^{(4)}(S)$ such that $\xi(f_{-}/2+K(2))=$

$f_{+}/2+S$ (by Lemma 2.6, this condition is always satisfied). As above, we
denote $H=Ker\xi.$

Proposition 2.9. $A$ standardpair $(X, \theta)$ with a given root invariant $(K, \xi)$

satisfying Conditions 1 and2 does exist, $\iota f$additionally

(58) $r+a+2l(H)<22$

and

(59) $r+$ rk $K+l(\mathfrak{A}_{K_{p}})<22$

for any prime $p>2$ . Here $K_{p}=K\otimes \mathbb{Z}_{p}$, where $\mathbb{Z}_{p}$ is the ring of $p$-adic
integers.

Proof. By Global Torelli Theorem [PS-Sh71] and surjectivity of Torelli
Map [Ku177] for K3 (see Section 2.2), the pair $(X, \theta)$ does exist, if there
exists a primitive embedding of the lattice $M$ described in (57) into an
even unimodular lattice $L_{K3}\cong H^{2}(X, \mathbb{Z})$ of the signature (3, 19) (see

the proof of Proposition 2.10 below). By Corollary 1.12.3 in $[Nik80b]$

(see Appendix, Corollary A.6), such a primitive embedding does exist, if
rk $M+l(\mathfrak{A}_{M_{p}})<22$ for all prime $p\geq 2.$

If $p>2$ , then rk $M+l(\mathfrak{U}_{M_{p}})=r+rkK+l(\mathfrak{U}_{K_{p}})<22$ by (59) (here

we recall that the lattice $S$ is 2-elementaly).

Assume that $p=2$ . Let $\Gamma_{\xi}$ be the graph of $\xi$ . Then $\mathfrak{A}_{M}=(\Gamma_{\xi})^{\perp}/\Gamma_{\xi}$

for the discriminant form $q_{S}\oplus q_{K(2)}$ . Let $Q=H\oplus Q’$ (see (52)) where
$Q’$ is a complementary subgroup, and $\xi’=\xi|Q’$ . Then $\Gamma_{\xi’}\subset\Gamma_{\xi}$ , moreover
$\Gamma_{\xi’}\subset \mathfrak{A}s\oplus \mathfrak{A}_{K(2)}=\mathfrak{A}$ is a $2$-elementaly subgroup, and $\Gamma_{\xi’}\cap 2\mathfrak{U}=\{0\}$

since 2 $\mathfrak{U}=\{0\}\oplus 2\mathfrak{A}_{K(2)}$ and $\xi’$ is injective. Let $\mathfrak{A}^{(2)}$ be the kemel of
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multiplication by 2 in $\mathfrak{U}$ , and $q=(q_{S}\oplus q_{K(2)})|\mathfrak{U}^{(2)}$ . It is easy to see that

the kemel $Kerq=\mathfrak{U}^{(2)}\cap 2\mathfrak{U}$ . Since $\Gamma_{\xi’}\cap 2\mathfrak{U}=\{0\}$ , then $\Gamma_{\xi’}\cap Kerq=$

$\{0\}$ . Let $\mathfrak{U}_{1}^{(2)}$ be a subgroup in $\mathfrak{A}^{(2)}$ which is complementary to $Kerq$ and

contains $\Gamma_{\xi’}$ . Then $q_{S}\oplus q_{K(2)}=q_{1}\oplus q_{2}$ where $q_{1}=q_{S}\oplus q_{K(2)}|\mathfrak{U}_{1}^{(2)}$ and
$q_{2}$ is the olthogonal complement to $q_{1}$ (since $q_{1}$ is non-degenerate). The
subgroup $\Gamma_{\xi’}$ is isotropic for the non-degenerate $2$-elementaly form $q_{1}$ and
has rank rk $K-$ rk $H$ . It follows that

$l((\Gamma_{\xi’})_{q_{1}}^{\perp}/\Gamma_{\xi’})=l(\mathfrak{A}_{1}^{(2)})-2l(\Gamma_{\xi’})$ ,

and then

$l(\mathfrak{A}_{M_{2}})\leq l(\mathfrak{U})-2l(\Gamma_{\xi’})=a+$ rk $K-2(rkK-l(H))$ .

This implies that

rk $M+l(\mathfrak{U}_{M_{2}})\leq r+a+2l(H)<22$

by (58). $\square $

Finally, in general, by Global Torelli Theorem [PS-Sh71] and surjec-
tivity of Torelli Map [Ku177] for K3 (see Section 2.2), we have the fol-
lowing necessary and sufficient conditions of existence of a pair $(X, \theta)$

with a root invariant $(K(2), \xi)$ . It even takes into consideration the more
delicate invariant which is the isomorphism class of embedding of lattices
$M\subset H^{2}(X, \mathbb{Z})\cong L_{K3}.$

Proposition 2.10. There exists a $K3$pair $(X, \theta)$ with a mot invariant $(K(2)$ ,
$\xi)$ and the isomorphism class ofembedding $\phi$ : $M\subset L_{K3}$ of lattices (see
(57)$)$ , ifand only $\iota f$

1) $\phi(S)\subset L_{K3}$ is aprimitive sublattice;
2) the primitive sublattice $\phi(K(2))_{pr}\subset L_{K3}$ genemted by $\phi(K(2))$ in

$L_{K3}$ does not have elements with square $(-2)$ ;

3) we have:

$\phi(\triangle^{(4)}(K(2)))=\{f_{-}\in\phi(K(2))_{pr}|f^{\underline{2}}=-4$ , and $\exists f_{+}\in S$

(60)
such that $f_{+}^{2}=-4$ and $(\phi(f_{+})+f_{-})/2\in L_{K3}\}.$

Here, the right handside always contains the left handside. We remind that
$\Delta^{(4)}(K(2))$ is the set ofall elements in $K(2)$ with square $(-4)$ .

Proof. Using (57), we constmct an even lattice $M$ which contains $ S\oplus$

$K(2)\subset M$ as a sublattice of finite index. It contains $S\subset M$ as a primitive
sublattice, and its primitive sublattice generated by $K(2)$ is $K(2)_{H}$ where
$H=Ker\xi.$

Let $\phi$ : $M\rightarrow L_{K3}$ be an embedding of lattices. If $\phi$ corresponds to a
K3 pair $(X, \theta)$ with the root invariant $(K(2), \xi)$ , then conditions 1), 2) and
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3) must be satisfied. Now we assume that they are valid for the abstract
embedding $\phi$ : $M\rightarrow L_{K3}$ of lattices we consider.

Then $\phi(S)\subset L_{K3}$ is a primitive sublattice. To simplify notation, we
identify $S=\phi(S)\subset L_{K3}$ and $K(2)=\phi(K(2))$ . Since $S$ is 2-elementaly,
there exists an involution $\alpha$ on $L_{K3}with\underline{(}L_{K3})_{+}=S$ and $(L_{K3})_{-}=S^{\perp}.$

Then $\alpha=-id$ on $K(2)$ . We denote by $M$ the primitive sublattice in $L_{K3}$

generated by $\phi(M)=M.$

Assume that $f\in\tilde{M}$ satisfies $f^{2}=-2,$ $f=f_{-}^{*}+f_{+}^{*}$ where $ f_{-}^{*}\in$

$(K(2)_{pr})^{*},$ $f_{+}^{*}\in S^{*}$ and $(f_{+}^{*})^{2}<0$ . Since 2$f_{-}^{*}=f_{-}=f-\alpha(f)\in K(2)_{pr},$

$2f_{+}^{*}=f_{+}=f+\alpha(f)\in S,$ $K(2)$ is negative definite and satisfies 2),

it follows that either $f=(f_{-}+f_{+})/2$ where $f_{-}=0$ and $ f=f_{+}/2\in$

$\triangle(2)(S)$ , or $f=(f_{-}+f_{+})/2$ where $f_{-}\in K(2)^{(4)},$ $f_{+}\in\triangle^{(4)}(S)$ , or
$f=(f_{-}+f_{+})/2$ where $(f_{-})^{2}=-6$ and $f_{+}\in\triangle^{(2)}(S)$ .

It follows that there exists $h_{+}\in S$ with $(h_{+})^{2}>0$ such that $h_{+}\cdot f\neq 0$

for any $f\in\triangle^{(2)}(\overline{M})$ .
By surjectivity of Torelli map for K3 surfaces [Ku177], we can assume

that there exists a K3 surface $X$ with $H^{2}(X, \mathbb{Z})=L_{K3},$ $S_{X}=\tilde{M}$ and a
polarization $h_{+}$ . The involution $\alpha$ preserves periods of $X$ . By Global Torelli
Theorem for K3 [PS-Sh71], $\alpha=\theta^{*}$ corresponds to an automorphism $\theta$ of
X. The automorphism $\theta$ is non-symplectic because $H^{2}(X, \mathbb{Z})_{+}=(S_{X})_{+}=$

$\overline{M}_{+}=S$ is hyperbolic. By 3), the root invariant of $(X, \theta)$ is $(K(2), \xi)$ . See
Sections 2.2 and 2.3 about the used results on K3 surfaces. $\square $

We remark that from the proof above we can even describe the moduli
Mod $(S,K(2),\xi,\phi)$ of K3 surfaces with a non-symplectic involution $\theta$ having
the main invariant $S$ , the root invariant $(K(2), \xi)$ and the embedding $\phi$ :
$M\rightarrow L_{K3}$ of the corresponding lattice $M$ which satisfies conditions of

Proposition 2.10. As in the proof we denote by $\overline{M}\supset M$ the overlattice of
$M$ of finite index such that $\phi(\tilde{M})\subset L_{K3}$ is the primitive sublattice in $L_{K3}$

generated by $\phi(M)$ .
We consider a fundamental chamber $\mathcal{M}(\tilde{M})$ for $W^{(2)}(\tilde{M})$ such that

$\mathcal{M}(\tilde{\underline{M}})\cap \mathcal{L}(S)\neq\emptyset$ . Then $\mathcal{M}(\tilde{M})\cap \mathcal{L}(S)$ defines a $uniq\underline{ue}\mathcal{M}(S)$ containing
$\mathcal{M}(M)\cap \mathcal{L}(S)$ . Up to isomorphisms of the pair $S\subset M$ there exists only

finite number of such $\mathcal{M}(\overline{M})$ . We have

(61) $Mod_{(S,K(2),\xi,\phi)}=\bigcup_{classof\mathcal{M}(\overline{M})}Mod_{(S,K(2),\xi,\phi,\mathcal{M}(M))}$

where

(62) Mod $(S,K(2),\xi,\phi,\mathcal{M}(\overline{M}))\subset Mod_{\phi:\overline{M}\subset L_{K3}}\cap Mod_{\phi:S\subset L_{K3}}’$

consists of K3 surfaces $(X, \overline{M}\subset S_{X})$ with the condition $\tilde{M}$ and $\mathcal{M}(\overline{M})$

on the Picard lattice and the class $\phi$ : $\overline{M}\subset L_{K3}$ of the embedding on
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cohomology; moreover $X$ has a non-symplectic involution $\theta$ with the main
invariant $S$ $(i. e. (X, \theta)\in$ Mod $\phi:S\subset L_{K3}\prime)$ and $(X, \theta)$ has the root invariant

$(K(2), \xi)$ . See (33), (35). $A$ general such a K3 surface $X$ has $S_{X}=\tilde{M},$

and the dimension of moduli is equal to

(63) $\dim Mod_{(S,K(2),\xi,\phi)}=20-$ rk $S-$ rk $K(2)$ .

Taking union over different classes of embeddings $\phi$ : $M\subset L_{K3}$ (their

number is obviously finite), we obtain the moduli space of K3 surfaces $X$

with a non-symplectic involution $\theta$ , and the main invaniant $S$ , and the root
invaniant $(K(2), \xi)$ .

Proposition 2.10 implies the following result important for us.

Corollary 2.11. Let $(K(2), \xi)$ be the mot invariant of a pair $(X, \theta)$ and
$K’(2)\subset K(2)$ a primitive sublattice of $K(2)$ genemted by its elements
$\triangle^{(4)}(K’(2))$ with the square $(-4)$ .

Then the pair $(K’(2), \xi’=\xi|Q’=\frac{1}{2}K’(2)/K’(2))$ is also the root

invariant ofsome $K3$ pair $(X\prime, \theta’)$ .

If the pair $(X, \theta)$ is standard, the pair $(X\prime, \theta’)$ also can be taken stan-
dard.

Corollary 2.11 shows that to describe all possible root invanants ofpairs
$(X, \theta)$ , it is enough to describe all possible root invariants of extremal pairs.
Here a pair $(X\prime, \theta’)$ is called extremal, if its root invariant $R(X’, \theta’)=$

$(K’(2), \xi’)$ cannot be obtained using Corollary 2.11 from the root invariant
$R(X, \theta)=(K(2), \xi)$ of any other pair $(X, \theta)$ with rk $K(2)>$ rk $K’(2)$ .

2.8. Three types of non-symplectic involutions of K3
surfaces

It is natural to divide non-symplectic involutions $(X, \theta)$ of K3 and the cor-
responding DPN surfaces in three types:

Elliptic type: $X^{\theta}\cong C\cong C_{g}+E_{1}+\cdots+E_{k}$ where $C_{g}$ is an irreducible
curve of genus $g\geq 2$ $(equivalently, (C_{g})^{2}>0$), and $E_{1},$

$\ldots,$
$E_{k}$ are non-

singular irreducible rational curves. By Section 2.3, this is equivalent to
$r+a\leq 18$ and $(r, a, \delta)\neq(10,8,0)$ . Then Aut $(X, \theta)$ is finite because
$(C_{g})^{2}>0$ , see [Nik79], [Nik83] and Section 3.1 below.

Parabolic type: Either $X^{\theta}\cong C\cong C_{1}+E_{1}+\cdots+E_{k}$ (using the

same notation), or $X^{\theta}\cong C\cong C_{1}^{(1)}+C_{1}^{(2)}$ is a union of two elliptic $(i.$

$e$ . of genus 1) curves. By Section 2.3, this is equivalent to either $r+a=$
$20$ and $(r, a, \delta)\neq(10,10,0)$ , or $(r, a, \delta)=(10,8,0)$ . Then Aut $(X, \theta)$

is Abelian up to finite index and usually non-finite, see [Nik79], [Nik83].

Here $(C_{1})^{2}=0.$
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Hyperbolic type: Either $X^{\theta}\cong C\cong E_{0}+E_{1}+\cdots+E_{k}$ is a union of
non-singular irreducible rational curves, or $ X^{\theta}=\emptyset$ . By Section 2.3, this is
equivalent to either $r+a=22$ , or $(r, a, \delta)=(10,10,0)$ . Then Aut $(X, \theta)$ is
usually non-Abelian up to finite index, see [Nik79], [Nik83]. Here $C_{0}=E_{0}$

has $C_{0}^{2}=-2$ , if $X^{\theta}\neq\emptyset.$

Thus, pairs $(X, \theta)$ of elliptic type are the simplest, and we describe them
completely in Chapter 3. On the other hand, for classification of $\log$ del
Pezzo surfaces of index $\leq 2$ we need only these pairs.
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