Computational Aspects of Root Systems,
Coxeter Groups, and Weyl Characters

John R. STEMBRIDGE

Table of Contents

0. Introduction 2
1. Reduced Words 2
2. Permutation Representations 4
3. The Conjugacy Problem 6
A. Characteristic polynomials 7
B. Permutation representations 7
C. Centrally symmetric orbits 8
D. Canonical representatives 9
4. Traversal 13
A. Finite automata 14
B. A low-technology solution 15
C. Implementation 17
D. Canonical descendants in Coxeter groups 18
5. The Weight System of a Weyl Character 19
A. Weyl characters 20
B. The partial ordering of integral weights 21
C. The complexity of a representation 22
D. Generating the weight system 22
6. Weight Multiplicities 26
A. Freudenthal’s formula 26
B. The Moody-Patera refinement 27
C. The g-analogue of weight multiplicity 28
7. Tensor Product Multiplicities 29
A. The Brauer-Klimyk formula, 29
B. Double specialization of Weyl characters 31
C. The support of a tensor product 33
D. The gtensor algorithm 34

Partially supported by NSF Grant DMS-9700787 and RIMS, Kyoto University.
I would like to thank RIMS for their kind hospitality during the preparation of this article.

2 JOHN R. STEMBRIDGE

0. Introduction _

In this article, our goal is to survey some of the fundamental computational
problems that arise in working with the structures mentioned in the title. We
became interested in these problems in the course of trying to gather data (and
prove theorems) involving the exceptional groups and their root systems, and this
in turn led us to the ongoing development of the Maple packages coxeter and weyl.

For the classical cases, especially type A, many of these problems are easy or
have well-known solutions. However these solutions often do not generalize. Here
our emphasis is on algorithms that are (for the most part) independent of the
classification of root systems.

The canonical example we always have in mind is Ej.

We should remark that there are many researchers elsewhere who have also
developed software for these and similar problemns; for example, there is the LiE
package of van Leeuwen, Cohen and Lisser (et. al.), the CHEVIE package for GAP
and Maple by Meinolf Geck (et. al.), and the Schur package of Brian Wybourne.
Web links to these packages can be found at the end of the article.

Throughout, ¢ will denote a finite crystallographic root system of rank n em-
bedded in a real Euclidean space V with inner product (,). We let a;,...,a,
denote a collection of simple roots, with ®* the corresponding set of positive roots.
For any root a, we write a” := 2a/(a,a) for the corresponding co-root. We will
assume that the reader is familiar with the basic terminology of root systems and
reflection groups, as well as the classification of root systems by Dynkin diagrams.

Standard references are [Bo] and [H1-2].

The crystallographic hypothesis is unnecessary for much of what we discuss in
§81-4, however it introduces unpleasant computational details (e.g., the need for
floating-point or exact number field arithmetic) that would distract us from the
main issues. In §4 we will temporarily relax the assumption of finiteness.

For nonzero a € V, we let 0, € GL(V') denote the corresponding reflection,; i.e.,

ga(A) =X — (X, aV)a (Ae V). (0.1)
The Weyl group W corresponding to ¢ is the (finite) group generated by the

reflections o4, , ..., 0,4, corresponding to the simple roots. For brevity, let s; = o, .
It is well-known that W is a Coxeter group; i.e., the relations

(si8;)™) =1, (0.2)
where m(i, j) denotes the order of s;s; in W, define a presentation of W.

1. Reduced Words
In most cases, the preferred data structure we use for representing Weyl group
elements are words (integer lists) that encode products of simple reflections. (An
alternative is discussed in the following section.) Thus the word (7, ..., ;) encodes

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 3

the group element w = s;,---s;,. In these terms, group multiplication is concate-
nation, and group inversion is reversal. Of course all that this does is to move the
real problem elsewhere. For this data structure, the problem is to decide when two
words encode the same group element, or to produce a canonical (minimume-length)
representative of a given group element.

While it possible to solve these word problems using only the Coxeter rela-
tions (0.2) (or the braid relations), there are much faster and simpler solutions
available that take advantage of the geometrical tools provided by the root system.
It is well-known that the hyperplanes

at={ eV :{\a)=0} (€ ®)

are stable under the action of W and their removal from V partitions the remainder
into connected components (chambers).

The action of W on chambers is simply transitive. Thus if A € V is any vector
in general position (i.e., not orthogonal to any root), then the words (i1, ...,%;)
and (j1,---,Jm) encode the same group element if and only if

Sipt - 8y, (/\) =81 " Sim ()‘)

The cost of such a computation amounts to I + m vector additions, scalar mul-
tiplications, and scalar products (cf. (0.1)). However, we should point out that
the real cost is usually far less than would be incurred if the vectors involved were
randomly distributed. Indeed, in the standard realization of every crystallographic
root system, many of the roots (in some cases, all) have only one or two nonzero
coordinates relative to some orthonormal basis. If the code for performing vector
operations is written to take advantage of this sparsity, then the real cost of a vec-
tor operation involving a root is (often) the same as the cost of one or two scalar
operations.

The minimum length among all expressions for w € W is denoted £(w).

To determine a canonical representation for the group element indexed by the
word (41, ...,%;), one may make use of the fact (e.g., see [H2, §5.4]) that

l(siw) < l(w) & wla; € —dT.
Indeed, it follows that if A is any point in the fundamental chamber; i.e.,
(A, ai) >0 (1<ig<n),
then
l(siw) < L(w) & (wA, ;) <O. (1.1)

In other words, w has a minimum-length expression that begins with s; if and only
if (wA, ;) < 0. Therefore, we can determine the lexicographically first minimal
expression for w by first computing p := w (using any representation of w as a
product of simple reflections), and then starting with the empty word,

1. Find the least index 7 such that (u,a;) < 0.
2. Append ¢ to the word being constructed.
3. Replace p < s;u, and repeat.

The algorithm terminates when p reaches the fundamental chamber.

4 JOHN R. STEMBRIDGE

2. Permutation Representations

In some cases, it is preferable to use permutation representations of Weyl groups,
rather than reduced words. For example, this allows one to take advantage of the
extensive library of group-theoretic tools (available in GAP, for example) that have
been developed over many years by the computational group theory community.

A basic issue that arises is the problem of converting between the two ways of
representing group elements. One direction is trivial. If we have permutations
71,..., T representing the action of the simple reflections, it is easy to deter-
mine the permutation that corresponds to the group element encoded by the word
(¢1,...,%). The inverse problem is more significant.

PROBLEM 2.1. Given permutations o, my,...,m, of some finite set, find (if pos-

sible) an expression for o of the form
o= Wiill-uﬁfl.

This is one of the fundamental problems of computational group theory! and
fortunately there are good, polynomial-time algorithms for it that are based on
building a strong generating set in the sense of Sims [S].

For Weyl groups, one can use the geometry of root systems to quickly build a
strong generating set, much faster than is possible for general permutation groups.

First, we need to construct a permutation representation of the Weyl group W.
The natural way to do this is to let W act on cosets of some subgroup. The most
convenient available subgroups are the so-called parabolic subgroups, the subgroups
generated by subsets of the simple reflections. Given any subset J C {1,... ,n},
we let W, denote the parabolic subgroup of W generated by {s; : i € J}.

The coset space W/W; has a geometric representation as the orbit of a suitably
chosen point A € V. Indeed, the stabilizer subgroup of every point in V is generated
by reflections, and the stabilizer of every point in the closure of the fundamental
chamber is generated by simple reflections (e.g., [H2,§1.12]). Thus by selecting A
so that

MNa) =0 (Ged); MNaiy>0 (G ¢J), (2.1)

we obtain a vector whose stabilizer is W, and the map W/W; — WX given by
wWy = wA

is an isomorphism of sets-with-W-action. It is now easy to determine the permu-

tations m,...,m, that represent the action of the simple reflections on W/W;.
Simply construct the orbit of A by starting with O = {\} and then successively
add new members to O until it is saturated under the action of sq,...,s,. The

permutation 7; can then be obtained by examining the action of s; on O.
We now have some permutation representations available, but are they faithful?

1t is also the key to novelties such as Rubik’s cube.

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 5

An Bna Cn Dn EG E? E8 F4 G‘Z
n+1 2n 2n 27 56 | 240 | 24 6

TABLE 1. Degrees of permutation representations.

PROPOSITION 2.2. The permutation representation of W on W /W is faithful
if and only if J omits at least one node from each connected component of the
diagram of ®. In particular, if W is irreducible, the representation is faithful if and
only if W; is a proper subgroup.

Proof. Since W is the direct product of its irreducible components, it suffices
to restrict our attention to the irreducible case. Clearly, the hypothesis that W}
is a proper subgroup is necessary. Conversely, suppose j ¢ J and let w € W be
an element that acts trivially on W/W;. Given A as described in (2.1), w must
stabilize every vector zA with x € W. Hence w stabilizes 2\ — zs; A = (A, a}’)xaj.
However (A,aj;) > 0, so w stabilizes every zaj; i.e., w fixes every point in the
W-orbit of a;. Since the diagram of ® is assumed to be connected, this means that
w stabilizes every simple root. (If a; is in the span of Wa; and a» is adjacent to
a; in the diagram, then ssa; = a; + cas for some nonzero scalar ¢, so as is also
in the span of Wa;.) Hence w acts as the identity map on V. O

In Table I, we list the degrees of the smallest (faithful) parabolic permutation
representations in the irreducible cases.

Let us now turn to strong generating sets and the solution of Problem 2.1. For
a more comprehensive account, see [BLS] and the references cited there.

Let S = {m,...,mn} be a collection of permutations of some finite set X, and let
G be the permutation group generated by S. A stabilizer chain for G is a sequence

of subgroups
G =Gy DGy D"'DG[I{l},

such that G; is the stabilizer in G;_; of some point z; € X. The set of points B =
{z1,..., 2} is called a base. For 1 < i < [, let S; be a set of coset representatives
for Gi_l/Gi, so that

Gz’—l - U O'Gi.

c€S;

Notice that each 7 € G has a unique representation of the form
T = 0102 0] (0; € Si), (2.2)

so in particular S; U --- U S; generates G it is called a strong generating set.
Once a strong generating set has been found, finding the factorization (2.2) is
rapid. Indeed, since G; is the stabilizer of x; in G;_;, there is a one-to-one corre-
spondence between S; and the G,;_;-orbit of ;. We can even label the members of
S; by the points in this orbit so that the representative indexed by z is the unique

6 JOHN R. STEMBRIDGE

coset representative that maps x; to z. Hence, to determine the factorization (2.2),
we first compute = w(x;). The first factor o; must be the coset representative
in S; indexed by z. If there is no such representative, this constitutes proof that
m ¢ G. Otherwise, we replace m < o, '7 and recursively determine the rest of the
factorization.

In order to solve Problem 2.1 by this mechanism, we need to know how to express
each of the strong generators as words built out of the original gencrating set S.
For the first “layer” of the strong generating set S;, this is easy. Having chosen z,,
we construct the G-orbit of z; by the saturation method mentioned earlier in this
section, the only difference being that we also keep track of the (first) word in the
generators that allows us to reach each point in the orbit. This builds S; as a set
of reduced words over S.

In the case of a general permutation group, the next step is where the problem
starts to get difficult. To continue, we need to find generators for G; (the stabilizer
of 1), and express them as words over S, before we can proceed to build Ss.

For a reflection group, this problem is easy to solve. In fact, we can use a
stabilizer chain of parabolic subgroups, so that the generating set of G; is merely
a subset of the generating set of G;__,. Indeed, supposing G = W, let us take W;
to be the stabilizer of some point A € V. In order to minimize the index |W|/|W|,
we should take A to be of the form described in (2.1), with J maximal, so that
W, is a maximal (proper) parabolic subgroup. Thus, the first base point of the
stabilizer chain is A. In order to ensure that the next subgroup in the stabilizer
chain is again parabolic, one should choose the next base point to be the unique
point in some nontrivial Wj-orbit that belongs to the closure of the fundamental
chamber relative to the root system of W;.

3. The Conjugacy Problem
For any computation involving characters of Weyl groups, fast manipulation
of conjugacy class data is essential. Closely related computational problems also
occur in working with characters of the corresponding Iwahori-Hecke algebras (e.g.,

see [GM], [GP]).

PRrROBLEM 3.1.

(a) Given group elements w;,ws € W (represented as words in the simple
reflections), decide whether they are conjugate in W.

(b) Given a group element w € W, produce a canonical representative of the
conjugacy class of w in W.

Note that a solution of (b) immediately yields a solution for (a).

The solution to part (a) of this problem that we outline here is not completely
satisfying, since the justification for it depends on a case-by-case analysis of the
irreducible groups. On the other hand, the algorithm it provides is nearly uniform—
the only exceptional cases involve a few conjugacy classes in type D.

First we mention two other approaches that are more obvious but less effective.

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 7

D4 D6 E6 E7 E8 F4 G2

#CC | 13 | 37 | 256 | 60 | 112 | 25 6
#CP 9 28 | 25 | 54 | 106 | 17)
#CT 7 20 | 20 | 36 | 112 | 19)

TABLE II: Conjugacy class data.

A. Characteristic polynomials.

A simple necessary condition for conjugacy of w; and ws in W is that they
should be conjugate in GL(V). That is, they should have the same characteristic
polynomial:

det(l — qw;) = det(1 — qws).

It is easy to see that this criterion perfectly separates the conjugacy classes of the
symmetric group, and it turns out that it also perfectly separates the conjugacy
classes of Eg and the non-crystallographic groups Hs and Hy. However in the
remaining cases, including B,, and D,,, this criterion fails significantly. In Table II,
we list the number of conjugacy classes (CC) in various groups, and compare it
with the number of distinct characteristic polynomials (CP) that occur. (The
significance of the last line in the table will be explained in the next subsection.)
For example in E;, there are 6 pairs of distinct conjugacy classes with the same
characteristic polynomial.

B. Permutation representations.

As an alternative to conjugacy in GL(V'), we may instead pass to a permutation
representation of W, and test for conjugacy of the permutations representing w,
and ws in the symmetric group. This addresses a second flaw in the character-
istic polynomial approach: computing characteristic polynomials is (at least with
Maple) more expensive than computing cycle-types of permutations.

For example, consider Eg. The length of the average element is |[®1|/2 = 60. To
determine the characteristic polynomial for an element of length 60 would involve
composing 60 reflections 8 times, as well as the evaluation of an 8 x 8 determinant.
In principle this is a symbolic determinant, although it would be enough to eval-
uate the characteristic polynomial at a single sufficiently generic point.2 On the
other hand, as we noted in §2, Fs has a parabolic permutation representation of
degree 240. To compute the cycle-type of a given a word of length 60 would involve
composing 60 involutions on 240 points. In Maple, we have found that this runs
about 50% faster than the corresponding characteristic polynomial calculation.

However, these permutation representations have a flaw of their own. They do
a poor job of separating conjugacy classes, in some cases worse than characteristic

2In our experience, the fastest way to separate conjugacy classes in Hj4 is to evaluate the
characteristic polynomial det(1 — qw) at q = 3.

8 JOHN R. STEMBRIDGE

polynomials. For example, if we use the smallest parabolic permutation represen-
tations (see Table I), then we find that the only (irreducible) groups for which these
representations perfectly separate the conjugacy classes are A, and Es. The last
line of Table II shows the number of distinct cycle-types (CT) of permutations that
occur in various cases.

Of course, we are free to use other permutation representations, and we are not
limited to those arising from parabolic subgroups. For example, F; has a Klein
group of linear characters, as well as two embeddings of B4 as a subgroup of index 3
that allow one to separate some of the more tightly bound conjugacy classes. By
combining various tricks such as these with characteristic polynomials, it is indeed
possible to separate all of the conjugacy classes of every Weyl group.

C. Centrally symmetric orbits.

To explain our preferred approach to separating conjugacy classes in Weyl
groups, we begin in a cryptic way by analyzing the conjugacy classes of B,, in
some detail.

If we represent B, as the group of signed permutations of {*1,...,+n} (a
permutation 7 is “signed” if w(—%) = —7(¢)), then the cycles of a given group
element (as a permutation of 2n objects) can be classified into two types, according
to whether the support of the cycle contains at most one from each pair {i, —i},
or is a union of such pairs. The former occur in matched pairs of the same length
and are said to be positive; the latter are negative. The sign classifications of these
cycles are preserved under conjugation, and two signed permutations are conjugate
in By, if and only if they have the same inventory of cycle-lengths of each sign.

As an aside, note that this sign-classification makes it clear why the permutation
representation of B,, of degree 2n fails to separate conjugacy classes.

Continuing our crypticism, let us return to the geometric setting and consider
the orbit O = WA generated by some point A € V. We say that the orbit is
centrally symmetric if O = —0O. Observe that

1. Every reflection group has (nonzero) centrally symmetric orbits. For exam-
ple, the root system is a union of such orbits.

2. In reflection groups that include the scalar —1 (such as B,,, Da,, Fy, E-,
and Eg), every orbit is centrally symmetric.

Now the crucial observation:

3. If O is a centrally symmetric orbit, then the action of W on © represents
W as a group of signed permutations.

Thus, rather than employ ordinary permutation representations and test con-
Jugacy in the symmetric group, we should use signed permutation representations
arising from centrally symmetric orbits, and test for conjugacy in B,,, where 2m is
the size of the orbit. Not only do we gain the benefits of the finer conjugacy classes
of B, we also get a two-fold increase in speed: products of signed permutations
in B, can be computed twice as fast as the corresponding products in Ss,,.

For example, the ordinary permutation representation of Eg of degree 240 arises

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 9

from the (centrally symmetric) action of Eg on its root system, so we can replace
this with a more economical representation of Fg in Bjap.

How well do centrally symmetric actions separate conjugacy classes? Let B(O)
denote the group of signed permutations of the centrally symmetric orbit O.

THEOREM 3.2. Let ® = &, U---U ®; be the partition of the root system into
W -orbits. If no irreducible component of ® is of type D, then w; and wy are
conjugate in W if and only if their images are conjugate in B(®1) x --- x B(®;).

The proof (which we omit) is a straightforward case-by-case analysis, with the
exceptional groups being done by machine computation. The result is false if we
omit the restriction on type D, although it probably remains true for D, with n
odd.

We remark that the smallest available centrally symmetric orbits are not nec-
essarily orbits of roots. To separate the conjugacy classes of E7, we prefer to use
a signed permutation representation of degree 36 (i.e., an embedding in Bsg), to-
gether with the sign character. For Fj, we use the action on one of the two orbits
of roots (an embedding in Bj;), together with a permutation representation of
degree 3.

D. Canonical representatives.

For Problem 3.1(b), the canonical representative problem, the best solution we
have (speed being the primary concern) is unsatisfying from the theorist point of
view. On the other hand, in the course of producing this solution, we find that
there are some interesting mathematical questions that arise.

In our solution to Problem 3.1(a), we found that we can quickly assign a canon-
ical label to the elements of a conjugacy class (in most cases, the signed cycle-type
arising from some centrally symmetric action), so it is enough to select one group
element for each label that arises. In the classical cases, this is fairly easy to do,
and in the exceptional cases, it is enough to do this once and store the results in a
table.

How does one decide which element to choose? A reasonable choice would be a
representative of minimum length, say the one with the lexicographically smallest
reduced expression relative to some ordering of the simple roots. Again for the
classical groups this is not hard to do, but for the exceptional groups we have little
choice but to resort to a search. One possibility is an exhaustive search of the
entire group (e.g., following the method of §4), but another possibility is a separate
search within each conjugacy class.

In order to organize such a search, let us impose some structure. For every
w € W and simple reflection s;, one of the following holds:

l(w) + 2,
L(s;ws;) = ¢ £(w),
l(w) — 2.

10 JOHN R. STEMBRIDGE

Fi1GUREs I AND II: The posets corresponding to the conjugacy classes
of s983828384 in Fy and s;s3 in Ay.

We define < to be the (implicitly reflexive) transitive closure of the relations
siws; X w whenever {(s;ws;) < (w).

Any transitive, reflexive relation (i.e., quasi-order) gives rise to a partial ordering
on equivalence classes, two elements being equivalent if and only if z < y and
y < x. So in this way we have a natural partial ordering P(w) associated to the
conjugacy class C'(w) generated by any element w in a Coxeter group.

Observe that it follows directly from the definition that all elements within a
given equivalence class have the same length, and the difference in length between
any two covering pairs in P(w) is 2. In particular, P(w) is ranked. Two represen-
tative examples, one from Fy and one from A4, appear in Figures I and II. The
vertex labels indicate the number of group elements in each equivalence class.

These posets have a number of interesting properties, and are deserving of fur-
ther study. Some first results in this direction have been obtained by R. Gill [G].
Also, although they did not express their results in order-theoretic terms, there is
some relevant work by Geck and Pfeiffer in [GP)]. For example,

THEOREM 3.3 (Geck-Pfeiffer [GP, Theorem 1.1(a)]). For every w € W, all
minimal elements of P(w) have the same rank (length).

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 11

An | By, | D, | E¢ | E; | Es | Fi | Go
1 | pn) | pen) | 5 |12 30| 9 | 3

TABLE III: Inaccessible conjugacy classes.

Unfortunately the proof is case-by-case, with the exceptional cases being done
by machine computation. On the other hand, once established, this proves that
a minimum-length representative for the conjugacy class C(w) can be found by
a “greedy” method. Given w, one compares ¢(w) with £(s;ws;) for all i. If any
shorter representative is found, we replace w and start over. Otherwise, we add all
new elements of length ¢(w) found in this way to a list, and saturate this list with
respect to conjugation by simple reflections (keeping only the elements of length
£(w)). If no shorter elements are found, then the above result guarantees that w is
a minimum-length representative of C'(w).

It would be nice to have a uniform or conceptual proof of this result.

A variation of this method for producing minimum-length conjugacy class repre-
sentatives would be to proceed by induction with respect to rank. Having identified
a shortest representative for all conjugacy classes belonging to (proper) parabolic
subgroups of W, it would suffice to select a shortest representative only for those
conjugacy classes of W that do not meet any such subgroup.?> We say that such
conjugacy classes (and the members thereof) are inaccessible.

In Table III, we list the number of inaccessible conjugacy classes in each irre-
ducible Weyl group. Here, p(n) denotes the number of partitions of the integer n,
and p.(n) the number of partitions with an even number of parts.

It is easy to test accessibility. Moreover, the proof of the following result shows
that we can effectively find an element x € W that conjugates w to an element in
some proper parabolic, if possible.

PROPOSITION 3.4. The element w € W is accessible if and only if w has an
eigenvector in the linear span of ® with eigenvalue 1.

Proof. For simplicity, we may assume V = Span ®. If w belongs to the (proper)
parabolic subgroup W, then w fixes the (nonzero) intersection of the hyperplanes
ozjl : J € J, and conjugates of w must fix some transformation of this intersection.
Conversely, suppose wA = X for some nonzero A € V. Note that zwz ! fixes z).
Therefore, by choosing x € W so that z)\ belongs to the closure of the fundamental
chamber, we force zwz™! to belong to the parabolic subgroup generated by the

simple reflections that fix z\ (cf. §2). O

31t follows from Theorem 3.3 that a minimum-length representative of a conjugacy class in
a parabolic subgroup must also have minimum length within the conjugacy class of the larger

group.

12 JOHN R. STEMBRIDGE

CONJECTURE 3.5. Ifw is inaccessible, then the partial order P(w) has a unique
minimal element (i.e., all minimum-length conjugates of w belong to the same
equivalence class).

The converse of this conjecture is false; there are many examples of accessible
conjugacy classes whose partial orderings have unique minimal elements.

We should point out that an assertion equivalent to Conjecture 3.5 is stated
in [GM] (see the paragraph following Lemma 1.2) as having been proved but not
published by G. Pfeiffer. In any case, we expect this should be straightforward to
verify in the classical cases, and a computer search could be used for the exceptional
cases. However, again we would prefer to obtain a uniform proof.

A consequence of the conjecture is that if one finds a minimum-length repre-
sentative of an inaccessible conjugacy class via the greedy algorithm mentioned
earlier, then at the point the algorithm halts, one will have constructed a list of all
minimum-length representatives. It would then be easy to select the one with the
lexicographically smallest reduced expression.

As the example in Figure II shows, it can happen that all of the equivalence
classes are singletons; i.e., the quasi-ordering of C'(w) may itself be a partial order.

THEOREM 3.6 (Gill). The quasi-ordering of C(w) is a partial order if and only
if w is an involution.

The following proof is adapted from [G].

Proof. Let C be a conjugacy class of involutions. To prove that every equivalence
class in C is a singleton, it suffices to show that if w € C is an involution, then
£(s;ws;) = ¢(w) implies s;ws; = w. For this, suppose first that ¢(s;w) > ¢(w). In
this case, s;w has a reduced expression that begins with s;. Since £(s;ws;) = L(w) it
follows from the Exchange Property (e.g., [H2, §5.8]) that a reduced expression for
s;jw can be obtained by prepending s; to a reduced expression for w, deleting one
term, and then appending s;. If the deleted term is not the initial s;, then we obtain
¢(ws;) < €(w), contradicting the fact that since w is an involution, £(s;w) = ¢(ws;).
So the deleted term must have been the initial s;, hence s;w = ws;.

Similarly, if £(s;w) < £(w), then there is a reduced expression for w that begins
with s;. Since w is an involution, we also have £(ws;) < ¢(w). So again by the
Exchange Property, there is a reduced expression for w that can be obtained by
deleting a term (from the expression that begins with s;) and appending s;. If the
deleted term is not the initial s;, we contradict the fact that ¢(s;ws;) = £(w). So
the deleted term must have been the initial s;, hence w = s;ws;.

For the converse, suppose that w is a minimum-length representative of a conju-
gacy class, and that it is the only member of its equivalence class. Choose a reduced
expression w = §;,-- - 8;. Since conjugation by s;, has the effect of cyclically per-
muting the terms of this expression, and ! is minimal, it follows that every cyclic
permutation of this expression is also reduced. Since the equivalence class is a sin-
gleton, these permuted words are expressions for w. It follows that £(ws;) < £(w)
for every term s; that appears in a reduced expression for w. This proves that w

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 13

is the longest element in some parabolic subgroup of W, and hence an involution
(e.g., [H2,81.8]). O

At the opposite extreme, let us mention the following.

QUESTION 3.7. For which conjugacy classes does the quasi-ordering consist of
a single equivalence class (i.e., all conjugates have the same length)?

Trivially, the identity element and the scalar —1 (if it occurs in W) have this
property since they form singleton conjugacy classes. However, there are numerous
non-trivial examples, such as the conjugacy class of w = s15253515453 in D4 (with
the diagram labeled 534).

Most of the examples with this property we have examined so far are what could
be described as “roots of wy” (where wy denotes the longest element of W). By this
we mean that there is an integer k > 1 such that every element w of the conjugacy
class satisfies w* = wo and ké(w) = ¢(wg). However, we know of no simple way to
describe all conjugacy classes of this type. The only nontrivial conjugacy class we
know of that has only one equivalence class but is not a root of wy is the conjugacy
class of 3-cycles in A,.

We remark that it is well known that if w = s;---s, (i.e., a Coxeter element)
has even order, then a reduced expression for wgy can be obtained by taking a
suitable power of w (Exercise V.6.2 of [Bo]). However, it is almost never the case
that all conjugates of a Coxeter element have the same length. Nevertheless, roots
of wy are often (but not always) conjugacy classes consisting of powers of Coxeter
elements.

It would also be interesting to see how these results and questions extend to
infinite Coxeter groups. Certainly Theorem 3.6 and its proof are valid without
changes. However, very little is known about conjugacy in infinite Coxeter groups.

4. Traversal
The main issue we address in this section is the problem of efficiently touring
through the elements of a Weyl group; e.g., for the purposes of searching, or for
accumulating results that involve sums over Weyl groups.

PROBLEM 4.1. Devise an efficient data structure for traversing the elements of
a Weyl group. In other words, implement

for win W do ... enddo.

Preferably, one would like to solve this in a way that runs in time proportional
to |W| and has bounded space requirements (or at least negligible compared to
|W|). We can also consider this problem in infinite Coxeter groups by limiting the
search to elements whose lengths are bounded by some given amount.

A variation on this problem that occurs in computations with Weyl characters
is the analogue for parabolic cosets W/W;, or equivalently, W-orbits on V.

14 JOHN R. STEMBRIDGE

PROBLEM 4.2. Devise an efficient data structure for traversing the members of
a Weyl group orbit O = W . In other words, implement

for £ in O do ... enddo.

We cannot afford to solve these problems simply by building the desired list of
elements in memory by the saturation method. The larger groups such as Eg are
simply too large for this to be practical. Even all but the smallest Eg-orbits are
too large for this.

A slight improvement on the saturation method would be to keep only a list of
elements of length [(or in the orbit case, vectors reachable from the fundamental
chamber via a sequence of [reflections), and use this to build the next list for the
length [+ 1. However, the number of different lengths tends to grow polynomially
with rank, whereas the group and orbit sizes grow exponentially. (Consider Ay
So the number of elements of fixed length, at maximum, is also exponentially large.

A better approach, at least for the first problem, would be to choose a maximal
chain of parabolic subgroups, say

W=W03W1DDVV71:{1}’

and then build coset representatives X; for Wi_1/W; (1 < ¢ < n). Since each
w € W has a unique factorization w = z,---x, (z; € X;), all that one needs
is to write code for traversing the Cartesian product of Xj,.. ., Xn. We must
be careful to choose the subgroup chain so that each X; is small enough to be
generated by a simple method such as saturation; otherwise, we have returned to
a problem equivalent to Problem 4.2. In any case, this approach is not of much
use for traversing a large W-orbit, unless that orbit is compatible with a parabolic
subgroup chain with steps of small index.

A. Finite automata.
By selecting the lexicographically first reduced word for each group element, one
may view W as a formal language.

THEOREM 4.3 (Brink and Howlett [BH]). In a general Coxeter group, the lan-
guage of lex-first reduced words is regular; i.e., recognizable by a finite automaton.

This amounts* to the assertion that for each (possibly infinite) Coxeter group,
there is a finite directed graph, with edges labeled by simple reflections S;, so that
the language of lex-first reduced words is obtained by generating all directed paths
starting at some fixed vertex and ending at some fixed set of vertices.

One can also easily deduce from this an analogous result for parabolic quotients
W/W;. Indeed, if one orders the simple reflections so that the members of J
precede all other generators, then it follows from [H2,§5.12] that the members

4In fact, Brink and Howlett prove more than just the regularity of the language—they prove
the existence of an “automatic” structure.

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 15

As A7 Ag Es E? ES
22 29 37 43 80 | 296

TABLE IV: Sizes of lex-first recognizing automata.

of the language of lex-first reduced words whose first terms are not members of
J are (shortest) coset representatives for W;\W. Thus given an automaton for
generating lex-first reduced words for W, one can simply avoid taking the first step
along a “J-edge,” or build a slightly modified automaton with one extra vertex.

Since it is relatively easy to write efficient code for generating paths in graphs,
this would appear to solve Problems 4.1 and 4.2 in arbitrary Coxeter groups. How-
ever, it still leaves aside the nontrivial issue of constructing the automaton. Fur-
thermore, once we construct it, we may discover that it is too large to be practical.

On the other hand, given that we are primarily interested in Weyl groups, there
is good news. Although Theorem 4.3 is essentially content-free in the case of a finite
Coxeter group—any finite language is trivially regular—it turns out that there are
indeed some very small automata for generating the lex-first reduced words in
Weyl groups (both finite and affine). This is discussed in detail by Casselman [C],
who attributes the observation (i.e., existence of small automata) to du Cloux. In
Table IV, we list the minimum number of states for various cases, taken from [C].

It would be interesting to investigate the sensitivity of the automata to the
ordering of the simple roots, since a single fixed ordering cannot accommodate
traversals of arbitrary parabolic quotients. We expect that the number of states will
be correlated with the indices in the corresponding chain of parabolic subgroups.
Also, it would be interesting to investigate the sizes of the automata that occur in
infinite Coxeter groups beyond the affine cases.

B. A low-technology solution.

Here we would like to discuss a simple approach that has minimal space require-
ments and comes very close to the goal of linear running time. It also requires
very little in the way of special preprocessing-—all that one needs is the geometric
representation of the Coxeter group and the computation of a small table of roots.

For specialists in combinatorial algorithms, what we present may very well be a
standard form of exhaustive search, but it is nevertheless interesting how features
of the geometric representation play an essential role in the construction.

We begin by describing a general method for traversing virtually any set of com-
binatorial objects with a “sufficiently nice” structure; e.g., permutations, multisets,
compositions, number partitions, set partitions, tableaux, and so on. It would not
be illuminating at this point to attempt a description of the precise features we
require, other than to say that a basic prerequisite is that there should be a “nat-
ural” partial ordering on the set of objects, and this partial ordering should have
a unique minimal element, a root object.’

51n fact, transitivity is not strictly necessary. Any acyclic digraph with a unique sink will do.

16 JOHN R. STEMBRIDGE

FIGURE III: The weak ordering of As.

As an illustration, in Figure III we have selected the set of permutations of 4
objects, partially ordered by the so-called “weak” ordering. (The significance of
the thick and thin lines will be explained below.) In any Coxeter group, such as in
this case, the symmetric group of degree 4, the (left) weak ordering can be defined
as the transitive closure of the relations

siw < w whenever £(s;w) < f(w).

Here, the simple reflections are the adjacent transpositions, and the length of the
permutation 7 is the inversion number; i.e., the number of pairs i < j such that
w(2) > 7(j).

Having settled on a partial ordering of the set of objects, the next step is to
choose, for each non-root object z, a canonical “ancestral” object y < z. In the
case of a Coxeter group, it is natural to determine the least ¢ such that ¢(s;z) < ¢(z),
and select y = s;z. Since each non-root object has exactly one canonical ancestor,
these choices have the effect of selecting a (rooted) spanning tree on the set of
objects.

Applying this scheme to the particular case of the symmetric group, one finds
that the canonical ancestor of the permutation 7 is obtained by transposing i and
i+ 1, where i is the least index such that 7 + 1 precedes ¢ in (7 (1),...,m(n)). This
is illustrated in Figure III, where we have used thick lines to mark the tree edges
that indicate canonical ancestry.

The traversal scheme we propose amounts to a depth-first search of the chosen
spanning tree. While depth-first search is a standard graph algorithm, what makes

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 17

the problem difficult for our application is that the number of objects is so large
that the tree structure itself cannot be stored in memory-—we have to be able to
generate the local structure from local data. In particular, the crucial problem to
be solved, the one that determines whether the partial ordering and spanning tree
are “sufficiently nice,” is the Canonical Descendant Problem:

Given an object y, determine all x such that y is the canonical ancestor of x.

Of course, we have to be able to solve this problem using data localized at y.
Furthermore, if we seek to traverse the set of objects in linear time, we need to be
able to solve this problem in time proportional to the number of objects x that are
canonical descendants of y, plus some constant amount of overhead. (Since we are
searching a tree, the number of edges and the number of objects are roughly the
same.)

It is remarkable that virtually all of the standard combinatorial structures have
natural partial orderings whose Canonical Descendant Problem admits a good so-
lution.

C. Implementation.

Before solving this problem in the case of Coxeter groups, we first briefly discuss
how one uses the solution to implement a traversal of the set of objects.

During the tour, we maintain two stacks: one is a stack of objects that records
the path along canonical (i.e., tree) edges from the current object y to the root
object. Note that in the Coxeter group case, the simple reflections corresponding
to this sequence of objects form the lexicographically first reduced word for y. The
second stack consists of lists of objects that assist in directing the tour.

The search begins at the root object, with both stacks empty.

Once we arrive at object y, we compute the list of objects x that have chosen
y as their canonical ancestor (here is where the Canonical Descendant Problem
occurs). If the list is non-empty, we select the first object x on the list, push y onto
the top of the object stack, push the list (with x deleted) onto the top of the list
stack, and travel from y to z.

Otherwise, if the list is empty, we backtrack: pop the items at the top of the
object and list stacks, and repeat until the top list is nonempty. (If there is no
such list, the tour is complete.) This takes us back to the object y’ at the top of
the object stack. We now delete the first object x from the top list, travel from y’
to =, and continue the tour.

Note that we backtrack along each tree edge exactly once, so the total cost of
backtracking is proportional to the number of objects.

The amount of space used by this scheme is controlled roughly by the height
of the tree and the maximum number of canonical descendants possessed by an
object. In the Coxeter group case, the former is proportional to the length of an
average group element, and the latter is n, the rank. In practice, this amount of
space is negligible.

18 JOHN R. STEMBRIDGE

D. Canonical descendants in Cozeter groups.

Finally, to solve the Canonical Descendant Problem in an arbitrary Coxeter
group, we begin by choosing a point A € V in the fundamental chamber. It will
simplify matters to regard the objects as ordered pairs (w, i), where p = wA.

For Problem 4.2, the orbit problem, we would allow A to be on the boundary of
the fundamental chamber. However in the following, we will restrict our attention
to the case of a generic orbit, and leave to the reader the task of adjusting for the
general case.

Note that the canonical ancestor of object (w, u) is (s;w, s;i), where ¢ is the
least index such that (u, ;) < 0. Let us call ¢ the ancestral indez of object (w,).
This index can be recorded when we arrive at (w,u) for the first time (as part
of the object stack), and hence is available to assist in computing the canonical
descendants of (w,).

If 7 is the ancestral index of (w, i), we say dually that i is a descendant indez for
the object (s;w,s;u). In these terms, the objective is to determine all descendant
indices for the object (w, u).

LEMMA 4.4. Ifi is the ancestral index of (w, u), then 1,2,...,i — 1 are descen-
dant indices for (w, ut).

Proof. Consider any j < i. Since i is the ancestral index, it must be the case
that (u,a;) > 0, or equivalently, (sju,aj) < 0. If there were any index k < j
such that (s;u,ax) < 0, then we would also have (s;u, sjax) < 0, since s;(ax) is
in the nonnegative linear span of a; and a;. Hence (u,ax) < 0, contradicting the
fact that ¢ is the ancestral index and k < ¢. It therefore must be the case that
(sjm, ax) > 0 for all k < j, and therefore j is the ancestral index of (s;w, s;p). O

LEMMA 4.5. Assume (a;,a;) = 0. Ifi is the ancestral index of (w,) and j > i,
then j is not a descendant index for (w,).

Proof. Since i is the ancestral index, we must have (u,qa;) < 0. However,
(ai,a;) = 0 implies sja; = a;, hence (sju,a;) < 0. In other words, the small-
est index k such that (s;u,ax) < 0is < ¢, so j cannot be the ancestral index for
(sjw,s;p). O

LEMMA 4.6. Assume (a;,a;) # 0. Ifi is the ancestral index of (w, i) and j > 1,
then j is a descendant index for (w, p) if and only if {u,s;ax) > 0 for alli < k < j.

Proof. Since (s;jp, ar) = (i, sjar), the stated conditions are clearly necessary
for j to be the ancestral index of (sjw,s;u). Conversely, given these conditions,
we have in particular that (u,sja;) > 0. We also have (u, a;) < 0, since i is the
ancestral index. Now since we are given (a;, a;) # 0, it follows that «a; is a positive
multiple of s;ja; — a;, so we may deduce (i, a;) > 0, or equivalently (sjp, aj) < 0.

To prove that j is the ancestral index of (s;w, s;u), it now suffices to show that
(sjm, ax) > 0 for k < i. However, we know that (u,ax) > 0 (since i is ancestral for
(w, u)) and have established (u, ;) > 0, so the desired result follows from the fact
that s;ay is in the nonnegative linear span of aj and a. O

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 19

Combining Lemmas 4.4-6, we obtain the following description of DesInd(w, u),
the set of descendant indices for (w, u).

THEOREM 4.7. If1i is the ancestral index of (w, u), then
DesInd(w, p) = {1,...,i =1} U{j > i : (a4, a;) #0, (u,s;a) >0, i <k <j}.
In particular, if the diagram of W is linear (i.e., (o, ;) # 0 iff |i — j| < 1), then

DeSInd(w,H) _ { {1,,2—1} if </,L,Si'+1042‘) <0,
{1,...,i—1,i+ 1} otherwise.

An optimization of the computation of these sets of descendant indices requires
a small amount of preprocessing. First we should compute, for each simple root a;,
the list of indices 7 > ¢ that are adjacent to ¢ in the Coxeter graph. In most cases
of interest (e.g., finite or affine Weyl groups), there is usually at most one index
of this type; namely, j = 7 + 1. Furthermore, we can usually order the indices so
that the few cases where this is violated involve the last few indices. The group
elements that have these last few indices as their ancestral index will be extremely
rare. ,

Second, for each adjacent pair of nodes i < j in the diagram, we should precom-
pute the list of roots sjax (i < k < j). In most cases, this list will consist of a
single root. If W has a linear diagram, this will be true in every case.

In the case of finite Weyl groups, we have noted previously that most roots a
can be represented in the form =+¢; or +¢; £+ £; (where ¢; denotes an orthonormal
basis of V). In these cases, queries of the form (u,a) > 0 require no arithmetic
operations—just a single comparison or signed comparison.

For example, consider the “worst” case of Eg. If the simple roots are ordered

?
8—7—-5—-4-3-2-1,

then in the standard realization, the only simple root not of the form +¢;+¢; is as,
which has 8 nonzero coordinates. Furthermore, the proportion of elements whose
ancestral index is > 5 is 1/|A4] = 1/120. Thus, more than 99% of the time, we
can determine the set of descendant indices for a member of Eg by making a single
comparison. Out of the remaining 1%, elements with ancestral index 5 require up
to 3 comparisons, 6 and 8 require no computation at all, and ancestral index 7
requires one scalar product with a root having 8 nonzero coordinates.

5. The Weight System of a Weyl Character
We now turn our attention to computational issues more directly related to Weyl
characters. In particular, all root systems and Coxeter groups will henceforth be
finite and crystallographic. For simplicity, we also assume V = Span ®.

20 JOHN R. STEMBRIDGE

A. Weyl characters.
Let A={A€V:a€®= (\aV) € Z} denote the lattice of integral weights,
and define w; € A to be the ith fundamental weight; i.e.,
(wi’a}/> = 0y
The weight lattice is generated by wy,...,wy,.
In the following, it will be convenient to work in the group ring R of A, with
the basis element corresponding to A written as a formal exponential e*. Since W

permutes A, the ring R also carries a W-action: w.e* = e®?.
For each A € A, we define

AM) = S sgn(w)e?,

weWw

where sgn(w) = (—1)4®) = det(w). Note that A is a skew-symmetric operator in
the sense that A(wA) = sgn(w)A(A). In particular, A()\) = 0 if A is orthogonal to
any root. The Weyl Denominator Formula (e.g., [H1, §24.3]) asserts that

A =e [1—e) = JJ (/2 —em2r2), (5.1)
acdt acdt
where
p= Z a2 = wi + -+ wy.
acdt

Let At denote the set of dominant integral weights; i.e., integral weights \
satisfying (X, a;) > 0 for 1 < ¢ < n. We say that A € A is strongly dominant if
(M, a;) > 0 for 1 < ¢ < n, or equivalently, A\ = u + p, where i € At. Note that
A(X+p) : X € AT forms a Z-basis for the skew-symmetric members of R, whereas
the orbit sums

M) = > e (A € AY)
peEWA

form a Z-basis for RY, the subring of W-invariants in R.
For each A € A*, the Weyl character x(\) may be defined by setting

x(A) = A(A+p)/A(p). (5.2)

It is not hard to show that A(p) divides any skew-symmetric member of R, so x(\)
is a well-defined member of R" . In particular, there exist integers K A, such that

X = 37 KnuM(p). (5.3)
peEA+

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 21

Furthermore, since the skew-sums A(A+ p) are a Z-basis for the skew-symmetric
elements, it follows that the Weyl characters are a Z-basis for the invariants. In
particular, there exist integers ¢, , such that

x(Wxw) = > p,x(A). (5.4)

AEAT

Of course, Weyl characters are of interest not merely as formal objects. If g is
a (complex, semi-simple) Lie algebra with root system ®, and G is a (complex,
connected, simply connected, semi-simple) Lie group with Lie algebra g, then the
irreducible finite-dimensional representations of G (and g) are indexed by A € A*,
and the Weyl character x(\) encodes the trace function for the representation Uy
indexed by A.

In particular, the coefficient of e# in x(A) is the dimension of the u-weight
space of the representation Uy, so the coefficients Ky , in (5.3) are nonnegative.
Likewise, the coefficient c;\W in (5.4) is also nonnegative, being the multiplicity of
UxinU,®U,.

B. The partial ordering of integral weights.
Using (5.1), we can rewrite the definition of x(\) in the form

1

— w(A+p)—p - 2

W= Y sealw)e I (5.5
weWw acdt

interpreting the right side as a formal power series in R-Z[[e*',...,e”*"]]. From

this point of view, it is clear that every term e# appearing in the expansion of x ()
satisfies

p=wA+p)—p=—"7,

where 7 is a sum of positive roots and w € W. In fact, we claim that (A + p) —
w(A + p) is also a sum of positive roots. This follows easily by induction with
respect to £(w). For if £(s;w) > £(w), then (1.1) implies (w(A + p), a;) > 0, whence
w(A + p) — s;w(A + p) is a positive (integer) multiple of «;.

Thus every term e appearing in x(A) has the form pu = A — v, where ~ is a sum
of positive roots. This serves as motivation for the definition of the usual partial
ordering of the weight lattice as the transitive closure of the relations

A >p whenever A —p € @7,

Note that since the root lattice Z® is a sublattice of A, this partial ordering breaks
into connected components, one for each coset of A/Z®. Each of these components
is isomorphic (as a partial order) to the product of n copies of Z, each equipped
with the usual ordering. We let f = |A/Z®| denote the number of components,
the so-called index of connection.

22 JOHN R. STEMBRIDGE

C. The complezity of a representation.
Given the preceding analysis, it follows that for all A,u € A", K\, is nonzero
only if A > p. In other words, (5.3) may be rewritten in the form

XA = D KauMp).

HEAT:AZp

Furthermore. one can see that there is a unique term in (5.5) that contributes to e*,
yielding K » = 1. Hence the transition matrix between Weyl characters and orbit
sums is unitriangular with respect to <. This provides another proof of the fact
that the Weyl characters are a Z-basis for RW .
We remark that by representation-theoretic methods (e.g., [H1,§21.3]), it is
known that
Mp€eAT, A>p = Ky, #0. (5.6)

It would be interesting to find an elementary proof of this fact, starting from (5.2).
So far as we are aware, this has been done only for type A.
Given A € A*, we define

AtA) ={pe At : x> u}.

Since dominant integral weights are maximums with respect to > within their
W-orbits, it follows that AT ()) is a set of orbit representatives for

AN ={peA:weW = \>wu}.

Bearing in mind (5.6), A(A) is the weight system of Uy, the set of weights that
occur with positive multiplicity in U).

In computations with Weyl characters, our experience has been that a good mea-
sure of the “complexity” of a representation U, is the size of At (\); i.e., the number
of orbits of weights. For example, by this measure, the nontrivial representations
with the least complexity (i.e., |AT(A)| = 1) are the so-called minuscule represen-
tations. As a second example, consider the complexity of the representation Up,
the smallest representation whose highest weight does not lie on the boundary of
the fundamental chamber. The reader whose experience is mainly concerned with
type A may think of this as a smallish representation-—the corresponding Young
diagram is the “staircase” shape. On the other hand, consider the data provided
in Table V. In our experience, U, is a rather complex representation.

D. Generating the weight system.
The following problem is at the core of many Weyl character computations.

PROBLEM 5.1. Given a dominant integral weight A, determine A1 (}).

For example, we invite the reader looking for a computational challenge simply
to determine the size of A*(2p) (i.e., the complexity of Us,) in the case of Es. It
is a conjecture of Kostant that the multiplicity of Uy in U, ® U, is nonzero if and
only if A € At (2p).

It is natural to approach Problem 5.1 recursively, which leads to the following
refinement.

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 23

A 1
Az 2 || Bs 2 G2 5
A3z 4 || B3 6 || Cs 8

Ay 9 || Bs 19 || C4 26 || D4 14 || Fy 58

As 22 || Bs 64 || Cs 81 || Ds 44
As 59 || Bs 223 || Ce 277 || Ds 147 || Ee 226
A7 | 167 || By 796 || Cy 996 || D~ 537 || Er 1464
Ag | 490 || Bg | 2887 || Cs | 3584 || Dg | 1976 || Es | 14869

TABLE V: The complexity of U,.

PROBLEM 5.1'. Given A € A*, determine all up € A* that are covered by X in
(A%, <) (i.e., A > p, but there is no v € AT such that A > v > p).

Although the poset (A, <) has a simple structure, one should realize that the
subposet formed by A™ is rather subtle. For example, in Figure IV is displayed
the portion of (AT, <) below p in the case of Fy. The vertex labels indicate the
coordinates of the corresponding weights; i.e., the weight miw; + -+ - + mywy is
labeled mq- - - my.

For a detailed study of the posets (A1, <), see [St].

Let us define £(®) C Z>o® to be the set of elementary moves; i.e., the set of
differences A — p that occur as (A, u) vary over all covering pairs in (A, <).

In type A, the partial ordering of At is closely related to the dominance ordering
on partitions of an integer, and it is a familiar combinatorial fact that a covering
pair in dominance order must differ by an increment of the ith part and decrement
of the jth part, for some ¢ < j. Translating this into the present context, every
elementary move in type A is a root. Conversely, it is not hard to show that
every positive root in type A does arise as the difference between the members of
a covering pair.

It is natural to guess that in the general case the elementary moves are the
positive roots. Indeed, it is true that £(®) C &1; i.e.,

A covers pin (AT, <) = A—pe @t (5.7)

and the earliest reference for this fact we have found is a 1982 paper of Moody
and Patera [MP]. However, it is only in the case ® = A, that £(®) = &*+. For
example, in the case of Eg, only 44 of the 120 positive roots are elementary moves.

To describe what happens in the general case, let us recall that in an irreducible
root system, there are either one or two orbits of roots. In the latter case, roots in
the two orbits are of different lengths (“long” and “short”). In case there is only
one orbit, we can agree to call the roots long or short, whichever happens to be

24

FIGURE IV:

JOHN R. STEMBRIDGE

The partial ordering of A*(p) in F.

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 25

more convenient in a given context. With this convention, every irreducible root
system has a unique short root that is dominant.

Given J C {1,...,n}, let ®; denote the root subsystem of ® generated by
{a;j : 7 € J}. Assuming that ®; is irreducible, we say that the short dominant
root of ®; is a locally short dominant (LSD) root for ®, even though it may be
“long” as a member of ®. Note that the number of LSD roots in & is simply the
number of connected subgraphs of the Dynkin diagram. In the case of a linear
diagram, this is ("}'). In the case of a forked diagram, it can be shown that the

number is (";2) — f, where f denotes the index of connection as in §5B. (See
Corollary 2.11 of [St].)

THEOREM 5.2 [St]. Assume that ® is irreducible.

(a) Every LSD root in ® is an elementary move.
(b) Conversely, every elementary move is an LSD root unless ® is of type G,
in which case a1 + a3 is also an elementary move.

For the proof, we refer the reader to [St]. However we cannot resist including
the following argument, due to R. Steinberg, showing that all elementary moves
are roots.

Proof of (5.7). Among all expressions A —u = 31 +---+ £ with 8; € ®*, choose
one that maximizes the sum of the simple root coordinates of 8;. If u+ 3; were not
dominant, say (u+ 8;,a)) < 0, then we would have (83,, ;) < 0, so 51 + a; would
be a (positive) root. Moreover, since A = (u + B1) + (#2 + --- + §;) is dominant,
we must also have (8, + --- + 5;, @) > 0. Reordering indices if necessary, we may
assume that (5,,a;) > 0. But then > — a; is a positive root or zero, and the
expression

A—p=B1+a;)+ (B2 —az) + B3+ + B

contradicts the choice of 8;. Therefore p + 31 is dominant and p < g+ 81 < A
Given that A covers u, this implies A — p = ;. O

In order to efficiently determine the set of dominant integral weights covered by
A (thereby solving Problem 5.1’), we may proceed as follows.

First, we prepare in advance the list of elementary moves and their coordinates
with respect to the fundamental weights. For simplicity, we will assume ® # G,
so that these are merely the LSD roots.

Let ay denote the LSD root corresponding to the irreducible subsystem ®;. It
is easy to show that the support of ay, as a linear combination of simple roots, is
precisely J. A stronger observation is that

ICJ & aj<ay.
In case ®; has only one orbit of roots, this follows from the fact that dominant

roots are maximal in their orbits. Otherwise, this requires a bit more work (e.g.,
ay could be long in @), but is simply a matter of checking a few cases.

26 JOHN R. STEMBRIDGE

Consequently, A covers p in (A%, <) if and only if 4 = X — ay, where J is a
(nonempty) connected subset of the diagram of ® that is inclusion-minimal with
respect to the property that A — a; is dominant.

In deciding whether A — ay is dominant, notice that the only information one
needs from a; are its positive weight coordinates. For example, if J = {j} (i.e.,
oy is the simple root a;), the coefficient of w; is 2, and this is the only positive
coordinate. Thus A covers A — a; if and only if the coefficient of w; in Ais > 2. In
that case, there can be no other covering relations involving A — a; with j € I.

Of course, if we are not concerned with generating only covering pairs, one
could simply compare weight coordinates to determine all LSD roots a; such that
A — ay € AT, Otherwise, one could organize a search through the partial order of
LSD roots, backtracking whenever one finds a root a; such that A—a is dominant.

6. Weight Multiplicities
Consider the problem of computing the weight multiplicities of the irreducible
representation Uy, or equivalently, the coefficients K , appearing in (5.3). Al-
though we defined K , only for dominant pu, it is convenient more generally to
interpret Ky , as the coefficient of e# in x(\) for any u € A.

A. Freudenthal’s formula.
The most commonly used algorithms for computing weight multiplicity are based
on the following.

THEOREM 6.1 (Freudenthal). For all A\ € AT, u € A, we have

(C/\ - cu)K/\,p =2 Z E </‘ + ’I:Ck, a>A’/\,u+ia, (61)

acdt i1
where ¢, = (Vv + p,v + p).

A proof can be found in [H1, §22.3], for example. It would be interesting if (6.1)
could be understood at a combinatorial level. So far as we know, this is an open
problem even in type A.

To use Freudenthal’s formula as a recursion, one starts with Ky = 1. In
subsequent computations, given that K , has been determined for all A > v > p,
one can then use the formula to compute K ,. Of course, there would be obvious
difficulties if it happened that ¢y = c,. However, it is easily shown that ¢\ > ¢, if
¢ < A is dominant, and replacing x4 with a non-dominant member of its orbit can
only decrease the value of ¢, [H1,§13].

Without further refinements, what we have just described is too unwieldy to be
useful for computing weight multiplicities in all but the smallest cases. Indeed, if
A—p = cyoy +- - -+ cpay, then the above scheme would require (¢; +1) -+ - (¢, + 1)
iterations of (6.1). In the case of the adjoint representation of Eg, a representation
of complexity two (i.e., two orbits of weights), it would take 151200 iterations to
compute the dimension of the zero weight space.

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS - 27

In order to increase the useability of (6.1), one should take advantage of the
Weyl group symmetry K , = K . and confine all computations to the dominant
chamber. Indeed, if v = p + i« fails to be dominant, then we can replace v with
the maximal (hence dominant) weight v/ in the same W-orbit. Also, one should
recognize that as soon as v £ A, then the same will be true for all larger values of
¢ and the weight string in the direction of a can be terminated.

Thus in order to compute the full set of dominant weight multiplicities for Uy,
one should only apply (6.1) once for each dominant weight 4 < A. In fact, to
simplify bookkeeping for the recurrence, one could first generate A* () following
the method of §5D and order the applications of (6.1) in a way consistent with >;
e.g., sorted by decreasing values of (y, p) or ¢,.

B. The Moody-Patera refinement.

Bearing in mind the data in Table V, the weight systems of the representations
most amenable to computation are largely confined near the walls of the funda-
mental chamber, and hence the relevant weights tend to have nontrivial stabilizers.
This leads to the possibility of further uses of Weyl group symmetry to improve on
the basic Freudenthal algorithm, an idea due to Moody and Patera [MP].

Fix dominant integral weights A > p, and consider the terms appearing in (6.1).
The stabilizer of u is the parabolic subgroup W, where J = {j : (u,a;) = 0}. If
a,3 € ®* belong to the same Wj-orbit, say a = w/3, then we have

Kxpu+is = K wp+rig) = K ptia;
(u+1iB,B8) = (w(p +1iB),wh) = (u + ia, a),

so the contributions to (6.1) indexed by a and 8 are identical. Hence we should
partition ® into W-orbits, and collect separately the contributions to (6.1) from
each orbit.

The collecting is complicated by the fact that a given Wj-orbit in & may not
have an equal number of positive and negative roots. However, the longest element
zo of W interchanges the positive and negative roots in ®; and must permute the
remaining positive roots in ® [H2, §1.8]. Furthermore, z acts as an order-reversing
involution on each Wj-orbit. Thus if a W;-orbit has both positive and negative
roots, then xy maps the maximal root (which must be positive) to the minimal
root (which must be negative), so by the previous remark, these roots must belong
to ®;. The remaining orbits occur in pairs, one consisting of positive roots; the
other, their negatives. ’

Let B1,...,8 € ®* denote the positive roots that are dominant relative to ®.
We may compute the sizes of the corresponding W-orbits, say by,...,¥b;, using
the formula b; = |W;|/|W;|, where I = {i € J : (Bj,a;) = 0}. By the preceding
discussion, it follows that (6.1) may be rewritten as

(ex —cu)Kau =D Kb > (1 +iB, B Kn puis;»
j i>1

- where x; = 1if 8; € &, and k; = 2 otherwise.

28 JOHN R. STEMBRIDGE

To accelerate a series of weight multiplicity computations, one could store in
advance the orbit representatives 3; and the quantities k;b; for each parabolic
subgroup W;.

C. The gq-analogue of weight multiplicity.
By extracting the coefficient of e# from (5.5), one obtains

Ky, = Z sgn(w)[e? A+ —(u+0)) H

weWw acdt

1
1—ea’

where [e7] denotes the coefficient-of-e”-operator. This is Kostant’s weight multi-
plicity formula [H1, §24.2].
Lusztig [Lu] introduced a g-analogue of the above formula by setting

K ,(q) = Z sgn(w)[e?*+o)- (utp)] H

weW acEdt

— qea . (6.2)

He conjectured that for dominant p < A, the polynomial ¢g"*~# K, ,(¢7!) is a
particular Kazhdan-Lusztig polynomial for the corresponding affine Weyl group.
(Here we are using h(-y) to denote the sum of the simple root coordinates of .)
This conjecture was proved by Kato [Ka] using p-adic groups, and an elementary
proof was later given by R. Gupta (Brylinski) [Gu]. Thus these polynomials have
nonnegative (integer) coefficients.

We must caution the reader that although (6.2) makes sense for any weight u,
these g-analogues of weight multiplicity are not constant on W-orbits, and may
have negative coefficients if u is not dominant. For example, it is easy to see that

sgn(w) if A+ p =w(p + p),

6.
0 otherwise, (6-3)

K»u(0) = {

which confirms both of these non-properties.
‘The following identity involving K ,(g) is due to A. Broer [Br, §4]. His proof
is very short; we include an even shorter one.

THEOREM 6.2 (Broer). For all A\, u € A with A\ dominant, we have
d
d ,II(Q) Z Zqz lI(/\,u+zoz(Q)
q acdt i1

Proof. Differentiating (6.2) with respect to ¢ yields

d w
ag Towm(@) = 2 sgn(w)[er o=t Z H 1— B
9 weW cxed)‘+ q
= ¥ Tt Y sgn(wlerttateriera) T oL
aEdt i21 weW ﬁedw q

Now reapply (6.2). O

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 29

We can use this identity to compute K ,(¢) in a manner similar to the one
we described for Freudenthal’s formula, using (6.3) to recover the constant of inte-
gration killed by the derivative. However, as noted above, there is no Weyl group
invariance available for us to exploit, so we are limited to the “slow” algorithm
described at the beginning of §6A.

7. Tensor Product Multiplicities
Our final topic is the problem of computing the multiplicities of the irreducible
representations in U, ® U,, or equivalently, the coefficients cf;’,, appearing in (5.4).
It will be convenient to extend (5.2), the definition of x(\), by allowing X to be
non-dominant. With this convention, we have either x(\) = 0 (if A+ p is orthogonal
to one of the roots), or else A + p has a W-orbit that includes a strongly dominant
weight A’ + p, in which case x(A) = sgn(w)x()\’), where w(A + p) = X' + p.

A. The Brauer-Klimyk formula.

While it would be interesting to see algorithms based on Kashiwara’s crystal
bases [K]| or Littelmann’s path model [L1-2], it seems that a widely used strategy
for computing tensor product multiplicities is based on the following result. It is
often attributed to Klimyk (see [Kl]), although in the notes for Chapter 24 in [H1],
Humphreys traces it back to a 1937 paper of R. Brauer [B].

THEOREM 7.1 (Brauer-Klimyk). For all u,v € At, we have

x(Wx(v) =) Kuex(v+6). (7.1)
£€A

Proof. Since x(A)A(p) = A(XA + p), we find

XWXW)AP) = x(WAW +p) = Kueef Y sgn(w)e?®+)
£eA weW

=) sgnw)K, e = N" K AW+ €+ p),
€A, weW £eA

using the W-invariance of weight multiplicities. [

One may use this as the basis of a tensor product algorithm as follows. First,
determine the dominant weight multiplicities for x(z) by the method described
in §6. Second, for each dominant & < pu, one needs to traverse the full W-orbit
of £: for each orbit member w&, one finds the dominant member of the orbit of
v + w& + p, keeping track of the parity p of the number of reflections used during
the calculation. If the result is strongly dominant, say A + p, one adds (—1)PK, ¢
to the multiplicity of x ().

This algorithm has one major flaw in that it requires traversal of W-orbits. As
we have noted previously, most of the Weyl groups tend to have very few small
orbits. For example, after the adjoint representation of Ejs, the next smallest

30 JOHN R. STEMBRIDGE

representation has complexity three, and these three orbits of weights have sizes
1, 240, and 2160. To use the algorithm effectively, one has to develop an efficient
means of orbit traversal; e.g., following the methods outlined in §4.

In any case, the Brauer-Klimyk formula is most effective if one of the repre-
sentations is “small.” In the particular case of a minuscule representation, one
in which there is just a single orbit of weights, the resulting decomposition has a
rather simple form.

COROLLARY 7.2. For all u,v € A* with y minuscule, we have

xwxw) = Y. x(w+9).

EeEWn: v+EEAT

Proof. Consider a typical term K, ¢ x(v + £) in (7.1). Since there is only one
orbit of weights, we may assume wf = p, say. Hence ({,a)) = (i, (wa;)Y) and
K, ¢ = 1. However, minuscule weights have the (characterizing) property that
(p,av) € {0,£1} for all @ € ® (e.g., Exercise VI.1.24 in [Bo)), so if v + £ fails to
be dominant, we must have (v + &, ;") = —1 for some ¢, whence (v + &+ p,a)) =0
and x(v+ &) =0. O

The next simplest cases are the quasi-minuscule representations. Assuming that
® is irreducible, the highest weight of a quasi-minuscule representation is the short
dominant root &. There are just two orbits of weights: the short roots and zero,
the latter having multiplicity equal to the number of short simple roots. In case ®
has only one W-orbit, this is the adjoint representation.

COROLLARY 7.3. Assume ® is irreducible. For all v € At, we have

x@x(w) = mx(v) + Y. x(v+a),
a€Ed,:vta€EAT

where ®, denotes the set of short roots and m is the number of short simple roots
«; such that (v,a}) > 0.

Proof. The term indexed by £ = 0 contributes mg copies of x(v) to (7.1), where
mo denotes the number of short simple roots. The remaining contributions arise
from choosing £ = a € ®,, in which case K54 = 1. If v + a is dominant, we
obtain a contribution of x(v + a). If v + a fails to be dominant, then we must
have (v + a,a;) < —1. If equality occurs, then the reasoning in the proof of the
previous corollary shows that the corresponding term contributes nothing to (7.1).
Hence (v + a, ;) < —2, and in particular {a,a)) < —2. However since « is short,
this occurs if and only if @ = —a; and (v,a)) = 0 (e.g., Lemma 2.3 of [St]). In
that case, we have (v + a + p,a)f) = —1 and s;(v + a + p) = v + p. It follows that
x(v + a) = —x(v), so we must decrement mg by the number of short simple roots
o; such that (v,aY) =0. O

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 31

B. Double specialization of Weyl characters.

Let AV ={A eV :a€® = (\a) € Z} denote the co-weight lattice and
61,...,0, the fundamental co-weights. Since (w;, ;) is the inverse of the Cartan
matrix, it follows that (A, u) € (1/f)Z for all A € A and p € AV.

For each p € AV, let us define a ring homomorphism from R (the group ring
of A as in §5) to Z[q*!/f] by assigning

e ¢ (A e).

We will use the notations x(A; u), A(A; u), and M (A; u) for the respective images
of x(A), A(A), and M (A) under this “specialization” map.

For p € AV, let xV(u) = A(p + pV)/A(pY) denote the corresponding Weyl
character for the co-root system ®V, where

p'= > a/2=61+ - +6,.
acd+t
THEOREM 7.4 (Double Specialization). For all A € A and u € AV, we have

grtea’) 1

. vy — </—"ap)—(A7pv> Vv . .
x(\pu+pY) =g X (wr+p) - I T (7.2)
acedt
Proof. From (5.1), it is clear that
Alpip+p¥) =g 000 T (¢Fe7 - 1),
acd+t
A(pYi; A+ p) = g~ Oter”) H (q<A+p,aV> —-1).
acdt
Furthermore,
AN +pp+p¥) = D sgn(w)gWOHRwteD
weW
= > sgn(w)gP e T EH) = A(u + p¥i x4+ p).
Hence wew
AA+pip+pY) _ Alp+pYsA+p) _ A(pY; A+ p)
XX p+pY) = = = xV(u; A\ +p)) ——2 "/
(F’) Alp;p+ pY) Alp;p+ pV) (3 +) A(p;p + pV)

and the result follows. O

We remark that Cherednik [Ch] has proved a generalization of the Double Spe-
cialization formula for Macdonald’s (g, t)-deformation of Weyl characters.®

In the special case 4 = 0, we obtain the well-known Principal Specialization
of x(A); the coefficients of x();pY) (as a Laurent polynomial in ¢'/2) are the
dimensions of the weight spaces of Uy relative to the principal embedding of si,.

61 would like to thank I. G. Macdonald for bringing this to my attention.

32 JOHN R. STEMBRIDGE
COROLLARY 7.5. For all A € A, we have

q()H-p,aV) -1

A\
xip) =0 N ooy
acd+

The appearance of the expression {p,a") here, rather than (pV,a), is justifiable
in view of the fact that x(0;pY) = 1.

In case @ is irreducible (for simplicity) and has two orbits of roots, then p and
p" are linearly independent, and the specialization x();p) also factors in closed
form. However, the expression x(A; p) is “unclean” in the sense that p need not be
an integral co-weight, and x(A; p) depends on the choice of coordinates (e.g., the
lengths of roots).

To present this second specialization in a clean way, we can choose an integral
co-weight proportional to p as follows. Let ® = &, U &, denote the partition of &
into orbits of long and short roots, and define

ps = Z a2, p! = Z aVv/2.

acd?t acdt

Similarly define p;, p/ as sums over ;. It is not hard to show that p, and p; are
the sums of the fundamental weights w; and co-weights 8; such that «; is short,
hence both are dominant. Furthermore, if r denotes the squared length-ratio of
long roots versus short roots, then r = 2 or 3, and

(1/2)c?pY =rps + pr = (r = 1)p, + p € A,

where c denotes the length of a long root. Dually, rp) + pY is proportional to p.
Given that pV is proportional to rps + p;, a straightforward application of (5.1)

yields that
era/2___e—ra/2

O |
ae@f

and there is a dual version for xV((r — 1)p)).
By setting u = (r — 1)p)’ in (7.2), we obtain

COROLLARY 7.6. Assume & is irreducible and let r > 1 denote the squared
length-ratio of long and short roots. For all A € A, we have

(A+pa¥) _q r(AteaY) _q
RV, VY — o —=(ApY 1)) a q
XA pg +rp) =q s T H glra¥) —1 H griemaY) — 1
acdf aed;

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 33

C. The support of a tensor product.

Fix p,v € AT. Since the partial ordering of A respects addition, every term
e appearing in x(u)x(v) satisfies A < p + v. It follows that for dominant A, the
multiplicity of x(\) in x(u)x(v) is nonzero only if A < u + v. If equality occurs,
the multiplicity is 1.

Some further restrictions on A can be obtained through the use of duality.

For all A € A, let A* = —wg(\), where wo denotes the longest element in W.
Since wo and —1 both act as order-reversing involutions on (A, <), it follows that
A = X* is an automorphism, and A* is dominant if A is dominant. Furthermore,
x(A*) is the image of x(A) under the automorphism of R defined by e* +— e H,
This reflects the fact that Uy~ is isomorphic to the dual representation U}.

Since the multiplicity of Uy in U, ® U, is the dimension of the subspace of
invariants in Uy ® U, ® U,, it follows that Cz,,, is a symmetric function of *, u, v.
This symmetry can also be explained by a direct calculation as follows. For any
g € RY, the multiplicity of x()) in g is expressible as

[*°]A(p)g = sgn(w)[e*C+9)]A(p)g = sgn(w)[e’)e= O+ A(p)g

= TEIACA = AR = A lEIAPACDXAN)g,

where in the first equality, w denotes an arbitrary member of W, and the third
equality is obtained by averaging over w € W. In particular, we obtain

cuv = = [€Y]A(P) A(=p)X (X)x ()X (v), (7.3)

confirming the symmetry.
Applying these symmetries to the inequality A < u + v, we obtain pu* < A* +v
and v* < p + A*, or equivalently p — v* < X and v — u* < . Hence,

G F0 = p+veAcp—viv—p (\uveAt).

For any £ € A, let £1 denote the unique dominant member of the W-orbit of €.
The following result provides an even sharper set of bounds for the support of a
tensor product.

PROPOSITION 7.7. If \,u,v € AT and ¢}, , # 0, then X € II(u,v), where
O, v) ={A€At ip+v2A2(@-v) Y, p2A-v)" v>2OA-p'}

The proof relies on the following well-known result (e.g., see Exercise 24.12
of [H1]). We include a proof for the sake of completeness.

34 JOHN R. STEMBRIDGE

LEMMA 7.8. If \,u,v € At and ¢, , # 0, then K, x_, # 0.
Proof. By Theorem 7.1, we have

= sgn(w)Ky s5u),
weW

where §(w) = w(A + p) — (v + p). Hence c;\h,, # 0 implies K, 5(,,) # 0 for some
element w € W. Among all w with this property, choose one that minimizes length.
To complete the proof, it suffices to show that w = 1; i.e., §(w) = A — v.

If w # 1, there is a simple reflection s; such that ¢(s;w) < £(w). Since weight
multiplicities are W-invariant, it follows that both d(w) and

s;0(w) = 6(w) + (m + n)o

are weights of U,, where m = —(w(X + p),a;) and n = (v + p,a)). However,
both m and n are positive (the former by (1.1); the latter since v is dominant), so
8(s;w) = §(w) + ma; is in the a;-weight string from d(w) to s;(d(w)), and hence
must also be a weight of U, (e.g., [H1,§21.3]), contrary to the choice of w. O

Proof of Proposition 7.7. Since weight multiplicities are W-invariant and u is the
highest weight of U, Lemma 7.8 implies . > (A —v)¥, along with v > (A —pu)* by
symmetry. Also, by replacing (A, g, v) with (u, A, v*) (which is justified by (7.3)),
we obtain A > (u —v*)*. O

We remark that by the PRV “Conjecture” (for a recent proof see [L1]), one
knows that x(\) occurs with positive multiplicity in x(u)x(v) when XA = (u—v*)*.
In view of Proposition 7.7, if follows that this is the unique minimal constituent of
x () x(v) with respect to <.

On the other hand, the converse of Proposition 7.7 is far from true; there are
easy examples with A € II(u,v) and c;)’,, = 0. In fact, determining necessary and
sufficient conditions for the nonvanishing of cﬁ,,, is a notoriously difficult problem.
Even in type A, there are no simple conditions, but with the recent solution of
the Saturation Conjecture by Knutson and Tao [KT], there is now a remarkable

recursive set of conditions. For example, see the survey article by Fulton [F].

D. The qtensor algorithm.

We are now ready to describe a new algorithm we call gtensor” for comput-
ing tensor product multiplicities. Unlike algorithms based on the Brauer-Klimyk
formula, it does not require one of the factors to be “small.” Instead, the algo-
rithm makes use of a third representation as a kind of “catalyst,” and this catalyst
must be small. In the case of Fg, even the trivial representation turns out to be a
surprisingly powerful catalyst.

"The “q” stands for both ¢ and “quick-and-dirty.”

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS 35

Given u,v € A, the gtensor algorithm starts by constructing the set II(u,v).
This can be done by modifying the algorithm in §5D for computing A*(u + v),
discarding all A ¢ II(u,v), and stopping as soon as there is no remaining way to
apply an “elementary move” and remain above (u — v*)*.

Now consider the finite expansion

xwx@) = > ch,x(N.

A€EI(u,v)

Since the specialization maps are ring homomorphisms, it follows that

X €+ p)x(vi€+p") =) L x(NE+pY), (7.4)
AE(p,v)

for all co-weights &.

Now the Double Specialization Formula (Theorem 7.4) comes into play. Sup-
pose that the catalyst £ is the dominant co-weight for a (dual) Weyl character
that has a “sufficiently small” weight system. In that case, we can compute any
specialization of the form xV(&; A + p) with A € At reasonably fast. Hence by the
Double Specialization Formula, we can compute every specialization of the form
X(A; € + pY) reasonably fast, including all of the terms appearing in (7.4). In par-
ticular, note that a fast way to simplify the product over ®* appearing in (7.2) is
to recognize it as a quotient of cyclotomic polynomials ¢4(q). Rewrite each factor
g™ — 1 symbolically as the product of ¢4(q) : d | m, and then cancel common
factors syntactically.

Bearing in mind that specializations of Weyl characters are Laurent polyno-
mials, equation (7.4) amounts to a system of linear equations for the unknown
multiplicities c;),u. Furthermore, it is not hard to show that these multiplicities are
uniquely determined by the equations corresponding to sufficiently many choices
for £. Indeed, this is equivalent to the assertion that a Laurent polynomial g in n
variables is determined by sufficiently many specializations g(¢®,...,q¢*").

The main question, one we have only started investigating, is whether the num-
ber of specializations needed, and their cost, makes this algorithm practical for
large problems. While a simple counting argument shows that it is impossible
(outside of A;) for the system of equations corresponding to a single catalyst to
solve every instance of the problem, in practice we have found that these systems
of equations are amazingly powerful.

In Table VI, we illustrate the results of using only the trivial catalyst £ = 0;
i.e., the principal specialization x(\;p") of Corollary 7.5. For each root system,
we generated pairs u, v € AT in order of increasing complexity. We then found the
first instance for which the decomposition of x(u)x(v) was not uniquely determined
by the principal specialization. By “first,” we mean that among all examples, we
minimized the complexity of the larger of the two factors, and then among these,
we minimized the complexity of the smaller factor. In some cases there is more
than one such choice.

36 JOHN R. STEMBRIDGE
7 |A* ()] v AT ()| | (g, v)|
Ay 1001 2 1001 2 6
B; | 1{(0001 2 1(0001 2 20
Cs | 0)0011 3 0)0011 3 16
Ds | Qo100 2 80100 2 11
0
Es 01800 2 00010 2 9
E; 018001 7 018001 7 71
Eq 0180001 19 0080101 17 164
Fy 10(01 10{01 6 25
G- 1(1 5 1{1 5 14

TABLE VI: Failures of the catalyst £ = 0.

It should be emphasized that these small failures do not represent the upper
bound of what can be done using £ = 0 alone. In most cases, there are much
larger tensor products that can be successfully decomposed in this way. In type
A however, it is not hard to show that the catalyst & = 0 is powerful enough to
decompose the tensor products of the fundamental representations, but not much
more. Of course in type A, there are numerous small representations available for
use as catalysts.

The impressive results for Eg can be explained heuristically as follows. The
degree of x(\; p¥) as a Laurent polynomial in ¢*/2 is (), 2p"). A necessary condition
for £ = 0 to fail as a catalyst is that there must exist a distinct pair A\, \' € IM(p,v)
whose corresponding specializations have the same degree; i.e., (X, p¥) = (X, pV).
However in the case of Fg, if A = myw; + - - - + mgws, then

(X,2pY) = 92my + 136my + 182m3 + 270my4 + 220ms + 168me + 114m; + 58msg.

The lowest dominant weights yielding the same degree are quite high.

On the other hand, the “disappointing” results reported in Table VI that occur in
types A, D, and Eg can be attributed to the existence of non-trivial Dynkin diagram
automorphisms. Any pair of weights that are related by such an automorphism
will have the same specialization at pV. Therefore if II(u,v) contains such a pair,
¢ = O will fail. To break the symmetry, one needs to include catalysts ¢ that are not
fixed by automorphisms. Fortunately in each of these cases, there are minuscule
weights with this property.

In Table VII, we report the smallest unsolvable problems obtained after adding
the catalyst £ = (r — 1)p,” (see Corollary 7.6) to £ = 0, for the multiply-laced root
systems. Note the dramatic improvement that occurs in comparison with £ = 0
alone, particularly in the exceptional cases.

1]
2]
(3]
[4]
[5]
[6]

[BLS)
[Bo]
[BH]
[B]

[Br]

COMPUTATIONAL ASPECTS OF ROOT SYSTEMS

Iz |A* (p)] v AT ()| | T(p,v)]
Bs | 1(0011 6 1(0002 4 61
Cs | 0)0102 8 0)0110 6 42
Fy | 10(02 14 10(02 14 76
Go 4(2 23 4(2 23 75

TABLE VII: Failures of the combination £ =0 and £ = (r — 1)p/’.

Software

coxeter & weyl: http://www.math.lsa.umich.edu/” jrs/maple.html

Maple: http://www.maplesoft.com/

LiE: http://wallis.univ-poitiers.fr/“maavl/LiE/
CHEVIE: http://www.math.rwth-aachen.de/~CHEVIE/
GAP: http://www.math.rwth-aachen.de/GAP/

Schur: http://smc.vnet.net/Schur.html

References

L. Babai, E. M. Luks, and A. Seress, Fast management of permutation
groups I, SIAM J. Comput. 26 (1997), 1310-1342.

N. Bourbaki, “Groupes et Algebres de Lie, Chp. IV-VI,” Hermann, Paris,
1968.

B. Brink and R. Howlett, A finiteness property and an autoinatic structure
for Coxeter groups, Math. Ann. 296 (1993), 179-190.

R. Brauer, Sur la multiplication des charactéristiques des groupes continus
et semi-simples, C. R. Acad. Sci. Paris 204 (1937), 1784-1786.

A. Broer, The sum of generalized exponents and Chevalley’s restriction
theorem for modules of covariants, Indag. Math. 6 (1995), 385-396.

W. A. Casselman, Machine calculations in Weyl groups, Invent. Math. 116
(1994), 95-108.

I. Cherednik, Macdonald’s evaluation conjectures and difference Fourier
transform, Invent. Math. 122 (1995), 119-145.

W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert
calculus, Bull. Amer. Math. Soc. 37 (2000), 209-249.

M. Geck and J. Michel, “Good” elements of finite Coxeter groups and rep-
resentations of Iwahori-Hecke algebras Proc. London Maih. Soc. (3) 74
(1997), 275-305.

M. Geck and G. Pfeiffer, On the irreducible characters of Hecke algebras,
Advances in Math. 102 (1993), 79-94.

38

[G]

[St]

JOHN R. STEMBRIDGE

R. Gill, On posets from conjugacy classes of Coxeter groups, Discrete Math.
216 (2000), 139-152.

R. K. Gupta, Characters and the g-analog of weight multiplicity, J. London
Math. Soc. 36 (1987), 68-76.

J. E. Humphreys, “Introduction to Lie Algebras and Representation The-
ory,” Springer Verlag, Berlin-New York, 1972.

9

J. E. Humphreys, “Reflection groups and Coxeter groups,
Univ. Press, Cambridge, 1990.

M. Kashiwara, Crystalizing the g-analogue of universal enveloping algebras,
Comm. Math. Phys. 133 (1990), 249-260.

S. Kato, Spherical functions and a g-analogue of Kostant’s weight multi-
plicity formula, Invent. Math. 66 (1982), 461-468.

A. U. Klimyk, Decomposition of a direct product of irreducible representa-
tions of a semisimple Lie algebra into a direct sum of irreducible represen-
tations, Amer. Math. Soc. Transl., Series 2 76 (1968), 63-73.

A. Knutson and T. Tao, The honeycomb model of GL,(C) tensor products
I: proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), 1055
1090.

P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody
algebras, Invent. Math. 116 (1994), 329-346.

P. Littelmann, Paths and root operators in representation theory, Ann. of
Math. 142 (1995), 499-525.

G. Lusztig, Singularities, character formulas, and a g-analog of weight mul-
tiplicities, in “Analysis and topology on singular spaces II--I11,” Astérisque
101-102 (1983), 208-229.

R. V. Moody and J. Patera, Fast recursion formula for weight multiplicities,
Bull. Amer. Math. Soc. 7 (1982), 237-242.

C. C. Sims, Computational methods in the study of permutation groups,
in “Computational Problems in Abstract Algebra,” (Proc. Conf., Oxford,
1967) Pergamon, Oxford, 169-183.

J. R. Stembridge, The partial order of dominant weights, Advances in Math.
136 (1998), 340-364.

Cambridge

Department of Mathematics
University of Michigan

Ann Arbor, Michigan 48109-1109 USA
e-mail: jrs@umich.edu

