
Introduction.

Purpose of this book.

This book stems from lectures given at the Universities of Tohoku and
Hokkaido.

Its main purpose is to introduce the reader to p-adic analytic geometry
and to the theory of p-adic analytic functions and differential equations, by
focusing on the theme of period mappings. Of course, this approach is not
meant to replace more systematic expositions of p-adic analysis or geometry
found in a number of good treatises, but to complement them.

It is our general rule, in this book, to follow as closely as possible the
complex theory, and to go back and forth between the complex and the p-
adic worlds. We hope that this will make the text of interest both to some
complex geometers and to some arithmetic geometers.

In the course of Chapter I, this approach will eventually become a kalei-
doscope of half-correspondences and broken echoes. We hope that the reader
will then have gained enough hindsight and wariness about these analogies,
and will enjoy seeing unity being restored at a deeper level in Chapters II
and III.

We have chosen the theme of period mappings because of its central
role in the nineteen-century mathematics as a fertile place of interaction
between differential equations, group theory, algebraic and differential ge-
ometry, topology (and even number theory). In fact, it was a guiding thread
in the early harmonious development of these branches of mathematics, from
Gauss and Riemann to Klein and Poincar\’e (cf. [Gray86]).

The origins lie in Gauss’ largely unpublished work on elliptic functions
on one hand (rediscovered and extended by Abel and by Jacobi), and on
the hypergeometric differential equation in the complex domain on the other
hand. Gauss knew the connection between the two topics: the inverse of
the indefinite integral $\int\frac{dx}{\sqrt{(1-x^{2})(1-k^{2}x^{2})}}$ is a single-valued function with two

independent periods $\omega_{1}$ and $\omega_{2}$ which are solutions of the hypergeometric
differential equation with parameters $(\frac{1}{2}, \frac{1}{2};1)$ in the variable $k^{2}$ .

Riemann’s point of view of the (Riemann surface’ of a multivalued com-
plex function has given a geometric framework for all of complex analysis.
He applied this idea with equal success to Jacobi’s inversion problem for
more general indefinite algebraic integrals on one hand; and to the eluci-
dation of the paradoxical polymorphism of hypergeometric functions which
had puzzled Gauss and Kummer by introducing the concept of monodromy,
on the other hand. He studied in detail the monodromy of the multivalued
map $k^{2}-*\tau=\omega_{2}/\omega_{1}$ , the first and basic example of a ‘period mapping’,
whose inverse is single-valued. He also showed (and Schwarz rediscovered)
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that under certain conditions, the quotient of two solutions of more gen-
eral hypergeometric equations maps the upper half-plane onto a curvilinear
triangle.

Group-theoretic aspects of monodromy were studied by Jordan, and
the geometrization of complex analysis around the concept of automorphic
function was carried on by Klein, who once described his work as ‘blending
Galois with Riemann. The achievement fell to Poincar\’e. Starting from
Fuchs’ problem of finding all second-order differential equations for which a
quotient of solutions $\tau$ admits a single-valued inverse, Poincar\’e founded the
theory of (uniformizing differential equations’ (in modern terminology), and
eventually recognized that every Riemann surface of genus $>1$ should arise
from the action of a discrete group of non-euclidean moves on the upper
half-plane.

What about non-archimedean analogues of this saga?

It is clear that the development of p-adic analysis and geometry took a
strikingly different route.

The very beginnings looked similar, indeed: J. Tate introduced rigid ge-
ometry as a proper framework for the uniformization $\mathbb{C}_{p}^{\times}/q^{\mathbb{Z}}$ of elliptic curves
with multiplicative reduction; B. Dwork developed p-adic analysis start-
ing from the hypergeometric differential equation with parameters $(\frac{1}{2}, \frac{1}{2};1)$ ,
where he discovered the essential notion of ‘Frobenius structure’. But it
was immediately clear that since solutions of p-adic differential equations do
not converge up to the next singularity, no faithful counterpart of complex
monodromy could take place.

From there on, different p-adic theories grew apart, with their own lan-
guages, most of them relying on sophisticated parts of contemporary alge-
braic geometry, and all claiming some analogy with “the complex case” :

-the theory of differential equations matured slowly (with a strong
orientation toward applications to exponential sums), struggling with
the problems of singularities, without being able to tackle global prob-
lems,

-crystalline theory offered a global viewpoint on differential equations
(oriented toward the cohomology of varieties in positive characteris-
tic), but did not help to understand singularities,

- the theory of p-adic representations and p-adic Hodge theory devel-
oped independently of differential equations, as did the several avatars
of rigid geometry, motivated by idiosyncratic problems.

However, it is the author’s opinion that the situation has somewhat
changed over the last years, that isolated branches are merging by fits and

(1) $quoted$ from [Gray86, p. 179].
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starts, and that a synthesis is gradually emerging. This encourages to
hope that, after many twists and turns, period mappings can indeed become
a unifying theme in the p-adic context. This book is intended to be a
contribution in this direction, by bringing closer the p-adic theory to its
complex precursor –from periods and monodromy up to triangle groups.
Much remains to be done in order to achieve comparable harmony and
clarity.

Contents of this book.

Chapter $I$ is preparatory. It deals with the problems of analytic contin-
uation –with emphasis on the case of solutions of differential equations –
and periods of abelian integrals, in the p-adic context.

Multivalued complex-analytic functions can be handled in two different,
but essentially equivalent, ways:

1) in a geometric way using Riemann surfaces, coverings and paths;
2) as limits of algebraic functions; this less orthodox way leads to a more

Galois-theoretic viewpoint on analytic continuation.

Both ways are practicable in the p-adic context, but eventually lead to
completely different theories of analytic continuation.

Following the first way demands to have at disposal p-adic spaces which
are locally arcwise connected. Surprisingly enough in view of the fractal
nature of p-adic numbers, such a nice p-adic geometry does exist: it has
been built by V. Berkovich (from the categorical viewpoint, it is essentially
equivalent to rigid geometry, in the sense of Tate and Raynaud). In this
framework, the monodromy of differential equations can be analyzed in the
usual way; but a new phenomenon occurs: it is no longer true that there
exists a basis of solutions around every ordinary point. This approach is
therefore limited to a rather special class of connections. We shall see in
the sequel how the theory of p-adic period mappings provides interesting
examples in this class.

Following way 2), one encounters Dwork’s notion of Frobenius structure,
which has often been considered as a plausible substitute for monodromy
in the p-adic context. We discuss so-called unit-root crystals and overcon-
vergence, and illustrate these notions by Dwork’s treatment of the p-adic
Gamma function $\Gamma_{p}$ , the Gross-Koblitz formula, and by a detailed study of
the p-adic hypergeometric function $F(\frac{1}{2}, \frac{1}{2},1;z)$ .

Abelian periods show themselves in two different ways:
1) as integrals of algebraic differentials over loops,

(2) $let$ us mention notably the incursion of rigid geometry into the crystalline viewpoint
and into the geometric theory of finite coverings, the maturity of index theory and its
applications to algebraic geometry in positive characteristic, the new connections between
p-adic representations and differential equations on annuli...
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2) when the integrand depends on a parameter $z$ , as solutions of certain
linear differential equations in $z$ (Picard-Fuchs, or Gauss-Manin).

Both ways are passable in the p-adic context, and again lead to com-
pletely different theories.

Following up the first way –integrals being interpreted as limits of
Riemann sums –leads to P. Colmez’ construction of abelian p-adic periods
(in the sense of Fontaine-Messing). These periods relate the Tate module
(p-primary torsion points) to the first De Rham cohomology module of a
given abelian variety over a p-adic field. They do not live in $\mathbb{C}_{p}$ , but in a
certain p-adic ring $B_{dR}^{+}$ (of which $\mathbb{C}_{p}$ is a quotient), and it is not possible
in general to express them function-theoretically, when the abelian variety
moves in a family. Nevertheless, we stress some particular cases where this
can actually be done. throwing a bridge between ways 1) and 2).

The second way –Dwork’s viewpoint of periods as solutions of Gauss-
Manin connections –will prevail at the modular level, when p-divisible
groups and filtered De Rham modules attached to families of abelian vari-
eties will be compared not directly, but via their moduli spaces by the period
mapping.

This way of looking at periods lacks arithmetic structure: namely, a
rational, or at least a Q-structure, on the $\mathbb{C}_{p}$-space of solutions, to convey
some arithmetical meaning to the periods. We discuss some cases where
such a canonical structure exists ( $p$-adic Betti lattices’), notably the case of
abelian varieties with supersingular reduction. We get here well-defined p-
adic periods (completely different from the Fontaine-Messing periods), and
compute them in terms of $\Gamma_{p}$-values in the case of elliptic curves with com-
plex multiplication (p-adic analogue of the Lerch-Chowla-Selberg formula).

Chapter $\Pi$ is an introduction to the geometric theory of p-adic period
mappings, in the sense of Drinfeld-Rapoport-Zink.

We have tried to keep prerequisites at a minimum, and to emphasize as
much as possible the analogies between the complex and p-adic contexts.
Basic definitions about p-divisible groups and crystals are recalled, and the
proof of some basic results is sketched.

The theory of period mappings attaches to a family of algebraic varieties
its periods, viewed abstractly as a moving point in a suitable grassmannian.
Due to constraints of Riemann-type, the period mapping actually takes its
values in an open subset of the grassmannian, the period domain, which is
a symmetric domain. It is multivalued, the ambiguity being described by
the projective monodromy of the Gauss-Manin connection.

The younger p-adic theory is far less advanced: at present, there is
a theory of p-adic period mappings only for p-divisible groups or closely
related geometric objects. For want of wide range, it has nevertheless gained
richness and depth.
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In the presentation of Drinfeld-Rapoport-Zink, one starts by construct-
ing a moduli space $\mathcal{M}$ for p-divisible groups which are (quasi-)is.ogenous to
a given one in characteristic $p$ . The p-adic period mapping $\mathcal{P}$ then relates
this moduli space to a suitable grassmannian which parametrizes the Hodge
filtration in the Dieudonn\’e module. There are again constraints of Riemann-
type, which force the period mapping to take its values in an open subset of
the grassmannian, the period domain, which is a ‘symmetric domain’. The
best known example of such aperiod domain is the Drinfeld space $\mathbb{C}_{p}\backslash \mathbb{Q}_{p}$ ,
ap-adic analogue of the double-half-plane $\mathbb{C}\backslash \mathbb{R}$ .

In the situation where the p-divisible groups are algebraizable, $i.e$ . come
from p-primary torsion of abelian varieties parametrized by a certain Shimura
variety $Sh$ , the moduli space $\mathcal{M}$ provides a uniformization of some tubular
region in the Shimura variety $Sh$ .

We show that, just as in the complex case, $\mathcal{P}$ can be described in terms
of quotients of solutions of the associated Gauss-Manin connection (this
feature does not seem to appear in the literature, except in the old special
case of Dwork’s period mapping for elliptic curves with ordinary reduction).
This allows to give explicit formulas ‘\‘a la Dwork’ for $\mathcal{P}$ in many cases.

The most interesting cases, investigated by Drinfeld-Rapoport-Zink, arise
when $Sh$ itself (more accurately: a whole connected component) is uni-
formized by $\mathcal{M}:Sh$ is then a quotient of $\mathcal{M}$ by an arithmetic discrete group
$\Gamma$ . We show that, up to replacing $Sh$ by a finite covering (to kill torsion
in $\Gamma$ ), the solutions of the Gauss-Manin connection extend to global mul-
tivalued functions: in other words, the Gauss-Manin connection has global
monodromy in the sense of chapter I, and the projective monodromy group
coincides with $\Gamma$ .

We review the case of Shimura curves attached to quaternion algebras
over totally real fields ( $\check{C}$erednik-Drinfeld-Boutot-Zink): there is a global
p-adic uniformization when $p$ divides the discriminant of the quaternion
algebra. We then construct, using the p-adic Betti lattices of chapter I,
a canonical Q-space of solutions of the Gauss-Manin connection which is
stable under global monodromy.

Chapter III explores the group-theoretic aspects of the theory of period
mappings, in the p-adic context.

The modern presentation of ramified coverings, uniformization, and of
the Gauss-Riemann-Fuchs-Schwarz theory uses the notions of orbifold and
uniformizing differential equation. We develop p-adic counterparts of these
notions.

The right notion of ramified covering to adopt is not obvious, because
\’etale coverings are only exceptionally topological coverings, in the p-adic
context. Berkovich’s geometry provides a very convenient framework for
this kind of problems, since his spaces are locally arcwise connected. In the
first section, we discuss the formalism of fundamental groups attached to
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categories of (possibly infinite) \’etale coverings satisfying simple axioms. Al-
though the definition of these topological groups is silnple and natural, their
topology itself may be very complicated (not locally compact in general).

It turns out that there are too few topological coverings and too many
\’etale coverings, in general, to provide a workable theory of monodromy.
To remedy this, we introduce in the second section the notion of tempered
\’etale covering. Such coverings are essentially built from (possibly infinite)
topological coverings of finite \’etale coverings. They are classified by tem-
pered fundamental groups, which seem to be the right p-adic equivalents, in
many ways, of fundamental groups of complex manifolds. These groups are
not discrete in general, but nevertheless often possess many infinite discrete
quotients. We present a large selection of examples.

Tempered \’etale coverings are well-suited to the definition of p-adic orb-
ifold charts and of the category of p-adic orbifolds (they replace the un-
ramified coverings, over $\mathbb{C}$ ). As in the complex case, orbifolds and orbifold
fundamental groups are the tools for a theory of ramified coverings, devel-
oped in section 4.

Before turning to the p-adic analogue of the uniformizing differential
equation attached to an orbifold of dimension one (via Schwarzian deriva-
tives), we discuss local and global monodromy of p-adic differential equations
in section 3.

We outline the Christol-Mebkhout theory of p-adic slopes of differential
equations over annuli, and the relation with Galois representations of local
fields of characteristic $p$ .

We then define and study the p-adic \’etale Riemann-Hilbert functor,
which attaches a vector bundle with integrable connection to any discrete
representation of the etale fundamental group of a p-adic manifold; connec-
tions in the image are characterized by the fact that the \’etale sheaf of germs
of solutions is locally constant. This is a vast generalization of the phenom-
ena of global monodromy studied in Chapter I; for instance, the differential
equation $y^{\prime}=y$ over the affine line belong to this class.

Uniformizing differential equations of orbifolds of dimension one also
belong to this class, and the representation actually factors through the
tempered fundamental group. The case of a Shimura orbifold is of special
interest: the period mapping (complex or p-adic) is given by a quotient of
two solutions of a fuchsian differential equation defined over a number field,
which can be interpreted as uniformizing differential equation either over $\mathbb{C}$

or over $\mathbb{C}_{p}$ .
In Section 5, we examine the case of Schwarz orbifolds: the projective

line with $0,1,$ $\infty$ as branched points (endowed with suitable finite multiplic-
ities). Over $\mathbb{C}$ , the uniformizing differential equations are of hypergeometric
type, with projective monodromy group identified with the orbifold funda-
mental group, namely with a (cocompact) triangle group.

In the p-adic case, we define p-adic $tri$angle groups to be projective mon-
odromy groups of those hypergeometric differential equations which are in
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the image of the p-adic \’etale Riemann-Hilbert functor: thus by definition,
there exists a finite \’etale covering of $\mathbb{C}_{p}\backslash \{0,1\}$ over which the hypergeo-
metric function extends to a global multivalued analytic function.

We give a purely geometric description of these discrete subgroups of
$PSL_{2}(\mathbb{C}_{p})$ (without reference to differential equations; it is perhaps here that
we are closest to Fuchs and Schwarz). From this, and recent combinatorial
work by F. Kato, it follows that infinite p-adic triangle groups exist only for
$p\leq 5$ .

We then construct the p-adic analogues of Takeuchi’s list of arithmetic
triangle groups, $i.e$ . the list of all “arithmetic” p-adic triangle groups for
every $p$ , using the \v{C}erednik-Drinfeld-Boutot-Zink uniformization of Shimura
curves and p-adic period mapping. Special values of the corresponding hy-
pergeometric functions at CM points are expressed in terms of $\Gamma_{p}$-values.

On the style.

The first chapter is rather down-to-earth. It has kept something of the
informal style of lecture notes, and this also holds to a lesser extent for
the second chapter; the level is inhomogeneous, the pace may sometimes
be brisk, proofs are often omitted and replaced by references. In contrast,
the last and longest chapter is devoted to a systematic exposition of new
material.

We hope that our constant function-theoretic viewpoint brings some
unity to the exposition, throughout the chapters. We have tried to keep
them (and even the sections) as logically independent as possible. Thus, for
example:

only subsections 1.5 and 5.3 of chapter I are needed in the sequel;
until section 7, chapter II is almost self-contained;
until subsection 4.7, chapter III is almost self-contained;
reading fragments of III should be enough to grasp the ins and outs of

p-adic triangle groups.

Sections I.3 and III.6 are small pieces of ‘computational mathematics’
(without computer) intended as testing ground for notions developed in the
preceding sections.
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