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1. Analytic continuation; topological point of view.

ABSTRACT: Thanks to Berkovich $s$ presentation of p-adic analytic geometry, it
is possible to make sense of the familiar monodromy principle in the exotic world
of p-adic manifolds. Its application is however more $linlited$ than in the classical
case, because (1) sheaves of solutions of linear differential equations are usually not
locally constant, and (2) many spaces (for instance, annuli) are simply connected.

1.1. The monodromy principle.

Let $S$ be a topological space, and $\mathcal{F}$ an abelian sheaf on $S$ . For an
open set $U\subseteq S$ and a section $f\in\Gamma(U, \mathcal{F})$ , the support of $f$ is the subset
$Supp(f)=\{u\in U|f_{u}\neq 0\}$ , which is easily seen to be closed in $U$ .

Definition 1.1.1. We say that the sheaf $\mathcal{F}$ satisfies the principle of unique
continuation if for any open set $U\subseteq S$ and any section $f\in\Gamma(U, \mathcal{F})$ the
support $Supp(f)$ is open in $U$ .

Note that the principle of unique continuation is a local property.

Lemma 1.1.2. If $\mathcal{F}$ satisfies the pWinciple of unique continuation, then any
two sections $f,$ $g\in\Gamma(U, \mathcal{F})$ on a connected open subset $U\subseteq S$ coincide if
(and only if) their germs $f_{s},$ $g_{s}$ at some point $s\in U$ coincide. The converse
also holds if $S$ is locally connected.

PROOF. The first assertion is clear. For the converse, let $f\in\Gamma(U, \mathcal{F})$ and
assume that for any $u\in U$ , any connected open neighborhood $V$ of $u$ (which
exists since $S$ is locally connected), and any $s\in V,$ $f_{s}=0$ implies $f|_{V}=0$ .
We choose $u$ to be a point adherent to the complement of $Supp(f)$ , so that
$ V\cap(U\backslash Supp(f))\neq\emptyset$ and we can pick $s$ in that set. We conclude that
$f|_{V}=0$ . Hence $u\not\in Supp(f)$ . This shows that $Supp(f)$ is open. $\square $

Lemma 1.1.3. Let $p$ : $F\rightarrow S$ be the local homeomorphism canonically
attached to $\mathcal{F}:\mathcal{F}(U)$ is the set of (continuous) sections of $p$ over U. If
$F$ is separated ($i.e$ . Hausdorff), then $\mathcal{F}$ satisfies the principle of unique
continuation. The converse also holds if $S$ is separated.

PROOF. If $F$ is separated, then for any two sections $f,$ $g$ of $p$ over an open
subset $U\subset S$ , the set of $s\in U$ such that $f(s)=g(s)$ is closed. Applying
this to the zero-section $g=0$ , we see that the support of $f$ is open.

Conversely, let $x,$ $y$ be two points of $F$ . If $p(x)\neq p(y)$ , there are disjoint
open neighborhoods $V_{x},$ $V_{y}$ of $p(x)$ and $p(y)$ respectively in the separated
space $S$ ; then $p^{-1}V_{x}$ and $p^{-1}V_{y}$ are disjoint open neighborhoods of $x$ and $y$

respectively. If $p(x)=p(y)$ , there are open neighborhoods $U_{x},$ $U_{y}$ of $x$ and
$y$ respectively, an open subset $V\subset S$ , and sections $f,$ $g$ of $p$ over $V$ , such
that $f(V)=U_{x},$ $g(V)=U_{y}$ . By the principle of unique continuation, $f\neq g$

defines an open subset $W\subset V$ containing $p(x)=p(y)$ ; then $f(W)$ and $9(W)$

are disjoint open neighborhoods of $x$ and $y$ respectively. $\square $

Definition 1.1.4. We say that the sheaf $\mathcal{F}$ satisfies the monodromy prin-
ciple if it has the following property:
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let $\Gamma$ : $[a, b]\times[0,1]\rightarrow S$ be any continuous map with $\Gamma(\{a\}\times[0,1])=$

$\{x_{a}\},$ $\Gamma(\{b\}\times[0,1])=\{x_{b}\}$ . Let $f_{x_{a}}$ be an element of the stalk $\mathcal{F}_{x_{a}}$ . Assume
that for any $t\in[0,1],$ $f.$. extends to a global section $f^{\Gamma_{t}}$ of $\Gamma_{t}^{*}\mathcal{F}$ on $[a, b]$ .
Then this extension is unique and $f^{\Gamma_{t}}(b)\in \mathcal{F}_{x_{b}}$ is independent of $t$ .

In this situation, the section $f^{\Gamma_{t}}$ of $\Gamma_{t}^{*}\mathcal{F}$ is called the continuation of $f_{x_{a}}$

along the path $\Gamma_{t}$ , and $f^{\Gamma_{t}}(b)\in \mathcal{F}_{x_{b}}$ its va$Jue$ at $x_{b}$ .

Proposition 1.1.5. If $\mathcal{F}$ satisfies the principle of unique continuation, then
it satisfies the principle of monodromy. The converse also holds if $S$ is locally
arcwise connected.

PROOF. Assume that $\mathcal{F}$ satisfies the principle of unique continuation. This
guarantees the uniqueness of the continuation $f^{\Gamma_{t}}$ of $f_{x_{a}}$ along the path $\Gamma_{t}$

for any $t$ . Moreover, by a special case of the proper base change theorem
(applied to the first projection $[a,$ $b]\times[0,1]\rightarrow[a,$ $b]$ , cf. [Iv86, IV, 1.4]) $f^{\Gamma_{t}}$

extends to a section of $\Gamma^{*}\mathcal{F}$ on a suitable subset of the form $[a, b]\times(t-\epsilon, t+\epsilon)$ .
By unicity, these sections glue together to a global section of $\Gamma^{*}\mathcal{F}$ . The
restriction of this sheaf to $\{b\}\times[0,1]$ is the constant sheaf with stalk $\mathcal{F}_{x_{b}}$ .
Therefore the value $f^{\Gamma_{t}}(b)\in \mathcal{F}_{x_{b}}$ is independent of $t$ .

Conversely, let $U$ be an arcwise connected open subset of $S$ , let $x_{a},$ $x_{b}$

be two points of $U$ , and let $f$ be a section of $\mathcal{F}$ over $U$ . Let $\gamma$ : $[a, b]\rightarrow S$

be any path from $x_{a}$ to $x_{b}$ . It follows from the unicity of continuation of
$f_{x_{a}}$ along $\gamma$ (requested in the monodromy principle) that if $f_{x_{a}}$ is $0$ , so is
$f_{x_{b}}$ . $\square $

Example 1.1.6. (1) Any locally constant abelian sheaf $\mathcal{F}$ on a topological
space $S$ satisfies the principle of unique continuation, hence the principle of
monodromy.

In fact, for any $\Gamma$ : $[a, b]\times[0,1]\rightarrow S$ as in Lemma 1.1.3, the inverse
image $\Gamma^{*}\mathcal{F}$ is locally constant, hence constant and canonically isomorphic
to the constant sheaf attached to $\mathcal{F}_{x_{a}}$ . Therefore the extension $f^{\gamma}$ of any
$f_{x_{a}}\in \mathcal{F}_{x_{a}}$ along any path $\gamma$ exists, and the value at the other extremity
$x_{b}=\gamma(b)$ depends only on the homotopy class of $\gamma$ .

(2) When $S$ is a complex manifold, the structure sheaf $\mathcal{O}_{S}$ satisfies the
principle of unique continuation, hence the principle of monodromy.

1.1.7. Let $S$ be a topological space, connected and locally arcwise (or sim-
ply) connected, and $\mathcal{F}$ a locally constant abelian sheaf on $S$ . We fix a point
$s\in S$ , and denote by $\pi_{1}(S, s)$ the fundamental group based at $s^{(1)}$ To any
loop $\gamma:[0,1]\rightarrow S$ based at $s$ , let us associate the so-called monodromy along
$\gamma$ , defined by the composite

$\mathcal{F}_{s}\rightarrow^{\sim}(\gamma^{*}\mathcal{F})_{0}\rightarrow^{\sim}\Gamma([0,1], \gamma^{*}\mathcal{F})\rightarrow^{\sim}(\gamma^{*}\mathcal{F})_{1}\rightarrow^{\sim}\mathcal{F}_{S}$ .

(1)
$to$ remove any ambiguity, let us say that we adopt Deligne’s convention: the com-

position in $\pi_{1}(S, s)$ is induced by the juxtaposition of loops in the reverse order. As such,
$\pi_{1}(S, s)$ acts on the right on the pointed universal covering.
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By 1.1.6 (1), the monodromy $\mathcal{F}_{s}\rightarrow\sim \mathcal{F}_{s}$ depends only on the class of $\gamma$ in
$\pi_{1}(S, s)$ , hence gives rise to a left $\mathbb{Z}[\pi_{1}(S, s)]$ -module structure on $\mathcal{F}_{s}$ . This
construction yields an equivalence of the categories

{locally constant sheaves on $S$ } $\rightarrow^{\sim}$ {left $\mathbb{Z}[\pi_{1}$ ( $S$ , s)]-modules} :

giving a locally constant sheaf amounts to giving its value at $s$ together with
the monodromy action.

1.2. Rigid geometry and the problem of unique continuation.

1.2.1. For $p$ a prime number, let $\mathbb{Q}_{p}$ denote as usual the completion of $\mathbb{Q}$

for the p-adic absolute value $||_{p}$ : $|p^{n}\frac{a}{b}|_{p}=p^{-n}$ if the rational integers $a,$
$b$

are prime to $p$ . This ultrametric absolute value extends in a unique way to
each finite extension of $\mathbb{Q}_{p}$ . These finite extensions are locally compact and
totally disconnected. They are all complete, but ((

$the’$ algebraic closure $\overline{\mathbb{Q}}_{p}$

of $\mathbb{Q}_{p}$ itself is not complete. Its completion, denoted by $\mathbb{C}_{p}$ , turns out to be
algebraically closed, and plays the role of $\mathbb{C}$ in p-adic analysis.
In the sequel, $D(a, r^{+})$ (resp. $D(a,$ $r^{-})$ ) stands for the disk –archimedean
or not –of radius $r$ centered at $a$ with (resp. without) circumference.

It might be surprising at first that geometries can be built upon p-adic
numbers, whose “fractal” nature makes them hardly amenable to intuition
as a continuum. Nevertheless, Bourbaki’s presentation of analytic geometry
[Bou83] treats the real, complex and p-adic cases on equal footing. This
approach is based on a local definition of analytic functions as sums of
convergent power series. Its major drawback is that these analytic functions
fail to satisfy the principle of unique continuation, essentially because two
ultrametric disks are either concentric or disjoint (like drops of mercury)

FIGURE 1

1.2.2. M. Krasner had the idea to remedy this by using a definition of an-
alytic functions \‘a la Runge. He properly founded ultrametric analysis by
introducing his analytic elements defined as uniform limits of rational func-
tions, a global notion which overcomes, to some extent, problems stemming
from the disconnectedness of the p-adics.

The next step was taken by J. Tate. In order to deal with more general
spaces than just subsets of the line, he introduced and developed the so-
called rigid analytic geometry (as opposed to Bourbaki’s “wobbly” analytic
geometry), based on affinoid algebras (topological K-algebras isomorphic to
quotients of rings of restricted formal power series, $i.e$ . whose coefficients
tends to $0$ ) and a suitable Grothendieck topology [Ta71].
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In a connected rigid analytic variety $S$ , one has the following avatar of
analytic continuation [Be96, 0.1.13]: assume that there is no admissible
covering formed by two disjoint non-empty open subsets, and let $f$ be an
analytic function on $S$ . If there is a connected open subset $U$ over which $f$

vanishes, then $f=0$ .

1.2.3. The first achievement of rigid geometry was Tate’s representation
of an elliptic curve with (bad reduction at $p$

’ as a rigid analytic quotient
$\mathbb{C}_{p}^{\times}/q^{\mathbb{Z}}$ of the multiplicative group by the discrete group generated by $q$ .
Here $q$ is given by the usual series $\frac{1}{j}+\ldots$ in the j-invariant of the elliptic
curve $(|j|>1)$ , interpreted p-adically. The quotient is obtained by gluing
two affinoid annuli of width $|q|^{-1/2}$ along their boundary; the inverse image
in $\mathbb{C}_{p}^{\times}$ of each of these annuli consists of countably many disjoint copies of
it. This is analogous to Jacobi’s partial uniformization $\mathbb{C}^{\times}/q^{\mathbb{Z}}$ of a complex
elliptic curve.
1.2.4. This result was extended by D. Mumford to curves of higher genus
$[Mu72b]$ . Here, the partial uniformization which serves as a complex model
is the Schottky uniformization of complex curves of genus $g>1$ , which we
briefly recall (cf. [Heh75]). Let $D$ be a connected open subset of $\mathbb{P}^{1}(\mathbb{C})$

whose boundary consists of $2g$ disjoint circles $C_{1}$ , C\’i, . . . , $C_{g},$ $C_{g}^{\prime}$ . One as-
sumes the existence, for any $i=1\ldots,$ $g$ , of an element $\gamma_{i}\in PGL_{2}(\mathbb{C})$ ,
with two distinct fixed points, which sends $C_{i}$ to $C_{i}^{\prime}$ and $D$ outside itself.
Then the subgroup $\Gamma$ generated by the $\gamma_{i}’ s$ is discrete and freely generated
by them, the complement $\Omega\subset \mathbb{P}^{1}(\mathbb{C})$ of the topological closure of the set
of fixed points of $\Gamma$ is an open dense subset $(=\bigcup_{\gamma\in\Gamma}\gamma(D))$ , and $\Omega/\Gamma$ is a
projective smooth complex curve of genus $g$ .

When $\mathbb{C}$ is replaced by $\mathbb{C}_{p}$ , the same construction applies. The rigid an-
alytic quotient $\Omega/\Gamma$ exists and is called a Mumford curve. Among projective
smooth curves of genus $g$ over $\mathbb{C}_{p}$ , Mumford curves are characterized by the
existence of a reduction over the residue field $\overline{F}_{p}$ such that every irreducible
component is isomorphic to $\mathbb{P}^{1}$ and intersect the others at double points, cf.
$[GvdP80]$ .

Let us mention that T. Ichikawa has proposed a unified theory of the
archimedean and non-archimedean Schottky-Mumford uniformizations, cf.
[Ic97].

1.3. Berkovich geometry and the principle of monodromy

1.3.1. Rigid analytic spaces are endowed with a Grothendieck generalized
topology, and their structure sheaf is a sheaf with respect to this topology.
Hence it cannot be said to satisfy the principle of unique continuation in
the strict sense of Definition 1.1.1. Moreover, there is no non-trivial path in
such spaces. Therefore, rigid geometry is not a suitable setting for discussing
p-adic analytic continuation in an intuitive way.

In contrast, Berkovich’s viewpoint on p-adic geometry does not suffer
from these drawbacks: Berkovich’s analytic spaces are genuine locally ringed
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topological spaces, which are even locally arcwise connected. We refer to
[Ber98] for a compact technical presentation.

1.3.2. The buildings blocks are the same: affinoid algebras A (called strictly
affinoid algebras by Berkovich), $i.e$ . topological K-algebras isomorphic to
quotients of rings of restricted power series. However, instead of attaching
to A its maximal spectrum Spm(A) as in rigid geometry, Berkovich analytic
geometry deals with the affinoid space $M(A)$ of all bounded multiplicative
seminorms on A.

This “spectrum” contains “more points” than the maximal spectrum
Spm(A), namely something like “generic points”, which (complete’ Spm(A).
There is a natural inclusion Spm(A) $\subseteq M(A)$ which identifies Spm(A) with
the subspace of all seminorms $|\cdot|$ with $A/Ker$ . $|=\mathbb{C}_{p}$ . This “completion”,
in fact, simplifies the topology; e.g. Berkovich analytic spaces are locally
arcwise connected.

1.3.3. Berkovich’s affinoids. Let us be a little more precise about the
definition of affinoid spaces in Berkovich geometry. Let A be an affinoid
algebra over a complete subfield $K$ of $\mathbb{C}_{p}$ .

(i) A point of $M(A)$ is a bounded multiplicative seminorm on A.
(ii) The topology of $M(A)$ is the weakest one so that the mapping $M(A)\ni$

$\chi\mapsto\chi(f)\in \mathbb{R}\geq 0$ is continuous for any $f\in A$ .
(iii) The sheaf of rings $\mathcal{O}_{M(A)}$ is defined by $\Gamma(U, \mathcal{O}_{M(A)})=\lim_{\leftarrow}A_{V}$ , where

$V$ runs over finite unions $\cup V_{i}$ of affinoid domains contained in $U$ ,
and $A_{V}=Ker(\prod_{i}A_{V_{l}}=\prod_{ig}A_{V_{l}\cap V_{J}}),$ $A_{V_{l}}$ being the affinoid algebra
attached to the affinoid domain $V_{i}$ .

The value of a “function” $f\in A$ at a point $\chi\in M(A)$ is its image in the
field of fractions of $A/Ker\chi$ . This field inherits the absolute value induced
by the seminorm $\chi$ , and its completion is denoted by $\mathcal{H}(\chi)$ .

Example 1.3.4. Let $K\{t\}$ denote the ring of restricted power series in one
variable. Let us assume, for simplicity, that $K$ is algebraically closed. In
rigid geometry, the maximal spectrum $Spm(K\{t\})$ is just the closed disk
$D(0,1^{+})$ in $K$ of radius 1 in the usual sense. In $M(K\{t\})$ , the following four
kinds of points occur:

(1) classical points ( $i.e$ . those coming from $Spm(K\{t\})$ ) $:x\in D(0,1^{+})$ ,
$\chi_{x}(f)=|f(x)|_{K}$ for $f\in K\{t\}$ ,

(2) generic points of disks: $\chi=\eta_{x,r}$ for $0<r\leq 1$ with $r\in|K^{\times}|$ ,
$\chi(f)=|f|_{D(x,r^{+})}$ (the sup-norm),

(3) the same, for $r\not\in|K^{\times}|$ ,
(4) generic points of infinite decreasing families $\{D_{\alpha}\}$ of closed disks with

radius $\leq 1:\chi(f)=\inf|f|_{D_{\alpha}}$ .

Therefore, two arbitrary distinct points in $M(K\{t\})$ can be connected by
a unique path. For example, two points of type (1), $x$ and $y$ , are connected
by a path consisting of points of type (2) and (3) associated to the disks
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$\eta_{x,|x-y|}$

FIGURE 2. Generic points and paths on a Berkovich space.

$D(x, r^{+})$ and $D(y, r^{+})$ for $0<r\leq|x-y|$ . The complement of a point of
type (1) or (4) is connected. The affine line $A^{1}$ is the union of the affinoid
spaces associated to the algebras of power series convergent in $D(0, r^{+})$ , and
the projective line $\mathbb{P}^{1}$ is the Alexandroff compactification of $A^{1}$ .

Remark 1.3.5. Adding “generic points” to rigid spaces to come up with
Berkovich spaces simplifies the topology in contrast to what happens in
algebraic geometry, when generic points are added to varieties to produce
schemes. Actually Berkovich’s “generic points” are closed, unlike Grothendieck’s
ones.

1.3.6. The construction of (strictly) analytic K-spaces by gluing affinoid
spaces together is a little delicate (one is not gluing open subspaces); we
refer to [Ber93]. These spaces are locally compact, locally countable at
infinity, and locally arcwise connected.

There is a fully faithful functor between Berkovich’s Hausdorff (strictly)
analytic K-spaces and rigid analytic varieties: at the level of underlying sets,
this functor sends a space $S$ to the subset of “classical points”, $i.e$ . points $s$

for which $[\mathcal{H}(s) : K]<\infty$ .
This functor establishes an equivalence of categories between the category

of pamcompact (strictly) analytic K-spaces and quasi-separated rigid spaces
over $K$ having an admissible affinoid covering of finite type.

This equivalence respects the notion of dimension (topological dimension
in the case of Berkovich analytic spaces), as well as the standard properties
of local rings such as: reduced, normal, smooth..., and the properties: finite,
etale... of morphisms. Also, a paracompact analytic space is connected (in
the usual sense) if and only if the corresponding rigid space does not admit
an admissible covering by two disjoint non-empty open subsets.

Furthermore, there is a canonical functor (analytification’

$\left\{\begin{array}{ll}separated & schemes\\locallyof & fi nitetype\\over & K\end{array}\right\}\rightarrow\left\{\begin{array}{l}paracompact(strictly)\\analyticK- spaces\end{array}\right\}$

and a canonical functor “generic fiber”

$\left\{\begin{array}{llll}separated & formal & schemes & locally\\fi nitely & presented & over & \mathcal{O}_{K}\end{array}\right\}\rightarrow\left\{\begin{array}{l}paracompact(strictly)\\analyticK- spaces\end{array}\right\}$ .

1.3.7. p-adic manifolds. We shall be mainly concerned with paracompact
(strictly) K-analytic spaces $S$ which satisfy the following assumption:
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any $s\in S$ has a neighborhood $U(s)$ which is isomorphic to an
affinoid subdomain of some space $V_{s}$ which admits locally an
\’etale morphism to the affine space $A^{\dim S}$ .

For convenience, we shall call such a space $S$ a K-manifold, and simply a
p-adic manifold if $K=\mathbb{C}_{p}$ .
It is an important result of V. Berkovich [Ber99] that p-adic manifolds are
locally contmctible. Therefore they have universal coverings.

Proposition 1.3.8. The structure sheaf of any p-adic manifold $S$ satis-
fies the pr’inciple of unique continuation, and (equivalently) the pr’inciple of
monodromy.

PROOF. Since the principle of unique continuation is local, we may replace
$S$ by the neighborhood $U(s)$ of any point $s$ given in advance. Thus we may
assume that $S$ itself is affinoid: $S=M(A)$ , and connected, and we have to
show that the homomorphism $\iota_{s}$ : $A\rightarrow A_{s}\simeq\lim_{\rightarrow}A_{V}$ is injective (V runs

$s\in V$

over the affinoid neighborhoods of $s$ ). This follows from the fact that the
homomorphism of completion at $s$ : $A\rightarrow\hat{A}_{s}=\lim_{n}A/\mathcal{I}_{s}^{n}\leftarrow$ is injective and

factors through $\iota_{s}$ . $\square $

In the case of curves ( $i.e$ . p-adic manifolds of dimension 1), analytic
continuation is particularly intuitive, because there is a basis of open subsets
$\mathcal{U}$ with finite boundary such that two arbitrary points in $\mathcal{U}$ are connected
by a unique geometric path lying in $\mathcal{U}$ .

1.4. Topological coverings and \’etale coverings.

1.4.1. Complex manifolds are locally contractible, and have universal cov-
erings. There is no need to distinguish between topological coverings and
\’etale coverings (finite or infinite).

In p-adic rigid geometry, the situation is more complicated. It is natural
to call topological covering any morphism $f$ : $Y\rightarrow X$ such that there is an
admissible cover $(X_{i})$ of $X$ and an admissible cover $(Y_{ij})$ of $f^{-1}(X_{i})$ with
disjoint $Y_{ig}$ isomorphic to $(X_{i})$ via $f$ . Indeed, such topological coverings
correspond to locally constant sheaves of sets on $X$ . It is still true that
topological coverings are \’etale, but the converse is wrong, even if one restricts
to finite surjective morphisms. Indeed, the Kummer covering $ z-\rangle$ $z^{n}$ of the
punctured unit disk is an \’etale covering, but not a topological covering, if
$n>1$ .

1.4.2. It is again more convenient to tackle these questions in the framework
of Berkovich’s geometry. For instance, one sees immediately that a Kummer
covering $ z-\rangle$ $z^{n}$ as above is not a topological covering because a classical
point has $n$ preimages, while the “generic point” $\eta_{0,1}$ (corresponding to the
sup-norm on the disk) is its own single preimage. Topological coverings of a
p-adic manifold $X$ are defined in the usual way; they correspond to locally
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constant sheaves of sets on $X$ . They coincide [Ber90, 3.3.4] with topological
coverings of the rigid analytic variety associated to $X$ .

1.4.3. There are only three one-dimensional simply connected complex man-
ifolds up to isomorphism: the projective line $\mathbb{P}^{1}(\mathbb{C})$ , the affine line $\mathbb{C}$ , and
the disk $D$ ( $\simeq \mathfrak{h}$ , the complex upper half plane). In contrast, there are
plenty of simply-connected one-dimensional p-adic manifolds, for instance:
any annulus, the line minus a finite number of points, more generally any
connected p-adic manifold homeomorphic to a subset of $\mathbb{P}^{1}(\mathbb{C}_{p})$ , any smooth
projective curve with “good reduction”... (all these Berkovich spaces look
like “bushy trees”).

1.4.4. One defines the (discrete) topological fundamental group $\pi_{1}^{top}(S, s)$

of a pointed p-adic manifold $(S, s)$ in the usual way. The general topological
theory of coverings applies: $(S,\underline{s})$ is naturally isomorphic to the quotient of
the pointed universal covering $(S,\tilde{s})$ by $\pi_{1}^{top}(S, s)$ , and $\pi_{1}^{top}(S, s)$ classify the
topological coverings of $(S, s)$ . In the one-dimensional case, the topological
fundamental group is a discrete free group (more precisely, it is isomor-
phic to the fundamental group of the dual graph of the so-called semistable
reduction of $S([dJ95b, 5.3]))$ .

For instance, if $ S=\Omega/\Gamma$ is the uniformization of a Mumford curve
(cf. 1.2), $\Omega$ is the universal covering of $S$ and the Schottky group $\Gamma$ is iso-
morphic to the topological fundamental group.

On the other hand, one can define the (profinite) algebraic fundamental
group $\pi_{1}^{alg}(S, s)$ \‘a la Grothendieck, classifying the finite \’etale coverings of
$(S, s)$ . In contrast to the complex situation, the natural map $\pi_{1}^{alg}(S, s)\rightarrow$

$\pi_{1}^{top}(S, s)^{\wedge}$ to the profinite completion of $\pi_{1}^{top}(S, s)$ is genemlly not injective
( $e.g$ . for annuli).

1.5. Connections with locally constant sheaves of solutions.

1.5.1. Let us briefly recall the complex situation. Let $S$ be a complex
connected manifold, $(\mathcal{M}, \nabla)$ a vector bundle of rank $r$ with integrable con-
nection on $S$ . The classical Cauchy theorem shows that for any $s\in S$ , the
solution space $(\mathcal{M}\otimes \mathcal{O}_{S,s})^{\nabla}$ at $s$ has dimension $r$ . Analytic continuation
along paths gives rise to a homomorphism $\pi_{1}^{top}(S, s)\rightarrow Aut_{\mathbb{C}}((\mathcal{M}\otimes \mathcal{O}_{S,s})^{\nabla})$

(the monodromy). The sheaf of germs of solutions $\mathcal{M}^{\nabla}$ is locally constant
on $S$ : its pull-back over the universal covering $\overline{S}$ of $S$ is constant. Con-
versely, any complex representation $V$ of $\pi_{1}^{top}(S, s)$ of dimension $r$ gives
rise naturally to a vector bundle $\mathcal{M}$ of rank $r$ with integrable connection
$\nabla:\mathcal{M}=(V\times\overline{S})/\pi_{1}^{top}(S, s),$ $\nabla(V)=0$ . This sets up an equivalence of
categories:

$\left\{\begin{array}{ll}fi nite & dimensional\\representations & \pi_{l}^{top}of(S,s)\end{array}\right\}\simeq\left\{\begin{array}{ll}bS- vectorundles & with\\integrable & connection\end{array}\right\}$ .

1.5.2. Let $(S, s)$ be now a pointed connected p-adic manifold. It is still
true that any $\mathbb{C}_{p}$-linear representation $V$ of $\pi_{1}^{top}(S, s)$ of dimension $r$ gives
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rise to a vector bundle $\mathcal{M}=\mathcal{M}_{V}$ a vector bundle of rank $r$ with integrable
connection $\nabla=\nabla_{V}$ (same formula). The functor

$\left\{\begin{array}{ll}fi nite & dimensional\\representations & \pi_{l}^{top}of(S,s)\end{array}\right\}\rightarrow\left\{\begin{array}{lll}S- vector & bundles & with\\integrable & & connection\end{array}\right\}$

is still fully faithful, but no longer surjective; its essential image consists of
those connections whose sheaf of solutions is locally constant, $i.e$ . becomes
constant over $\overline{S}$ . In fact, the classical “ Cauchy theorem” according to which
the solution space $(\mathcal{M}\otimes \mathcal{O}_{S,s})^{\nabla}$ at $s$ has dimension $r$ holds for every classical
point $s$ of $S$ –which corresponds to a point of the associated rigid variety
–, but does not hold for non-classical points $s$ of the Berkovich space $S$ in
general.

1.5.3. Any non-trivial connection over the projective line minus a few points
gives an example when the p-adic analogue of the Cauchy theorem” does
not hold: indeed, in this case, the topological fundamental group is trivial.

However, a p-adic variant of Cauchy’s theorem in the neighborhood of
a non-classical point $s$ may be restored as follows (Dwork’s technique of
generic points): it suffices to extend the scalars from $\mathbb{C}_{p}$ to a complete
algebraically closed extension of $\Re(s)$ . This transforms $s$ into a classical
point, and neighborhoods of $s$ after scalar extensions are “smaller” than
before.

1.5.4. When “Cauchy’s theorem” holds at every point of $S$ , one can continue
the local solutions along paths and get the monodromy representation just
as in the complex situation.

This nice category of p-adic connections has not yet attracted much
attention.

Example 1.5.5. Let us consider the case when $S$ is a Tate elliptic curve: $S=$
$\mathbb{C}_{p}^{\times}/q^{\mathbb{Z}}$ , with $s=its$ origin. Then $\pi_{1}^{top}(S, s)=q^{\mathbb{Z}}$ , and the connections on $S$

which arise from representations of $q^{\mathbb{Z}}$ are those which become trivial over
$\overline{S}=\mathbb{C}_{p}^{\times}$ . In this correspondence, the multivalued solutions $\vec{y}(i.e$ . horizontal
sections) of such a connection are the solutions of the associated linear q-
difference equation $\vec{y}(qt)=M(q)\vec{y}(t)$ , where $t$ is the standard coordinate on
$\mathbb{C}_{p}^{\times}$ and the matrix $M(q)$ is the image of $q$ in the monodromy representation.

The simplest example is given by the obvious one-dimensional represen-
tation $\Lambda I(q)=q$ . It corresponds to $\mathcal{M}=\mathcal{O}_{S},$ $\nabla(1)=\omega_{can}$ (the canon-
ical differential on $S$ induced by $dt/t$); here the q-difference equation is
$t.dy=y.dt$ with obvious solution $y=t$ .

Let us now look at the representation $M(q)=\sqrt{q}$ . The associated
q-difference equation is $t.dy=\frac{1}{2}$ y.dt. There is the obvious solution $\sqrt{t}$ ,
which leads to $\mathcal{M}=\mathcal{O}_{S},$ $\nabla(1)=\frac{1}{2}\omega_{can}$ . Here we encounter an interesting
paradox: $\sqrt{t}$ is not a multivalued analytic function on $S(i.e$ . it is not an
analytic function on the universal covering $\mathbb{C}_{p}^{\times}$ . In the complex situation, a
similar paradox arose in the work of G. Birkhoff in his theory of q-difference
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equations, which was pointed out and analyzed by M. van der Put and
M. Singer in the last chapter of their book $[SvdP97]$ . The solution of
the paradox is that the vector bundle $\mathcal{M}$ associated to the representation
$q\rightarrow\sqrt{q}$ of $q^{\mathbb{Z}}$ (or to the q-difference equation $y(qt)=\sqrt{q}.t$ ) is in fact a
non-trivial vector bundle of rank one, and the basic solution is not $\sqrt{t}$ , but
$\frac{\theta(t/\sqrt{q})}{\theta(t)}$ where $\theta(t)=\prod_{n>0}(1-q^{n}t)\prod_{n\leq 0}(1-q^{n}/t)$ .

1.5.6. In the previous example, it is easily seen that rank-one vector bundles
with connection on $S$ which arise from a representation of $\pi_{1}^{top}(S, s)$ form a
space of dimension one, while the space of all rank-one vector bundles with
connection on $S$ has dimension two.

We next consider the case of a p-adic manifold $S$ which “is” a geo-
metrically irreducible algebraic $\mathbb{C}_{p}$-curve. Let $\overline{S}$ be its projective comple-
tion. It follows from the Van Kampen theorem, together with the fact that
punctured disks are simply-connected, that $\pi_{1}^{top}(S, s)\rightarrow\pi_{1}^{top}(\overline{S}, s)$ is an
isomorphism. It follows that the vector bundles with connection attached
to representations of $\pi_{1}^{top}(S, s)$ automatically extend to $\overline{S}$ . Hence we may
assume without loss of generality that $S$ is compact.

Vector bundles with connection on $S$ are algebrizable, and one can use
C. Simpson’s construction ([Si94]) to define the moduli space of connections
of rank $r$ over $S$ , denoted by $M_{dR}(S, r)$ . On the other hand, we have seen
that the topological fundamental group $\pi_{1}^{top}(S, s)$ is free on $b_{1}(\triangle)$ generators,
being isomorphic to the fundamental group of the dual graph $\triangle$ of the
semistable reduction of $S$ . Simpson has also studied the moduli space of
representations of dimension $r$ of such a group. We denote it by $M_{B}(S, r)$ ;
in fact, it depends only on the couple of integers $(b_{1}(\triangle), r)$ .

Let us assume that $S$ is of genus $g\geq 2$ . Simpson shows that $M_{dR}(S, r)$

is algebraic irreducible of dimension $2(r^{2}(g-1)+1)$ . On the other hand,
$M_{B}(S, r)$ is an algebraic irreducible affine variety of dimension $(r^{2}(b_{1}(\triangle)-$

$1)+1)$ . We note that this dimension is maximal when the Betti number
$b_{1}(\triangle)$ takes its maximal value, namely $g$ . This corresponds to the case where
$S$ is a Mumford curve (a curve with totally degenerate reduction).

It turns out that the functor which associates a vector bundle with
connection to any finite-dimensional representation of the topological fun-
damental group induces an injective analytic map of moduli spaces $\iota$ :
$M_{B}(S, r)\rightarrow M_{dR}(S, r)$ .

[The map is induced by the functor $V\rightarrow(\mathcal{M}_{V}, \nabla_{V})$ , and its injectivity
follows from the faithfulness of this functor. The difficulty in showing that
$\iota$ is analytic is that $M_{dR}(S, r)$ is a priori a moduli space for algebraic con-
nections, not for all analytic connections; we shall not pursue here in this
direction].

In the complex situation, the corresponding map $\iota$ would always be
an analytic isomorphism (Riemann-Hilbert-Simpson). In the p-adic cases,
we see that the connections which satisfy Cauchy’s theorem at every point
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(classical or not) form a stratum of maximal dimension half of the dimension
of the total moduli space.

We shall leave the closer analysis of this kind of p-adic differential equa-
tions with global monodromy until later chapters, where we show how they
arise in the context of period mappings. In the next section, we shall deal
with a very different kind of differential equations, which play a distinguished
role in p-adic analysis under the name of unit-root F-crystals.
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2. Analytic continuation; algebraic approach.

ABSTRACT: An equivalent, but more algebraic, approach to analytic continua-
tion consists in interpreting complex analytic multivalued functions as limits of
algebraic functions. Since the concept of topological coverings and that of \’etale

coverings do not coincide in the p-adic setting, the algebraic approach leads in that
case to a theory quite different from that of the previous section. It turns out to be
well-suited to the function-theoretic study of so-called unit-root F-isocrystals, and
induces us to revisit two fundamental notions due to Dwork: Frobenius structure
and overconvergence.

2.1. Limits of rational functions.

2.1.1. Over $\mathbb{C}$ . Let us briefly survey the complex analytic situation. Let
$S$ be a connected complex analytic curve, and $U$ an open set of $S$ (not
necessarily connected) which is holomorphically convex; $i.e$ . $S\backslash U$ has no
compact connected component. Then $\mathcal{O}(S)$ is dense in $\mathcal{O}(U)$ for the topol-
ogy of uniform convergence on every compact set. We denote this situation
by $\mathcal{O}(U)=\overline{\mathcal{O}(S)^{U}}$ (cf. $e.g$ . [Re89, 13]).

Moreover, if $S$ is the Riemann surface coming from an affine algebraic
curve $S^{alg}$ , then we also have $\mathcal{O}(U)=\mathcal{O}\overline{(S^{alg})}^{U}$ , which generalizes the the-
orem of Runge on approximation by rational functions. Indeed, considering
an embedding $S$alg $c_{-\rangle}(A^{N})^{alg}$ , we may extend analytic functions on $S$ to
analytic functions on $(A^{N})^{alg}$ (due to the vanishing of the first cohomology
group of the coherent ideal sheaf defining $S$). Any analytic function on
$(A^{N})^{alg}$ can be approximated by polynomials, which we restrict to $S$ .

2.1.2. Over the p-adics. We have an analogous situation. Let $K$ be a
complete subfield of $\mathbb{C}_{p}$ , and let $S$ be an analytic curve coming from a smooth
affine algebraic curve over $K$ . We consider a closed immersion $S\rightarrow A^{N}$ .
For any $r>0,$ $S_{r}$ $:=S\cap D_{A^{N}}(0, r^{+})$ is an affinoid domain in $S$ . The same
argument of polynomial approximation used in 2.1.1 shows that $\mathcal{O}(S_{r})$ is
the completion of $\mathcal{O}(S^{alg})$ .

For any compact $Z\subset S$ (e.g. an affinoid domain), we define the
topological ring $\mathcal{H}(Z)$ of analytic elements on $Z$ to be the completion of
$\Gamma(Z, \mathcal{O}_{S})=\lim_{\rightarrow Z\subset U:}$

open
$\Gamma(U, \mathcal{O}_{S})$ under the sup-norm. Whenever $Z$ is con-

tained in a $S_{r},$ $\mathcal{H}(Z)$ is also the completion of $\mathcal{O}(S_{r})z$ , where the subscript
$Z$ denotes the localization with respect to the set of elements which do not
vanish on $Z$ (cf. [Ber90] and [Ray94] for a more precise version of the
Runge theorem).

The holomorphic convexity condition on $Z$ is that for some $r,$ $Z$ is the
intersection of affinoid neighborhoods defined by inequalities of the form
$|f_{i}|\leq 1$ in $S_{r}$ . If this condition is satisfied, $\mathcal{H}(Z)$ is in fact the completion
of $\mathcal{O}(S_{r})$ itself.
2.1.3. The Krasner-Dwork viewpoint. For $S=A^{1}$ , and $K=\mathbb{C}_{p}$ , we deduce
$\mathcal{H}(Z)=(\overline{K[z]_{Z}})$ , which is nothing but the M. Krasner’s original definition
of analytic elements on $Z$ .
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Let $\overline{K(z)}$ be the completion of $K(z)$ by means of Gauss norm. One can
interpret its elements as the analytic elements on a generic disk, and then
specialize in the complement $Z\subseteq \mathbb{P}^{1}$ of a finite union of disks $D(a_{i}, 1^{-})$ ,
$(i=1,2, \ldots)$ . This viewpoint leads us to understand analytic continuation
as a specialization.

2.2. Limits of algebraic functions; complex case.

Let $S$ be a Riemann surface coming $-from$ a complex affine algebraic
curve $S^{alg}$ , smooth and connected. Let $S$ be the universal covering of $S$

(here we tacitly fix a base point $s\in S$ ). We endow $\mathcal{O}(\overline{S})$ with the topology
of uniform convergence on every compact; note that the group $\pi_{1}(S)$ acts
(continuously) on $\mathcal{O}(\tilde{S})$ .

On the other hand, let $\mathcal{O}(S^{alg})^{ct}$ be the maximal unramified integral
extension of $\mathcal{O}(S^{alg})$ . Elements in $\mathcal{O}(S^{alg})^{ct}$ can be regarded as unramified
algebraic functions on $S^{alg}$ ; thus we have $\mathcal{O}(S^{alg})^{ct}\subset \mathcal{O}(\overline{S})$ .

Proposition 2.2.1. $\mathcal{O}(S^{alg})^{et}$ is dense in $\mathcal{O}(\overline{S})$ .

For example, when $S^{alg}=\mathbb{P}^{1}\backslash \{0, \infty\}$ , the function $\log z\in \mathcal{O}(\overline{S}\underline{)}$ can be
written as $\lim_{n\rightarrow\infty}n(z^{1/n}-1)$ , uniformly on every compact subset of $S\simeq A^{1}$ .
We can use this formula to compute $\log_{\gamma}1=\lim n(\zeta_{n}-1)=2i\pi$ , where $\gamma$

is the counter-clockwise loop around $0$ with the base point 1.

FIGURE 3

PROOF OF 2.2.1. (after O. Gabber). Consider a countable covering of $\overline{S}$

( $\simeq \mathbb{P}^{1}(\mathbb{C}),$ $\mathbb{C}$ or $D(0,1^{-})$ ) by relatively compact contractible open subsets
which are oriented manifolds $U_{n}$ ( $e.g$ . disks), such that $U_{n}\subset U_{n+1}$ . For any
$n$ , let us consider the set

$\mathcal{F}_{n}=$ { $\gamma\in\pi_{1}(S,$ $s)|\gamma\neq 1$ and $\gamma\overline{U}_{n}\cap\overline{U}_{n}\neq\emptyset$ }.

If this set were infinite, we could find a sequence of pairwise distinct elements
$\gamma_{m}\in\pi_{1}(S, s)$ and a sequence of points $s_{m}\in\overline{U}_{n}$ such that $\gamma_{m}s_{m}\in\overline{U}_{n}$ . By
compacity of $\overline{U}_{n}$ , we might assume that the sequences $s_{m}$ and $\gamma_{m}s_{m}$ converge
to points $s^{\prime}$ and $s^{\prime\prime}$ respectively. Then the sequence $\gamma_{m}s^{\prime}$ converges to $s^{\prime\prime}$ ,
which contradicts the discreteness of the $\pi_{1}(S, s)$ -orbits in $\overline{S}$ . So $\mathcal{F}_{n}$ is finite.
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On the other hand, $S$ is topologically a surface of genus $g$ with $t\geq 1$

punctures, so $\pi_{1}(S)$ is generated by $2g+t$ generators $\gamma_{i}$ subject to the
relation

$[\gamma_{1}, \gamma_{g+1}]\cdots[\gamma_{g}, \gamma_{2g}]\gamma_{2g+1}\cdots\gamma_{2g+t}=1$ .
Thus $\pi_{1}(S)$ is free with $2g+t-1$ generators. Therefore it is residually finite
(cf. [Bou64, p. 150, ex. 34]); so we can find a subgroup $\Gamma_{n}\subseteq\pi_{1}(S)$ of
finite index which avoids $\mathcal{F}_{n}$ .

We immediately see that $((\Gamma_{n}-\backslash \{1\})\cdot\overline{U}_{\underline{n}})\cap\overline{U}_{n}=\emptyset$ . The restriction to
$\overline{U}_{n}$ of the canonical projection $S\rightarrow S_{n}$ $:=S/\Gamma_{n}$ is thus an embedding. We
identify $\overline{U}_{n}$ with its image.

The part of the exact sequence of cohomologies with compact support
. . . $\rightarrow H^{1}(\overline{U}_{n}, \mathbb{Z})\rightarrow H_{c}^{2}(S_{n}\backslash \overline{U}_{n}, \mathbb{Z})\rightarrow H_{c}^{2}(S_{n}, \mathbb{Z})\rightarrow\cdots$

which can also be written as

. . . $\rightarrow H_{1}(\overline{U}_{n}, \mathbb{Z})=0\rightarrow H_{0}(S_{n}\backslash \overline{U}_{n}, \mathbb{Z})\rightarrow H_{0}(S_{n}, \mathbb{Z})=\mathbb{Z}\rightarrow\ldots$

and from which we deduce that $S_{n}\backslash \overline{U}_{n}$ is connected. Because $\partial U_{n}\subset$

$U_{n+1}\backslash \overline{U}_{n}$ , we have $\overline{S_{n}\backslash \overline{U}_{n}}=S_{n}\backslash U_{n}$ , hence $S_{n}\backslash U_{n}$ is connected. Since
$S_{n}\backslash U_{n}$ is not compact, $U_{n}$ is holomorphically convex in $S_{n}$ . Riemann’s
existence theorem assures that $S_{n}$ is the analytification of an affine algebraic
curve $S_{n}^{alg}$ . Here we can apply 2.1.1 to deduce $\mathcal{O}(U_{n}\underline{)}=\mathcal{O}\overline{(S_{n}^{alg})}^{U_{n}}$ . Note
that $\mathcal{O}(S_{n}^{alg})\subset \mathcal{O}(S^{alg})^{et}$ . Since every compact set of $S$ is contained in some
$U_{n}$ , we conclude the desired equality $\mathcal{O}(\overline{S})=\mathcal{O}\overline{(S^{alg})}^{et}$ . $\square $

2.2.2. It follows from Proposition 2.2.1 that if $\Omega/\Gamma$ is a Schottky partial
uniformization of $S$ , then the intersection $\mathcal{O}(S^{alg})^{et}\cap \mathcal{O}(\Omega)$ is dense in $\mathcal{O}(\Omega)$ .
A variant of this statement (with a similar proof) holds, in the p-adic case,
for a Mumford curve. We leave it to the reader.

2.3. Limits of algebraic functions; p-adic case.
2.3.1. In the p-adic situation, we have seen that there are “much more”
\’etale coverings than topological coverings. For instance, the unit disk $D=$
$D(0,1^{+})$ is simply-connected, but admits many non-trivial finite \’etale cov-
erings, $e.g$ . the Artin-Schreier covering $D\rightarrow D,$ $y-*z=y^{p}-y$ .

Proposition 2.2.1 suggests to replace, in the p-adic case, the ring $\mathcal{O}(\overline{S})$ ,
which is often too small, by some kind of completion of $\mathcal{O}(S)^{et}=\lim_{\rightarrow}\mathcal{O}(S^{\prime})$ ,
where $S^{\prime}$ runs over the finite \’etale connected coverings of $S$ .

Let us now assume that $S$ is an affinoid curve with good reduction (hence
simply connected). Then there is a Gauss p-adic norm on $\mathcal{O}(S)$ , which
extends uniquely to $\mathcal{O}(S)^{et}$ . The completion $\overline{\mathcal{O}(S)^{et}}$ is however pathological
in several senses: for instance, it is difficult to give a function-theoretic
meaning to its elements, and the continuous derivations of $\mathcal{O}(S)$ extends to
$\mathcal{O}(S)^{et}$ but not to $\overline{\mathcal{O}(S)^{et}}$ in a natural way.
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2.3.2. To bypass such problems, we are going to look for some convenient
subring of $\mathcal{O}(S)^{ct}$ . For simplicity, let us limit ourselves to the following
situation:

$\bullet$ $K=\hat{\mathbb{Q}}_{p}^{ur}\subset \mathbb{C}_{p}$ is the completion of the maximal unramified algebraic
extension of $\mathbb{Q}_{p}$ ,

$\bullet$ $\mathfrak{v}=\hat{\mathbb{Z}}_{p}^{ur}$ is its ring of integers (the Witt ring of $\overline{F}_{p}$ ),
$\bullet$ $S_{0}$ is the affine line over $\overline{F}_{p}$ , deprived from finitely many points

$\overline{\zeta}_{1}\ldots,\overline{\zeta}_{\nu}$ ; we choose a point $s_{0}$ on $S_{0}$ ,
$\bullet$

$\mathcal{R}$ is the p-adic completion of $\mathfrak{v}[z, \frac{1}{(z-\zeta_{1})\ldots(z-\zeta_{\nu})}]$ , where $\zeta_{1}\ldots\zeta_{\nu}$ are
liftings of $\overline{(}1\cdots(\nu$ in $\mathfrak{v}$ ; its residue ring is $\mathcal{O}(S_{0})$ ,

$\bullet$ $S=M(\mathcal{R}[\frac{1}{p}])=D(0,1^{+})\backslash \cup D(\zeta_{i}, 1^{-})$ , the associated affinoid domain
over $K$ . There is a natural specialization map sp : $S\rightarrow S_{0}$ from
characteristic $0$ to characteristic $p$ .

Let us consider the integral closure $\mathcal{R}^{ct}$ of $\mathcal{R}$ in $\mathcal{O}(S)^{ct}$ and its p-adic
completion $\overline{\mathcal{R}^{ct}}\subset\overline{\mathcal{O}(S)^{ct}}$ . It is thus endowed with (a natural extension of)
the p-adic valuation, and its residue ring is $\mathcal{O}(S_{0})^{ct}$ . Moreover, there is a
natural structure of “differential ring” (better: a connection) on $\overline{\mathcal{R}^{ct}}$ with
$\mathfrak{v}$ as ring of constants. The “remarkable equivalence of categories” of A.
Grothendieck [EGA IV, 18.1.2] allows to identify $Aut_{cont}(\mathcal{R}^{ct}/\mathcal{R})$ with the
algebraic fundamental group $\pi_{1}^{alg}(S_{0}, s_{0})$ .

2.3.3. “Analytic continuation” as specialization. Let $D(s_{0},1^{-})=sp^{-1}\{s_{0}\}$

be the residue class of $s_{0}$ in $S$ . The morphism $\mathcal{R}\rightarrow \mathcal{O}(D(s_{0},1^{-}))$ ex-
tends non-canonically to a continuous morphism $\overline{\mathcal{R}^{ct}}[\frac{1}{p}]\rightarrow \mathcal{O}(D(s_{0},1^{-}))$ ,

determined only up to the action of $\pi_{1}^{alg}(S_{0}, s_{0})$ . This allows to interpret
elements of $\overline{\mathcal{R}^{et}}[\frac{1}{p}]$ as certain multivalued locally analytic functions (in the
“wobbly” sense).

The main difference here with Krasner’s analytic continuation (cf. \S \S 2.1)
is the ambiguity coming from $\pi_{1}^{alg}(S_{0}, s_{0})$ . This provides a kind of multival-
ued analytic continuation, which may be interpreted as analytic continuation
in characteristic $0$ along an “\’etale path” in characteristic $p$ (figure 4).

$D(s_{0},1^{-})$

FIGURE 4. analytic continuation along an underground path
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This is very close to the Robba-Christol theory of “algebraic elements”
[C86], in which the main player is the complete subalgebra of $H^{\infty}(D_{\mathbb{C}_{p}}(0,1^{-}))$

(the algebra of bounded analytic functions) generated the algebraic functions
analytic on $D_{\mathbb{C}_{p}}(0,1^{-})$ . Underlying this “algebraic” analytic continuation,
there is a combinatorics of automata (whereas a combinatorics of graphs
underlies the “topological” analytic continuation, as we have seen $)^{}$

Remark 2.3.4. The complex formula $\log z=\lim_{n}n(z^{\frac{1}{n}}-1)$ has the following
p-adic analogue: $\log z=\lim_{n}p^{-n}(z^{p^{n}}-1)$ for $z\in D(1,1^{-})$ . However, the
convergence is not uniform on $D(1,1^{-})$ , and the analytic function $\log z$ is
not bounded on that disk. Nevertheless $\log$ : $D(1,1^{-})\rightarrow A^{1}$ defines an
infinite Galois \’etale covering of the p-adic affine line (not at all a topological
covering), with Galois group $\mu_{p}\infty$ , the p-primary torsion in $\mathbb{C}_{p}$ .

2.4. $\overline{\mathcal{R}^{ct}}$ and unit-root F-crystals.

2.4.1. Let us assume for technical simplicity that $p\neq 2$ . Let $\mathcal{M}$ be a free
$\mathcal{R}$-module of finite rank $\mu$ , endowed with a connection $\nabla$ : $\mathcal{M}\rightarrow\Omega_{\mathcal{R}}\otimes_{\mathcal{R}}\mathcal{M}$ ,
where $\Omega_{\mathcal{R}}$ is the rank-one module of continuous differentials (relative to $\mathfrak{v}$ ).

In general, solutions make sense only very locally: typically, analytic
solutions exist in disks of radius $p^{\frac{-1}{p-1}}$ (the radius of p-adic convergence of
the exponential function, which is the basic example). A very important
criterion, due to B. Dwork, for the convergence of analytic solutions in any
open disk of radius 1, is the existence of a so-called Frobenius structure.

2.4.2. F-crystals. Let $\sigma$ be the Frobenius automorphism of $\mathfrak{v}$ lifting the pth-
power map in $\overline{F}_{p}$ . There are many $\sigma$-linear endomorphisms $\phi$ of $\mathcal{R}$ which
reduce to the pth-power map of $\mathcal{O}(S_{0})$ in characteristic $p$ . For instance, we
can take $\phi(z)=z^{p}$ , so that $\phi((z-\zeta_{1})\ldots(z-\zeta_{\nu}))=(z^{p}-\sigma(\zeta_{1}))\ldots(z^{p}-$

$\sigma(\zeta_{\nu}))\equiv((z-\zeta_{1})\ldots(z-\zeta_{\nu}))^{p}(mod p)$ . One can show that any lifting $\phi$

extends uniquely to a $\pi_{1}^{alg}(S_{0}, s_{0})$ -equivariant endomorphism of $\mathcal{R}^{et}$ .
A Frobenius structure on $(\mathcal{M}, \nabla)$ is a rule $F$ which associates to every

lifting $\phi$ a homomorphism $F(\phi)$ : $\phi^{*}\mathcal{M}\rightarrow \mathcal{M}$ (that is to say, a $\phi$-linear
endomorphism of $\mathcal{M}$ ) such that:

(i) $F(\phi)\otimes \mathbb{Q}$ is an isomorphism,
(ii) $F(\phi)$ is horizontal, $i.e$ . compatible with the connections $\phi^{*}\nabla$ and $\nabla$

respectively,
(iii) for any two liftings $\phi$ and $\phi^{\prime}$ , the homomorphisms $F(\phi)$ and $F(\phi^{\prime})$ are

related by $F(\phi^{\prime})=F(\phi)0\chi(\phi^{\prime}, \phi)$ , where $\chi(\phi^{\prime}, \phi)$ : $\phi^{\prime}*\mathcal{M}\rightarrow\phi^{*}\mathcal{M}$

(2) $for$ these and further aspects of the Krasner, resp. Christol-Robba, analytic contin-
uation, we refer to $[MoRo69]$ and to the mimeographed notes of the numerous conferences
of the Groupe d’\’etude d’analyse ultram\’etrique, Paris, devoted to this subject (1973-1980).
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is the ((
$Taylor$ isomorphism” given by the formulas

$\chi(\phi^{\prime}, \phi)(\phi^{\prime}*m)=\sum_{n\geq 0}\phi^{*}(\nabla(\frac{d}{dz})^{n}(m))(\phi^{\prime}(z)-\phi(z))^{n}/n!$

$=\sum_{n\geq 0}\phi^{*}(\nabla(z\frac{d}{dz})^{n}(m))(\log\frac{\phi^{\prime}(z)}{\phi(z)})^{n}/n!$ .

In virtue of (iii), a Frobenius structure amounts to the data of the semi-
linear horizontal endomorphism $F(\phi)$ , for the standard $\phi(z)=z^{p}$ .
The triple $(\mathcal{M}, \nabla, F)$ is called an F-crystal, cf. $[$Ka73 $]^{}$ . The very ex-
istence of a horizontal isomorphism $\phi^{*}\mathcal{M}\otimes \mathbb{Q}\simeq \mathcal{M}\otimes \mathbb{Q}$ implies that the
radius of convergence $\rho$ of any local solution of $(\mathcal{M}, \nabla)$ satisfies $\min(1, \rho)=$

$\min(1, \rho^{\rho})$ , that is to say: $\rho\geq 1$ (since $\rho\neq 0$ ).

2.4.3. Unit-root F-crystals. This is the case where $F(\phi)$ (not only $F(\phi)\otimes \mathbb{Q}$ )
is an isomorphism (for one, or equivalently, for all $\phi$ ). The name comes from
their first appearance in Dwork’s computation of the p-adic units among the
reciprocal zeroes of the zeta-function of hypersurfaces in characteristic $p$ .

N. Katz has constructed a functor:

$(of\pi_{1}^{a1g}(S_{0}, s_{0})continuous\mathbb{Z}_{p}- representations)\rightarrow$ ( $unit$-root F-crystals)

which associates to any free $\mathbb{Z}_{p}$-module $V$ of rank $r$ with a continuous action
of $\pi_{1}^{alg}(S_{0}, s_{0})$ a unit-root F-crystal $(\mathcal{U}_{V}, \nabla_{V}, F_{V})$ over $\mathcal{R}$ of rank $r$ . Let
us recall its definition at the level of objects. For any $m\in \mathbb{N}$ , we set
$S_{m}=Spec\mathcal{R}/p^{m}\mathcal{R}$ . Starting from a representation $\rho$ of $\pi_{1}^{alg}(S_{0}, s_{0})$ , let $G_{n}$

denote the image of $\rho$ in $GL(V/p^{n}V)$ . The homomorphism $\pi_{1}^{alg}(S_{0}, s_{0})\rightarrow G_{n}$

corresponds to an \’etale covering $S_{n,0}\rightarrow S_{0}$ , which has a unique \’etale lifting
$\pi_{n,m}$ : $S_{n,m}\rightarrow S_{m}$ . The action of $G_{n}$ on $S_{n,0}$ extends uniquely to $S_{n,m}$ ;
on the other hand, the action of $\phi$ on $S_{m}$ extends uniquely to $S_{n,m}$ , and
the $\phi-$ and $G_{n}$-actions commute. The opposite action makes $\mathcal{O}_{S_{n,m}}$ into a
right $G_{n}$-module. If we set $\mathcal{U}_{n}=\pi_{n,n_{*}}\mathcal{O}_{S_{n,n}}\otimes_{(\mathfrak{v}/p^{n}\mathfrak{v})[G_{n}]}V$ , we then have a
compatible system of isomorphisms

$\Phi_{n}=\phi\otimes id:\phi^{*}\mathcal{U}_{n}\rightarrow \mathcal{U}_{n}$

and a compatible system of connections

$\nabla_{n}=d\otimes id:\mathcal{U}_{n}\rightarrow\pi_{n,n_{*}}\Omega_{S_{n,n}}\otimes_{\mathcal{R}/p^{m}\mathcal{R}}\mathcal{U}_{n}\simeq\Omega_{\mathcal{R}}\otimes_{\mathcal{R}}\mathcal{U}_{n}$

The unit-root crystal attached to $\rho$ is given by $\mathcal{U}=\lim_{\leftarrow n}\mathcal{U}_{n},$ $\nabla=\lim_{\leftarrow n}\nabla_{n},$ $\Phi=$

$\lim_{\leftarrow n}\Phi_{n}$ .
The next statement summarizes results of Katz and R. Crew [Cr85].

Proposition 2.4.4. (i) The Katz functor is an equivalence of categories;

(3) $the$ endomorphism $Fs_{0}$ of $S_{0}$ given by the pth-power map, as well as $\sigma,$
$\phi$ and $F$ are

all called “Frobenius” in the usual jargon, without causing too much confusion, it seems...
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(ii) any unit-root F-c ystal $(\mathcal{U}, \nabla, F)$ is solvable in $\overline{\mathcal{R}^{et}},$

$i.e$ . : $\mathcal{U}\otimes_{\mathcal{R}}\overline{\mathcal{R}^{et}}\simeq$

$(\mathcal{U}\otimes_{\mathcal{R}}\overline{\mathcal{R}^{et}})^{\nabla}\otimes_{\mathfrak{v}}\mathcal{R}^{ct}$ ;
(iii) the rule ( $\mathcal{U},$ $\nabla,$ $F\underline{)\mapsto}(\mathcal{U}\otimes_{\mathcal{R}}\overline{\mathcal{R}^{et}})^{\nabla=0,F(\phi)=id}$ (with Galois action com-

$ing$ from that on $\mathcal{R}^{et}$) provides an inverse of the Katz functor.
More precisely, we have the action of $\phi$ and $d/dz$ on $\overline{\mathcal{R}^{et}}$ commute with

the action of $\pi_{1}^{alg}(S_{0}, s_{0})$ , and we have a canonical isomorphism
$\mathcal{U}\otimes_{\mathcal{R}}\overline{\mathcal{R}^{et}}\simeq V\otimes_{\mathbb{Z}_{p}}\overline{\mathcal{R}^{et}}$

compatible with $\phi,$ $d/dz$ and $\pi_{1}^{alg}(S_{0}, s_{0})$ (diagonal action of $\phi,$ $d/dz$ on the
left hand side, diagonal action of $\pi_{1}^{alg}(S_{0}, s_{0})$ on the right hand side), which
allows to reconstruct the representation $V$ from the unit-root F-crystal and
conversely. In fact, the connection as well as $V$ can be reconstructed from
$(\mathcal{U}, \Phi)$ alone.

This proposition may be compared with 1.5.4, though it applies to a
quite different type of p-adic connections. In 1.5.4 (for dimension 1), the
analytic curve $S$ had typically bad reduction and the main player was the
discrete fundamental group $\pi_{1}(\triangle)$ of the dual graph of the semistable re-
duction, together with the $\pi_{1}(\triangle)$ -module $\mathcal{O}(\overline{S})$ . Here the curve $S$ has good
reduction $S_{0}$ and the main player is the compact fundamental group $\pi_{1}^{alg}(S_{0})$ ,
together with the $\pi_{1}^{alg}(S_{0})$ -module $\overline{\mathcal{R}^{et}}$ .

Before presenting one of Dwork’s classical unit-root F-crystals, let us
just mention that the above theory extends with little change to the case
when the base ring $\mathfrak{v}$ is a finite ramified extension of $\hat{\mathbb{Z}}_{p}^{ur}$ : one has to fix an
extension of $\sigma$ to $\mathfrak{v}$ , to replace $\mathbb{Z}_{p}$ by $\mathfrak{v}^{\sigma}$ , and to impose some mild nilpotence
constraint on $\nabla$ if the ramification index is $\geq p-1$ (also, it is customary to
extend the definition of Frobenius structure on replacing $\phi$ by some power).

Example 2.4.5. Dwork’s exponential. We denote by $\pi$ a fixed $(p-1)th$ root
$of-p$ , and set $\mathfrak{v}=\hat{\mathbb{Z}}_{p}^{ur}[\pi]$ , with $\sigma(\pi)=\pi$ . Let us consider the differential
equation

$(*)$ $f^{\prime}(z)=-\pi f(z)$

over $S=D(0,1^{+})$ , which has the analytic solution $f_{a}=e^{-\pi(z-a)}$ in any
residue class $D(a, 1^{-})\subset D(0,1^{+})$ . The change of variable $z\mapsto z^{p}$ leads to
the differential equation

$(*_{p})$ $g^{\prime}(z)=-p\pi z^{p-1}g(z)=\pi^{p}z^{p-1}g(z)$

Dwork’s exponential function is
$E_{\pi}(z)=e^{\pi(z-z^{p})}\in \mathbb{Z}_{p}[\pi][[z]]$ .

This is an invertible element of $\mathcal{R}$ , the $\pi$-adic completion of $\mathfrak{v}[z]$ . This
function provides the unit-root Frobenius structure which relates $(*)$ and
$(*_{p})$ .
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Let us reformulate this in the setting of 2.4.3: the relevant F-crystal
is $(\mathcal{R}, \nabla, F)$ , with $\nabla(1)=\pi dz,$ $F(\phi)(1)=E_{\pi}(z)$ for the standard $\phi$ . This
is the unit-root F-crystal attached to the finite character of $\pi_{1}^{alg}(A\frac{1}{I\{\neg}, 0)p$

corresponding $\underline{to}$the Artin-Schreier covering $\underline{z=}y^{p}\underline{-y}$. The solution $f_{0}$ of
$(*)$ belongs to $\mathcal{R}^{ct}$ : indeed, $e^{-\pi z}=E_{\pi}(y)\in \mathfrak{v}[y]\subset \mathcal{R}^{ct}$ ; explicitly, $e^{-\pi z}=$

$\lim_{n}(1-\pi p^{n}z)^{p^{-n}}$

Dwork has computed the value of his exponential for any $(p-1)th$ root
of unity $\zeta_{p-1}(e.g. \zeta_{p-1}=1)$ : this is

$E_{\pi}(\zeta_{p-1})=\zeta_{p}^{\zeta_{p-1}}$

where $\zeta_{p}$ is the unique pth root of unity $\equiv 1+\pi(mod \pi)$ (cf. [La90,
chap. 14]). In the spirit of 2.3.3, this may be understood as follows:

$\zeta_{p}^{\zeta_{p-1}}=the$ value at $(z=0)$ of the analytic continuation of $f_{0}$ along
the “wild loop” corresponding to the path from $(y=0)$ to $(y=\zeta_{p-1})$ on
the Artin-Schreier covering $z=y^{p}-y$ in characteristic $p$ (figure 5). If one
changes $\zeta_{p-1}$ , this value $\zeta_{p}^{\zeta_{p-1}}$ is multiplied by some pth root of unity.

$y$

$x$

FIGURE 5. a wild underground loop

In our special case, the discussion of 2.3.3 tells us that $e^{-\pi z}$ admits an
extension to any disk $D(a, 1^{-})\subset D(0,1^{+})$ , analytic in that disk, and well-
defined up to multiplication by some $pth$ root of unity. It is easy to find
a formula for this extension: it must be proportional to $e^{\pi(a-z)}$ , and by
evaluation at $a$ , we find that it is $e^{\pi(a-z)}E_{\pi}(b)$ , where $b$ is any solution of
the equation $b^{\rho}-b=a$ . Its pth power is, as expected, $e^{-p\pi z}$ itself.

Therefore, this multivalued exponential $e^{-\pi z}$ on $D(0,1^{+})$ appears as a
multivalued section of the logarithmic \’etale covering $\frac{-1}{\pi}log:D(1,p^{-\frac{1}{p-1}+})\rightarrow$

$D(0,1^{+})$ . This is just the opposite way from the complex situation, where
the logarithm is a multivalued section of the \’etale covering of $\mathbb{C}^{\times}$ given by
the exponential.
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2.5. p-adic chiaroscuro: overconvergence.

2.5.1. In fact, Dwork’s exponential $E_{\pi}$ is more than just an element of the
$\pi$-adic completion of $\mathfrak{v}[z]$ : it is overconvergent, $i.e$ . extends to an analytic
function on a disk of radius $\rho>1(\rho=p^{(p-1)/p^{2}})$ .

Overconvergence is a fundamental notion in p-adic analysis: dimming
the contours of an affinoid turns out to be the key to the finiteness prop-
erties of p-adic cohomology, as was recognized by Dwork, and subsequently
developed by P. Monsky, G. Washnitzer, P. Berthelot (rigid cohomology,
$\mathcal{D}^{\uparrow}$-modules)...

FIGURE 6

2.5.2. Let again $S$ be $D(0,1^{+})\backslash \cup D(\zeta_{i}, 1^{-})$ . For any $\rho>1$ , let us consider
the bigger affinoids $S_{\rho}=D(0, \rho^{+})\backslash \cup D((i, \frac{1}{\rho})-$ . The ring of overconvergent
analytic functions on $S$ is

$\mathcal{H}^{\uparrow}(S)=\cup \mathcal{O}(S_{\rho})$ .
$\rho>1$

Its relevance to the algebraic viewpoint on analytic continuation comes from
the following result [BDR80]:

Proposition 2.5.3. Let $f\in \mathcal{O}(S)$ satisfy $a$ monic polynomial equation with
coefficients in $\mathcal{H}^{\uparrow}(S)$ . Then $f\in \mathcal{H}^{\uparrow}(S)$ .
2.5.4. A F-crystal $(\mathcal{M}, \nabla, F)$ is overconvergent if $(\mathcal{M}, \nabla)$ as well as $F(\phi)$

extends over some $S_{\rho}$ . This is the case in example 2.4.5. For unit-root
F-crystals, Crew has given the following characterization:

Proposition 2.5.5. The unit-root F-crystal $(\mathcal{U}_{V}, \nabla_{V}, F_{V})$ attached to a p-
adic representation $V$ is overconvergent if and only if the images in $GL(V)$

of the inertia groups at the missing points $\overline{\zeta}_{1}\ldots,$ $\overline{(}\nu’\infty$ are finite.
2.6. (Overconvergence and Frobenius) Dwork’s derivation of the

p-adic Gamma function and exponential sums.

2.6.1. We come back to the situation of 2.4.5. For any $\alpha\in \mathbb{Z}_{p}$ , let us
consider $M_{\alpha}^{\dagger}$

$:=z^{\alpha}e^{\pi z}\mathcal{H}^{\uparrow}(S)$ endowed with the derivation $z\frac{d}{dz}$ . A simple
computation shows that

$z^{\alpha}e^{\pi z}z^{k+1}\equiv-\frac{\alpha+k}{\pi}z^{\alpha}e^{\pi z}z^{k}$
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in $\Lambda I_{\alpha}^{\dagger}/z\frac{d}{dz}ilI_{\alpha}^{\dagger}$ , from which one deduces that this cokernel has dimension 1
over $K$ and is generated by $[z^{\alpha}e^{\pi z}]$ .

Following Dwork, let us introduce the operator $\psi$ defined by

$\psi(\sum a_{n}z^{n})=\sum a_{pn}z^{n}$ .

This is a left inverse of the Frobenius operator induced by $\phi$ : $z\mapsto z^{p}$ . It
acts on $\mathcal{H}^{\uparrow}(S)$ and commutes with $z\frac{d}{dz}$ up to multiplication by $p:\psi oz\frac{d}{dz}=$

$ pz\frac{d}{dz}o\psi$ . The operator $\psi$ can also be applied to any element of $M_{\alpha}^{\dagger}$ for
$\alpha\in \mathbb{N}$ : one finds that

$\psi(z^{\alpha}e^{\pi z}f)=z^{\beta}e^{\pi z}\psi(z^{\alpha-p\beta}E_{\pi}(z)f)$

where $\beta$ is the successor of $\alpha\in \mathbb{Z}_{p},$ $i.e$ . the unique p-adic integer $\beta$ such
that $p\beta-\alpha\in \mathbb{Z}\cap[0,p$ [ (note that since $\alpha-p\beta>-p$ , the terms containing a
negative power of $z$ disappear when applying $\psi$ ). This formula makes sense
for any $\alpha\in \mathbb{Z}_{p}$ , and we can see that $\psi$ applies $M_{\alpha}^{\dagger}$ into $\Lambda f_{\beta}^{\dagger}$ , and commutes
with $z\frac{d}{dz}$ . Let us write the induced map of one-dimensional cokernels $[\psi]$ :
$M_{\alpha}^{\dagger}/z\frac{d}{dz}M_{\alpha}^{\dagger}\rightarrow M_{\beta}^{\dagger}/z\frac{d}{dz}M_{\beta}^{\dagger}$ in the form

$[\psi]([z^{\alpha}e^{\pi z}])=\pi^{p\beta-\alpha}\Gamma_{p}(\alpha)[z^{\beta}e^{\pi z}]$ .
2.6.2. This function $\Gamma_{p}$ is then nothing but Morita’s p-adic Gamma function,
characterized by its continuity and the functional equation

$\Gamma_{p}(0)=1,$ $\Gamma_{p}(\alpha+1)/\Gamma_{p}(\alpha)=\left\{\begin{array}{ll}-\alpha & if \alpha is a unit,\\-1 & if |\alpha|_{p}<1.\end{array}\right.$

Let us check this functional equation:
$\bullet$ for $\alpha=0$ , one has $[z^{k}e^{\pi z}]=0$ if $k>0$ ; hence $\Gamma_{p}(0)[e^{\pi z}]=[e^{\pi z}][\psi(E_{\pi}(z))]$

$=[e^{\pi z}]$ ;
$\bullet$ if $|\alpha|_{p}=1,$ $\beta$ is also the successor of $\alpha+1$ , and $\Gamma_{p}(\alpha+1)[z^{\beta}e^{\pi z}]=$

$\pi^{\alpha-p\beta+1}[\psi]([z^{\alpha+1}e^{\pi z}])=\pi^{\alpha-p\beta+1}[\psi](-\frac{\alpha}{\pi}[z^{\alpha}e^{\pi z}])=-a\Gamma_{p}(\alpha)[z^{\beta}e^{\pi z}]$ ;
$\bullet$ finally, if $|\alpha|_{p}<1$ , one has $\alpha=p\beta$ , and $\beta+1$ is the successor of $\alpha+1$ ;

one gets $\Gamma_{p}(\alpha+1)[z^{\beta+1}e^{\pi z}]=\pi^{-p+1}[\psi]([z^{\alpha+1}e^{\pi z}])=-\frac{1}{p}[\psi](-\frac{\alpha}{\pi}[z^{\alpha}e^{\pi z}])$

$=\frac{\beta}{\pi}\Gamma_{p}(\alpha)[z^{\beta}e^{\pi z}]=-\Gamma_{p}(\alpha)[z^{\beta+1}e^{\pi z}]$ .

2.6.3. Let us now check the continuity of $\Gamma_{p}$ on $\mathbb{Z}_{p}$ , or better, its analyticity
on any disk $D(-k, |p|^{+}),$ $k=0,1,$ $\ldots,$

$p-1$ . Let us write $E_{\pi}(z)=e^{\pi(z-z^{\rho})}=$

$\sum_{0}^{\infty}e_{n}z^{n}$ .
For any $\alpha\in \mathbb{Z}_{p}\cap D(-k, 1^{-})$ , one has

$\psi(z^{\alpha}e^{\pi z})\equiv\pi^{k}\Gamma_{p}(\alpha)z^{\beta}e^{\pi z}=z^{\beta}e^{\pi z}\psi(z^{-k}E_{\pi}(z))$

$=z^{\beta}e^{\pi z}\sum_{n=0}^{\infty}e_{pn+k}z^{n}\equiv z^{\beta}e^{\pi z}\sum_{n=0}^{\infty}e_{pn+k}(-\pi)^{-n}(\beta)_{n}$ ,

where $(\beta)_{n}=(\frac{\alpha+k}{p})_{n}$ is the Pochhammer symbol. Easy estimates now show
that $\Gamma_{p}(\alpha)=\sum_{0}^{\infty}e_{pn+k}(-\pi)^{-n-k}(\frac{\alpha+k}{p})_{n}$ is analytic on $D(-k, |p|^{+})$ .
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2.6.4. Gross-Koblitz formula: for $k=0,1,$ $\ldots$ , $p-2$ , one has

$\Gamma_{p}(\frac{k}{p-1}I=-\pi^{-k}\sum_{\zeta_{p-1}}\zeta_{p-1}^{-k}\zeta_{p}^{\zeta_{p-1}}$
$\in \mathbb{Q}_{p}[\pi]\cap\overline{\mathbb{Q}}$

where $\zeta_{p-1}$ runs over the $(p-1)th$ roots of unity, and $\zeta_{p}^{\zeta_{p-1}}$ is as before the
unique pth root of unity $\equiv 1+\zeta_{p-1}\pi(mod \pi)$ .

Let us sketch the proof. We choose $\alpha=\frac{k}{p-1}$ so that $\alpha=\beta$ and
$\psi$ acts on the ind-Banach-space $M_{\alpha}^{1}$ via the formula: $\psi(z^{-k}E_{\pi}(z)f)=$

$(z^{\alpha}e^{\pi z})^{-1}\psi(z^{\alpha}e^{\pi z}f)$ . Coming back to the definition of $\psi$ , one observes that
for any $g\in \mathcal{H}^{\uparrow}(S)$ ,

$\psi(z^{-k}g)(z)=\frac{1}{p}$ $\sum$ $t^{-k}g(t)$ .
$t\in\phi^{-1}(z)$

Using the fact that the domain of analyticity of this function is bigger than
the domain of analyticity of $g$ itself, one shows that $\psi$ is a nuclear operator
of $M_{\alpha}^{\dagger}$ . In particular, it has a trace, which is the trace of the “composition
operator” $\Psi$ : $g\in \mathcal{H}\dagger(S)\mapsto\frac{1}{p}\sum_{t\in\phi^{-1}(z)}t^{-k}E_{\pi}(t)g(t)$ . The computation
of this trace is done by approximating $E_{\pi}$ by polynomials and studying
the resulting action on the subspace of polynomials. One finds Tr $\Psi=$

$\frac{1}{p-1}\sum_{\zeta_{p-1}}\zeta_{p-1}^{-k}E_{\pi}(\zeta_{p-1})$ .
At last, because $\psi oz\frac{d}{dz}=pz\frac{d}{dz}\circ\psi$ , one has

$\pi^{k}\Gamma_{p}(\frac{k}{p-1})=\prime h([\psi]|M_{\alpha}^{\dagger}/z\frac{d}{dz}M_{\alpha}^{\uparrow})=(1-p)Tk(\psi|M_{\alpha}^{\uparrow})$

$=-\sum_{\zeta_{p-1}}\zeta_{p-1}^{-k}E_{\pi}(\zeta_{p-1})=-\sum_{\zeta_{p-1}}\zeta_{p-1}^{-k}\zeta_{p}^{\zeta_{p-1}}$

We refer to [CR94] for a detailed account. A more general form of the
Gross-Koblitz, proved along the same lines, shows that for any $1\leq k<p^{r}$ ,
the product

$\prod_{0}^{r-1}\Gamma_{p}(\frac{p^{i}k}{p^{r}-1})$

belongs to the cyclotomic field $\mathbb{Q}(\zeta_{p^{r}})$ .

2.6.5. A more straightforward and elementary proof has been discovered by
A. Robert. It goes as follows.

As we have just seen, the right hand side of the Gross-Koblitz formula
can be written

$-\pi^{-k}\sum_{\zeta_{p-1}}\zeta_{p-1}^{-k}E_{\pi}((p-1)=-\pi^{-k}\sum_{n=0}^{\infty}(\sum_{\zeta_{p-1}}\zeta_{p-1}^{n-k})e_{n}$

$=(1-p)\pi^{-k}\sum_{m=0}^{\infty}e_{(p-1)m+k}$ .
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Using the expansion of $\Gamma(\alpha)$ given in 2.6.3, in the case of $\alpha=\frac{k}{p-1}$ we
thus have to show that

$\sum_{n=0}^{\infty}e_{pn+k}(-\pi)^{-n}(\frac{k}{p-1})_{n}=(1-p)\sum_{m=0}^{\infty}e_{(p-1)m+k}$ .

Denote the left hand side by $G_{k}$ (for any $k\in N$). Due to the overconvergence
of $E_{\pi}$ , it is not difficult to see that $\lim_{k\rightarrow\infty}G_{k}=0$ . One has Robert’s formula:

$G_{k}-G_{p-1+k}=(1-p)e_{k}$ .

Summing up consecutive expressions, one gets a telescoping sum which yields

the desired equality $G_{k}=G_{k}-\lim_{m\rightarrow\infty}G_{(p-1)m+k}=(1-p)\sum_{m=0}^{\infty}e_{(p-1)m+k}$ .

It remains to prove Robert’s formula. One first observes that $z\frac{d}{dz}E_{\pi}=$

$(\pi z-p\pi z^{p})E_{\pi}(z)$ , which yields the relation $ne_{n}=\pi(e_{n-1}-pe_{n-p})$ for
$n\geq p$ , hence $\pi e_{p-1+m}=p\pi e_{m}+(m+p)e_{m+p}$ for $m\geq 0$ . Then

$G_{k}-G_{p-1+k}$

$=e_{k}+\sum_{0}^{\infty}e_{p(n+1)+k}(-\pi)^{-n-1}(\frac{k}{p-1})_{n+1}$

$-\sum_{0}^{\infty}e_{p-1+pn+k}(-\pi)^{-n}(\frac{k}{p-1}+1)_{n}$

$=e_{k}+\sum_{0}^{\infty}[\frac{k}{p-1}e_{p(n+1)+k}+\pi e_{p-1+pn+k}](-\pi)^{-n-1}(\frac{k}{p-1}+1)_{n}$

$=e_{k}+\sum_{0}^{\infty}[p\frac{(k+(n+1)(p-1))}{p-1}e_{p(n+1)+k}+p\pi e_{pn+k}](-\pi)^{-n-1}(\frac{k}{p-1}+1)_{n}$

$=(1-p)e_{k}+p\sum_{0}^{\infty}\frac{(k+(n+1)(p-1))}{p-1}e_{p(n+1)+k}(-\pi)^{-n-1}(\frac{k}{p-1}+1)_{n}$

$-p\sum_{1}^{\infty}\frac{k+n(p-1)}{p-1}e_{pn+k}(-\pi)^{-n}(\frac{k}{p-1}+1)_{n-1}$

$=(1-p)e_{k}$ .

2.6.6. The right hand side of the Gross-Koblitz formula is a special case of
an exponential sum, $i.e$ . an expression of the form

$S_{r}(\overline{f},\overline{g}, \overline{h})=\sum_{x_{1},\ldots,x_{d}\in F_{\rho^{r}}\overline{h}(\underline{x})\neq 0},\chi(N_{F_{\rho^{\Gamma}}/F_{p}}\overline{g}(\underline{x}))\exp(\frac{2\pi i}{p}T_{J_{F_{p^{r}}/F_{p}}}\overline{f}(\underline{x}))$

where $\overline{h}$ is a polynomial with coefficients in $F_{p^{r}},$
$\overline{f}$ and $\overline{g}$ are rational func-

tions with coefficients in $F_{p^{r}}$ with no pole where $\overline{h}$ vanishes, and where $\chi$ is
a character of $F_{p}^{\times}$ . This includes Gauss, Jacobi and Kloosterman sums as
special cases. In fact, it is known, after the classical works of Gauss, Artin,
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Weil, that counting solutions of systems of polynomial equations in finite
fields amounts to the computation of exponential sums $S_{r}(\overline{f}, \overline{g}, \overline{h})$ . They
are studied via their generating series, the so-called L-series:

$L(\overline{f}, \overline{g}, \overline{h};t)=\exp(\sum_{r\geq 1}S_{r}(\overline{f}, \overline{g},\overline{h})\frac{t^{r}}{r})$ .

Dwork’s methods, refined by P. Robba and others, allow to tackle the ques-
tions of the rationality of $L$ , its degree, and of the functional equation relat-
ing $L(\overline{f}, \overline{g}, \overline{h};t)$ to $L(\overline{f}, \overline{g}, \overline{h};\frac{1}{p^{r}t})$ . In the one-dimensional case, the solution
is elementary and follows the pattern sketched in 2.6.4. Namely [CR94]:

(i) One considers liftings $f,$ $g,$
$h$ of $\overline{f},$

$\overline{g},$

$\overline{h}$ in characteristic zero, and one
introduces the affinoid set $S$ defined by $|h|=1$ . One sets $F=$
$g(z)^{1/p-1}\exp(\pi f(z))$ . Then $F^{\prime}/F$ is a rational function, and one

shows that the differential operator $\frac{d}{dz}+\frac{F^{\prime}}{F}$ has an index in $\mathcal{H}^{\uparrow}(S)$

(in a slightly generalized sense, and which can be computed thanks to
the work of Robba). This is the crucial point. Hence the cohomology
spaces of the de Rham complex: $\Omega^{0}=F\mathcal{H}^{\uparrow}(S)\rightarrow\Omega^{1}=F\mathcal{H}^{\uparrow}(S)dz$

are finite-dimensional over $\mathbb{C}_{p}$ .
(ii) One observes that $E:=F^{\phi-id}(i.e. E(z)=F(z^{p})/F(z))$ is an element

of $\mathcal{H}\dagger(S)$ . This allows to define two endomorphisms of the de Rham
complex by setting:

$\phi^{0}$ (F. $g$ ) $=FEg^{\phi},$ $\phi^{1}$ (Fgdz) $=FE\phi^{\prime}g^{\phi}dz$ (with $\phi^{\prime}(z)=pz^{p-1}$ );

$\psi^{0}$ (F. $g$ ) $(z)=F(z)\sum_{\phi(t)=z}\frac{g(t)}{E(t)},$
$\psi^{1}$ (Fgdz) $=\sum_{\phi(t)=z}\frac{g(t)}{E(t)\phi(t)}$ .

One has $\psi^{*}\circ\phi^{*}=p$ . id. In particular, the operators $H^{i}(\psi^{*}),$ $i=0,1$ ,
are invertible on the cohomology spaces. The same argument as in
2.6.4 shows that $\psi^{i}$ is nuclear on $\Omega^{i}$ . In particular, it has a trace.

(iii) Polynomial approximation allows to prove the trace formula:

$tr(\psi^{1})-tr(\psi^{0})=tr(H^{1}(\psi^{*}))-tr(H^{0}(\psi^{*}))=S_{r}(\overline{f}, \overline{g},\overline{h})$ .

It follows that

$L(\overline{f}, \overline{g}, \overline{h};t)=\frac{\det(id-tH^{1}(\psi^{*}))}{\det(id-tH^{0}(\psi^{*}))}$

This is a rational function since the cohomology is finite-dimensional.
Moreover, since the $H^{i}(\psi^{*})$ are invertible, the computation of its de-

gree amounts to the computation of the index of $\frac{d}{dz}+\frac{F^{\prime}}{F}$ (the com-
putation of the dimension of $H^{0},0$ or 1, being essentially trivial).

(iv) The functional equation follows from a topological (dual theory” in
which the transpose of $\phi$ and $\psi$ play the roles of $\psi$ and $\phi$ respectively.
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Let us remark at last that this method has an archimedean analogue in
the so-called thermodynamic formalism –in dimension one. The analogy
is especially striking in the presentation of D. Mayer [May91]: exponen-
tial sums correspond to “partition functions”, $L$ to the Ruelle zeta-function,
Frobenius to the “shift”, Dwork’s operator $\phi^{*}$ to the “transfer operator” (or
Ising-Perron-Robenius-Ruelle operator) and is given by a (composition op-
erator” (loc. cit. 7.2.2), its nuclearity is established by the same argument,
and the trace formula has the same form (loc. cit. 7.17).

In view of this close analogy, one could dream of an archimedean proof
of the rationality of Weil zeta functions, parallel to Dwork’s p-adic proof...
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3. The tale of $F(\frac{1}{2}, \frac{1}{2},1;z)$ .

ABSTRACT: This is a detailed concrete illustration of the somewhat abstract non-
archimedean notions discussed in the previous section. We refer to [Yo97] (and
[Hu87, 9]) for an excellent account of the archimedean tale of $F(\frac{1}{2}, \frac{1}{2},1;z)$ .

3.1. Dwork’s hypergeometric function.

Let us consider the Legendre pencil of elliptic curves with parameter
$z\neq 0,1,$ $\infty$ , given in inhomogeneous coordinates by

$y^{2}=x(x-1)(x-z)$ .
As a scheme over $\mathbb{Z}[z, \frac{1}{2z(1-z)}]$ , we denote it by $X$ . The first de Rham co-
homology module $H_{dR}^{1}(X)$ is free of rank 2 over $\mathbb{Z}[z, \frac{1}{2z(1-z)}]$ , and endowed
with the Gauss-Manin connection $\nabla$ (derivation with respect to the param-
eter $z$ ); it is generated by the class $\omega$ of $\frac{dx}{y}$ and $\nabla(\frac{d}{dz})(\omega)$ . The canonical
symplectic form (cup-product) satisfies $\langle\omega, \nabla(\frac{d}{dz})(\omega)\rangle=\frac{2}{z(z-1)}$ The Gauss-
Manin connection is given by the hypergeometric differential equation with
parameters $(\frac{1}{2}, \frac{1}{2},1)$

$\nabla(L_{\frac{1}{2},\frac{1}{2},1})(\omega)=0$ , with $L_{\frac{1}{2},\frac{1}{2},1}=z(1-z)\frac{d^{2}}{dz^{2}}+(1-2z)\frac{d}{dz}-\frac{1}{4}$ .

Let $p$ be an odd prime. The Hasse invariant is the polynomial $ h_{p}(z)\in$

$\mathbb{Z}[\frac{1}{2}][z]$ obtained by truncating the hypergeometric series $(-1)^{\epsilon_{\frac{-1}{2}}}F(\frac{1}{2}, \frac{1}{2},1;z)$

at order $L^{-\underline{1}}2$ It enjoys the following well-known properties:
$\bullet$ functional equations: $h_{p}(z)\equiv(-1)^{\epsilon_{\frac{-1}{2}}}h_{p}(1-z)\equiv z^{E_{\frac{-1}{2}}}h_{p}(\frac{1}{z})(mod p)$ ,
$\bullet$ for any $\overline{\zeta}\in\overline{F}_{p}\backslash \{0,1\}$ , one has $h_{p}(\overline{\zeta})=0$ if and only if the elliptic

curve $X_{\overline{\zeta}}$ over $\overline{F}_{p}$ is supersingular, $i.e$ . has no geometric point of order
$p$ , cf. [Hu87, 13.3].

The roots of $h_{p}(mod p)$ are distinct and lie in $F_{p^{2}}$ : we denote them by
$\overline{\zeta}_{1},$

$\ldots$ , $\overline{\zeta}_{(p-1)/2}$ , and choose liftings $\zeta_{1},$

$\ldots$ , $\zeta_{(p-1)/2}$ in $\overline{\mathbb{Z}_{p}^{ur}}$ .
Non-supersingular elliptic curves are called ordinary; they have exactly

$p$ geometric points of order $p$ .
Dwork’s hypergeometric function is

$f_{p}(z)=(-1)^{\frac{p-1}{2}}\frac{F(\frac{1}{2},\frac{1}{2},1;z)}{F(\frac{1}{2},\frac{1}{2},1;z^{p})}\in \mathbb{Z}[\frac{1}{2}][[z]]$ .

One has $f_{p}(z)\equiv h_{p}(z)(mod p)$ . Dwork discovered that although the
p-adic radius of convergence of this series is exactly 1, $f_{p}$ does extend to a p-
adic analytic function on $A^{1}$ depr’ived from the supersingular disks $D(\zeta_{j}, 1^{-})$ ;
we denote this extension by the same symbol $f_{p}$ .

In terms of this function, he obtained in 1958 his famous p-adic formula
for the number of rational points of an ordinary elliptic curve defined over
$F_{p^{n}}$ :
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for any $s_{0}\in F_{p},,$
$,$

$s_{0}\neq 0,1,$ $\overline{\zeta}_{j}$ , the number of $F_{p^{\tau\iota}}$ -points of $X_{s_{0}}$ is

1– $\prod_{k=0}^{n-1}f_{p}(\omega^{p^{k}})+p^{n}(1-\prod_{k=0}^{n-1}f_{p}(\omega^{p^{k}})^{-1})$ ,

where $\omega$ denotes the unique $(p^{n}-1)th$ root of unity $\equiv s_{0}(mod p)$ .

3.2. The ordinary unit-root F-crystal.

On completing $\overline{\mathbb{Z}_{p}^{ur}}[z, \frac{1}{2z(1-z)}]$ p-adically, $(H_{dR}^{1}(X), \nabla)$ gives rise to an
overconvergent F-crystal $(\mathcal{H}, \nabla, F)$ . We do not discuss here the construction
of the Frobenius structure, which is a general p-adic feature of Gauss-Manin
connections. In fact, various analytic or geometric constructions are avail-
able, but in our present case, the Frobenius structure can be made quite
explicit, cf. [Dw69].

Let us introduce a few notations:
$\bullet$ $\mathcal{R}=the$ p-adic completion of $\overline{\mathbb{Z}_{p}^{ur}}[z, \frac{1}{h_{p}(z)}]$

$\bullet$ $\mathcal{R}_{ord}=the$ p-adic completion of $\overline{\mathbb{Z}_{p}^{ur}}[z, \frac{1}{z(1-z)h_{\rho}(z)}]$

$\bullet$ $S=M(\mathcal{R}[\frac{1}{p}])=D(0,1^{+})\backslash (\cup D(\zeta_{j}, 1^{-}))$

$\bullet$ $S_{ord}=M(\mathcal{R}_{ord}[\frac{1}{p}])=S\backslash (D(0,1^{-})\cup D(1,1^{-}))$ is the ordinary locus
$\bullet$ $S_{nss}=A^{1}\backslash (\cup D(\zeta_{j}, 1^{-}))$ is the non-supersingular locus.

The restriction of $(\mathcal{H}, \nabla, F)$ to the ordinary locus possesses a unique non-
zero unit-root sub-F-crystal $(\mathcal{U}, \nabla, F)$ . This unit-root F-crystal extends
over $S$ (and even over $S_{nss}$ as an F-isocrystal with logarithmic singularity
at $\infty$ in the sense of [Scho85]) cf. also [OOO]; we use the same symbol for
the extension. It can be described along the following lines:

$\bullet$
$\mathcal{U}$ is the $\underline{uniq}ue$ rank-one horizontal submodule of $\mathcal{H}$ .

$\bullet$ $\mathcal{U}\otimes_{\mathcal{R}_{ord}}\mathcal{R}_{ord}^{et}=(\mathcal{H}\otimes_{\mathcal{R}_{ord}}\overline{\mathcal{R}_{ord}^{et}})^{\nabla}\otimes_{\overline{\mathbb{Z}_{p}^{ur}}}\overline{\mathcal{R}_{ord}^{et}}$ . (Here $\overline{\mathcal{R}_{ord}^{et}}$ is defined as
in 2.3.2.)

$\bullet$ for any ordinary $s_{0}\in\underline{\overline{F}_{p},}$ the associated p-adic representation of
$\pi_{1}^{alg}(S_{0}, s_{0})$ is $(\mathcal{H}\otimes_{\mathcal{R}_{o\underline{rd}}}\mathcal{R}_{ord}^{ct})^{\nabla=0,F(\phi)=id}\simeq H_{et}^{1}(X_{s_{0}}, \mathbb{Z}_{p})$ .

$\bullet$ For any $u\in(\mathcal{U}\otimes_{\mathcal{R}}\mathcal{R}^{et})^{\nabla}$ , “the” image of $u$ in $\mathcal{O}(D(s_{0},1^{-}))$ is a
bounded solution of the differential operator $L_{\frac{1}{2},\frac{1}{2},1}$ on $D_{\mathbb{C}_{\rho}}(s_{0},1^{-})$ ;
this also characterizes $\mathcal{U}$ .

$\bullet$

$\mathcal{U}|_{D(0,1^{-})}^{\nabla}$ has a canonical $\mathbb{Z}$-submodule, which can be identified with
$H^{1}((X_{z})^{an}, \mathbb{Z})$ for any $z\in D(0,1^{-})\backslash \{0\}$ ; for a generator $u$ , one has

{ $\omega,$
$ u\rangle$ $=\sqrt{-1}F(\frac{1}{2},$ $\frac{1}{2},1;z)$ in $\mathcal{O}(D(0,1^{-}))$

( $\sqrt{-1}$ appears as residue of $\frac{dx}{y}|_{z=0}$ at $x=0$), cf. [And90]. Similarly,
$\mathcal{U}|_{D(1,1^{-})}^{\nabla}$ has a canonical $\mathbb{Z}$-submodule; for a generator $u$ , one has

$\langle\omega, u\rangle=\sqrt{-1}F(\frac{1}{2},$ $\frac{1}{2},1;1-z)$ in $\mathcal{O}(D(1,1^{-}))$ .
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The existence of the unit-root F-crystal $(\mathcal{U}, \nabla, F)$ over $\mathcal{R}$ then amounts to
the two function-theoretic facts:

dlog $F(\frac{1}{2},$ $\frac{1}{2},1;z)$ and $f_{p}(z)=(\sqrt{-1}F(\frac{1}{2},$ $\frac{1}{2},1;z))^{1-\sigma}$

both extend to units in $\mathcal{R}$ .
The inertia at any supersingular point maps onto Aut $H_{et}^{1}(X_{s_{0}}, \mathbb{Z}_{p})\simeq \mathbb{Z}_{p}^{\times}$

(J.-I. Igusa, cf. $e.g$ . $[vdP87]$ ). The inertia at $\infty$ acts as $\pm 1$ . According to
Crew’s criterion, the F-crystal $(\mathcal{U}, \nabla, F)$ is not overconvergent.

We refer to [SPM91] for a study in the same spirit of more general
hypergeometric equations and other differential equations “coming from ge-
ometry”

3.3. Analytic continuation: a pr\’ecis.

3.3.1. We have seen that Dwork’s hypergeometric function extends to an
analytic function on the whole of $S_{nss}$ . Some of its special values have been
computed. Let us mention [Ko79], [You92]

(i) $f_{p}(1)=1$ (Koblitz),
(ii) if $p\equiv 1(mod 4)$ ,

$f_{p}(-1)=(-1)^{\frac{p-1}{4}}\frac{\Gamma_{p}(1/4)^{2}}{\Gamma_{p}(1/2)}=\frac{\Gamma_{p}(1/4)}{\Gamma_{p}(1/2)\Gamma_{p}(3/4)}$ (Young).

(the condition $p\equiv 1(mod 4)$ ensures that $-1$ is an ordinary modulus);
$f_{p}(-1)$ is a Gauss integer (Van Hamme).

3.3.2. We have seen that the logarithmic derivative dlog $F(\frac{1}{2}, \frac{1}{2},1;z)$ also
extends to an analytic function on $S_{nss}$ . It satisfies the functional equations

dlog $F(\frac{1}{2},$ $\frac{1}{2},1;z)=$ -dlog $F(\frac{1}{2},$ $\frac{1}{2},1;1-z)$

$=-\frac{1}{2z}-\frac{1}{z^{2}}$ dlog $F(\frac{1}{2},$ $\frac{1}{2},1;\frac{1}{z})$ .

3.3.3. Let us turn to the more subtle case of $F(\frac{1}{2}, \frac{1}{2},1;z)$ itself. The general
discussion of 2.3.3/2.4.3 applies to the ordinary unit-root F-crystal and tells
us that $F(\frac{1}{2}, \frac{1}{2},1;z)$ admits an extension to any unit disk $D(s, 1^{-})\subset S$ ,
analytic in that disk, and well-defined up to multiplication by a unit in $\mathbb{Z}_{p}$ . In
other words, $F(\frac{1}{2}, \frac{1}{2},1;z)$ is the specialization of an element (in fact, a unit)
of $\mathcal{R}_{nss}^{et}$ . It may be suggestive to denote such an element by $F(\frac{1}{2}, \frac{1}{2},1;\eta)$ ,
where $\eta$ stands for the Berkovich generic point of $S$ corresponding to the
sup-norm).
In $D(1,1^{-})$ , this extension is $F(\frac{1}{2}, \frac{1}{2},1;1-z)$ (up to $\mathbb{Z}_{p}^{\times}$ ). The refined
structure of F-isocrystal with logarithmic singularity at $\infty$ allows to con-
struct an extension of $F(\frac{1}{2}, \frac{1}{2},1;z)^{2}$ to $D(\infty, 1^{-})$ , analytic in that disk: it is
$\frac{1}{z}F(\frac{1}{2}, \frac{1}{2},1;\frac{1}{z})^{2}$ (up to $\mathbb{Z}_{p}^{\times}$ ); notice the square, which comes from the exponent
$\pm 1/2$ at $\infty$ .
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3.3.4. The Krasner representation of $f_{p}(z)$ and dlog $F(\frac{1}{2}, \frac{1}{2},1;z)$ as uniform
limits of rational functions without pole (nor zero) on $S$ can be made explicit:
for $n>0$ , let $g_{n}$ be the polynomial obtained by truncating $F(\frac{1}{2}, \frac{1}{2},1;z)$

at order $p^{n}-1$ ; then $f_{p}(z)=\lim(-1)^{\frac{p-1}{2}}\frac{g_{n+1}(z)}{g_{n}(z^{\rho})}$ and dlog $F(\frac{1}{2}, \frac{1}{2},1;z)=$

$\lim$ dlog $g_{n}(z)$ [Dw69, 3.4]. On the other hand, $F(\frac{1}{2}, \frac{1}{2},1;z)$ cannot be ap-
proximated by rational functions on $S$ , but $L_{\frac{1}{2},\frac{1}{2},1}(g_{n})$ tends uniformly to $0$

on $D(0,1^{+})$ [Ro75]. One has

$\sqrt{-1}F(\frac{1}{2},$ $\frac{1}{2},1;z)\equiv(h_{p}(z))^{-\frac{1}{p-1}}$ $(mod p)$

but we do not know any explicit representation of $F(\frac{1}{2}, \frac{1}{2},1;z)$ as a p-adic
limit of algebraic functions on $S$ .

3.3.5. Any solution of $L_{\frac{1}{2},\frac{1}{2},1}$ on an ordinary disk $D(s, 1^{-})$ , which is not
proportional to (the extended) $F(\frac{1}{2}, \frac{1}{2},1;z)$ , is not bounded in $D_{\mathbb{C}_{p}}(s, 1^{-})$ ,
hence does not extend to neighboring disks in any reasonable analytic sense.
In spite of this obstruction to continuation, one can nevertheless “jump from
disk to disk” (see figure 7) and extend them as locally analytic functions, in

FIGURE 7

the following way.
For each $\overline{\zeta}\in S_{0}\backslash \{0,1\}$ , there is a canonical lifting $\zeta_{can}\in \mathbb{Z}_{p}^{ur}$ : namely,

the modulus $\zeta_{can}$ for which $X_{\zeta_{can}}$ has complex multiplication by the quadratic
order End $(X_{\overline{\zeta}})$ . Let us fix a branch of $F(\frac{1}{2}, \frac{1}{2},1;z)$ in $D(\zeta_{can}, 1^{-}),$ $i.e$ . an
analytic solution $F_{\overline{\zeta}}\in\overline{\mathbb{Z}_{p}^{ur}}[[z-\zeta_{can}]]$ of $L_{\frac{1}{2},\frac{1}{2},1}$ in $D(\zeta_{can}, 1^{-})$ which is a
specialization of $F(\frac{1}{2}, \frac{1}{2},1;\eta)\in(\overline{\mathcal{R}^{et}})^{\times}$ (any other branch is of the form $c.F_{\overline{\zeta}}$

with $c\in \mathbb{Z}_{p}^{\times}$ . Let $u_{\overline{\zeta}}\in \mathcal{U}|_{D(\zeta_{can},1^{-})}^{\nabla}$ be defined by

\langle $\omega,$
$u_{\overline{\zeta}}$} $=\sqrt{-1}F_{\overline{\zeta}}$ in $\mathcal{O}(D(\zeta_{can}, 1^{-}))$ .

On the other hand, let $v_{\overline{\zeta}}\in \mathcal{M}|_{D(\zeta_{can},1^{-})}^{\nabla}$ be defined by

$\sqrt{-1}F_{\overline{\zeta}}(\zeta_{can}).v_{\overline{\zeta}}=\omega(\zeta_{can})$ , so that $\langle v_{\overline{\zeta}}, u_{\overline{\zeta}}\rangle=1$ .

Then $\langle\omega, v_{\overline{\zeta}}\rangle$ defines an unbounded solution of $L_{\frac{1}{2},\frac{1}{2},1}$ in $D_{\mathbb{C}_{\rho}}(\zeta_{can}, 1^{-})$ .
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3.3.6. Finally, in any supersingular disk $D_{\mathbb{C}_{p}}((i, 1^{-})$ , there is no non-zero
bounded solution of $L_{\frac{1}{2},\frac{1}{2},1}$ .

3.4. The Tate and Dwork-Serre-Tate parameters.

3.4.1. It turns out that the formal group $\hat{X}-$ of $X$ over $\overline{\mathcal{R}_{ord}^{et}}$ is isomor-
$(\mathcal{R}_{ord}^{et})$

phic to $\hat{G}_{m}$ (cf. [Ka81], $[vdM89,$ $I]$ ). Any such isomorphism transforms the
canonical differential $\omega_{can}$ on $\hat{G}_{m}$ into $\Theta\frac{dx}{y}$ , for a suitable element $\Theta\in\overline{\mathcal{R}_{ord}^{et}}$

well-defined up to multiplication by an element of $\mathbb{Z}_{p}^{\times}$ . It is possible to
arrange normalizations so that the following relation hold (loc. cit.):

$\Theta=(\sqrt{-1}F(\frac{1}{2},$ $\frac{1}{2},1;\eta))^{-1}$

Let $\zeta\in\overline{\mathbb{Z}_{p}^{ur}},$ $\zeta\neq 0,1$ , be a point of $S$ . By specialization, the element $\Theta(\zeta)\in$

$-\times$

$\mathbb{Z}_{p}^{ur}$ links up $\omega_{can}$ and $\frac{dx}{y}$ on $\hat{X}_{\zeta}\simeq\hat{G}_{m}$ ; it is called the Tate pammeter or
Tate constant of $X_{\zeta}$ . It is well-defined up to multiplication by an element of

$\mathbb{Z}_{p}^{\times}$ .
This is the p-adic analogue of the following familiar situation: let us

consider the two-step uniformization of a complex elliptic curve

$\mathbb{C}\exp(\frac{2i\pi}{\rightarrow\omega_{1}}\cdot)\mathbb{C}^{\times}\rightarrow \mathbb{C}^{\times}/q^{\mathbb{Z}}\simeq \mathbb{C}/(\omega_{1}\mathbb{Z}+\omega_{2}\mathbb{Z})$

with $q=\exp(2i\pi_{\overline{\omega}_{1}}^{\omega_{4}})$ . If the elliptic curve is $X_{\zeta}$ with $\zeta\in D(0,1^{-})\backslash \{0\}$ , and
if $\omega_{1}$ and $\omega_{2}$ are fundamental periods of $\frac{dx}{y}(\omega_{1}$ being the period attached
to the vanishing cycle), then $\frac{2i\pi}{\omega_{1}}$ appears as the analogue of $\Theta(\zeta)$ , and it is
well-known that $\omega_{1}/2i\pi=iF(\frac{1}{2}, \frac{1}{2},1;\zeta)$ (up to sign).

3.4.2. We come back to the symplectic basis $v_{\overline{\zeta}},$ $u_{\overline{\zeta}}$ and write $\frac{1}{\sqrt{-1}F_{\overline{\zeta}}}\omega$ in the
form $v_{\overline{\zeta}}+\tau u_{\overline{\zeta}}$ , where

$\tau=-\frac{\langle\omega,v_{\overline{\zeta}}\rangle}{\langle\omega,u_{\overline{\zeta}}\}}\in(z-\zeta_{can})\overline{\mathbb{Q}_{p}^{ur}}[[z-\zeta_{can}]]$ .

This defines an unbounded element of $\mathcal{O}(D_{\mathbb{C}_{p}}(\zeta_{can}, 1^{-}))$ (notice that another
choice of $u_{\overline{\zeta}}$ multiplies $\tau$ by an element of $\mathbb{Z}_{p}^{\times}$ ).
Applying $\nabla(d/dz)$ to $\frac{1}{\sqrt{-1}F_{\overline{\zeta}}}\omega=v_{\overline{\zeta}}+\tau u_{\overline{\zeta}}$ and using $\langle\omega, \nabla(\frac{d}{dz})(\omega)\rangle=\frac{2}{z(z-1)}$ ,

one derives:

$\frac{d\tau}{dz}=\frac{2}{z(1-z)F\frac{2}{\zeta}}$

The exponential of $\tau$ is called the Dwork-Serre-Tate pammeter. We shall
recall later its meaning as a parameter for p-divisible groups. It satisfies the
following remarkable integrality property [Dw69, Th.4], [Ka73]

$q=e^{\tau}\in 1+(z-\zeta_{can})\overline{\mathbb{Z}_{p}^{ur}}[[z-\zeta_{can}]]$ .
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This suggests the following question: does $q$ arise from an element of $\overline{\mathcal{R}_{ord}^{ct}}$ ?
The answer is $no$ . This may be seen by considering $q(mod p)$ : the for-
mula for $d\tau/dz=d\log(q)$ shows that $q(mod p)$ is non-constant (dlog $(q)\equiv$

$\frac{2(h_{p})^{2/p-1}}{z(z-1)}(mod p))$ . If $q$ comes from an element of $\overline{\mathcal{R}_{ord}^{ct}}$ which specializes to
1 at every canonical modulus $\zeta_{can}$ , one has $q\equiv 1(mod p)$ , a contradiction.

3.5. Complex counterpart: the supersingular locus.

Let us now revert things and try to understand the complex situation
from the p-adic viewpoint!

Let $D^{+}$ and $D^{-}$ be the (complex-conjugate) connected components of
$D(\frac{1}{2}, \frac{3}{2})-\backslash (D ( \frac{-1}{4}, \frac{3}{4})+\cup D(\frac{5}{4}, \frac{3}{4}+))$ . Let $S$ be the complement of $D^{+}\cup$

$D^{-}$ in the complex plane. Note that $S$ is closed and arcwise connected,
and that $\pi_{1}^{top}(S)$ is a free group with two generators $\gamma^{+},$

$\gamma^{-}$ (see figure 8).
Its interior $S^{o}$ has three connected (simply-connected) components $D_{0}=$

$D$ $(\frac{-1}{4}, \frac{3}{4})-,$ $D_{1}=D(\frac{5}{4}, \frac{3}{4})-$ and $D_{\infty}$ .

$D_{\infty}$

FIGURE 8

Let $\mathcal{O}(S)$ denote the ring of continuous functions on $S$ analytic in $S^{o}$ .
According to Mergelyan’s theorem [Mer54], they are uniform limits of ra-
tional functions on every compact $K\subset S$ such that $\pi_{0}(\mathbb{C}\backslash K, 0)$ is finite.
This ring is however not stable under differentiation, and we consider its
differential closure $\mathcal{R}$ in $\mathcal{O}(S^{o})$ . We also consider the integral closure $\mathcal{R}^{ct}$

of $\mathcal{R}$ in $\mathcal{O}(S^{o})$ . Every element of $\mathcal{R}^{et}$ defines a multivalued locally analytic
function on $S,$ $i.e$ . an analytic germ which may be analytically continued
along any path of $S$ not ending at $-1,$ $\frac{1}{2},2$ , in such a way that the germ at
the other extremity is analytic.

For instance, $F(\frac{1}{2}, \frac{1}{2},1;z)$ may be viewed as an element of $\mathcal{R}^{et}$ : in fact,
$F(\frac{1}{2}, \frac{1}{2},1;z)^{4}\in \mathcal{O}(S)$ . An explicit continuous extension of $F(\frac{1}{2}, \frac{1}{2} , 1; z)^{4}$ from
$D_{0}$ to $S$ is given by $F(\frac{1}{2}, \frac{1}{2},1;1-z)^{4}$ in $D_{1},$ $\overline{z}^{2}1F(\frac{1}{2}, \frac{1}{2},1;\frac{1}{z})^{4}$ in $D_{\infty}$ , and the
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values $\frac{\Gamma(1/4)^{8}}{64\pi^{6}}$ $\frac{\Gamma(1/4)^{8}}{16\pi^{6}}$ $\frac{\Gamma(1/4)^{8}}{64\pi^{6}}$ at $-1,$ $\frac{1}{2}$ $2$ respectively [Car61, p.189]. On
the other hand, note that dlog $F(\frac{1}{2}, \frac{1}{2},1;z)$ is in $\mathcal{R}$ but not in $\mathcal{O}(S)$ .

The de Rham cohomology of the Legendre elliptic pencil gives rise to an
$\mathcal{R}[1/z(1-z)]$ -module with connection $(\mathcal{H}, \nabla)$ . It admits a unique non-zero
horizontal submodule $\mathcal{U}$ which extends to $S$ ; we use the same symbol for the
extension. It can be described along the following lines:

$\bullet$ For any $u\in(\mathcal{U}\otimes_{\mathcal{R}}\mathcal{R}^{et})^{\nabla}$ , “the” image of $u$ in $\mathcal{O}(D_{j})$ ($j=0,1$ , or $\infty$ ),
is a bounded solution of the differential operator $L_{\frac{1}{2},\frac{1}{2},1}$ .

$\bullet \mathcal{U}\otimes_{\mathcal{R}}\mathcal{R}^{et}[\frac{1}{z(1-z)}]=(\mathcal{H}\otimes_{\mathcal{R}[\frac{1}{z(1-z)}]}\mathcal{R}^{et}[\frac{1}{z(1-z)}])^{\nabla}\otimes_{\mathbb{C}}\mathcal{R}^{et}[\frac{1}{z(1-z)}]$ .
$\bullet$

$(\mathcal{H}\otimes_{\mathcal{R}[\frac{1}{z(1-z)}]}\mathcal{R}^{et}[\frac{1}{z(1-z)}])^{\nabla}$ has a canonical $\mathbb{Z}[i]$ -submodule $(i=\sqrt{-1})$

which can be locally identified with the part $H^{1}(X_{z}^{an}, \mathbb{Z}[i])_{isotriv}$ of
$H^{1}(X_{z}^{an}, \mathbb{Z}[i])$ where $\pi_{1}^{top}(S, z)$ acts through a finite group.

$\bullet$ $\mathcal{U}|_{D_{0}}^{\nabla}$ has a canonical $\mathbb{Z}$-submodule, which can be identified with the
part of $H^{1}(X_{z}^{an}, \mathbb{Z}[i])_{isotriv}$ invariant under complex conjugation. One
of the two generators $u$ satisfies

$\langle\omega,$ $\frac{u}{2i\pi}\rangle=iF(\frac{1}{2},$ $\frac{1}{2},1;z)$ in $\mathcal{O}(D_{0})$ .

Similarly, $\mathcal{U}|_{D_{1}}^{\nabla}$ has a canonical $\mathbb{Z}$-submodule, and for one of the two
generators $u$ , one has

$\{\omega,$ $\frac{u}{2i\pi}\}=iF(\frac{1}{2},$ $\frac{1}{2},1;1-z)$ in $\mathcal{O}(D_{1})$ .

Note the occurrence of $ 2i\pi$ in these formulas.
$\bullet$ The local monodromy $\gamma^{+}$ around $D^{+}$ maps onto

Aut $H^{1}(X_{s}, \mathbb{Z}[i])_{isotriv}\simeq \mathbb{Z}/4\mathbb{Z}$ .

Same for $\gamma^{-}$ The local monodromy at $\infty$ acts $as\pm 1$ .
$\bullet$ In $D^{+}$ and in $D^{-}$ , there is no non-zero bounded analytic solution of

$L_{\frac{1}{2},\frac{1}{2},1}$ .

This is quite similar to \S \S 3.2, \S \S 3.3, $D^{+}\cup D^{-}$ playing the role of the
supersingular locus. This picture is assuredly very different from the tradi-
tional view of monodromy for $F(\frac{1}{2}, \frac{1}{2},1;z)$ , and may shed some light upon
the divergences between the topological and algebraic approaches to analytic
continuation in the p-adic case (here of course, the coexistence of the two
pictures is explained by the fact that the principle of unique continuation
(Definition 1.1.1) fails for the sheaf of germs of continuous functions on $S$ ,
analytic on $S^{o}$ ).

The tale of $F(\frac{1}{2}, \frac{1}{2},1;z)$ is not finished: we have not yet explored the
islands of supersingularity. We shall reach them in \S \S 5.2.
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4. Abelian periods as algebraic integrals.

ABSTRACT: We discuss periods of abelian varieties. Their p-adic counterparts
live naturally in Fontaine’s ring $B_{dR}$ . We present Colmez’ construction of abelian
p-adic periods, which relies on p-adic integration and reflects as closely as possible
the complex picture. We also deal with the concrete evaluation of elliptic p-adic
periods.

4.1. Over $\mathbb{C}$ .
Let $A$ be an abelian variety over $\mathbb{C}$ of dimension $g$ , and $\omega_{1},$

$\ldots,$ $\omega_{g}$ a basis
of invariant differential forms. Let $\Lambda$ be the image of the map

$\iota$ : $H_{1}(A(\mathbb{C}), \mathbb{Z})\rightarrow \mathbb{C}^{9}$ ; $\gamma\mapsto(\int_{\gamma}\omega_{i})_{i}$

One has a canonical isomorphism

$\mathbb{C}^{g}/\Lambda\rightarrow^{\sim}A(\mathbb{C})$ .

Let us denote the projection $\mathbb{C}^{g}\rightarrow A(\mathbb{C})$ by $pr$ . For any differential one-
form $\omega$ of the second kind, one can consider a primitive function $f_{\omega}$ of $pr^{*}\omega$ ;
it is meromorphic (univalued) on $\mathbb{C}^{g}$ , because all residues of $\omega$ are $0$ by
definition, and it is unique up to addition of an arbitrary constant. Then
$f_{\omega}(z_{1}+z_{2}+z_{3})-f_{\omega}(z_{1}+z_{2})-f_{\omega}(z_{1}+z_{3})+f_{\omega}(z_{1})$ defines a periodic function
on $(\mathbb{C}^{g})^{3}$ , hence induces a meromorphic function on $A(\mathbb{C})^{3}$ , which we denote
by $F_{\omega}^{3}$ . Note that the function $F_{\omega}^{3}$ can also be defined purely algebraically
by the following conditions:

$\bullet F_{\omega}^{3}(z_{1},0, z_{3})=F_{\omega}^{3}(z_{1}, z_{2},0)=0$ .
$\bullet dF_{\omega}^{3}=m_{123}^{*}\omega-m_{12}^{*}\omega-m_{13}^{*}\omega+m_{1}^{*}\omega$ ,

where $m_{123}$ is the addition $A^{3}\rightarrow A$ sending $(z_{1}, z_{2}, z_{3})$ to $z_{1}+Z_{2}+z_{3}$ , etc.
For $\gamma\in H_{1}(A(\mathbb{C}), \mathbb{Z})$ the value $f_{\omega}(i(\gamma)+a)-f_{\omega}(a)$ does not depend on
$a\in \mathbb{C}^{g}$ (a being chosen so that $i(\gamma)+a$ and $a$ are not poles of $f_{\omega}$ ), and one
has the equality

$ f_{\omega}(i(\gamma)+a)-f_{\omega}(a)=\int\omega$ ,

which describes the period pairing
$H_{dR}^{1}(A)\times H_{1}(A(\mathbb{C}), \mathbb{Z})\rightarrow \mathbb{C}$

(or equivalently, the isomorphism $H_{dR}^{1}(A)\otimes \mathbb{C}\rightarrow\sim H_{B}^{1}(A(\mathbb{C}),$ $\mathbb{Z})\otimes \mathbb{C}.$ ) Here
$H_{dR}^{1}(A)$ denotes the first algebmic de Rham cohomology group of $A$ , which
coincides with the group of differential forms of the second kind modulo
exact forms.

4.2. Over the $p-$adics; prolegomena

If we try to translate this into the p-adic setting, one has to face at once
the problem: what is integmtion over a loop?
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4.2.1. One tentative way is via Berkovich’s theory, where loops do exist. Let
us for instance consider the Legendre elliptic curve $X_{z}$ . Viewed as a p-adic
space, for $z\in D(0,1^{-})\backslash \{0\}(p\neq 2)$ , this is a Tate curve: $X_{z}^{an}\simeq \mathbb{C}_{p}^{\times}/q^{\mathbb{Z}}$ .
The canonical differential $\omega_{can}$ inherited from $\mathbb{C}_{p}^{\times}$ and $\frac{dx}{y}$ are proportional:

$\omega_{can}=\Theta(z).\frac{dx}{y}$ with $1/\Theta(z)=\sqrt{-1}F(\frac{1}{2},$ $\frac{1}{2},1;z)$ .

The basic element $\gamma$ of $H_{1}(X_{z}^{an}, \mathbb{Z})$ can be identified with the generator
$q$ of $q^{\mathbb{Z}}$ , and it is natural to set $\int_{\gamma}\omega_{can}=\int_{0}^{q}\frac{dt}{t}=\log(q)$ (choosing a branch
of the p-adic logarithm). One then has

$\omega_{2}^{(p)}$ $;=\int_{\gamma}^{(p)}\frac{dx}{y}=\sqrt{-1}F(\frac{1}{2},$ $\frac{1}{2},1;z)\log(q)$ .

This formula, as well as

$\sqrt{q}=\frac{z}{16}e^{F(,1,z)}R^{11}F^{*}(1z)$

$(withF^{*}(\frac{1}{2},$ $\frac{1}{2},1;z)=4\sum_{n>0}\left(\begin{array}{l}2n\\n\end{array}\right)(\sum_{1}^{2n}\frac{(-1)^{m-1}}{m})(\frac{z}{16}I^{n})$

are the same as those encountered in the complex situation. This leaves
the open problem: how can one construct “the other period” $\omega_{1}^{(p)},$ $i.e$ . the
p-adic analogue of $\omega_{1}=2\pi\sqrt{-1}F(\frac{1}{2}, \frac{1}{2},1;z)$ , since the corresponding loop is
missing?

4.2.2. One simple tentative answer would be to replace the topological
covering $\mathbb{C}_{p}^{\times}\rightarrow X_{z}^{an}$ by other \’etale coverings. Natural candidates for this
purpose are \’etale coverings of order $p^{n}$ , especially those corresponding to
torsion points of order $p^{n}$ which are close to the origin. Let $\zeta_{p^{n}}$ be a $p^{n}$th root
of unity in $\mathbb{C}_{p}^{\times}$ and let $x_{n}$ be its image in $X_{z}^{an}$ . In the corresponding complex
case, taking $\zeta_{p^{n}}=e^{2i\pi/p^{n}}$ would give the right answer $p^{n}\int_{0}^{x_{n}}\frac{dx}{y}=\omega_{1}$ . In
the p-adic case, we get instead $p^{n}\int_{0}^{x_{n}}\frac{dx}{y}=0$ . Indeed, already in the case
of the multiplicative group, we have $p^{n}\int_{1}^{\zeta_{p^{n}}}\frac{dt}{t}=p^{n}\log(1+(\zeta_{p^{n}}-1))=0$

p-adically: in other words, $ 2i\pi$ “is missing”.

4.2.3 (Riemann-Shnirelman sums.). It is appropriate to evoke here Shnirel-
man’s approach to integration over loops, indeed one of the earliest works in
p-adic analysis. This is an adaptation to the p-adic case of the computation
of integrals by Riemann sums

$\frac{1}{2i\pi}\int_{C(a,r)}f(z)dz=\int_{0}^{1}f(a+re^{2i\pi\theta})re^{2i\pi\theta}d\theta$
$=\lim_{m\rightarrow\infty}\frac{1}{m}\sum_{\zeta^{m}=1}f(a+r\zeta)r\zeta$ .
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Now, let $a,$ $r\in \mathbb{C}_{p}$ and let $f$ be a $\mathbb{C}_{p}$-valued function on the circumference
$C(a, |r|)$ . Let us denote the limit

$\lim_{m\rightarrow\infty}\frac{1}{m}\sum_{\zeta^{m}=1}f(a+r\zeta).r\zeta$

symbolically by $\int_{C(a,r)}f(z)dz$ . For better convergence, Shnirelman actually
restricted the limit to those integers $m$ prime to $p$ . In the case of an analytic
function $f$ on $C(a, |r|)$ , this restriction is unnecessary (one can even take
$m=p^{k})$ and one has the following analogue of Cauchy’s theorem of residues
(cf. [Ko80, app.])

Lemma 4.2.4. Assume that $f$ is a meromorphic function on $D(a, |r|^{+})$ ,
and that its poles $z_{1},$ $\ldots,$

$z_{\nu}$ all lie in $D(a, |r|^{-})$ . Then $\int_{C(a,r)}f(z)dz$ exists
and equals $\sum{\rm Res}_{z_{1}}f$ .

In the (trivial) special case $f=1/z$ , we get $\int_{C(0,1)}dz/z=1$ (not $0$ as in
4.2.2!), but $ 2i\pi$ is still missing.

4.2.5. Actually, there is no way to remedy this if one remains in $\mathbb{C}_{p}$ . A deeper
reason for that, due to Tate, is that while $Ga1(\overline{\mathbb{Q}}_{p}/\mathbb{Q}_{p})$ acts on the inverse
system of $p^{n}$th roots of unity $(n\geq 0)$ through the cyclotomic character $\chi$ ,
there is no element $(2i\pi)_{p}$ in $\mathbb{C}_{p}$ such that $g((2i\pi)_{p})=\chi(g)(2i\pi)_{p}$ for every
$g\in Ga1(\overline{\mathbb{Q}}_{p}/\mathbb{Q}_{p})$ .
It turns out that $(2i\pi)_{p}$ is in a sense the only “missing piece” : there is a
good theory of p-adic periods (due to J.M. Fontaine, W. Messing [FM87],
G. Faltings) which lives in some $\mathbb{Q}_{p}$-algebra isomorphic to $\mathbb{C}_{p}[[(2i\pi)_{p}]]$ , and
which we shall now describe in the case of abelian varieties.

4.3. The Fontaine ring $B_{dR}$ .
4.3.1. The ring R. Let $\mathcal{O}_{\mathbb{C}_{p}}$ be the ring of integers of $\mathbb{C}_{p},$ $i.e$ . $\{x\in \mathbb{C}_{p}$ ,
$|x|_{p}\leq 1\}$ . Let us set

$R:=$
$\lim_{\leftarrow,x\mapsto x^{\rho}}\mathcal{O}_{\mathbb{C}_{\rho}}$

,

$i.e$ . $R$ is the set of all series $(x^{(n)})_{n\in N}$ such that $(x^{(n+1)})^{p}=x^{(n)}$ . This is in
fact a ring of characteristic $p$ with

$((x^{(n)})+(y^{(n)}))^{(n)}=\lim_{m\rightarrow\infty}(x^{(n+m)}+y^{(n+m)})^{p^{m}}$

and

$((x^{(n)})\cdot(y^{(n)}))^{(n)}=x^{(n)}\cdot y^{(n)}$ .

Let $W(R)$ be the Witt ring with coefficients in R. for $x\in R$ , let $[x]$ denote
the Teichm\"uller representative in $W(R)$ .
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4.3.2. The ring $B_{dR}^{+}$ . To any element $(x_{0}, x_{1}, \ldots, x_{n}, . . .)$ $=\sum p^{n}[x_{n}^{p^{-n}}]$ in
$W(R)$ , we associate

$\theta((x_{n}))=\sum_{n=0}^{\infty}p^{n}x_{n}^{(n)}$ .

This defines a surjective homomorphism $\theta:W(R)\rightarrow \mathcal{O}_{\mathbb{C}_{p}}$ , whose kernel is
principal. It extends to a homomorphism $\theta$ : $W(R)[\frac{1}{p}]\rightarrow \mathbb{C}_{p}$ , and $B_{dR}^{+}$ is
defined as the $(Ker\theta)$ -adic completion

$B_{dR}^{+}$ $:=\varliminf W(R)[\frac{1}{p}]/(Ker\theta)^{n}$ .

By continuity, $\theta$ further extends to a homomorphism $\theta:B_{dR}^{+}\rightarrow \mathbb{C}_{p}$ . Then
$B_{dR}^{+}$ is a complete discrete valuation ring with maximal ideal $Ker\theta$ and
residue field $\mathbb{C}_{p}$ . Moreover, the Galois group $Ga1(\overline{\mathbb{Q}_{p}}/\mathbb{Q}_{p})$ acts on $B_{dR}^{+}$ in
such a way that $\theta$ is equivariant with respect to this Galois action,

$GrB_{dR}^{+}\simeq\bigoplus_{r\in \mathbb{N}}\mathbb{C}_{p}(r)$
,

where $Gr$ refers to the filtration by the powers of $Ker\theta$ , and where the
${}^{t}twist’(r)$ indicates that the $Ga1(\overline{\mathbb{Q}_{p}}/\mathbb{Q}_{p})$-action is twisted by the rth power
of the cyclotomic character.

It turns out that $B_{dR}^{+}$ contains naturally a copy of $\overline{\mathbb{Q}}_{p}$ (which $\theta$ maps
isomorphically to $\overline{\mathbb{Q}}_{p}\subset \mathbb{C}_{p}$ ). More precisely, P. Colmez [Co94] has shown
that $B_{dR}^{+}$ is the separated completion of $\overline{\mathbb{Q}}_{p}$ with respect to the topology

defined by taking $(p^{n}o_{p}\frac{(k}{\mathbb{Q}}$

)
$)_{n,k}$ as a basis of neighborhoods of $0$ , where $\mathcal{O}\frac{(k}{\mathbb{Q}}p$

)

denotes the subring of $\overline{\mathbb{Z}}_{p}$ defined inductively as

$\mathcal{O}\frac{(0}{\mathbb{Q}}p)=\overline{\mathbb{Z}}_{p},$ $\mathcal{O}\frac{(k}{\mathbb{Q}}p$

)
$=Ker(d:\mathcal{O}_{\frac{(k}{\mathbb{Q}}}^{-1)}p\rightarrow\Omega_{\mathcal{O}_{\frac{(}{\mathbb{Q}}/\mathbb{Z}_{p}}^{k-1)}}^{1}\otimes\overline{\mathbb{Z}}_{p})p$

It is easy to deduce from this description that $B_{dR}^{+}$ contains $\overline{\mathbb{Z}_{p}^{ur}}$ .

4.3.3. Some remarkable elements of $B_{dR}^{+}$ . For any $x\in B_{dR}^{+}$ such that
$|\theta(x)-1|_{p}<1$ , the series $\log(x)=-\sum_{n>0}\frac{(1-x)^{n}}{n}$ converges in $B_{dR}^{+}$ . In
particular, let $\underline{z}=$

$($ . . . , $z^{(1)},$ $z^{(0)})$ be an element of $R$ such that $z^{(0)}\in\overline{\mathbb{Z}}_{p}$

or $\overline{\mathbb{Z}_{p}^{ur}}$ . Then one can define the element Logg $=\log(\frac{z^{(0)}}{uz})^{(4)}$ . Note that
$\theta({\rm Log}\underline{z})=0$ .

In the special case where each $z^{(n)}=\zeta_{p^{n}}$ is a primitive $p^{n}$th root of
unity, ${\rm Log}(\ldots, \zeta_{p^{n}}, \ldots, 1)$ is the element $(2i\pi)_{p}$ we were looking for. This
is a generator of $Ker\theta$ , and $Ga1(\overline{\mathbb{Q}}_{p}/\mathbb{Q}_{p})$ acts on it through the cyclotomic
character; in other words, we have a $Ga1(\overline{\mathbb{Q}}_{p}/\mathbb{Q}_{p})$ -equivariant isomorphism

$GrB_{dR}^{+}\simeq \mathbb{C}_{p}[(2i\pi)_{p}]$ .

(4)
$we$ follow Colmez’ sign convention; Fontaine’s LOG is log–Log.
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Note that another choice of $($ . . . , $\zeta_{p^{n}},$
$\ldots$ , 1 $)$ changes $(2i\pi)_{p}$ by multipli-

cation by a unit in $\mathbb{Z}_{p}$ . Similarly, up to addition of an element of $(2i\pi)_{p}\mathbb{Z}_{p}$ ,
${\rm Log}\underline{z}$ depends only on $z^{(0)}$ ; it is sometimes simply denoted by ${\rm Log} z^{(0)}$ .

By choosing a double embedding of $\overline{\mathbb{Q}}$ into $\mathbb{C}$ and $\overline{\mathbb{Q}}_{p}$ , one obtains a
canonical element $(2i\pi)_{p}$ , attached to the sequence $(. . . , e^{2i\pi/p^{n}}, \ldots, 1)$ . Sim-
ilarly, if $z^{(0)}\in\overline{\mathbb{Q}}$ , then ${\rm Log} z^{(0)}$ is well-defined up to addition of an element
of $(2i\pi)_{p}\mathbb{Z}$ .

4.4. Colmez’ construction of abelian p-adic periods.

Let $A$ be an abelian variety defined over a p-adic local field $K$ . The
Fontaine-Messing p-adic period pairing is a pairing

$\int^{(p)}$ : $H_{dR}^{1}(A)\otimes T_{p}(A_{\overline{K}})\rightarrow B_{dR}^{+}$

where $T_{p}(A_{\overline{K}})=\lim_{\leftarrow}Ker([p^{n}] : A_{\overline{K}}\rightarrow A_{\overline{K}})$ is the Tate module (a $\mathbb{Z}_{p}$-module
of rank 2 $\dim$ $A$ with $Ga1(\overline{K}/K)$ -action).

We present Colmez’ construction, which is parallel to 4.1.
Let $\omega$ be a differential form on $A$ of second kind, and $F_{\omega}^{3}$ the function

on $A^{3}$ determined as in 4.1. Then:
Proposition 4.4.1 ([Co92, 4.1]). There exists a locally meromorphic func-
tion $F_{\omega}$ on $A(B_{dR})$ , unique up to constant, such that:

(1) $ dF_{\omega}=\omega$ .
(2) $F_{\omega}(z_{1}+z_{2}+z_{3})-F_{\omega}(z_{1}+z_{2})-F_{\omega}(z_{1}+z_{3})+F_{\omega}(z_{1})=F_{\omega}^{3}(z_{1}, z_{2}, z_{3})$ .
(3) If $\omega=dF$ , then $F_{\omega}=F$ .

Moreover, if $\alpha:A_{1}\rightarrow A_{2}$ is a morphism of abelian varieties and $\omega$ is a
differential form of second kind on $A_{2}$ , then $F_{\alpha\omega}*=\alpha^{*}F_{\omega}$ .

Note that the function $F_{\omega}$ is not multivalued; this fact comes from the
following lemma specific to the p-adic case:
Lemma 4.4.2 ([Co91, 4.3]). For any neighborhood $V$ of $0$ in $A(B_{dR}^{+})$ , there
exists an open subgroup $U$ of $A(B_{dR}^{+})$ contained in $V$ such that $A(B_{dR}^{+})/U$ is
a torsion group.

Take a proper model $A$ of $A$ over $O_{K}$ . Let $\gamma=(\cdots$ $u_{n},$ $\cdots$ $u_{2},$ $u_{1}=$

$0)\in T_{p}(A_{\overline{K}})$ with each $u_{n}\in A(\mathcal{O}_{\mathbb{C}_{p}})$ , and choose $a_{n}\in A(B_{dR}^{+})$ so that
neither $a_{n}$ nor $a_{n}+A^{\wedge}u_{n}$ is close to a pole of $\omega$ . For suitable liftings $ u_{n}\wedge\in$

$A(B_{dR}^{+})$ of $u_{n}(i.e. \theta(u_{n}\wedge)=u_{n})$ , the following holds.
Theorem 4.4.3 ([Co91, 5.2]). The limit

$\oint_{\gamma}^{(p)}\omega;=\lim_{n\rightarrow\infty}p^{n}(F_{\omega}(a_{n})-F_{\omega}(a_{n}+u))$

converges to an element in $B_{dR}^{+}$ , and it defines a non degenemte bilinear
pairing

$\oint^{(p)}$ : $H_{dR}^{1}(A)\otimes T_{p}(A_{\overline{K}})\rightarrow B_{dR}^{+}$ ,
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compatible with the Galois action and the filtmtions.
Remark 4.4.4. On composing the period pairing $\int^{(p)}$ with $\theta$ , one gets a
bilinear map $H_{dR}^{1}(A)\otimes T_{p}(A_{\overline{K}})\rightarrow \mathbb{C}_{p}$ which sends $\Omega^{1}(A)\subset H_{dR}^{1}(A)$ to
0. This degenerate pairing describes (half’ of the (Hodge)-Tate-Raynaud
decomposition

$H_{et}^{1}(A_{\overline{K}}, \mathbb{Q}_{p})\otimes \mathbb{C}_{p}\simeq\Omega^{1}(A)\otimes \mathbb{C}_{p}(-1)\oplus H^{1}(\mathcal{O}(A))\otimes \mathbb{C}_{p}$

of $Ga1(\overline{K}/K)$ -modules.
4.5. Some computations of elliptic p-adic periods.

4.5.1. Tate elliptic curves. In this case, $T_{p}(A_{\overline{K}})$ sits in an exact sequence
$0\rightarrow \mathbb{Z}_{p}(1)\rightarrow T_{p}(A_{\overline{K}})\rightarrow \mathbb{Z}_{p}\rightarrow 0$ .

Let us take for $\gamma_{1}$ the image of $(2i\pi)_{p}\in \mathbb{Z}_{p}(1)$ in $T_{p}(A_{\overline{K}})$ , and for $\gamma_{2}$ any
lifting of $1\in \mathbb{Z}_{p}$ . For concreteness, let $A=X_{z}$ be in Legendre form as in
4.2.1. Let $\eta\in H_{dR}^{1}$ satisfy { $\omega,$

$\eta\rangle$ $=1(e.g. \frac{xdx}{4y})$ . We set $\omega_{i}^{(p)}=\int_{\gamma_{i}}^{(p)}\omega,$ $\eta_{i}^{(p)}=$

$\int_{\gamma_{i}}^{(p)}\eta$ . Then one has the “Legendre relation”

$\omega_{1}^{(p)}\eta_{2}^{(p)}-\eta_{1}^{(p)}\omega_{2}^{(p)}=(2i\pi)_{p}$

and the formulas (cf. [And90], [And96])

$\frac{\omega_{1}^{(p)}}{(2i\pi)_{p}}=\sqrt{-1}F(\frac{1}{2},$ $\frac{1}{2},1;z)=1/\Theta(z),$ $\omega_{2}^{(p)}=\sqrt{-1}F(\frac{1}{2},$ $\frac{1}{2},1;z){\rm Log} q$

(compare with the complex case in 3.4.1, and also [Car61, p.406]). Note
that the “period” we found in 4.2.1 by integration along the Berkovich loop
is not a Fontaine-Messing period (there is a $\log$ instead of ${\rm Log}$).

4.5.2. Elliptic curves with ordinary reduction. We now assume that $z\in \mathbb{Z}_{p}^{ur}$

and that $A=X_{z}$ has good ordinary reduction (with the notation of \S \S 3.1,
this means that $z(1-z)h_{p}(z)\neq 0)$ . Again, $T_{p}(A_{\overline{\mathbb{Q}}_{p}})$ sits in an exact sequence
( $[Ser68a$ , A.2.4])

$0\rightarrow \mathbb{Z}_{p}\gamma_{1}\rightarrow T_{p}(A_{\overline{\mathbb{Q}}_{p}})\rightarrow T_{p}$ (A $mod p$) $\rightarrow 0$ .

Then one still has the formula $\Theta(z)=\frac{(2i\pi)_{p}}{\omega_{1}^{(p)}}$ where $\Theta(z)\in\overline{\mathbb{Z}_{p}^{ur}}$ is the Tate
constant discussed in 3.4.1 (compare [And90], $[dSh87,4.3]$ ). In particu-

lar, $\frac{\omega_{1}^{(p)}}{(2i\pi)_{p}}$ is given by the evaluation at $z$ of “the” extension of $F(\frac{1}{2}, \frac{1}{2},1; ?)$

discussed in \S \S 3.4.
On the other hand, let $\gamma_{2}\in T_{p}(A_{\overline{\mathbb{Q}}_{p}})$ be such that the Weil pairing $\langle\gamma_{1},$

$\gamma_{2}$ } $\in$

$\mathbb{Z}_{p}(1)=\mathbb{Z}_{p}(2i\pi)_{p}$ is the chosen generator $(2i\pi)_{p}$ . Then one has the “Le-
gendre relation”, and $\omega_{2}^{(p)}=\omega_{1}^{(p)}\cdot\frac{{\rm Log} q}{(2i\pi)_{p}}$ where $q\in\overline{\mathbb{Z}_{p}^{ur}}$ denotes here the
so-called Dwork(-Serre-Tate) pammeter of $A$ introduced in 3.4.2. If $q=1$ ,
$i.e$ . when $A$ is the canonical lifting of $A(mod p)$ , then one can choose $\gamma_{2}$

such the corresponding value of ${\rm Log} 1$ is $0$ , and then $\omega_{2}^{(p)}=0$ .
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4.6. Periods of CM elliptic curves and values of the Gamma func-
tion.

4.6.1. The case of an elliptic curve $A$ with supersingular reduction is more
delicate. If $A$ does not have complex multiplication (CM), one can show,
using [$Ser68a$ , A.2.2], that the four basic periods $\omega_{1}^{(p)},$ $\omega_{2}^{(p)},$ $\eta_{1}^{(p)},$ $\eta_{2}^{(p)}$ are
algebraically independent over $\overline{\mathbb{Q}}_{p}$ , so that one cannot expect “formulas” for
the periods.

On the other hand, it is well-known that the complex periods of an el-
liptic curve with complex multiplication can be expressed in terms of special
values of the $\Gamma$ function. So one may ask for a p-adic analogue involving $\Gamma_{p}$

(cf. 2.6). Such a formula has been found by A. Ogus, actually not for the
periods, but for the action of Frobenius.

4.6.2. The Lerch-Chowla-Selberg-Ogus formulas. Let $A$ be an elliptic curve
with complex multiplication by $\mathbb{Q}(\sqrt{-d})$ over $\overline{\mathbb{Q}}(-d$ denotes a fundamental
discriminant). Let $\epsilon=(^{\underline{-d}})$ be the quadratic character $(\mathbb{Z}/d)^{\times}\rightarrow \mathbb{Z}/2$ in-
duced by the embedding $\mathbb{Q}(\sqrt{-d})\subset \mathbb{Q}(\zeta_{d}),$ $h=the$ class number of $\mathbb{Q}(\sqrt{-d})$ ,
and $w=the$ number of roots of unity in $\mathbb{Q}(\sqrt{-d})$ . For any $u\in(\mathbb{Z}/d)^{\times}$ , we
denote by $\{\frac{u}{d}\}$ the unique rational number in ] $0,1$ ] such that $d\{\frac{u}{d}\}\equiv u$ .

Let $v$ be a place of $\overline{\mathbb{Q}}$ of residue characteristic $p$ , with associated embed-
ding $\overline{\mathbb{Q}}\subset\overline{\mathbb{Q}}_{p}$ . To any lifting $\psi_{v}$ to $Ga1(\overline{\mathbb{Q}}_{p}/\mathbb{Q}_{p})$ of the Frobenius element in
$Ga1(\mathbb{Q}_{p}^{ur}/\mathbb{Q}_{p})$ , one attaches a $\psi_{v}$-linear endomorphism $\Psi_{v}$ of $H_{dR}^{1}(A/\overline{\mathbb{Q}})\otimes\overline{\mathbb{Q}}_{p}$

(5). On the other hand, it is well-known that $A$ has supersingular reduction
at $v$ if and only if $\epsilon(p)=-1$ or $0$ .

Theorem 4.6.3. There exists a basis $(\omega, \eta)$ of $H_{dR}^{1}(A/\overline{\mathbb{Q}})$ of eigenvectors
under the action of $\sqrt{-d}$ ($\omega$ being the class of a regular differential), and an
element $\gamma\in H_{1}(A(\mathbb{C}), \mathbb{Q})$ , such that

$\int_{\gamma}\omega=\sqrt{2i\pi}$ $\prod$ $(\Gamma\langle\frac{u}{d}\})^{\epsilon(u)w/4h}$

$u\in(\mathbb{Z}/d)^{\times}$

$\int_{\gamma}\eta=\sqrt{2i\pi}$ $\prod$ $(\Gamma\langle-\frac{u}{d}\rangle)^{\epsilon(u)w/4h}$

$u\in(\mathbb{Z}/d)^{\times}$

and such that for every place of $\overline{\mathbb{Q}}$ of residue characteristic $p$ satisfying
$\epsilon(p)=-1$ ,

$\Psi_{v}^{*}(\omega)=p\prod_{u\in(\mathbb{Z}/d)^{\times}}(\Gamma_{p}\langle p\frac{u}{d}\})^{-\epsilon(u)w/4h}\eta$

$\Psi_{v}^{*}(\eta)=\prod_{u\in(\mathbb{Z}/d)^{\times}}(\Gamma_{p}\{-p\frac{u}{d}\rangle)^{-\epsilon(u)w/4h}\omega$

(5)
$using$ its crystalline interpretation, cf. $[BeO83,4]$ ) we refer to [Ch198] for a nice

recent survey of crystalline cohomology.
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up to multiplication by some root of unity.

This is a concatenation of [O90, 3.15, 3.9], taking into account the formula
2 $hd/w=-\sum_{1}^{d}\epsilon(u)u$ , cf. [H81, VII]).

Remark. The last two formulas extend to the case when $\epsilon(p)=+1$ if one
interchanges $\omega$ and $\eta$ in the right hand sides (for $d=4$ and $p\equiv 1(mod 4)$ ,
this is compatible with Young’s formula in \S \S 3.3, since $\Gamma_{p}(1/2)^{4}=1$ , and
with the formula $F(\frac{1}{2}, \frac{1}{2},1;-1)=\frac{1}{2}\frac{\Gamma(1/4)}{\Gamma(1/2)\Gamma(3/4)}.)$ .

In that case, the expressions

$\prod(\Gamma_{p}\langle p\frac{u}{d}\})^{-\epsilon(u)w/4h},$ $\prod(\Gamma_{p}\langle p\frac{u}{d}\})^{-\epsilon(u)w/4h}$

are algebraic numbers: indeed, let $r$ be the order of the subgroup $\langle p\rangle$ of
$(\mathbb{Z}/d)^{\times}$ generated by $p$ , and $k=p^{r}-1/d$ ; then

$\prod_{u\in(\mathbb{Z}/d)^{\times}}(\Gamma_{p}\langle p\frac{u}{d}\})^{-\epsilon(u)}=\prod_{w\in(\mathbb{Z}/d)^{\times}/\langle p\rangle}\prod_{1}^{r}\Gamma_{p}(\frac{p^{i}wk}{p^{r}-1})^{-\epsilon(w)}$

and one concludes by the Gross-Koblitz formula.

4.6.4. The mmified case. In the ramified case, $i.e$ . when $\epsilon(p)=0$ , there
is again an analogue of the last two formulas for $p\neq 2$ . This relies on
Coleman’s computation of the Frobenius matrix of Fermat curves of degree
divisible by $p$ –which have arboreal reduction modulo $p$ . The result takes
the same form as in the case $\epsilon(p)=-1:\Psi$ is now attached to an element
$\psi$ of degree one in the Weil group ( $i.e$ . a lifting of the Frobenius element in
$Ga1(\overline{\mathbb{Q}}_{p}/\mathbb{Q}_{p}))$ , the expressions $p\frac{u}{d}$ have to be replaced by $\psi\frac{u}{d}$ , and $\Gamma_{p}$ must
be extended to $\mathbb{Q}_{p}$ [Co190, 6.5].

Coleman’s complicated expressions have been simplified by F. Urfels in
his thesis (Strasbourg, 1998; unpublished). If one passes to the Iwasawa
logarithm $\log_{p}$ (at the cost of rational powers of $p$), the result is that one
should replace $\log_{p}\Gamma_{p}\langle\psi\frac{u}{d}$ } in Ogus’ formula by $G_{p}(\langle\psi\frac{u}{d}\})-G_{p}(\langle\frac{u}{d}\})$ , where
$G_{p}$ denotes Diamond’s LogGamma function

$G_{p}(x)=\lim_{m\rightarrow\infty}\frac{1}{p^{m}}\sum_{n=0,\ldots,p^{m}-1}(x+n)\log_{p}(x+n)-(x+n)$ .

Example. We take $p=3$ . Let $\mathbb{Q}[\sqrt{-3n}]$ be an imaginary quadratic field with
fundamental $discriminant-3n,$ $n$ prime to 3. Let $A$ be an elliptic curve with
complex multiplication by some order in $\mathbb{Q}[\sqrt{-3n}]$ .

Let $\psi$ be an element of the Weil group which acts by-l on $\mathbb{Q}_{3}/\mathbb{Z}_{3}\cong\mu_{3}\infty$ .
One has a formula $\Psi_{v}^{*}(\omega)=\kappa\eta$ with

$\log_{3}\kappa=-(\epsilon(u)w/4h)\sum_{u\in(\mathbb{Z}/3n)^{\times}}(G_{3}(\langle\psi\frac{u}{3n}\rangle)-G_{3}(\{\frac{u}{3n}\rangle))$
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We notice that for $u\in(\mathbb{Z}/3n)^{\times},$ $\epsilon(3n\{\psi\frac{u}{3n}\rangle)=-\epsilon(u)$ , whence

$\log_{3}\kappa=(w/2h)\sum_{u\in(\mathbb{Z}/3n)^{\times}}\epsilon(u)G_{3}(\langle\frac{u}{3n}\rangle)$
.

On the other hand, for $p=3$ , the Teichm\"uller character is nothing but
the Legendre symbol (;). Using this, the latter expression can be rewritten,
by the Ferrero-Greenberg formula (cf. [La90, chap. 17]), as

$\log_{3}\kappa=(w/2h).(L_{3}^{\prime}(0, \epsilon)+L_{3}(0, \epsilon)\log_{3}n)$

$=(w/2h).\sum_{v\in(\mathbb{Z}/n)^{\times}}(\frac{n}{v})\log_{3}\Gamma_{3}\langle\frac{v}{n}\rangle$
.

When $(\frac{n}{3})=1$ , then $L_{3}(0, \epsilon)=0$ and the Gross-Koblitz formula shows that
$L_{3}^{\prime}(0, \epsilon)=\sum(\frac{n}{v})\log_{3}$ F3 $\{\frac{v}{n}\}$ is the Iwasawa logarithm of an algebraic number
(a Gauss sum, cf. $loc$ . $cit.$ ), hence $\kappa\in\overline{\mathbb{Q}}$ .

$\frac{A}{\mathbb{Q}}.particularly$
simple case is $n=1$ : one finds $\log_{3}\kappa=0$ , thus $\kappa\in 3^{\mathbb{Q}}.\mu_{\infty}\subset$

For $n=8$ , a contrario, one has $(\frac{n}{3})=-11$ : one finds

$\log_{3}\kappa=(1/2)$ . $[\log_{3}$ F3 $\{\frac{1}{8}\rangle-\log_{3}$ F3 $\{\frac{3}{8}\rangle-\log_{3}$ F3 $\{\frac{5}{8}\rangle+\log_{3}$ F3 $\{\frac{7}{8}\rangle]=0$

by the functional equation of F3, so that again $\kappa\in 3^{\mathbb{Q}}.\mu_{\infty}\subset\overline{\mathbb{Q}}$ .

4.6.5. Colmez’ product formula. There is a natural extension of $|$ $|_{p}$ on $\overline{\mathbb{Q}}_{p}$

to $B_{dR}^{+}$ (however not as an absolute value), such that $|(2i\pi)_{p}|_{p}=p^{-\frac{1}{p-1}}$ cf.
[Co91].

Colmez has remarked that the logarithm of the product $|2i\pi|\prod_{p}|(2i\pi)_{p}|_{p}$

$=2\pi\prod_{p}p^{-\frac{1}{\rho-1}}$ is formally equal to $\log(2\pi)+\zeta^{\prime}(1)/\zeta(1)$ , a divergent sum
which can be renormalized using the functional equation of $\zeta$ : setting $\zeta^{\prime}(1)/\zeta(1)$

$=-\zeta^{\prime}(0)/\zeta(0)=-\log(2\pi)$ , the renormalized product is

$|2i\pi|\prod_{p}|(2i\pi)_{p}|_{p}=\prime 1$ .

He has given an amazing generalization of this product formula to periods
of CM elliptic curves and many other CM abelian varieties (loc. cit.).
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5. Periods as solutions of the Gauss-Manin connection.

ABSTRACT: The variation of the periods in a family of complex algebraic varieties
is controlled by the Picard-Fuchs differential equation. We discuss the p-adic
situation, present Dwork’s general viewpoint on p-adic periods. We then discuss
the question of the existence of an arithmetic structure on the space of solutions,
which would give an intrinsic meaning to the period modulo $\overline{\mathbb{Q}}^{x}$ . We present such
an arithmetic structure (analogous to the Betti lattices in the complex situation)
in the case of abelian varieties with either multiplicative reduction or supersingular
reduction. In the latter case, we relate the periods, in the presence of complex
multiplication, to special values of the p-adic Gamma function.

5.1. Stokes.

We come back to the basic question of the meaning of integmtion over
a loop, already discussed in \S \S 4.2. A different approach is based on the
Stokes lemma: integrating exact differentials on a loop gives zero. This is
the approach favored by K. Aomoto in the complex case and by B. Dwork
in the p-adic case.
5.1.1. In order to see how this idea can be implemented, let us consider the
Hankel expression for the gamma function

$\frac{1}{\Gamma(1-\alpha)}=\frac{1}{2i\pi}\int_{\gamma}x^{\alpha}e^{x}\frac{dx}{x}$

where $\gamma$ is the following loop based at $-\infty$ .

FIGURE 9

Stokes’ lemma suggests to attach to this integral the following complex
$x^{\alpha}e^{x}\mathcal{O}\rightarrow x^{\alpha}e^{x}\mathcal{O}xd/dx$

where $\mathcal{O}$ is a suitable ring of analytic functions. From the point of view of
index theory (Malgrange-Ramis), a natural choice is

$\mathcal{O}=\mathbb{C}[[x]]_{-1,1^{-}}=\{\sum_{n\geq 0}a_{n}x^{n}|\exists\kappa>0,$
$\exists r\in$ ] $0,1$ $[$ , $|a_{n}|\leq\kappa r^{n}/n!\}$

identified with the ring of entire functions of exponential order $O(e^{r|x|})$ for
some $r<1^{(6)}$ . Using the formula $x^{\alpha}e^{x}x^{k}=\frac{-1}{\alpha+k}x^{\alpha}e^{x}x^{k+1}+xd/dx(\frac{1}{\alpha+k}x^{\alpha}e^{x}x^{k})$ ,
a simple computation then shows that $H^{0}=0$ and that $H^{1}$ is of dimension
1; it is generated by $[\frac{1}{2i\pi}x^{\alpha}e^{x}]$ , whose integration along $\gamma$ gives $\frac{1}{\Gamma(1-\alpha)}$

(6)
$we$ use the traditional notation for rings of Gevrey series; the value $(-1,1^{-})$ of the

index is “characteristic”, $i.e$ . an extremal value for which $H^{1}$ is of dimension one.
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The p-adic analogue

$\mathbb{C}_{p}[[x]]_{-1,1^{-}}=\{\sum_{n\geq 0}a_{n}x^{n}|\exists\kappa>0,$
$\exists r\in$ ] $0,1$ $[$ , $|a_{n}|\leq\kappa r^{n}/|n!|_{p}\}$

is nothing but the ring of overconvergent analytic functions on $D(0, |\pi|_{p})$

(here $\pi$ is Dwork’s constant). By change of variable $z=\pi x$ , we thus recover
the complex $\lrcorner\iota I_{\alpha}^{\dagger}\rightarrow\Lambda f_{\alpha}^{\dagger}zd/dz$ of 2.6, where $\Gamma_{p}(\alpha)(=\pm\frac{1}{\Gamma_{p}(1-\alpha)})$ appeared.

5.1.2. This approach inspired by Stokes’ lemma is well-suited for studying
many kinds of hypergeometric functions (confluent or not). Basically, the
integral will satisfy difference equations with respect to the exponents $(\alpha$

in the previous example), and differential algebraically on parameters. In
the complex situation, one of the main problems is the construction of nice
loops (such as $\gamma$ ); this is the object of a so-called “topological intersection
theory” generalizing the usual Betti homology and period pairing. In the
p-adic case. the focus has been more on the construction and properties
of the Frobenius structure, in particular its analyticity with respect to the
exponents ( Boyarsky principle” [Dw83]).

5.1.3. When no exponential is involved and when the exponents are rational,
the integrand is algebraic; if it depends algebraically on parameters, the
period integral is a solution of a Gauss-Manin connection.

Let us say a few words about the classical case of $F(a, b, c;z)$ . We assume
that $a,$ $b,$ $c\in \mathbb{Z}_{p}$ , and that $c-a,$ $c-b,$ $b,$ $a$ all lie outside $\mathbb{Z}$ . We set

$f_{a,b,c,z}=x^{b}(1-x)^{c-b}(1-zx)^{-a}$

where, for simplicity, $z$ is limited to $|z(1-z)|=1$ . Let $Z$ be the affinoid
$D(0,1^{+})\backslash (D(0,1^{-})UD(1,1^{-})\cup D(1/z, 1^{-}))$ . The relevant complex is

$f_{a,b,c;z}\mathcal{H}^{\uparrow}(Z)\rightarrow f_{a,b,c;z}.\mathcal{H}^{\uparrow}(Z)xd/dx$ .

Its $H^{1}=H_{a,b,c}^{1}$ is of dimension 2; it is generated by $[f_{a,b,c;z}]$ and $[\frac{f_{a,b,c,z}}{1-x}]$ .
The Gauss-Manin connection is

$\nabla(\frac{d}{dz})(_{[\frac{f_{abcz}b.’ c;z}{1-x}]}^{[f_{a},’]})=(\frac{c--\frac{c}{za}}{1-z}$ $\frac{ac}{1-z}\frac{c-b}{+f_{-}})(_{[\frac{f_{abcz}b,’ c\cdot z)}{1-x}]}^{[f_{a},’]})$

cf. [Dw82, 3.1, 1.2]. The Frobenius structure relates $H_{a,b,c}^{1}$ to $H_{a,b,c}^{1},$ ,
where $a^{\prime},$ $b^{\prime},$

$c^{\prime}$ are the successors of $a,$ $b,$ $c$ respectively (cf. 2.6). For all these
hypergeometric series, there is a story similar to that of $F(\frac{1}{2}, \frac{1}{2},1;z)$ . In this
context, it is fruitful to combine the Boyarsky principle and the contiguity
relations.

5.1.4. In this sketch of Dwork’s approach, “periods” are just analytic solu-
tions of the Gauss-Manin connection. One can ask more: namely, one can
ask fora dual theory of p-adic cycles anda period pairing as in the complex
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case. At best, we can expect these “p-adic Betti lattices” to be locally
horizontal, functorial with respect to the endomorphisms of the geometric
fibres, and defined over $\mathbb{Z}$ or at least over some number field.

It turns out that this can be done in some cases, $e.g$ . in the cases of
abelian varieties with multiplicative reduction, and of abelian varieties with
supersingular reduction ([And90], [And95]). Let us outline the results.

5.2. p-adic Betti lattices for abelian varieties with multiplicative
reduction.

5.2.1. $Over\mathbb{C}$ . We first recall the (multiplicative uniformization” of complex
abelian varieties. Let $A$ be an abelian variety of dimension $g$ over $\mathbb{C}$ . One
has the analytic representation

$A(\mathbb{C})=T(\mathbb{C})/M$ ,

where $T$ is a torus of dimension $g$ , and $M$ is a lattice of rank $g$ . Set $M^{\prime}$
$:=$

$Hom(T, G_{m})(=M_{A}\vee)$ . Then we have the exact sequence
$0\rightarrow 2i\pi M^{J\vee}\rightarrow\Lambda\rightarrow M\rightarrow 0$ ,

where $\Lambda$ is the period lattice (of rank $2g$ ), and this sequence splits by choos-
ing a branch of $log$ . The inclusion $M^{c}-T$ defines a pairing $M\times M^{\prime}\rightarrow \mathbb{C}^{\times}$ .
A polarization, on the other hand, induces $M\rightarrow M^{\prime}$ . These data give rise
to the pairing (”multiplicative period”)

$q=(q_{ij}):M\otimes M\rightarrow \mathbb{C}^{\times}$

and $-\log|q|$ is a scalar product on $M_{\mathbb{R}}$ .

5.2.2. Over the p-adics. Let $K$ be a p-adic local field and $A$ an abelian
variety over $K$ having (split) multiplicative reduction. One has a similar
analytic representation $[Mu72a]$

$A(K)=T(K)/M$

Set again $M^{\prime}$ $:=Hom(T, G_{m})$ . We have the following identifications
$M\simeq H_{1}(A^{rig}, \mathbb{Z})$ and $M^{\prime}\simeq H_{1}(A^{\vee rig}, \mathbb{Z})$ ,

where $A^{rig}$ denotes the associated rigid analytic variety over $K$ to $A$ . Then,
just as in the complex case, one can construct a natural exact sequence:

$0\rightarrow(2i\pi)_{p}M^{\prime\vee}\rightarrow\Lambda\rightarrow M\rightarrow 0$ ,

split by the choice of a branch of the p-adic logarithm $\log_{p}$ , and a non-
degenerate pairing

$\int^{p}$ : $H_{dR}^{1}(A)\times\Lambda\rightarrow K[(2i\pi)_{p}]$ .

(7) $Dwork$ has developed a “dual theory” and a pairing given by residues, which play
somehow the role of “p-adic cycles” (cf. [Ro86, 5]); however, this dual theory is an
avatar of de Rham cohomology with proper supports and does not enjoy the properties of
discreteness and horizontality that we are looking for.
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(The construction involves one-motives and Frobenius [And90]). Restricted
to $(2i\pi)_{p}M^{\prime\vee}$ which is in a canonical way a subgroup of $T_{p}(A_{\overline{K}})$ , this pairing
coincides with the Fontaine-Messing pairing.

5.2.3. Degenemting abelian pencils. Let $\mathcal{A}\rightarrow A^{1}\backslash \{0, \zeta_{1}, \ldots, \zeta_{r}\}$ be a pencil
of polarized abelian varieties defined over a number field $k$ . We consider an
element $\omega$ of the relative $H_{dR}^{1}$ and its associated Picard-Fuchs differential
equation $\mathcal{L}\omega=0$ . We assume that the connected component of identity of
the special fibre at $0$ of the Neron model of $\mathcal{A}$ is a split torus $T$ over $k$ . The
dual abelian pencil then has the same property, with a torus $T^{\prime}$ . We set
$M=Hom(T^{\prime}, G_{m}),$ $M^{\prime}=Hom(T, G_{m})$ .

Let us fix $k\llcorner_{\rightarrow}\mathbb{C}$ . The constant subsheaf of $R_{1}(f_{\mathbb{C}}^{an})_{*}\mathbb{Z}$ in the neigh-
borhood of $0$ identifies with $2i\pi\Lambda I^{\prime v}$ : its fibre at any $z(\neq 0, \zeta_{i})$ is the lat-
tice $2i\pi\Lambda I_{z}^{J}$ attached to $\mathcal{A}_{z}(5.2.1)$ . Similarly for $\Lambda I$ . On the other hand,
the choice of a branch of $\log$ identifies $H_{lB}(\mathcal{A}_{z}, \mathbb{Z})\simeq(R_{1}(f_{\mathbb{C}}^{an})_{*}\mathbb{Z})_{z}$ with
$\Lambda=2i\pi M_{z}^{;v}\oplus M_{z}$ . Then for any $\gamma\in 2i\pi\Lambda I^{J},$ $y(z)=\frac{1}{2i\pi}\int_{\gamma_{z}}\omega_{z}$ is a solution
of $\mathcal{L}$ in $k[[z]]$ .

More generally, for any $\gamma^{*}\in\Lambda,$ $\frac{1}{2i\pi}\int_{\gamma_{z}^{*}}\omega_{z}$ is a solution of the Picard-
Fuchs differential equation of the form $y(z)\frac{\log az^{n}}{2i\pi}+y^{*}(z)$ , with $y^{*}(z)\in k[[z]]$ ,
$a\in k,$ $n\in \mathbb{Z}$ . (In the case of the Legendre pencil, we have already met this
situation with $y(z)=iF(\frac{1}{2}, \frac{1}{2},1;z),$ $y^{*}(z)=2F^{*}(\frac{1}{2}, \frac{1}{2},1;z),$ $a=2^{-8},$ $n=2$ ).

Let now fix an embedding $k\rightarrow K\subset \mathbb{C}_{p}$ . For any $z\neq 0$ close enough to
$0,$ $M$ and $M^{\prime}$ identify respectively with the lattices $M_{z},$ $\Lambda I_{z}^{\prime}$ attached to $\mathcal{A}_{z}$

(5.2.2), and the choice of a determination of the p-adic logarithm identifies
$\Lambda$ with $\Lambda_{z}$ . It turns out that the p-adic pairing $\int^{p}$ of 5.2.2 extends to a
horizontal pairing over a punctured disk around $0$ , which is given by the
“same” formula as in the complex case

$\frac{1}{(2i\pi)_{p}}\int_{\gamma_{z}^{*}}^{p}\omega_{z}=y(z)\frac{\log_{p}az^{n}}{(2i\pi)_{p}}+y^{*}(z)$ ,

where $y(z),$ $y^{*}(z)$ are the same $fom\iota al$ series as above, evaluated p-adically
(loc. cit.). The computation of 4.2.1 can be considered as a special case.
This is also closely related to the work of T. Ichikawa on “universal periods”
for Mumford curves [Ic97].

5.2.4. Relation to the Fontaine-Messing periods. Since the restriction of
$\int^{p}$ to $(2i\pi)_{p}M_{z}^{\prime v}\subset T_{p}(\mathcal{A}_{z,\overline{K}})$ is the Fontaine-Messing pairing, we obtain
$(2i\pi)_{p}y(z)$ as a Fontaine-Messing period of $\mathcal{A}_{z}$ . More generally, $y(z){\rm Log}_{p}az^{n}+$

$(2i\pi)_{p}y^{*}(z)$ appears as a period ( ${\rm Log}$ instead of $\log$ ). We conclude that in
this degenerating case, the Fontaine-Messing periods behave relatively well
with respect to the Gauss-Manin connection. A similar observation applies
to the pairing composed with $\theta$ (Hodge-Tate periods).
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5.3. p-adic Betti lattices for abelian varieties with supersingular
reduction.

5.3.1. Any supersingular abelian variety over $\overline{F}_{p}$ is isogenous to a power of
a supersingular elliptic curve. We refer to [Wa69, 4] for a detailed study of
supersingular elliptic curves over finite fields (including the classification of
isogeny classes and isomorphism classes, refining Deuring’s classical work),
and to $[LiO98]$ for the higher dimensional case. Let us simply recall a few
basic facts:

$\bullet$ there is exactly one $\overline{F}_{p}$-isogeny class of supersingular elliptic curves.
$\bullet$ If $A_{0}$ is any supersingular elliptic curve over $F_{p^{n}}$ , then $\mathcal{D}$

$:=End(A_{0})_{\overline{F}_{p}}$

is a maximal order in a quaternion algebra over $\mathbb{Q}$ , ramified exactly
at $p,$ $\infty$ ; we set $D=\mathcal{D}_{\mathbb{Q}}$ .

$\bullet$ $A_{0}$ is $\overline{F}_{p}$-isomorphic (but not necessarily $F_{p^{n}}$ -isomorphic) to an elliptic
curve defined over $F_{p^{2}}$ .

$\bullet$ If $n=1,$ $End(A_{0})\otimes \mathbb{Q}=\mathbb{Q}[Fr_{p}]$ , an imaginary quadratic field; if
$p\neq 2$ , this is $\mathbb{Q}[\sqrt{-p}]$ . More precisely, the order End $(A_{0})$ can be
either $\mathbb{Z}[Fr_{p}]$ or the maximal order in End $(A_{0})\otimes \mathbb{Q}$ (which coincide
if $p\equiv 3(mod 4))$ . If $p=2$ , there is another possibility, namely
End $(A_{0})=\mathbb{Z}[Fr_{2}]\simeq \mathbb{Z}[\sqrt{-1}]$ .

$\bullet$ There exists a supersingular elliptic curve over $F_{p}$ whose Frobenius
endomorphism satisfies $(Fr_{p})^{2}=-p$ . id and whose endomorphism
algebra is the maximal order in $\mathbb{Q}[Fr_{p}]$ . Such elliptic curves belong
to a single $F_{p}$-isogeny class.

$\bullet$ If $p\neq 2,3$ , there is exactly one $F_{p}$-isogeny class of supersingular
elliptic curves over $F_{p}$ (but several $\overline{F}_{p}$-isomorphism classes in general).

5.3.2. Let $A_{0}$ be a supersingular abelian variety of dimension $g$ over $F_{p^{n}}$ .
By functoriality, the elements of End $((A_{0})_{\overline{F}_{p}})\otimes \mathbb{Q}\simeq M_{g}(D)$ act linearly on
the crystalline cohomology $H_{crys}^{*}((A_{0})_{\overline{F}_{p}}/\overline{\mathbb{Q}}_{p})=H_{crys}^{*}((A_{0})_{I_{p}^{\neg}}^{-}/\overline{\mathbb{Z}_{p}^{ur}})\otimes_{\overline{\mathbb{Z}_{p}^{ur}}}\overline{\mathbb{Q}}_{p}$ .
In degree one, this provides an embedding of $M_{g}(D)$ into the endomorphism
ring of $H_{crys}^{1}((A_{0})_{\overline{F}_{p}}/\overline{\mathbb{Q}}_{p})$ .

On the other hand, one has a canonical isomorphism

$\wedge^{2}H_{crys}^{1}((A_{0})_{\overline{F}_{p}}/\overline{\mathbb{Q}}_{p})\simeq H_{crys}^{2}((A_{0})_{\overline{F}_{p}}/\overline{\mathbb{Q}}_{p})$

and a canonical $\mathbb{Q}$-structure in $H_{crys}^{2}((A_{0})_{\overline{F}_{p}}/\overline{\mathbb{Q}}_{p})\simeq\overline{\mathbb{Q}}_{p}^{g(2g-1)}$ coming from
the fact that the whole cohomology in degree 2 is generated by algebraic
cycles (since $(A_{0})_{\overline{F}_{p}}$ is isogenous to the gth power of a supersingular elliptic
curve, one reduces easily to the case $g=2$ , in which case this fact is well-
known).

Let $F$ be either $\overline{\mathbb{Q}}$ or a splitting number field for $D:D\otimes_{\mathbb{Q}}F\simeq M_{2}(F)$ .
In the latter case, this amounts to saying that $F$ is totally imaginary, and
for any place $v$ above $p,$ $[F_{v} : \mathbb{Q}_{p}]$ is even. We fix an embedding of $F$ in $\overline{\mathbb{Q}}_{p}$ .
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Via this elnbedding, the $ilI_{g}(D)$ -action extends to a F-linear $ilI_{2g}(F)$ -action
on $H_{crys}^{1}((A_{0})_{\overline{F}_{p}}/\overline{\mathbb{Q}}_{p})$ .

We consider an irreducible cyclic $sub-\lrcorner lI_{2g}(F)$ -module $\Lambda I_{2g}(F).u\subset H_{crys}^{1}((A_{0})_{\overline{F}_{p}}/\overline{\mathbb{Q}}_{p})$ .
Obviously, such submodules exist, and have F-dimension $2g$ . We may and
shall choose $u$ in such a way that its exterior square of this F-space coincides
with the canonical F-structure on $H_{crys}^{2}((A_{0})_{\overline{F}_{\rho}}/\overline{\mathbb{Q}}_{p})$ (this can be achieved
by replacing $u$ by a suitable multiple).

Proposition 5.3.3. Up to a homothety by a factor in $\sqrt{F^{\times}}$ , the normalized
$M_{2g}(F)$ -submodule $\Lambda I_{2g}(F)\cdot u\subset H_{crys}^{1}((A_{0})_{\overline{F}_{\rho}}/\overline{\mathbb{Q}}_{p})$ depends only on $F\subset\overline{\mathbb{Q}}_{p}$ ,
not on the choice of $u$ . In particular, for $F=Q$ , this defines a canonical

$\overline{\mathbb{Q}}$ -structure in $H_{crys}^{1}((A_{0})_{\overline{F}_{\rho}}/\overline{\mathbb{Q}}_{p})$ , stable under End $((A_{0})_{\overline{F}_{p}})$ .

PROOF. Indeed, two such $M_{2g}(F)$ -submodules are related by some $ h\in$

$GL_{2g}(\overline{\mathbb{Q}}_{p})$ , such $that\wedge^{2}(h)\in GL_{g(2g-1)}(F)$ . Now $\Lambda I_{2g}(F)\cdot hu=h(ilI_{2g}(F)\cdot$

u) implies that $h$ normalizes $GL_{2g}(F)$ . It follows that the image of $h$ in
$PGL_{2g}(\overline{\mathbb{Q}}_{p})$ lies in $PGL_{2g}(F)$ .
(When $g>1$ , the proposition is not surprising, since $\wedge^{2}V$ is a faithful
representation of $PSL(V)$ for any space $V$ of dimension $>1$ ). $\square $

Remarks 5.3.4. (a) A minimal choice for $F$ is a splitting quadratic field
$\mathbb{Q}(\sqrt{-d})$ (the splitting property amounts to saying that $d>0$ and $p$

ramifies or remains prime in $\mathbb{Q}(\sqrt{-d})$ . A natural choice is $d=p$).
(b) Let $\mathcal{O}_{F}$ be the ring of integers of $F$ . Then End $((A_{0})_{\overline{F}_{\rho}})\otimes \mathcal{O}_{F}$ is

an order in $ilI_{2g}(F)$ , and there is a full (End $((A_{0})_{\overline{F}_{\rho}})\otimes \mathcal{O}_{F}$ )-lattice
in $(\Lambda I_{2g}(F)\cdot u)$ . As an $\mathcal{O}_{F}$-module, it is projective of rank $2g$ . If
$F=\overline{\mathbb{Q}},$ $i.e$ . $\mathcal{O}_{F}=\overline{\mathbb{Z}}$ , then this module is canonically determined by
the normalization of its top exterior power, taking into account the
canonical isomorphism

$\wedge H_{crys}^{1}((A_{0})_{\overline{F}_{p}}/\overline{\mathbb{Z}}_{p})2g\simeq H_{crys}^{2g}((A_{0})_{\overline{F}_{\rho}}/\overline{\mathbb{Z}}_{p})\simeq\overline{\mathbb{Z}}_{p}$

,

the latter isomorphism coming from the trace map.
Hence there is a canonical $\overline{\mathbb{Z}}$ -stmcture in the crystalline cohomol-

ogy of supersingular abelian varieties (not used in the sequel).

5.3.5. Let $A$ be an abelian variety defined over a subfield $k\subset \mathbb{C}_{p}$ , which
has good supersingular reduction $A_{0}$ over the residue field of $k$ . There is a
canonical embedding End $(A)\rightarrow End((A_{0})_{\overline{F}_{p}})$ .

The canonical $\overline{\mathbb{Q}}$-subspace of $H_{crys}^{1}((A_{0})_{\overline{F}_{p}}/\overline{\mathbb{Q}}_{p})$ defined in 5.3.3 will be
denoted by

$H_{B}^{1}(A_{\mathbb{C}_{p}},\overline{\mathbb{Q}})\subset H_{crys}^{1}((A_{0})_{\overline{F}_{p}}/\overline{\mathbb{Q}}_{p})$

because, as we shall see, it shares many properties with the Betti space
$H_{B}^{1}(A_{\mathbb{C}}, \overline{\mathbb{Q}})=H_{B}^{1}(A_{\mathbb{C}}, \mathbb{Z})\otimes\overline{\mathbb{Q}}$ of a complex abelian variety $A_{\mathbb{C}}$ ). Its dual will
be denoted by $H_{1,B}(A_{\mathbb{C}_{p}},\overline{\mathbb{Q}})$ .
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Similarly, we shall write $H_{B}^{1}(A_{\mathbb{C}_{p}}, F)$ for the F-subspace described 5.3.3
(well-defined up to a homothety in $\sqrt{F^{\times}}$), and $H_{1,B}(A_{\mathbb{C}_{p}}, F)$ for its F-dual.

Assume that $k\subset\overline{\mathbb{Q}}_{p}$ . There is a functorial isomorphism $[BeO83]$

$H_{dR}^{1}(A)\otimes_{k}\overline{\mathbb{Q}}_{p}\simeq H_{crys}^{1}((A_{0})_{\overline{F}_{p}}/\overline{\mathbb{Q}}_{p})$ ,

from which one derives a canonical isomorphism
$H_{dR}^{1}(A)\otimes_{k}\overline{\mathbb{Q}}_{p}\simeq H_{B}^{1}(A_{\mathbb{C}_{p}}, \overline{\mathbb{Q}})\otimes_{\overline{\mathbb{Q}}}\overline{\mathbb{Q}}_{p}$ ,

which is functorial with respect to homomorphisms of abelian varieties with
supersingular reduction
This isomorphism, which is far from being tautological, as we shall see, can
be translated into a $\overline{\mathbb{Q}}_{p}$-valued pairing between $H_{lB}(A_{\mathbb{C}_{p}}, F)$ and $H_{dR}^{1}(A)$ .
This pairing is conveniently expressed in the form of a “period matrix” $\Omega=$

$(\omega_{ij})$ with entries in $\overline{\mathbb{Q}}_{p}$ , depending on the choice of a basis $(\gamma_{i})_{i=1,\ldots,2g}$ of
$H_{lB}(A_{\mathbb{C}_{p}}, F)$ and a basis $(\omega_{j})_{j=1,\ldots,2g}$ of $H_{dR}^{1}(A)$ (if $A$ is principally polarized,
we choose symplectic bases).
Warning: these p-adic periods attached to abelian varieties with supersin-
gular reduction have little to do with Fontaine-Messing periods (a motivic
interpretation of these periods is proposed in [And95]).

5.3.6. $Hor^{J}izontahty$ . If we let $A$ move in a family $A_{z},$ $H_{crys}^{1}((A_{0})_{\overline{F}_{p}}/\overline{\mathbb{Q}}_{p})$ may
be identified with a space of horizontal sections of the de Rham cohomology
localized in the disk parameterizing the liftings $A_{z}$ of $(A_{0})_{\overline{F}_{p}}[BeO83]$ . Thus
the period matrix $\Omega(z)$ is a fundamental matrix of solutions of the Gauss-
Manin connection.

In the sequel of this subsection, we assume for simplicity that $g=1,$ $i.e$ .
$A$ is an elliptic curve.

5.3.7. CM periods, $\Gamma_{p}$ -values, and tmnscendence.
$\bullet$ Let $A_{0}$ be as before a supersingular elliptic curve over $F_{p^{n}}$ . Let $A$ be
a CM-lifting of $A_{0},$ $i.e$ . an elliptic curve defined over some number field
$k\subset\overline{\mathbb{Q}}\subset\overline{\mathbb{Q}}_{p}$ with residue field $F_{p^{n}}$ , such that $E=End(A)\otimes \mathbb{Q}$ is quadratic.
Note that $E$ is ipso facto a subfield of $D$ . We denote by $c$ the conductor of
the order End $(A)$ (in particular, $ce\in End(A)$ ).
$\bullet$ Let $(\gamma_{1}, \gamma_{2})$ be any symplectic basis of $H_{lB}(A, F)$ . We can write $ce.\gamma_{1}=$

$a\gamma_{1}+b\gamma_{2}$ with $a,$ $b\in F$ , so that

$\tau$
$:=\frac{\omega_{12}}{\omega_{11}}=\frac{-a+c\sqrt{-d}}{b}\in \mathbb{P}^{1}(FE)$ .

In particular, $\tau\in \mathbb{P}^{1}(\overline{\mathbb{Q}})$ . We conjecture the following converse, which is a
p-adic analogue of T. Schneider’s theorem [Schn37] (in the complex case):

Conjecture 5.3.8. Assume that $A$ is a lifting of $A_{0}$ defined over $\overline{\mathbb{Q}}$ , and
that $\tau=\overline{\omega}_{11}\omega_{\lrcorner 2}\in \mathbb{P}^{1}(\overline{\mathbb{Q}})$ . Then $A$ has complex multiplication.
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$\bullet$ Let $E=\mathbb{Q}[\sqrt{-d}]$ and $E^{\prime}=\mathbb{Q}[\sqrt{-d^{\prime}}]$ be two distinct subfields of $D(d,$ $d^{\prime}$

squarefree; we do not exclude the case $d=d^{\prime}$ ). According to [Vig80, II 1.4],
$E\cap \mathcal{D}=\mathcal{O}_{E},$ $E^{\prime}\cap \mathcal{D}=\mathcal{O}_{E^{\prime}}$ . The elements $e=\sqrt{-d}\in E$ and $ e^{\prime}=\sqrt{-d^{\prime}}\in$

$E^{\prime}$ generate the algebra $D$ . We remark that $ee^{\prime}+e^{\prime}e$ commutes to $e$ and $e^{\prime}$ ,
hence is an integer $m\in \mathbb{Z}$ (an even integer if $d$ or $d’\equiv 3(mod 4)$ , which is
divisible by 4 if both $d,$ $d^{\prime}\equiv 3(mod 4))$ . We have $(ee^{\prime}-e^{\prime}e)^{2}=m^{2}-4dd^{\prime}$ .
Since $ee^{\prime}-e^{\prime}e$ anticommutes with $e$ , it is not an integer, hence $|m|<2\sqrt{dd^{\prime}}$ .
On the other hand, the images of $e$ and $e^{\prime}$ in $\mathcal{D}\otimes F_{p}$ commute $(ee^{\prime}-e^{\prime}e$

acts trivially on regular differentials in characteristic $p$), therefore $p$ divides
$4dd^{\prime}-m^{2}$ .
$\bullet$ On the other hand, there exists a unique symplectic basis of eigenvectors
for $e$ in $H_{dR}^{1}(A)$ of the form $(\omega_{1}, \omega_{2}+\sigma\omega_{1})$ , with $\sigma\in k$ . We get the relation

$\omega_{22}+\sigma\omega_{12}=\overline{\tau}(\omega_{21}+\sigma\omega_{11})$ , with $\overline{\tau}=\frac{-a-c\sqrt{-d}}{b}$

Let now $E^{\prime}=\mathbb{Q}[\sqrt{-d^{\prime}}]\neq E$ be another subfield of $D$ , and assume that
$(\gamma_{1}, \gamma_{2})$ is a basis of eigenvectors for $E^{\prime}:e^{\prime}.\gamma_{1}=\sqrt{-d^{\prime}}\gamma_{1}$ . We get $(ee^{\prime}+$

$e^{\prime}e)\gamma_{1}=\frac{2a\sqrt{-d^{\prime}}}{c}\gamma_{1}=m\gamma_{1}$ , so that

$\overline{\frac{\tau}{\tau}}=\frac{m+2\sqrt{dd^{\prime}}}{m-2\sqrt{dd}}\in \mathbb{Q}[\sqrt{dd^{\prime}}]$

the sign of the square root being chosen in such a way that $p|2\sqrt{dd^{\prime}}-m$

(in the unramified case).
$\bullet$ The previous relations, together with $\det\Omega=1$ , show that the transcen-
dence degree over $\overline{\mathbb{Q}}$ of the entries of $\Omega$ is at most one in the CM case.
$\bullet$ We now describe the p-adic number $\omega_{11}$ modulo $\overline{\mathbb{Q}}^{\times}$ , keeping the notation
of 4.6.2 and Theorem 4.6.3 ( $\epsilon$ is the Dirichlet character, $w$ the number of
roots of unity, $h$ the class number).

Theorem 5.3.9. In case $p$ does not mmify in the field of complex multipli-
cations $\mathbb{Q}[\sqrt{-d}]=End(A)\otimes \mathbb{Q}$ , one has

$\omega_{11}\sim\prod_{u\in(\mathbb{Z}/d)^{\times}}(\Gamma_{p}\langle p\frac{u}{d}\})^{-\epsilon(u)w/8h}$ in $\overline{\mathbb{Q}}_{p}^{\times}/\overline{\mathbb{Q}}^{\times}$

Examples. If $A$ is the Legendre curve $X_{1/2}$ $(y^{2}=x(x-1)(x-1/2))$ and
$p\equiv 3(mod 4)$ , we find $\omega_{11}\sim\Gamma_{p}(1/4)$ . Similarly, if End $(A)\otimes \mathbb{Q}=\mathbb{Q}(\sqrt{-3})$

and $p\equiv 2(mod 3)$ , then $\omega_{11}\sim\Gamma_{p}(1/3)^{3/2}$ .

PROOF. We may assume that the number field $k(\subset\overline{\mathbb{Q}}_{p})$ is Galois over
$\mathbb{Q}$ . We denote by $k^{\prime}=k\cap \mathbb{Q}_{p}$ the subfield of $k$ fixed by the local Galois
group $Ga1(\overline{\mathbb{Q}}_{p}/\mathbb{Q}_{p})$ . Let us consider the Weil restriction $B$ $:=\mathcal{R}_{k/k^{\prime}}(A)$

(cf. [BLR90, 7.6]). This is an abelian variety over $k^{\prime}\subset \mathbb{Q}_{p}$ , with good,
supersingular reduction at $p$ (like $A$ ), and we have $B_{k}\simeq\prod_{\tau\in Ga1(k/k)}A^{\tau}$ .
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On the other hand, let $\psi$ be any element of degree one in the Weil group
( $i.e$ . any lifting of the Frobenius element in $Ga1(\overline{\mathbb{Q}}_{p}/\mathbb{Q}_{p})$ ), and let $\Psi_{A^{\tau}}$ (resp.
$\Psi_{B})$ be the corresponding semilinear endomorphism of $H_{dR}^{1}(A^{\tau}/k)\otimes\overline{\mathbb{Q}}_{p}$

(resp. $H_{dR}^{1}(B/k^{\prime})\otimes\overline{\mathbb{Q}}_{p}$ ). If $\Phi_{B}$ denotes the canonical linear action induced
by $Fr_{F_{p}}$ on $H_{crys}^{1}(B_{0}/\mathbb{Q}_{p})\otimes\overline{\mathbb{Q}}_{p}\simeq H_{dR}^{1}(B)_{\overline{\mathbb{Q}}_{p}}$ , one has the formula $\Psi_{B}=$

$\Phi_{B}\circ(id\otimes\psi)$ (cf. $[BeO83,4]$ ). Moreover, $\Psi_{B}=\oplus\Psi A^{\tau}$ with respect to the
decomposition $H_{dR}^{1}(B, \overline{\mathbb{Q}}_{p})\simeq\oplus_{\tau}H_{dR}^{1}(A^{\tau}, \overline{\mathbb{Q}}_{p})$ .
If $(\omega_{1}, \omega_{2})$ is any symplectic basis of eigenvectors for $\mathbb{Q}[\sqrt{-d}]$ in $H_{dR}^{1}(A)_{\overline{\mathbb{Q}}}$ ,
with $\omega_{1}\in\Omega^{1}(A)_{\overline{\mathbb{Q}}}$ , we can write $\Psi_{A}(\omega_{1})=\kappa.\omega_{2}$ , where $\kappa$ modulo $\overline{\mathbb{Q}}^{\times}$ is
given by Ogus’ formula in Theorem 4.6.3

$\kappa\sim$ $\prod$ $(\Gamma_{p}\{p\frac{u}{d}\rangle)^{-\epsilon(u)w/4h}$ in $\overline{\mathbb{Q}}_{p}^{x}/\overline{\mathbb{Q}}^{\times}$

$u\in(\mathbb{Z}/d)^{\times}$

Because the conjugates $A^{\tau}$ are isogenous to each other over $k$ (and since iso-
genies preserve the regular differential forms), we derive that the constant $\kappa$ ,
resp. the “period” $\omega_{11}$ , is the same modulo $\overline{\mathbb{Q}}^{\times}$ for each of them. Therefore,
for any $\omega\in\Omega^{1}(B)\subset H_{crys}^{1}(B_{0}/\mathbb{Q}_{p})$ , we can write $\Phi_{B}(\omega)=\Psi_{B}(\omega)=\kappa.\eta$ for
some $\eta\in H_{dR}^{1}(B)_{\overline{\mathbb{Q}}}$ whose pairing with any element of $H_{lB}(B,\overline{\mathbb{Q}})$ belongs to
$\omega_{21}.\overline{\mathbb{Q}}$ . Since $\omega_{11}^{-1}\omega\in H_{B}^{1}(B, \overline{\mathbb{Q}}),$ $\omega_{21}^{-1}\eta\in H_{B}^{1}(B, \overline{\mathbb{Q}})$ , and since $\Phi_{B}$ respects
$H_{lB}(B, \overline{\mathbb{Q}})$ , we get $\kappa\sim\omega_{21}\omega\lrcorner\perp\sim\omega_{11}^{2}$ , whence the result. $\square $

Conjecture 5.3.10. Assume that $A$ is a lifting of $A_{0}$ defined over $\overline{\mathbb{Q}}$ , and
that $p$ does not mmify End $(A)\otimes \mathbb{Q}$ (which is obviously the case if $A$ does
not have complex multiplication). Then $H_{dR}^{1}(B)_{\overline{\mathbb{Q}}}\neq H_{1B}^{1}(B, \overline{\mathbb{Q}})$ .
In the absence of complex multiplication, this follows from the previous
conjecture. In the presence of complex multiplication, it amounts to the
transcendence of $\omega_{11}$ .
Taking into account 5.3.9, the conjecture would imply, for instance, the
transcendence of the adic numbers F3 (1/4), $\Gamma_{7}(1/4),$ $\Gamma_{2}(1/3)$ , F5 (1/3) (note,
in contrast, that $\Gamma_{5}(1/4)$ and F7(1/3) are algebraic numbers, according to
the Gross-Koblitz formula (2.6.4)).
$\bullet$ Actually, it may happen, in the ramified CM case, that $H_{dR}^{1}(A)_{\overline{\mathbb{Q}}}=$

$H_{1B}^{1}(A, \overline{\mathbb{Q}})$ .
Let us first notice that the argument given in the proof of theorem 5.3.9
still works in the ramified case, and allows to conclude that $\kappa\sim\omega_{11}^{2}$ . The
computation of $\kappa$ (mod $\overline{\mathbb{Q}}^{\times}$ ) (for $p$ odd) according to Ogus-Coleman-Urfels
was explained in 4.6.4. In the example of an elliptic curve with complex
multiplication by $\mathbb{Q}[\sqrt{-3}]$ , we have seen that $\kappa\in\overline{\mathbb{Q}}$ , hence $\omega_{11}\in\overline{\mathbb{Q}}$ and
$H_{dR}^{1}(A)_{\overline{\mathbb{Q}}}=H_{1B}^{1}(A, \overline{\mathbb{Q}})$ .

This is also the case for an elliptic curve with complex multiplication
by $\mathbb{Q}[\sqrt{-3n}]$ if the Legendre symbol $(\frac{n}{3})$ is 1, but probably not in general if
$(\frac{n}{3})=-1$ (although this happens for $n=8$ , after the last example in 4.6.4).
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5.3.11. $L_{\frac{1}{2},\frac{1}{2},1}$ in a supersingular disk. For concreteness, we consider the spe-
cial case of the supersingular Legendre elliptic curve with parameter $z=1/2$
in characteristic $p\equiv 3(mod 4)$ . A basis of solutions of the hypergeomet-
ric differential operator $L_{\frac{1}{2},\frac{1}{2},1}=HGDO(\frac{1}{2}, \frac{1}{2},1)$ in the supersingular disk
$D(1/2,1^{-})$ is given by

$F(\frac{1}{4},$ $\frac{1}{4},$ $\frac{1}{2};(1-2z)^{2})$ , $(1-2z)F(\frac{3}{4},$ $\frac{3}{4},$ $\frac{3}{2};(1-2z)^{2})$ .

$\bullet$ Let us consider the symplectic basis $\omega_{1}=[\frac{dx}{2y}],$ $\omega_{2}=[\frac{(2x-1)dx}{4y}]$ of $\mathcal{M}$

(de Rham cohomology). At $z=1/2$ , this is a basis of eigenvectors
for the action of $E^{\prime}$ $:=End(X_{1/2})\otimes \mathbb{Q}=\mathbb{Q}(\sqrt{-1})$ . The Gauss-Manin
connection satisfies

$\omega_{2}=2z(z-1)\nabla(\frac{d}{dz})\omega_{1}+\frac{4z-5}{6}\omega_{1}$ .

The fundamental solution matrix $Y$ of the Gauss-Manin connection
(expressed in the basis $(\omega_{1},$ $\omega_{2})$ ), normalized by $Y(1/2)=id$ , is then
given by

$y_{11}=F(\frac{1}{4},$ $\frac{1}{4},$ $\frac{1}{2};(1-2z)^{2})+\frac{1}{2}(1-2z)F(\frac{3}{4},$ $\frac{3}{4},$ $\frac{3}{2};(1-2z)^{2})$ ,

$y_{12}=(1-2z)F(\frac{3}{4},$ $\frac{3}{4},$ $\frac{3}{2};(1-2z)^{2})$ ,

$y_{2i}=2z(z-1)\frac{dy_{1i}}{dz}+\frac{4z-5}{6}y_{1i}$ , $i=1,2$ .

$\bullet$ We choose a symplectic basis $(\gamma_{1}, \gamma_{2})$ of eigenvectors for $E^{\prime}$ in $H_{1B}^{1}(X_{1/2}, F)$

(note that $\mathbb{Q}(\sqrt{-1})$ is always contained in $F$ ). We have $H_{1B}^{1}(X_{1/2}, F)=$

$H_{1B}^{1}(X_{z}, F)$ for any point $z$ in the supersingular disk $D(1/2,1^{-})$ . Be-
cause the period matrix $\Omega(z)$ is another solution matrix of the Gauss-
Manin connection, we have the relation $Y(z)=\Omega(z).\Omega(1/2)^{-1}$ .

Let us consider a CM-point (in the supersingular disk $D(1/2,1^{-})$ :
End $(X_{\zeta})=E=\mathbb{Q}(\sqrt{-d})$ (and $E\neq E^{\prime}$ in $D$ ).

FIGURE 10
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Let $\sigma$ and $m$ be as before (in the present case, the integer $m$ is even:
$m=2n)$ . Our period relations can be easily expressed in terms of
$Y(\zeta)$ . Apart from the obvious relation $\det Y(\zeta)=1$ , we find a relation
(8)

$\frac{y_{11}(y_{22}+\sigma y_{12})}{y_{12}(y_{21}+\sigma y_{11})}|_{z=\zeta}=\overline{\frac{\tau}{\tau}}=\frac{n+\sqrt{d}}{n-\sqrt{d}}$

Changing the viewpoint, one can consider (as fixed, and vary the
prime $p\neq 2$ (or more precisely the place of $\mathbb{Q}(\zeta,$ $\sqrt{-1},$ $\sqrt{-d})$ ). This
relation between values of p-adic hypergeometric functions at (holds
whenever $|\zeta-1/2|_{p}<1$ ; it depends on $p$ via the integer $n(|n|<$
$\sqrt{d},$ $p|d-n^{2}$ ). A relation of the same kind holds at the places at
infinity (derived along similar lines, using the usual Betti lattices). As
a specific example, we can take $p=3,$ $\zeta=a$ primitive 6th root of unity.
Then $X_{\zeta}$ has complex multiplication by $\mathbb{Z}[\zeta],$ $\sigma=\frac{-(2}{2(1+\zeta)}$ , $n=0$ and
$\overline{\frac{\tau}{\tau}}=-1$ .

$\bullet$ On the other hand, one can combine Theorem 5.3.9 and the formula
$Y(\zeta)=\Omega(().\Omega(1/2)^{-1}$ in order to express the value mod $\overline{\mathbb{Q}}^{\times}$ of the p-
adic hypergeometric functions $y_{ij}$ in terms of $\Gamma_{p}$ (supersingular avatar
of Young’s formulas).
For instance, if $p=7,$ $\zeta=2(\sqrt{2}-1)$ (complex multiplication by
$\mathbb{Z}[\sqrt{-2}])$ , one has $\omega_{11}(\zeta)\sim$ $(F7(1/8)\Gamma_{7}(3/8))^{1/2},$ $\omega_{11}(1/2)\sim\Gamma_{7}(1/4)$ ,
from which one derives the 7-adic evaluation

$F(\frac{3}{4},$ $\frac{3}{4},$ $\frac{3}{2};5-4\sqrt{2})\sim(\Gamma_{7}(1/8)\Gamma_{7}(3/8))^{1/2}\Gamma_{7}(1/4)^{-1}$ .

5.4. Conclusion and vista.

We have seen many instances of the following scenario: some familiar
notion or phenomenon from the complex realm shows itself in two differ-
ent aspects; each of these aspects has a natural p-adic counterpart; these
counterparts are not complementary aspects of the same p-adic entity, but
belong to totally different theories.

In II, we shall see that the theory of p-adic period mappings is a priv-
ileged field where this semantic splitting process integrates into an harmo-
nious picture, where the complementarity between the p-adic counterparts
is restored at a deeper level.

The p-adic period mappings which we shall deal with relate some defor-
mation spaces of p-divisible groups to certain grassmannians. It will turn out
that they can be described by quotients of analytic solutions of the Gauss-
Manin connection, just as in the complex case. In particular, at the modular
level, the Fontaine-Messing periods (which links up directly the \’etale and
crystalline representations of p-divisible groups) go offstage or remain at the
background.

(8)
$F$ . Beukers has also found these relations independently, by a different method.
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On the other hand, we shall see that the differential equations studied
in section 1 (resp. 2) arise in the context of deformations of supersingular
(resp. ordinary) p-divisible groups.


