
CHAPTER I

Overview

§1. Introduction

This article is based on the three unpublished preprints [104], [105], and [106]
of the author. The main body is taken from [104], while Chapter VI is based upon
[105] and Chapter IV, §4 upon [106]. The way of unifying these preprints into one
article, however, was not done in a simple manner. Some parts are moved around,
although most things were kept mainly along the line of [104]. A new chapter II
is added for the purpose of helping the reader understand this unification better.
The main subjects of this article are:

• Zariski-decomposition problem; • Numerical D-dimension;
• Addition theorem; • Invariance of plurigenera.

§1.a. Zariski-decomposition. The theory of divisors plays an important
role in algebraic geometry. Let X be a normal complete algebraic variety defined
over the complex number field C and let D be a Cartier divisor. The complete
linear system |D|, which is a projective space parametrizing all the effective divi-
sors linearly equivalent to D, defines a rational map Φ|D| : X ···→ |D|∨ into the
dual projective space |D|∨. The D-dimension κ(D) = κ(D,X) is defined as the
maximum of dim Φ|mD|(X) for m > 0 in the case: |lD| 6= ∅ for some l > 0. In the
other case, i.e., |lD| = ∅ for any l > 0, we set κ(D,X) = −∞ by definition. We
have another expression for the D-dimension:

κ(D,X) =

{
−∞, if R(X,D) = C ,

tr.degR(X,D)− 1, otherwise,

in terms of the graded ring

R(X,D) =
⊕

m≥0
H0(X,OX(mD)).

The ring R(X,D) is not always finitely generated as a C-algebra. It is finitely
generated if and only if there exist a birational morphism µ : Y → X from a normal
complete variety Y , a positive integer m, and an effective Cartier divisor F of Y
such that

(1) kF is the fixed divisor |mkµ∗D|fix for any k > 0,
(2) Bs |mµ∗D − F | = ∅.
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2 I. OVERVIEW

Hence, if R(X,D) is finitely generated, then Φ|mD|(X) ' ProjR(X,D) for some
m > 0.

Let N(D) be the set of positive integers m with |mD| 6= ∅ and let m0(D) =
gcd N(D). Then N(D) is a semi-group and mm0(D) ∈ N(D) for m À 0. Let Fm

be the fixed divisor |mD|fix for m ∈ N(D). Then Fm+n ≤ Fm + Fn and the limit

Ns(D) := lim
N(D)3m→∞

1

m
Fm

exists as an R-divisor. We have mNs(D) ≤ Fm for m ∈ N(D). For the R-divisor
Ps(D) := D −Ns(D), we have an isomorphism

H0(X,OX(mD)) ' H0(X,OX( xmPs(D)y ))

for any m > 0, where x y denotes the round-down (the integral part). The decom-
position D = Ps(D) + Ns(D) is called the sectional decomposition. If R(X,D) is
finitely generated, then the positive part Ps(µ

∗D) is a semi-ample Q-Cartier divisor
for a projective birational morphism µ : Y → X from a normal projective variety.
But, in general, Ps(D) is not necessarily Q-Cartier nor semi-ample.

If dimX = 1, then R(X,D) is always finitely generated, but it is not so if
dimX = 2. However, Zariski [151] found a similar decomposition on a non-singular
projective surface X: his decomposition D = P +N satisfies and is determined by
the following numerical properties:

(1) P and N are Q-divisors;
(2) N is effective and the intersection matrix (Γi · Γj)i,j for the prime com-

ponents Γi of N is negative-definite;
(3) P · C ≥ 0 for any irreducible curve C ⊂ X (in other words, P is nef);
(4) P ·N = 0.

If D −∆ is nef for an effective Q-divisor ∆, then N ≤ ∆ by the properties above.
In particular, N ≤ Ns(D) and hence

H0(X,OX(mD)) ' H0(X,OX( xmPy ))

for m > 0. If κ(D,X) = dimX = 2, then Ns(D) = N and Ps(D) = P . The Zariski-
decomposition is calculated by finitely many linear equations. The linear system
|mD| is almost determined by P and N . The construction of Zariski-decomposition
is generalized by Fujita [20] to the case where D is pseudo-effective, in other words,
to the case where κ(mD + A,X) ≥ 0 for m À 0 and for an ample divisor A. The
Zariski-decomposition of the canonical divisor KX is related to the minimal model
Xmin. The positive part P is Q-linearly equivalent to the pullback of KXmin

.
An analogy of Zariski-decomposition is expected in the study of algebraic va-

rieties of dimension greater than two. If D satisfies κ(D,X) = dimX, then D is
called big . It was conjectured that, for a big divisor D on X, there exists a bira-
tional morphism f : Y → X from a normal projective variety such that Ps(f

∗D) is
a nef Q-divisor. A counterexample was given by Cutkosky [8], in which Ps(f

∗D) is
not a Q-divisor but only a nef R-divisor. Thus the conjecture was replaced to the
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one in which we only require Ps(f
∗D) to be a nef R-divisor. This weakened con-

jecture is called the Zariski-decomposition conjecture for a big divisor. Kawamata
[57] showed that if the conjecture for the canonical divisor KX is true, then the
pluricanonical ring R(X,KX) is finitely generated.

A numerical property of a divisor D is a property of the numerical equivalence
class of D. The class is regarded as the real first Chern class c1(D)R. The sectional
decomposition is determined by the Q-linear equivalence class, not by the numerical
equivalence class. Fujita considered the Zariski-decomposition D = P + N in
arbitrary dimension where the sum should consist of a nef Q-divisor P and an
effective Q-divisor N where N is minimal in some sense. The precise definition is
as follows [25]: let D be a pseudo-effective Q-divisor on a non-singular projective
variety X. The decomposition D = P +N is called a Zariski-decomposition in the

sense of Fujita if

(1) P is nef and N is effective,
(2) for any birational morphism f : Y → X and for any effective Q-divisor ∆

on Y with f∗D −∆ being nef, the inequality f∗N ≤ ∆ holds.

The decomposition depends only on the numerical equivalence class and is unique,
if exists. In the paper [25], P , N , and ∆ are required to be Q-divisors. But as
Cutkosky’s example indicates, we can only require these to be R-divisors. Now
we may conjecture the existence of a birational morphism ν : Z → X from a non-
singular projective variety such that ν∗D admits a Zariski-decomposition in Fujita’s
sense with Q-divisors replaced with R-divisors. If D is big, then this is equivalent to
the Zariski-decomposition conjecture for a big divisor mentioned before. Note that
the following even weaker conjecture is still open: a pseudo-effective divisor can be

written as µ∗(P +N) for a birational morphism µ : Y → X, for a nef R-divisor P
and an effective R-divisor N on Y .

Matsuda (cf. [77]) tried to construct a divisor onX which should be ν∗N for the
conjectural birational morphism ν : Z → X above. The divisor should be written
as the limit

limε↓0Ns(D + εA)

for an ample divisor A. The limit depends only on the numerical equivalence class
of D. The author showed that the limit really expresses an R-divisor by proving
that the number of the prime components of the limit is less than the Picard
number of X. This is our starting point (cf. Chapter III). We denote the limit
by Nσ(D) and D − Nσ(D) by Pσ(D). The decomposition D = Pσ(D) + Nσ(D)
is called the σ-decomposition. This argument is valid also for pseudo-effective R-
divisors D. It is natural to pose the following version of Zariski-decomposition
conjecture: for a pseudo-effective R-divisor D on a non-singular projective variety

X, there exists a birational morphism f : Y → X from a non-singular projective

variety such that Pσ(f∗D) is nef. If D is big (the notion of big is defined even for
R-divisors), then this version is equivalent to the previous versions of the Zariski
decomposition conjecture we discussed. For other divisors, this version is stronger
than the previous ones.
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It is usually difficult to calculate the σ-decomposition of a divisor even when
it is explicitly given. The author next introduced another decomposition D =
Pν(D)+Nν(D), called the ν-decomposition, that is determined by a process similar
to Zariski’s original decomposition. This decomposition is calculated step by step
by determining the “minimum” satisfying a system of inequalities (cf. III.3.12). If
Pν(D) is not nef, then we choose a suitable center of blowing-up and calculate the
new ν-decomposition on the blown-up. This method is, however, not so effective for
getting the Zariski-decomposition (assuming its existence). But we can calculate
in some special cases.

A counterexample to the Zariski-decomposition conjecture for a big divisor
was found by the calculation of ν-decomposition for a special divisor on some P2-
bundle over an abelian surface ([103], cf. [104]). This counterexample is related to
Cutkosky’s example. Thus we can not have a Zariski-decomposition in general.

However, the Zariski-decomposition does exist under some special circum-
stances: The Zariski-decomposition of a Q-Cartier divisor of a toric variety is given
by Kawamata [57]. We can treat also the case of R-Cartier divisors (cf. IV.1.17).
Here, the σ-decomposition is calculated by a combinatorial way. A toric bundle
is a fiber bundle of a toric variety whose transition group is the open torus. We
can calculate σ-decompositions etc. by a combinatorial way for some toric bun-
dles. The counterexample above to the Zariski-decomposition conjecture can also
be explained by the method on toric bundles (cf. IV.2.10).

The Zariski-decomposition conjecture for projective bundles over a non-singular
projective curve associated with vector bundles was studied by the method of
ν-decompositions in [101], where a relation between the decomposition and the
Harder–Narasimhan filtration was found. If the length is less than or equal to 3,
then the Zariski-decomposition is constructed, which is explained in the old ver-
sion [104]. The general case is proved in Chapter IV, §3 by the method on toric
bundles.

In order to find some other counterexamples to the Zariski-decomposition con-
jecture, it seems to be interesting to consider the tautological line bundle associated
with some special vector bundles. The normalized tautological divisor is a Q-divisor
whose multiple is the minus of the relative canonical divisor of the associated pro-
jective bundle, and whose degree on a fiber is one (cf. 6.4). In the preprint [106],
the author studied normalized tautological divisors. The content is now written
into Chapter IV, §4. It includes the following results:

(1) We can determine vector bundles over a projective manifold whose nor-
malized tautological divisor is nef (cf. IV.4.1) by using the Kobayashi–
Hitchin correspondence;

(2) We can determine also vector bundles of rank two whose normalized tau-
tological divisor are not nef but pseudo-effective in IV.4.8.

(3) The tautological line bundle of the tangent bundle of a projective K3
surface is shown to be not pseudo-effective (IV.4.15).

However, new counterexamples in this direction are not obtained so far.
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§1.b. Numerical D-dimension. In the study of numerical properties of di-
visors, we may expect a numerical version of D-dimension, which has already been
defined for nef R-divisors (cf. [114, (4.5)], [24, §3], [55]); if D is nef, then the
numerical D-dimension ν(D) is defined as the maximum k ∈ Z≥0 such that the

k-times cup-product c1(D)k ∈ Hk,k(X,R) is not zero (cf. II.6.3).
Viehweg noticed the importance of the behavior of functions

m 7−→ dim H0(X,mD +A),

where D is a Cartier divisor, A is an ample divisor on a non-singular projective
variety X (cf. §3 Problem 6 of [139, Open Problems]). Fujita also considered a
similar object in order to define the L-dimension κ(L,F) of a coherent sheaf F in
[23]. Moreover, Fujita showed that ν(L) = maxF κ(L,F) for nef line bundles L
in [24, (6.6)]. A candidate κσ(D) = κσ(D,X) for the numerical D-dimension is
defined along this line of investigation in Chapter V, §2.b.

Suppose that κ(D) = κ(D,X) = k for a divisor D on a non-singular projective
variety X. Then, for any subvariety Z ⊂ X of dimension less than k, there is an
effective divisor ∆ ∈ |mD| with Z ⊂ Supp∆ for mÀ 0. This is proved by the use
of Iitaka fibration. Conversely this property characterizes the D-dimension κ(D).
By considering a numerical version of the property, the author defines another can-
didate κν(D) for the numerical D-dimension in Chapter V, §2.d. These invariants
κσ(D) and κν(D) enjoy the following properties:

(1) κσ(D) and κν(D) depend only on the numerical equivalence class of D;
(2) D is pseudo-effective ⇐⇒ κσ(D) ≥ 0 ⇐⇒ κν(D) ≥ 0;
(3) If D1 − D2 is pseudo-effective, then κσ(D1) ≥ κσ(D2) and κν(D1) ≥

κν(D2);
(4) If D is nef, then ν(D) = κσ(D) = κν(D);
(5) κσ(h∗D) = κσ(D) and κν(h∗D) = κν(D) hold for a surjective morphism

h : Z → X from a non-singular projective variety;
(6) κ(D) ≤ κσ(D) ≤ κν(D);
(7) (Easy addition) For a fiber space f : X → Y , the inequalities

κσ(D) ≤ κσ(D|Xy
) + dimY and κν(D) ≤ κν(D|Xy

) + dimY

hold for a ‘general’ fiber Xy = f−1(y);
(8) κσ(X) = κσ(KX) and κν(X) = κν(KX) are birational invariants.

For the proof of (2), we use the Kawamata–Viehweg vanishing theorem [51],
[146]. We do not understand the difference between κσ and κν clearly. It is ex-
pected from properties of σ-decomposition that κσ(D) = κσ(Pσ(D)) and κν(D) =
κν(Pσ(D)) hold for a pseudo-effective R-divisor D. But it is still conjectural. The
following three conditions are equivalent for an R-divisor D (cf. V.1.12):

(1) κσ(D) = 0; (2) κν(D) = 0; (3) Pσ(D) is numerically trivial.

In particular, D admits a Zariski-decomposition if κσ(D) = 0. The birational
invariant κσ(X) or κν(X) should be the numerical Kodaira dimension of X. If
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X admits a minimal model Xmin, then these invariants coincide with ν(Xmin) =
ν(KXmin

).

§1.c. Canonical divisor. Some effective results on a non-singular projective
variety X are derived from special properties of the canonical divisor KX . One
example of such is the following, which is a consequence of the Kawamata–Viehweg
vanishing theorem [51], [146]: if L is a divisor such that L −KX is nef and big,

then Hi(X,L) = 0 for i > 0. The vanishing theorem is derived from the Hodge
theory, which is transcendental compared to the theory of linear systems.

Another important example is the (logarithmic) ramification formula. For most
birational invariants, we actually prove that they only depend on the birational
equivalence class and not on the choice of a variety in the equivalence class, by
using the ramification formula.

The Kodaira dimension κ(X) is a birational invariant defined as κ(KX). The
dimension Pm(X) of H0(X,mKX), called the m-genus, is also a birational invariant
for m ∈ N. The behavior of Pm(X) determines κ(X). The linear systems |mKX |
are called the pluricanonical systems and define the Iitaka fibration Φ: X ···→ Y
satisfying κ(Xy) = 0 for a ‘general’ fiber Xy and dimY = κ(X), up to the bira-
tional equivalence. This reduces the study of varieties X with 0 < κ(X) < dimX
to that of X with κ(X) = 0 or κ(X) = dimX. But the reduction step is not
as straightforward as one might wish, since we must take degenerate fibers into
consideration. For example, the Iitaka fibration of a surface of κ = 1 is an elliptic

fibration: a general fiber is an elliptic curve. A surface admitting an elliptic fibra-
tion is called an elliptic surface and the study of elliptic surfaces is one of the most
important part of the classification theory of surfaces. The singular fibers of elliptic
surfaces are classified and analyzed by Kodaira [69], [70]. The analysis leads to
the canonical bundle formula, which expresses the canonical divisor of the surface
by the canonical divisor of the base curve and some data coming from periods and
from singular fibers. Iitaka posed the addition conjecture Cn (cf. [43], [44]):

κ(X) ≥ κ(X/Y ) + κ(Y )

holds for an algebraic fiber space f : X → Y , where n = dimX and κ(X/Y ) stands
for κ(Xy) for a ‘general’ fiber Xy. It is considered as a weak generalization of the
canonical bundle formula above. This conjecture was the central problem of the
birational classification of algebraic varieties in 1970’s.

In 1980’s, the minimal model theory for higher dimensional varieties was born.
The theory of extremal rays by Mori ([85], [86]) was the breakthrough and the
minimal model program posed by Reid [115], Kawamata [54], and Shokurov [131]
gave a new scope to the birational classification of algebraic varieties (cf. [61]).
Here, the canonical divisor KX plays an important role:

(1) The minimal models are allowed to have some mild singularities such
as: terminal singularities, canonical singularities, and their logarithmic
versions. The definitions of such singularities are related to the logarithmic
ramification formula. The canonical divisor KX or its logarithmic version
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KX + ∆ is not necessarily Cartier but Q-Cartier. Moreover, we can treat
the case of R-Cartier divisors in the logarithmic version;

(2) The contraction morphism of an extremal ray is a fiber space f : X → Y
in which −KX is f -ample.

The conjectures on the existence and on the termination of flips for small extremal
contractions are the main obstructions to constructing minimal models. These
are solved affirmatively in dimension 3 by Mori [89] and Shokurov [131]; more-
over their logarithmic versions in dimension 3 are also proved in [74] generalizing
Shokurov’s ideas [132]. Here, the classification of 3-dimensional terminal singular-
ities (cf. [113], [114], [87]) is essential in their proofs.

The Zariski-decomposition conjecture for KX or KX +∆ is still expected, since
it relates to the existence of flips, which says the relative pluricanonical ring is locally
finitely generated. In view of the counterexample to the Zariski-decomposition
conjecture for a big divisor, we must take some information specially related to
KX and not common to all general divisors into consideration. For example, let us
consider:

Conjecture Let D be a pseudo-effective R-divisor on a non-singular projective
variety X such that D −KX is ample. Then D admits a Zariski-decomposition.

The affirmative answer to above implies the existence of flip by [57] and, con-
versely, the affirmative answer follows from the existence and the termination of
flips. We can consider a logarithmic version by replacing KX with KX + ∆. The
following is a local version of the base-point free theorem in [61]:

Conjecture Let D be a pseudo-effective R-divisor on a non-singular projective
variety X and x a point not contained in Supp〈D〉. Suppose that D is nef at x
(cf. III.2.2) and D −KX is ample. Then there is a positive integer m such that
x 6∈ Bs | xmDy |.

It is interesting if these conjectures above are solved by some standard methods
including the vanishing theorems above, the logarithmic ramification formula, some
covering technique, duality theorems, etc.

The following abundance conjecture lies at the core of the minimal model the-
ory: if X is a minimal model with at most terminal singularities, then KX is

semi-ample. Kawamata [55] showed that if KX is nef and abundant, then it is
semi-ample. We can generalize the notion of abundance to R-Cartier divisors that
are not necessarily nef by using the notion of κσ or κν (cf. ChapterV, §2.e). The
abundance conjecture can now be stated in this general formulation as saying KX

is abundant. This formulation is free of the statements regarding the existence
of minimal models. The conjecture is true if dimX ≤ 3 by Miyaoka [83], [84],
and by Kawamata [59]. Furthermore, by the use of Iitaka fibration, it is true if
κ(X) ≥ dimX − 3 (cf. 4.2). The key result for the proof in dimensional 3 is the
following theorem by Miyaoka [83]: κ(X) ≥ 0 for a minimal model X. This is
based on the addition theorem C3, the Riemann–Roch theorem, and the follow-
ing theorem (cf, [81], [74, Chapter 9]) derived from a study of deformations along
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1-foliations in positive characteristics: the cotangent bundle Ω1
X of a non-uniruled

variety X is generically semi-positive. New methods may be required in order to
prove the abundance in higher dimension.

§1.d. Addition theorem. In the study of fiber spaces, the notion of variation
of Hodge structure [32] is important, in which a kind of hyperbolic geometry is
hidden. The direct image sheaf f∗ω

⊗m
X/Y of the m-th power of the relative dualizing

sheaf ωX/Y = ωX ⊗ ω−1
Y is a key object for studying Iitaka’s addition conjecture

Cn. Viehweg [147] proved that f∗ω
⊗m
X/Y is weakly positive generalizing the work

of Fujita [21], [22] and that of Kawamata [50]. The positivity result follows from
the curvature property of variation of Hodge structure [32], [126] or from Kollár’s
torsion-free theorem [71]. Kawamata [56] proved that if a general fiber admits a
minimal model satisfying the abundance, then Viehweg’s conjecture C+

n , which is
a refinement of Cn, is true. In the proof, an infinitesimal Torelli theorem for the
minimal model is used in an essential way. Kollár [72] proved that C+

n is true
if a general fiber is of general type, where the study of the multiplication maps
H0(X,mKX)⊗l → H0(X,mlKX) is essential. It is expected that if a general fiber
satisfies the abundance, then C+

n is true, but it is still open.
The addition theorem for κσ:

κσ(X) ≥ κσ(X/Y ) + κσ(Y )

is obtained in Chapter V, §4. In particular, if X satisfies the abundance, then Cn is
true. That is to say, the conjecture Cn is weaker than the abundance conjecture. In
the proof, the notion of weak positivity is replaced by the notion of ω-sheaf which
we introduce in Chapter V. This comes from Kollár’s torsion-free theorem [71]
whose origin is also found in the Hodge theory. The argument of Viehweg in [147]
fits well with the notion of ω-sheaf and is naturally extended to the case of κσ.
Furthermore, we have some addition theorems for the log-terminal pairs (X,∆);
for example, if X → Y is an algebraic fiber space, (X,∆) is log-terminal, and Y is
of general type, then

κ(KX + ∆) = κ(KXy
+ ∆|Xy

) + dimY

for a ‘general’ fiber Xy (cf. V.4.1). As an application, we show a special abundance
theorem V.4.9: if κσ(KX + ∆) = 0, then κ(KX + ∆) = 0.

§1.e. Invariance of plurigenera. Deformation invariance of plurigenera of
compact complex analytic surfaces was proved by Iitaka [42]. The author [96]
(cf. [98]) proved the invariance of plurigenera of algebraic varieties (under a projec-
tive deformation) assuming the minimal model program, based upon the conjectures
on the existence and the termination of flips over the ambient space, and assuming
the abundance of a general fiber. Siu [130] proved the invariance of plurigenera
under a projective deformation whose general fiber is of general type. Siu’s method
is transcendental but requires essentially vanishing theorems similar to the Kodaira
or Kawamata–Viehweg vanishing. An algebraization and a generalization of Siu’s
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argument was written in the preprint [105], which now appears as Chapter VI with
more generalization. Most statements to prove are related to the surjectivity of the
restriction homomorphisms

H0(V,OV (m(KV +X)))→ H0(X,OX(mKX))

for non-singular varieties V with a non-singular divisor X on it. If m = 1, then the
homomorphism is considered from the viewpoint of Hodge theory. Siu’s idea for
m > 1 can be interpreted as a technical use of the Kawamata–Viehweg vanishing.
By generalizing the idea to the restriction homomorphisms

H0(V,OV (m(KV +X) +A))→ H0(X,OX(mKX +A|X))

for ample divisors A, the author succeeded in showing that the numerical Kodaira
dimension κσ is invariant under a projective deformation (cf. VI.4.1). The same
idea can also be used to prove that small deformations of terminal singularities are
also terminal (VI.5.3). The case of canonical singularities was shown by Kawamata
[60] a few months before [105]. Moreover, combining with some arguments on
κσ, the invariance of plurigenera is proved for a projective deformation in which
κσ(F ) = κ(F ) holds for a general fiber F (cf. VI.4.5).

§1.f. Log-terminal singularities. In the study of open surfaces S = SrD,
it is useful to consider effective Q-divisors with multiplicity at most one supported
on the boundaryD (cf. [138], [80]). In the course of generalizing the minimal model
program posed by Reid–Kawamata–Shokurov to the logarithmic case, Kawamata
introduced the notion of log-terminal for pairs (X,∆) consisting of a normal variety
X and an effective Q-divisor with x∆y = 0. This notion works well with many
properties, including the base-point free theorem, the contraction theorem, the cone
theorem, etc., which are generalized to the log-terminal case. It is also important
to consider the Q-divisors ∆ with components of multiplicity one. We recognize its
importance very well when we use the adjunction formula (KX + Γ)|Γ ∼ KΓ as an
essential tool for the original theory of open varieties. Iitaka called the geometry
of open varieties of dimension n by the name of geometry of varieties of dimension
n + 1/2 in view of the adjunction. If we allow such a component of multiplicity
one, however, then many related properties to the minimal model program fail
to hold in general. For example, a log-canonical singularity fails to be rational.
Kawamata introduced the notion of weak log-terminal for the purpose to overcome
these failures. As is explained in [61], the minimal model program is extended to
the weak log-terminal pairs with some delicate change of conditions.

Shokurov used the adjunction in order to prove log-flip conjectures. He called
the log-terminal above by the name of Kawamata log terminal (klt, for short) and
introduced many other notions related to log terminal (cf. [132], [74]). Among
them, the notion of divisorial log terminal (dlt) is most useful. This coincides with
Kawamata’s notion of weak log-terminal in a strong sense [134].

Most definitions after log-terminal are not analytically local from the view
point of looking at the singularities of pairs. They are not so, because, in their
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definition, the existence of some special birational morphism from a non-singular
variety dominating the original variety is required globally. The notions that are
exceptions to the comments above and thus are analytically local are: terminal,
canonical, and purely log terminal. These are related to ‘birational pairs’ introduced
by Iitaka [45] (cf. Chapter II, §4.d). The author looked for a good definition of log-
terminal allowing components of multiplicity one from the viewpoint of singularities
and introduced the notion of strongly log-canonical singularities. In the preparation
of [104], the author found that (X,∆) is strongly log-canonical if and only if (X,∆)
is log-canonical and (X, 0) has only admissible singularities. Here the notion of
admissible singularities is defined even for pairs (X,∆) in which KX + ∆ need not
to be Q-Cartier.

We shall discuss admissible and strongly log-canonical singularities in Chap-
ter VII. This chapter corresponds to the appendix of [104].

§2. History

The author started the study of σ-decomposition at the beginning of 1987.
The most part of contents in Chapter III, §§1–4 and the prototype discussions
on numerical D-dimensions in Chapter V were obtained in 1987–1988. These were
reported at the Taniguchi symposium in Katata, in August 1988 [100]. The relation
between the Zariski-decomposition of the tautological line bundle associated with a
vector bundle over a curve and the Harder–Narasimhan filtration (cf. Chapter IV,
§3) is added in the preprint [101]. The base-point freeness statements in Chapter V,
§1.a and a criterion VII.1.1 for rationality of a singularity were discovered during
the period 1991–1993. The counterexample IV.2.10 to the existence of Zariski-
decomposition for a big divisor was reported at a symposium at Hokkaido Univ.
in June 1994 [103]. The addition theorem V.4.1 for κσ was obtained in 1994.
All the results obtained before May 1997 are written in the preprint [104]. It
includes the notion of ω-sheaf, the abundance theorem in the case κσ = 0, and
the existence of Zariski-decomposition on projective bundles over a curve, whose
length of Harder–Narasimhan filtration is at most 3. The preprint [105] giving an
algebraic modification and an improvement of Siu’s proof [130] appeared in March
1998. The preprint [106] showing the tautological line bundle of any algebraic K3
surface to be not pseudo-effective appeared in October 1998. The argument on
toric bundles in Chapter IV is new and was obtained in November 2001 during
the preparation of this article. Moreover, in March 2002, addition and abundance
theorems in [104] were generalized to the log-terminal case as in Chapter V, §4.

The article was submitted to MSJ Memoirs, Mathematical Society of Japan at
June 2002. The author received two referee reports: one is at September 2003 and
the other at February 2004. The first report suggests improvement of English writ-
ing in the preface, the first chapter, and in the abstract of each chapter. The second
points out a lot of errors from a mathematical side. On the other hand, the author
found other mathematical errors mainly in Chapters IV, V. The modification was
finished at June 2004.
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§3. Notation

We shall use the notation similar to [61] and [98]. In addition, we use the
following conventions:

(1) The sets of integers, rational numbers, real numbers, and complex num-
bers are denoted by Z, Q, R, and C, respectively. The set N of natural
numbers does not include 0. For K = Z, Q, R, and for a number a ∈ K,
K≥a denotes the set of numbers x ∈ K with x ≥ a.

(2) C? denotes C r {0}.
(3) Duals are indicated by ∨: M∨ := Hom(M,Z) and F∨ := HomOX

(F ,OX)
for an abelian group M and for an OX -module F , respectively.

(4) The expression ‘. . . for pÀ n’ means that ‘there is a number N > n such
that . . . for any p ≥ N .’ The other symbol ¿ is used in the obvious way.

(5) A subset Y of a set X is called proper if Y 6= X.


