
Introduction

The main purpose of this work is to classify del Pezzo surfaces with log-
terminal singularities of index one or two. By classification, we understand
a description of the intersection graph of all exceptional curves on an appro-
priate (called right) resolution of singularities together with the subgraph of
the curves which are contracted to singular points.

The final results are similar to classical results about classification of
non-singular del Pezzo surfaces and use the usual finite root systems. How-
ever, the intermediate considerations use K3 surfaces and reflection groups
in hyperbolic spaces.

The work is self-contained and can also serve as an introduction to del
Pezzo and K3 surfaces. It is based on our paper [AN88]. See also [AN89]

for a short exposition of these results.
In this work, we consider algebmic varieties over thefield $\mathbb{C}$ ofcomplex

numbers, and do not mention this further.

0.1. Historical remarks and our main principle of
classification oflog del Pezzo surfaces of index $\leq 2$

A complete algebraic surface $Z$ with $\log$ terminal singularities is a del
Pezzo surface if its anticanonical $divisor-K_{Z}$ is ample. $A$ 2-dimensional
$\log$ terminal singularity over $\mathbb{C}$ is a singularity which is analytically equiv-
alent to a quotient singularity $\mathbb{C}^{2}/G$ , where $ G\subset$ $GL(2, \mathbb{C})$ is a finite sub-
group. The index $i$ of $z\in Z$ is the minimal positive integer for which the
divisor $iK_{Z}$ is a Cartier divisor in a neighbourhood of $z.$

The aim of this work is to classify del Pezzo surfaces with $\log$ terminal
singularities (or simply $\log$ del Pezzo surfaces) of index $\leq 2.$

${\rm Log}$ del Pezzo surfaces of index $\leq 2$ include classical cases of non-
singular del Pezzo surfaces and $\log$ del Pezzo surfaces of index 1, i.e.
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Gorenstein $\log$ del Pezzo surfaces. Let us recall some classical results
about these del Pezzo surfaces.

In 1849, Cayley [Ca1849] and Salmon [Sa1849] discovered 27lines on
a non-singular cubic surface $Z$ . Now we know that they are all exceptional
curves on a non-singular del Pezzo surface $Z$ of degree 3, and that they
are crucial for its geometry. Here, the degree $d$ of a del Pezzo surface $Z$ is
$d=(K_{Z})^{2}.$

Classification of nonsingular del Pezzo surfaces is well known, and
they are classical examples of rational surfaces (see, e.g. [Nag60, Man86,
$MT$86] $)$ . $A$ connection between nonsingular del Pezzo surfaces and reflec-
tion groups was noticed a long time ago. Schoutte [Sch10] noted that there
is an incidence-preserving bijection between 27 lines on a smooth cubic and
vertices of a certain polytope in $\mathbb{R}^{6}$ . In modem terminology, this polytope
is the convex hull of an orbit of reflection group $W(E_{6})$ . Coxeter [Cox28]
and Du Val [DV33] noted a similar correspondence between $(-1)$ -curves
on del Pezzo surfaces of degree 2 and 1 and reflection polytopes for groups
$W(E_{7})$ and $W(E_{8})$ .

Du Val was the first to investigate the relationship between reflection
groups and singular surfaces. In $[DV34a]$ he introduced Du Val singular-
ities. Possible singularities of cubic surfaces $Z_{3}\subset \mathbb{P}^{3}$ were classified by
Schl\"afli [Sc1863] and Cayley [Ca1869]. In $[DV34b]$ Du Val found all pos-
sible configurations of Du Val singularities on the “surfaces of del Pezzo
series” of degree 2 and 1, i.e. double covers $Z_{2}\rightarrow \mathbb{P}^{2}$ ramified in a quartic
and double covers $Z_{1}\rightarrow Q$ over a quadratic cone ramified in an intersection
of $Q$ with a cubic. As was proved much later [Dem80, HW81], these are
precisely the Gorenstein $\log$ del Pezzo surfaces of degree 2 and 1.

Du Val observed the following amazing fact: the configurations of sin-
gularities on del Pezzo surfaccs $Z_{d}$ of the degree $d$ with Du Val singu-
larities are in a one-to-one correspondence with subgroups generated by
reflections (i.e. root subsystems) of a reflection group of type $E_{9-d}$ , i.e.
$E_{8},$ $E_{7},$ $E_{6},$ $D_{5},$ $A_{4},$ $A_{2}+A_{1}$ respectively for $d=1,$

$\ldots,$

$6$ , with four excep-
tions: $8A_{1},7A_{1},$ $D_{4}4A_{1}$ for $d=1$ and $7A_{1}$ for $d=2$ . (These days, we
know that the prohibited cases do appear in characteristic 2.) He also noted
that in some cases (for example $4A_{1}$ in $E_{8}$ ) there are two non-conjugate
ways to embed a subgroup and, on the other hand, there are two distinct
deformation types of surfaces.

The proof was by comparing two long lists. The reflection subgroups
were conveniently classified by Coxeter [Cox34] in the same 1934 volume
of Proceedings of Cambridge Philosophical Society. Du Val went through
all possibilities for quartics on $\mathbb{P}^{2}$ and sextic curves on the quadratic cone
$Q$ and computed the singularities of the corresponding double covers $Z_{d},$



0.1. HISTORICAL REMARKS AND MAIN PRINCIPLE OF CLASSIFICATION 3

$d=1,2$ . The modem explanation for the fact that configurations of sin-
gularities correspond to some reflection subgroups is simple: $(-2)$ -curves
on the minimal resolution $Y$ of a Gorenstein del Pezzo $Z$ lie in the lattice
$(K_{Y})^{\perp}$ which is a root lattice of type $E_{9-d}.$

In the $1970s$ , Gorenstein del Pezzo surfaces attracted new attention in
connection with deformations of elliptic singularities, see [Loo77, Pin77,
$BW$79]. The list of possible singularities was rediscovered and reproved
using modem methods, see [HW81, Ura83, BBD84, Fur86].

In addition, Demazure [Dem80], and Hidaka and Watanabe [HW81]

established a fact which Du Val intuitively understood but did not prove,
lacking modem definitions and tools: the minimal resolutions $Y_{d}$ of Goren-
stein $\log$ del Pezzo surfaces $Z_{d}\neq \mathbb{P}^{1}\times \mathbb{P}^{1}$ are precisely the blowups of
$9-d$ points on $\mathbb{P}^{2}$ in “almost general position”, and $Z_{d}$ is obtained from
such blowup by contracting all $(-2)$ -curves.

In addition to clarifying, unifying and providing new results for the in-
dex 1 case, our methods are general enough to obtain similar results in the
much more general case of log del Pezzo surfaces $Z$ of index $\leq 2$ . Thus,
we admit $\log$ terminal singularities of index 1 and index 2 as well. Clas-
sification of the much larger class of $\log$ del Pezzo surfaces of index $\leq 2$

(together with the described above classical index-l case) is the subject of
our work.

By classification, we understand a description ofthe dual graphs ofall
exceptional curves ($i.$

$e$. irreducible with negative self-intersection) on an
appropriate resolution ofsingularities $\sigma$ : $Y\rightarrow Z$, together with the subset

ofcurves contmcted by $\sigma$ . We call $\sigma$ the right resolution. See Section 0.3
below for the precise definition. For Gorenstein, i. e. of index 1 singulari-
ties, $\sigma$ is simply the minimal resolution.

Thus, in the principle of classification we follow the classical discovery
by Cayley [Ca1849] and Salmon [Sa1849] of 27lines on a non-singular
cubic surface which we have mentioned above.

The dual graph of exceptional curves provides complete information
about the surface. Indeed, knowing the dual graph of exceptional curves on
$Y$ , we can describe all the ways to obtain $Y$ and $Z$ by blowing up $Y\rightarrow\overline{Y}$

from the relatively minimal rational surfaces $\overline{Y}=\mathbb{P}^{2}$ or $\mathbb{F}_{n},$ $n=0,2,3\ldots.$

Images of exceptional curves on $Y$ then give a configuration of curves on $\overline{Y}$

related with these blow ups. Vice versa, if one starts with a similar” con-
figuration of curves on $\overline{Y}$ and performs“similar” blowups then the resulting
surface $Y$ is guaranteed to be the right resolution of a $\log$ del Pezzo surface
$Z$ of index $\leq 2$ , by Theorem 3.20.
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In the singular case of index 1, we add to the classical results which
were described above a description of all graphs of exceptional curves on
the minimal resolution of singularities. In the case of Pic $Z=\mathbb{Z}$ this was
done by Bindschadler, Brenton and Dmcker [BBD84].

0.2. Classification of log del Pezzo surfaces of index $\leq 2$

and K3 surfaces

The main method for obtaining our classification of $\log$ del Pezzo surfaces
of index $\leq 2$ is to reduce it to a classification of K3 surfaces with non-
symplectic involution and to K3 surfaces theory. The main points of the
latter are contained in [$Nik80a$, Nik79, Nik83, $Nik84a$, Nik87].

In Chapter 1, we show that on each $\log$ del Pezzo surface $Z$ of index $\leq 2$

the linear system $|-2K_{Z}|$ contains a nonsingular curve, and that there exists
an appropliate (right”) resolution of singularities $\sigma$ : $Y\rightarrow Z$ for which the
linear system $|-2K_{Y}|$ contains a nonsingular divisor $C$ (i.e. $Y$ is a right
DPN surface) such that the component of $C$ that belongs to $\sigma^{*}|-2K_{Z}|$ has
genus $\geq 2$ (i.e. the DPN surface $Y$ is of elliptic type).

In Chapter 2, following [$Nik80a$, Nik79, Nik83, $Nik84a$, Nik87], we
build a general theory of DPN surfaces $Y$ . Here, we use the fact that
the double cover $X$ of $Y$ branched along $C$ is a K3 surface with a non-
symplectic involution $\theta$ . In this way, the classification of DPN surfaces
$Y$ and DPN pairs $(Y, C)$ is equivalent to the classification of K3 surfaces
with non-symplectic involution $(X, \theta)$ . The switch to K3 surfaces is impor-
tant because it is easy to describe exceptional curves on them and there
are powerful tools available: the global Torelli Theorem [PS-Sh71] due
to Piatetsky-Shapiro and Shafarevich, and surjectivity of the period map
[Ku177] due to Vik. Kulikov.

In Chapter 3, we extend this theory to the classification of DPN surfaces
$Y$ of elliptic type, i.e. when one of the components of $C$ has genus $\geq 2$ , by
describing dual diagrams of exceptional curves on $Y$ . See Theorems 3.18,
3.19 and 3.20. In Section 3.6, we give an application of this classification
to a classification of curves $D$ of degree 6 on $\mathbb{P}^{2}$ (and $D\in|-2K_{F_{n}}|$ as
well) with simple singulanities, in the case when one of components of $D$

has geometric genus $\geq 2.$

In obtaining results of Chapters 2 and 3, a big role is played by the
arithmetic of quadratic forms and by reflection groups in hyperbolic spaces
which are very important in the theory of K3 surfaces. From this point of
view, the success of our classification hinges mainly on the fact that we
explicitly describe some hyperbolic quadratic forms and their subgroups
generated by all reflections (2-elementary even hyperbolic lattices of small
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rank, see Theorem 3.1). These computations are also important by them-
selves for the arithmetic of quadratic forms.

In Chapter4, the results of Chapters 1–3 are applied to the classifica-
tion of $\log$ del Pezzo surfaces of index $\leq 2$ . In particular, we show that
there are exactly $ 18\log$ del Pezzo surfaces of index 2 with Picard number
1. For completeness, we also included the list of the isomorphism classes
in the index 1 Picard number 1 case. This list, which for the most difficult
degree 1 case can be deduced from [MP86], is skipped or given with some
inaccuracies in other references.

In Section 4.3, following [BBD84], we give an application of our clas-
sification to describe some rational compactifications of certain affine sur-
faces. In Section 4.4, we give formulae for the dimension ofmoduli spaces
of log del Pezzo surfaces of index $\leq 2.$

In Section 2.2 we review results about K3 surfaces over $\mathbb{C}$ which we
use. In Appendix, for reader’s convenience, we review known results about
lattices, discriminant forms of lattices, non-symplectic involutions on K3
which we use (see Sections A. $I$

– $A$ .3). For instance, in Section A.2 we
review the classification of main invariants $(r, a, \delta)$ (see below) of non-
symplectic involutions on $K3$ and their geometric interpretation, which are
very important in this work. In Section A.4 we give details of calcula-
tions of fundamental chambers of hyperbolic reflection groups which were
skipped in the main part of the work. They are very important by them-
selves. Thus, except for some standard results from Algebraic Geometry
(mainly about algebraic surfaces), and reflection groups and root systems,
our work is more or less self-contained.

0.3. Final classification results for $\log$ del Pezzo surfaces of
index $\leq 2$

Below, we try to give an explicit and as elementary exposition as possible
of our final results on classification of log del Pezzo surfaces of index $\leq 2.$

In spite of importance of K3 surfaces, in the fina] classification results K3
surfaces disappear, and it is possible to formulate all results in tenns of
only del Pezzo surfaces and their appropriate non-singular models, which
are DPN surfaces.

Let $Z$ be a $\log$ del Pezzo surface of index $\leq 2$ . Its singularities of
index 1 are Du Val singularities classified by their minimal resolution of
singularities. They are described by Dynkin diagrams $A_{n},$ $D_{n}$ or $E_{n}$ , with
each vertex having weight-2. Singularities of $Z$ of index 2 are singularities
$K_{n}$ which have minimal resolutions with dual graphs shown below:
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To get the right resolution of singularities $\sigma$ : $Y\rightarrow Z$ , additionally one has
to blow up all points of intersection of components in preimages of singular
points $K_{n}$ . Then the right resolution of a singular point $K_{n}$ is described by
the graph

2n-l vertices

In these graphs every vertex corresponds to an irreducible non-singular ra-
tional curve $F_{i}$ with $F_{i}^{2}$ equal to the weight of the vertex. Two vertices are
connected by an edge if $F_{i}\cdot F_{j}=1$ , and are not connected if $F_{i}\cdot F_{j}=0.$

Thus, the right resolution of singularities $\sigma$ : $Y\rightarrow Z$ of a $\log$ del Pezzo
surface of index $\leq 2$ is obtained by taking the minimal resolutions of the
singular points of index 1 and the right resolutions, as in the above figure,
of the singular points $K_{n}$ of index 2.

Our classification of $logdel$ Pezzo surfaces $Z$ of index $\leq 2$ and the
corresponding $DPN$ surfaces ofelliptic type which are right resolutions of
singularities of$Z(i.$ $e$. thy are appropriate non-singular models ofthe $del$

Pezzo surfaces) is contained in Table 3 (see Section 3.5).

All cases of Table 3 are labelled by a number $1\leq N\leq 50$ . For $N=$
$7,8,9,10,20$ we add some letters and get cases: 7a,b, 8arc, $9a-f,$ $10a-m,$

$20a-d$ . Thus, altogether, Table 3 contains

$50+(2-1)+(3-1)+(6-1)+(13-1)+(4-1)=73$

cases.
The labels $N=1,$ $\ldots,$

$50$ enumerate the so-called main invariants
of $\log$ del Pezzo surfaces $Z$ . They are triplets $(r, a, \delta)$ (equivalently $(k=$

$(r-a)/2,$ $g=(22-r-a)/2,$ $\delta))$ where $r,$ $a,$
$\delta$ are integers: $r\geq 1,$ $a\geq 0,$



0.3. FINAL CLASSIFICATION RESULTS 7

$\delta\in\{0,1\},$ $g\geq 2,$ $k\geq 0$ . Thus, there exist exactly 50 possibilities for the
main invariants $(r, a, \delta)$ $(equivalently, (k, g, \delta)$ ) of log del Pezzo surfaces of
index $\leq 2.$

The main invariants have a very important geometric meaning. Any $\log$

del Pezzo surface $Z$ of index $\leq 2$ and its right resolution of singularities $Y$

are rational. The number
$r=$ rk Pic $Y$

is the Picard number of $Y$ , i. e. Pic $Y=\mathbb{Z}^{r}$ . We prove that $|-2K_{Z}|$

contains a non-singular irreducible curve $C_{g}$ of genus $g\geq 2$ which explains
the geometric meaning of $g$ . This is equivalent to saying that there is a curve

$C=C_{g}+E_{1}+\cdots+E_{k}\in|-2K_{Y}|,$

where $E_{i}$ are all exceptional curves on $Y$ with $(E_{i})^{2}=-4$ . (The inequality
$g\geq 2$ means that $Y$ is of elliptic type). All these curves $E_{i}$ come from the
right resolution of singularities of $Z$ described above. Thus, the invariant $k$

equals the number of exceptional curves on $Y$ with square-4.
All of them are nonsingular and rational. $E$ .g., $k=0$ if and only if $Z$ is

Gorenstein and all of its singularities are Du Val, see Chapter 1.
Let us describe the invariant $\delta\in\{0,1\}$ . The components $C_{g},$ $E_{1},$

$\ldots,$

$E_{k}$ are disjoint. Since $C$ is divisible by 2 in Pic $Y$ , it defines a double cover
$\pi$ : $X\rightarrow Y$ ramified in $C$ . Let $\theta$ be the involution ofthe double cover. Then
the set of fixed points $X^{\theta}=C$ . Here, $X$ is a K3 surface and

(1) $\delta=0\Leftrightarrow X^{\theta}\sim 0$ $mod 2$ in $H_{2}(X, \mathbb{Z})$ $\Leftrightarrow$

there exist signs $(\pm)_{i}$ for which

(2) $\frac{1}{4}\sum_{i}(\pm)_{i}cl(C^{(i)})\in$ Pic $Y,$

where $C^{(i)}$ are all irreducible components $(i. e. C_{g}, E_{1}, \ldots, E_{k})$ of $C.$

As promised, our classification describes all intersection (or dual) graphs
$\Gamma(Y)$ of exceptional curves on $Y$ and also shows exceptional curves which
must be contracted by $\sigma$ : $Y\rightarrow Z$ to get the $\log$ del Pezzo surface $Z$ of
index $\leq 2$ from $Y$ . All of these graphs can be obtained from graphs $\Gamma$ in
the right column of Table 3 of the same main invariants $(r, a, \delta)$ . Let us
describe this in more details.

All exceptional curves $E$ on $Y$ are irreducible, non-singular, and ratio-
nal. They are of three types:

(1) $E^{2}=-4$ , equivalently $E$ is a component of genus $0$ of $ C\in$

$|-2K_{Y}|$ . In the graphs of Table 3 these correspond to double
transparent vertices;

(2) $E^{2}=-2$ . In the graphs of Table 3 these correspond to black
vertices;
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(3) $E^{2}=-1$ (the lst kind). In the graphs of Table 3 these correspond
to simple transparent vertices.

All exceptional curves $E_{i}$ with $(E_{i})^{2}=-4,$ $i=1,$ $\ldots k$ , together with
all exceptional curves $F$ of the lst kind such that: there exist two different
curves $E_{i},$ $E_{j},$ $i\neq j$ , with $(E_{i})^{2}=(E_{j})^{2}=-4$ and $F\cdot E_{i}=F\cdot E_{j}=1,$

define ${\rm Log}\Gamma(Y)\subset\Gamma(Y)$ , the logarithmic part of surface $Y$ . Since
$F\cdot(-2K_{Y})=F\cdot C=2$ , the curves $F$ are characterized by the property
$C_{g}\cdot F=0$ . The logarithmic part ${\rm Log}\Gamma(Y)$ can be easily seen on graphs $\Gamma$ of
Table 3: curves $E_{i},$ $i=1,$

$\ldots,$

$k$ , are shown as double transparent $ve\iota tices,$

the curves $F$ of the first kind of ${\rm Log}\Gamma(Y)$ are shown as simple transparent
vertices connected by two edges with (always two) double transparent ver-
tices. This part of $\Gamma$ is denoted by ${\rm Log}\Gamma$ and is also called the logarithmic
part of graph $\Gamma$ . Thus, we have:

(3) ${\rm Log}(\Gamma(Y))={\rm Log}\Gamma$

$(with the same main invariants (r, a, \delta)$ ). The logarithmic part ${\rm Log}\Gamma(Y)$

gives precisely thepreimage ofsingularpoints of $Z$ ofindex two.
All exceptional curves $E$ on $Y$ with $E^{2}=-2$ define Duv $\Gamma(Y)\subset\Gamma(Y)$

of $\Gamma(Y)$ , the Du Val part of surface $Y$ . Its connected components are
Dynkin graphs $A_{n},$ $D_{n}$ or $E_{n}$ and they correspond to all Du Val singularities
of $Z$ . Thus the $DuVal$part Duv $\Gamma(Y)\subset\Gamma(Y)$ gives precisely thepreimage

of all $DuVal$ ($i.$ $e$. of index one) singular points of $Z$ . For each of the
graphs of Table 3, the Du Val part of graph $\Gamma$ , is defined by all of its black
vertices. We have:

(4) $D=$ Duv $\Gamma(Y)\subset$ Duv $\Gamma$

$(for the same main invariants (r, a, \delta)$ ). Any subgraph $D$ ofDuv $\Gamma$ can be
taken.

Let us describe the remaining part of $\Gamma(Y)$ . Each graph $\Gamma$ of Table 3
defines a lattice $S_{Y}$ in the usual way. It is

$S_{Y}=(\bigoplus_{v\in V(\Gamma)}\mathbb{Z}e_{v})/Ker$

defined by the intersection pairing: $e_{v}^{2}=-1$ , if $v$ is simple transparent,
$e_{v}^{2}=-2$ , if $v$ is black, $e_{v}^{2}=-4$ , if $v$ is double transparent, $e_{v}\cdot e_{v’}=m$

if the vertices $v\neq v’$ are connected by $m$ edges. Here, $\oplus$ means the direct
sum of $\mathbb{Z}$-modules, and $Ker$

” denotes the kemel of this pairing. We denote
$E_{v}=e_{v}$ mod $Ker$ . In all cases except the trivial cases $N=1$ when
$Y=\mathbb{P}^{2},$ $N=2$ when $Y=\mathbb{F}_{0}$ or $\mathbb{F}_{2},$ $N=3$ when $Y=\mathbb{F}_{1}$ , and $N=11$

when $Y=\mathbb{F}_{4}$ , the lattice $S_{Y}$ gives the Picard lattice of $Y.$
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Thus, ${\rm Log}\Gamma(Y)={\rm Log}\Gamma$ and $D=$ Duv $\Gamma(Y)\subset$ Duv $\Gamma$ define divisor
classes $E_{v},$ $ v\in V({\rm Log}\Gamma(Y)\cup$Duv $\Gamma(Y))$ , of the corresponding exceptional
curves on $Y$ . Each exceptional curve $E$ is evidently defined by its divisor
class.

Black vertices $v\in V$ (Duv $\Gamma$ ) define roots $E_{v}\in S_{Y}$ with $E_{v}^{2}=-2$ and
define reflections $s_{E_{v}}$ in these roots which are automorphisms of $S_{Y}$ such
that $s_{E_{v}}(E_{v})=-E_{v}$ and $s_{E_{v}}$ gives identity on the orthogonal complement
$E_{v}^{\perp}$ to $E_{v}$ in $S_{Y}$ . These reflections $s_{E_{v}},$ $v\in V$ (Duv $\Gamma$), generate a finite
Weyl group $W\subset O(S_{Y})$ .

The remaining part

Var $\Gamma(Y)=\Gamma(Y)-({\rm Log}\Gamma(Y)\cup$ Duv $\Gamma(Y))$

(it is called the varying part of surface $Y$ ) is defined by

Var $\Gamma=\Gamma-(Duv\Gamma$ ULog $\Gamma)$

of the graph $\Gamma$ of Table 3. Further, we identify exceptional curves $ v\in$

$V(\Gamma(Y))$ with their divisor classes $E_{v}\in S_{Y}$ . We have the main formula

(5) $V$ (Var $\Gamma(Y)$ ) $=\{E\in W(\{E_{v}|v\in V(Var \Gamma)\})|E\cdot D\geq 0\}\subset S_{Y}$

which describes Var $\Gamma(Y)$ completely. Here $E\cdot D\geq 0$ means $E\cdot E_{i}\geq 0$

for any $E_{i}\in D$ . The intersection pairing on $S_{Y}$ then defines the full graph
$\Gamma(Y)$ of $Y$ . This completes the description of possible graphs $\Gamma(Y)$ of
exceptional curves of log del Pezzo surfaces $Z$ of index $\leq 2.$

Thus, to find all possible graphs $\Gamma(Y)$ of exceptional curves of $\sigma$ : $ Y\rightarrow$

$Z$ , one has to choose one of the graphs $\Gamma$ of Table 3 (this also defines main
invariants $(r, a, \delta)$ of $Y$ and $Z$), then choose a subgraph $D=$ Duv $\Gamma(Y)\subset$

Duv $\Gamma$ . Then $\Gamma(Y)$ consists of $D,$ ${\rm Log}\Gamma(Y)={\rm Log}\Gamma$ and the remaining
part Var $\Gamma(Y)$ defined by the formula (5), the elements in the $W$-orbits of
Var $\Gamma$ that have non-negative intersection with the Du Val part. See Theo-
rems 3.18, 3.19, 3.20 and 4.1. See Section 4.2 about such type of calcula-
tions in the most non-trivial case $N=20.$

We note two important opposite cases.
Extremal case. This is the case when $D=$ Duv $\Gamma(Y)=$ Duv $\Gamma$ . Then

$\Gamma(Y)=\Gamma$ is completely calculated in Table 3. This case is called extremal
and gives $\log$ del Pezzo surfaces $Z$ with Du Val singularities of the highest
rank, respectively rk Pic $Z=r-\# V({\rm Log}\Gamma(Y))-\# V$ (Duv $\Gamma(Y)$ ) is

minimal for the fixed main invariants. In particular, this case delivers all the
cases of minimal $\log$ del Pezzo surfaces of index $\leq 2$ with rk Pic $Z=1.$

See Theorems 3.18, 4.2, 4.3.
No $DuVal$ singularities. This is the case when $D=$ Duv $\Gamma(Y)=\emptyset.$

Equivalently, all singularities of $Z$ have index 2, if they exist. Then $\Gamma(Y)=$
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${\rm Log}\Gamma\cup$ Var $\Gamma(Y)$ where

(6) $V$ (Var $\Gamma(Y)$ ) $=W(\{E_{v}|v\in V($Var $\Gamma)\})$ .

Here, all the multiple cases $7a,b,$ $8$ac, $9a-f,$ $10a-m,$ $20a-d$ give the same
graphs (because they have the same, equal to zero, root invariant, see be-
low), and one can always take the cases $7a,$ $8a,$ $9a,$ $10a,$ $20a$ for the main
invariants. This case is very similar to and includes the classical case ofnon-
singular del Pezzo surfaces corresponding to the cases 1–10. See Theorem
4.4 about this (without Du Val singularities) case. ${\rm Log}$ del Pezzo surfaces
of this case are defined by their main invariants $(r, a, \delta)$ up to deformation.
The Du Val parts Duv $\Gamma$ of graphs $\Gamma$ of Table 3 in this case can be consid-
ered to be analogs of root systems (or Dynkin diagrams) which one usually
associates to non-singular del Pezzo surfaces. Its true meaning is to give the
type of the Weyl group $W$ that describes the valying part Var $(\Gamma(Y))$ from
Var $\Gamma$ by the formula (6). In the cases 7–10, 20, one can take graphs $\Gamma$ of
the cases $7a-10a,$ $20a.$

The Root invariant. It is possible that two different subgraphs $ D\subset$

Duv $\Gamma,$ $ D\subset$ Duv $\Gamma’$ of graphs of Table 3 (with the same main invari-
ants $(r, a, \delta))$ give isomorphic graphs $\Gamma(Y)$ and $\Gamma(Y’)$ for the corresponding
right resolutions, and then they give similar $\log$ del Pezzo surfaces $Z$ and
$Z’$ of index $\leq 2$ , according to our classification. The root invariant

(7) $([D], \xi)$

gives the necessary and sufficient condition for this to happen.
To define the root invariant (7), we first remark that the main invariants

$(r, a, \delta)$ define a unique hyperbolic ( $i.$ $e$ . with one positive square) even 2-
elementary lattice $S$ with these invariants. Here $r=$ rk $S,$ $S^{*}/S\cong(\mathbb{Z}/2)^{a},$

and $\delta=0$ , if and only if $(x^{*})^{2}\in \mathbb{Z}$ for any $x\in S^{*}$ In (7), $[D]$ is the
root lattice generated by $D$ , and $\xi$ : $[D]/2[D]\rightarrow S^{*}/S$ a homomorphism
preserving finite forms $(x^{2})/2mod 2,$ $x\in[D]$ , and $y^{2}mod 2,$ $y\in S^{*}.$

The construction of the root invariant (7) uses the double cover $\pi$ : $ X\rightarrow$

$Y$ by a K3 surface $X$ (see above) with the non-symplectic involution $\theta.$

Then $S=H^{2}(X, \mathbb{Z})^{\theta}$ is the sublattice where $\theta^{*}$ acts as identity. The root
invariant (7) is considered up to automorphisms of $S$ and the root lattice $[D].$

See Sections 2.5 and 3.2 about this construction and a very easy criterion
(the kemel $H$ of $\xi$ is almost equivalent to $\xi$) for two root invariants to be
isomorphic. The root invariant was first introduced and used in $[Nik84a]$

and [Nik87].

In practise, to calculate the root invariant of a $\log$ del Pezzo surface of
index $\leq 2$ , one shouldjust go from the graphs $\Gamma$ ofTable 3 to the equivalent
graphs $\Gamma(P(\mathcal{M}^{(2,4)}))$ or $\Gamma(P(X)_{+})$ of Tables 1 or 2 of exceptional curves
for the K3 pairs $(X, \theta)$ (see Sections 3.2, 3.5).
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Thus, two Du Val subgraphs $ D\subset$ Duv $\Gamma,$ $ D\subset$ Duv $\Gamma’$ of graphs of
Table 3 give isomorphic full graphs $\Gamma(Y)$ and $\Gamma(Y’)$ of their $\log$ del Pezzo
surfaces if and only if their root invariants (7) are isomorphic (see Theorem
3.5). Moreover, we constantly use the root invariant to prove existence
of the corresponding K3 pairs $(X, \theta)$ and $\log$ del Pezzo surfaces $Z$ . The
main invariants $(r, a, \delta)$ and the root invariants (7) are the main tools in our
classification. They are equivalent to the full graphs $\Gamma(Y)$ of exceptional
curves on $Y$ , but they are much more convenient to work with. For non-
singular del Pezzo surfaces and $\log$ del Pezzo surfaces of index $\leq 2$ without
Du Val singularities the root invariant is zero. This is why, in these cases,
we have such a simple classification as above.

See Section 4.2 about enumeration of root invariants (equivalently of
graphs of exceptional curves) in the most non-trivial case $N=20.$
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