CHAPTER 10

On classification of exceptional complements: case
o6>1

Now we study the case § > 1 in details.

10.1. The inequlity § < 2

In this section we show that § < 2. Replace (X, B) with a model (X, B).
By construction, §(X, B) = §(X,B). Thus we assume that p(X) = 1, B € &,
Kx + B is (1/7)-1t and —(Kx + B) is nef. Moreover, there exists a boundary D
defined by (9.1) such that Kx + D is ample and lc. Let C := | D|. Then 6§(X, B) is
the number of components of C'. Since K x + D is Ic, C has only nodal singularities.
The following is a very important ingredient in the classification.

THEOREM 10.1.1 ([Sh3]). Notation as in 10. Then p,(C) < 1.

SKETCH OF PROOF. Assume that p,(C) > 2. Consider the following birational
modifications:

Xmin
(10.1) V Y‘
X . ¢

where p: X™" — X be a minimal resolution and ¢: X™® — X’ is a composition
of contractions of —1-curves. Since Kx + C is lc, C has only nodal singularities.
By Lemma 9.1.8, X is smooth at SingC. Therefore Cmin ~ C. Thus p,(C) =
Do (C™™) > 2, C™™ is not contracted and p,(C’) > 2. Take the crepant pull back
p*(Kx 4+ B) = Kxmin + B™  with p,B™" =B
and put
B = (p*Bmin
Note that both —(K ymin +B™") and —(K x' + B') are nef and big. Since p(X) =1
and C ~ C™" we have
(*) every two irreducible components of C™" intersect each other.

If X' ~ IP?, then —(Kx/ + £C’) is ample. This gives $degC’ < 3, degC’ < 3
and p,(C') < 1. Now we assume that X’ ~ F,,. We claim that n > 2. Indeed,
otherwise X’ ~ P! x P!, X’ # X™in (because p(X) = 1) and we have at least
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106 10. ON CLASSIFICATION OF EXCEPTIONAL COMPLEMENTS

one blowup X™" — X” — X’. Contracting another —1-curve on X" we get F;
instead of P! x P! and after the next blowdown we get P2. Thus n > 2. Let £ be
a negative section of F,, and F be a general fiber. Since %C” -F<-Kx/ -F =2,
we have C' - F < 2. So C' must be generically a 2-section of F,, — P! (otherwise
C' is generically a section and p,(C’) = 0).

First we consider the case when Y is not a component of C’. Then the
coefficient of £y in C’ <2 — %2 = 2. Thus

2 2
og—(Kx,+B')->:05—(KX,+?20)-20=2—n+—".

7
Hence n = 2, X' ~ F,. If X™in £ X' then X™" — X’ contracts at least one
—1-curve. But then contracting another —1-curve we obtain either X' = F3 or

X' = F,, a contradiction with our assumptions. Therefore X™i"* = X’ and X is a
quadratic cone in P2, Since —(Kx + gC’) is ample, C = aH, where H is the ample
generator of Pic(X) and a < . By Adjunction we have

degKc < (Kx +C)-C =2(a—2)a<?2.

Hence p,(C) <1 in this case.

Finally, we consider the case when ¥, is a component of C’'. Write C’' = £¢+%'.
Then X' is generically a section. From p,(C’) > 2 by genus formula, we have
Yo - X' > 3. But then

0>(Kx +B') %o > (Kx' +)30+-$:Z') - 3o > —2+g-32 ;,

a contradiction. O

COROLLARY 10.1.2 ([Sh3]). Notation as in 10. Then §(X,B) < 2.

PROOF. Let C = Zle C;. From the exact sequence

0 — Oc — 8O0¢, —m F — 0,

where F is a sheaf with SuppF = SingC, we have
(10.2) 1>p(C)=1-6+#{C:nNC;|i#j}+ D pa(C).
On the other hand, by (*) we have #{C; N C; | i # j} > 16(6 — 1). This yields
(10.3) 0> %5(5 —3)+ 3 pa(C).

In particular, § < 3. Assume that 6 = 3. Then C is a wheel of smooth rational
curves and in (10.3) the equality holds. Let H be an ample generator of Pic(X). We
have —Kx = rH, C; = ~,H for some positive rational r, v1, 72, 3. Since every C;
intersects C; transversally at a (unique) nonsingular point, 1 = C; - C; = vy, H?.
Hence

1
Y1Y2 = M17Y3 = V27V3 = m
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This implies

1
(10.4) M=r2=73= T <L
Since —(Kx + B) is ample,
T > § + 9 + 9 = 1§
7’71 7’72 7’73 =7 7.
Therefore Kx + C; + C2 + 3C3 = — (r — 38+1) H is antiample (and lc). We claim

that X is smooth along C;. Indeed, otherwise Diff¢, (0) > %P, where P ¢ Cs,Cs.
On the other hand, by Adjunction we have

2> de’gDiﬁ‘Cl (Cz + éC’g) =1+ é + l > 2.
7 7 2
The contradiction shows that X is smooth along C;, and similarly X is smooth
along Cy and Cs. Thus Cy, C;, C5 are Cartier. In particular, v; € N. By (10.4),
71 =1 and H? = 1. Since Pic(X) ~ Z- H, C;,C2,Cs € |H|. The linear subsystem
of |H| generated by C;,C>, C5 is base point free and determines a morphism X —
P2 of degree one (see also Lemma, 10.2.4 below). Therefore X ~ P? and C;,C5,Cj
are lines in the general position. Simple computations show that B has no other
components. Finally, Kx + C is an 1-complements of Kx + B, a contradiction
proves the corollary. O

10.2. Case 6 =2
Following Shokurov [Sh3] we describe the case § = 2:

THEOREM 10.2.1. Let (X, B) be a Zog surface such that Kx + B is (1/7)-lt,
—(Kx + B) is nef, B € &, 6(X,B) =2 and p(X) = 1. Assume that (X, B) is
exceptional. Let H be a positive generator of Pic(X). Write

B = b101 +b202 +F, F=z(1—1/mz)E,
bi,bo > 6/7, m; € {1,2,3,4,5,6},
where C1 and Cs are irreducible curves. Then C := C; + C2 has only normal

crossings at smooth points of X, SuppF does not pass C; NCs and by + b < 13/7.
We have one of the following possibilities:

(A X =P?, B=b,C; +b,Cy + %Fl + %FQ, where Cy, Cy, Fy, Fy are lines such
that no three of them intersect at a point and by + by < 11/6;

(AYY X =12, B=0b,C; +b,Co + $F\ +3F,, where C1, Ca, Fi, F; are lines such
that no three of them intersect at a point and by + be < 7/4;

(A3) X is a quadratic cone in P3, B = b1Cy + boCy + 2F1, where Cy is its
generator, Cy, Fy are its smooth hyperplane sections, by + 2b, < 8/3;

(A3) X is a rational cubic cone in P*, B = b;C; + b,Co + 3 Fy, where Cy is its
generator, Co, Fy are its smooth hyperplane sections, by + 3ba < 7/2 and
#02 n Fl 2> 2;



108 10. ON CLASSIFICATION OF EXCEPTIONAL COMPLEMENTS

(A%) X =1P(1,2,3), B = bIC1+b2C'2+%F1, where Cy = {2 = 0}, Cy = {z3 = 0}
(i.e., 3C, ~ H, 2Cy ~ H), Fy is a smooth rational curve = {H, Fy # Cs
which is given by the equation 3 = :1::1’ + 122, 2b1 + 3b2 < 9/2;

(A3) X =P(1,3,4), B= 3(C1+C3)+3Fy, where Cy = {z2 = 0}, C; = {z3 = 0}
(i.e., 4C1 ~ H, 3Cy ~ H), Fy is a smooth rational curve = 1H, F # C»
which is given by the equation x3 = =} + 1T, in this case 14(Kx + B) ~ 0;

(AS) X =1(1,2,3), B = 2(C) + C), where C is a line {z; =0}, C; € |-Kx|
(i.e., 6Cy ~ H, Cy ~ H), SingX C C4, in this case T(Kx + B) ~ 0;

(I3) X is a quadratic cone in P3, B = b;Cy + b,C2 + 3 Fy, where C1, C2 are two
smooth hyperplane sections, Fy is a generator of the cone, by + by < 7/4;

(I3) X = P(1,2,3), B = £Cy + £C,, where C; = {z3 = 0}, C, = {22 =
@177 + a2r?z2 + 7173}, 1,02 € C, (a1,a2) # (0,0), 2C; ~ H, 3C, ~ 2H,
in this case 7(Kx + B) ~ 0.

REMARK. Note that in all cases Weiljjn(X) =~ Z. Therefore we can verify (i)
in the definition of complements 4.1.3 numerically, i.e., we need to check only that
nB* is integral and Kx + B* = 0. By the Inductive Theorem 8.3.1, (ii) of 4.1.3
holds automatically whenever (X, B) is exceptional.

Shokurov’s proof is based on a detailed analysis of the minimal resolution,
cf. (10.1). Our proof uses computations of Fano indices of X (as in the proof of
Corollary 10.1.2). We use slightly 5.2.3. Note that one can avoid using of 5.2.3,
but then computations become a little more complicated.

The important property is that K x + D is analytically dlt except for one case:

LEMMA 10.2.2 ([Sh3]). Let (S 2 0,B = )_b;B;) be a log surface germ, where
B € &,,. Assume that Kg+ B is (1/7)-lt. As in (9.1), put

7
C:= [EBJ = Y B, F:= > bB and D:=C+F
bi>6/7 bi<6/7
Then one of the following holds:

(i) Ks + D is analytically dlt at o;
(ii) o € S is smooth and near o we have D = C + 3L, where (S,C + L) ~,,

(C% {y(y — z?) = 0}).

PRroor. Clearly, we may assume that Kg + D is not plt (otherwise we have
case (i)). By Theorem 6.0.6 there is a regular complement K5+ B*. Since B € &y,
Bt > D. In particular, Kg+ D is Ic and C = | D] has at most two (analytic) com-
ponents passing through o (see Theorem 2.1.3). If C has exactly two components,
then S 3 o is smooth by Lemma 9.1.8. Obviously, Ks + D is analytically dlt at o
in this case. From now on we assume that C is analytically irreducible at 0. Write

B =bC + F, where b > 6/7. Recall that F € {0,3,2,3,2 3}
First we consider the case when Kg + C is not plt. Then D = C and (S, C,0)
is such as in (ii) of 2.1.3. In particular, 2(Ks + C) ~ 0 and Kg + C £ 0. Let

f:(S,E) — S be an inductive blowup of (S, D) and C the proper transform of C.
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Write
f*(K5+C) =K§+5'1—E,
f*(Ks+bC) =Kz +bC + aE,

where a < 6/7. Here 2 (K§+5+ E) ~ 0. By Adjunction, Kg + DiffE(é) is
not kit and degDiff (C) = 2. Moreover, Kz + Diff g(C) is not 1-complementary
(because neither is Kg + C). Therefore we have (cf. Lemma 6.1.1)

~ 1 1 1 1
for some points P, P>, P3; € E and some m € N. From this we have

(Kz+E)-E+bC-E+(-1+a)E?=0.

m—1

P;

By Adjunction

1 1 1 1
K:+E) E=-2+-+-+1——=——.
(K5 + E) totagt m m
Since CNE is a point of type %(1,q), C-E> 1/m. This yields
= (= - < —.
7( E?) < (-14+a)E <

Thus 0 < —E? < 1/m and —1/m < Kz -E < 0. On the other hand, mKj3 is
Cartier near E. Therefore mKz - E € Z, a contradiction.

Now we may assume that Kg + C is plt. By Theorem 6.0.6, Kg + D is 2-
complementary and Dt > D, so 2(Ks + D) ~ 0 and 2F is integral. We claim that
(S 3 o) is smooth. Assume the opposite. Then

(S5,C) ~ (C*,{y=0})/Zn(1,q), ged(gym)=1, m>2, 1<g<m-1

Consider the weighted blowup with weights 1(1,¢). By Lemma 3.2.1 we get the
exceptional divisor £ with

WE,Dy=-142+9_4 _K_ _ 1 _#
m m 2 m 2
where y = multg(2F) € LN. Since 2(Ks + D) ~ 0, we have a(E,D) = —1
or —1/2. But in the second case p = 2/m — 1 < 0, a contradiction. Therefore
o(E,C + F) = -1 and p = 2/m. Further,
—1+1<a(E,B)=—1+£——t—q— l—£=—1+q~(l—:—lﬁ<—1+l.
7 m m 2 m 7
The contradiction shows that (S > o) is smooth. Now we claim that [F] is a
smooth curve. As above, consider the blowup of o € S. For the exceptional divisor
E, we have

1 _ I
—1+?<a(E,B)—-1 b 5

where 4 = multg(2F) € N. Hence o = 1 and L = [F'| is smooth. Finally,
Ks+C+ (% —¢)L is plt for any € > 0. By Adjunction, |Diff¢((3 —¢)L)| < 0.
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Hence |Diffc(3L)] is reduced. This means that C- L = 2, i.e., C and L have a
simple tangency at o. The rest is obvious. a

We need some (well known) facts about Fano indices of log del Pezzo surfaces.

DEFINITION 10.2.3. Let (X, D) be a log del Pezzo surface. Define the Fano
index (X, D) of (X, D) by

7(X,D) =sup{t | —(Kx + D) =tH, forsome H € Pic(X)}.

If Kx+Disklt or Kx+Disdlt and —(K x+ D) is ample, then by Lemma 5.1.3,
r(X,D) € Q and —(Kx + D) = r(X, D)H for some (primitive and ample) element
H € Pic(X) (recall that we consider only Q-divisors). In the case D = 0 we write
r(X) instead of r(X,0).

The following is an easy consequece of Riemann-Roch, Kawamata-Viehweg
vanishing and [Fuj].

LEMMA 10.2.4. Let X be a log del Pezzo with kit singularities of Fano indezx
r = r(X). Assume that —Kx is ample and write —Kx = rH, where H is a
primitive (ample) element of Pic(X). Then
(i) dim |H| = 3(1+r)H?, hencer = &5 — 1, where | := dim |H|;
(ii) H? > dim |H| — 1, hencer <1+ £;
(iii) if r > 1, then
dim|H| = H* +1, and r:l+%.
Moreover, X is one of the following X ~P? (r =3), X ~P! x P! (r =2),
X C P! 4s a cone over a rational normal curve of degree d = H? (r =
1+2/d).

- Proor. By Kawamata-Viehweg vanishing [KMM, 1-2-5| one has
HY (X,0Ox(H)) = HY(X,0x) = 0 for ¢ > 0. Therefore by Riemann-Roch
we obtain

H-(H-Kx) ((+r7)H?

2 - 2
This proves (i). Recall (see [Fuj]) that for any polarized variety (X, H) the following
equality holds:

(10.5) dim X + HY™X _ p%(X, Ox(H)) > 0.

Combining this with (i) we obtain (ii). Finally, assume r > 1. Then by (i),
dim|H| > H?. From (ii) we have H? = dim|H| — 1. Moreover, in (10.5) the
equality holds. Such polarized varieties (of arbitrary dimension) are classified in
[Fuj]. In particular, it is proved that H is very ample and X C PdimIH| are varieties
of minimal degree. In the two-dimensional case from [Fuj] we obtain possibilities
as in (iii). O

dim |H| =

Log del Pezzo surfaces with r(X) = 1 are special cases of the so-called Fujita
varieties:



10.2. CASE § =2 111

LEMMA 10.2.5. Let X be a log del Pezzo with klt singularities of Fano index
1. Assume that —Kx is ample and H an ample primitive element of Pic(X) such
that —Kx = H. Then
(i) dim |H| = H? and H? < §;
(ii) if H? > 4, then X has only DuVal singularities;
(iii) if H2 =6 and p(X) = 1, then X has ezactly two singular points which are
Du Val of types Ay and As; in this case, X is isomorphic to the weighted
projective plane P(1,2,3).

SKETCH OF PROOF. Note that by Lemma 5.4.1, X is rational. As in
Lemma 10.2.4, the first part of (i) follows by Riemann-Roch and Kawamata-
Viehweg vanishing. Set D := H + Kx. If D ~ 0, then X has only DuVal sin-
gularities. In this case, by Noether’s formula,

K% + p(X) = K% + p(X) = 10,

where X — X is the minimal resolution. This yields K% = H? < 8 (because
X # P2).

If D #£ 0, then by Lemma 5.1.3, nD ~ 0 for some n € N. Considering a cyclic
cover trick, we get a cyclic étale in codimension one cover ¢: X' — X. Moreover,
on X' one has ~Kx+ ~ H', where H' := ¢*H. Therefore X' is a del Pezzo surface
with only DuVal singularities. Further, by the above arguments,

K% = (degp)K% <9.

Hence K% < 4. If K% = 4, then K%, = 8 and X is a quotient of X’ by an involution
7. In this case, X’ cannot be smooth (otherwise X has only singularities of type A,
and —Kx ~ H). Let X’ — X' be the minimal resolution. As above, by Noether’s
formula, p(X') = 10~K%, = 10~K%, = 2. Therefore, X' — X' contracts a single
—2-curve. From this, we have only one possibility: X’ ~ Fy and X’ is a quadratic¢
cone in P?. Since Pic(X’) = Z - Ox(1), one has that T acts linearly in P3. Recall
that the quotient of the vertex of the cone is nonGorenstein. The action of 7 on
P3 is free in codimension one (because so is the action of 7 on X’). Therefore in
some coordinate system,

-1 0 0 O
= 0 -1 0 O
0 0 1 O
0 0 0 1

and X' is given by

q(z1,z2) + ¢'(z3,24) = 0,

where q(z1,x2) and ¢'(z3,x4) are quadratic forms such that rk(¢+¢’) = 3. Chang-
ing coordinates we may assume that X' is given by z? + z% + z5 = 0. But then
the quotient of the vertex is a complete intersection singularity y; + y2 + 3 = 0,
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Y1y2 = Y2, where y; = z%, yo = 72 and yg = z,72. In particular, it is Gorenstein,
a contradiction. _
Assume now that H? = 6. Then by the above, X is Gorenstein and p(X) = 4,
where X — X is the minimal resolution. Therefore X — X contracts exactly three
—2-curves and the configuration of singular points on X is either A3 or A; A;. By
[Fu] the only second case is possible. Moreover, X is unique up to isomorphism
(see e.g., [KeM, 3.10]). On the other hand, P(1,2,3) is a Gorenstein del Pezzo of
degree 6. U

REMARK. There is another way to treat the case H?> = 6: since dim |H| = 6,
one can construct a 1-complement K x + C such that C has three components and
then use Theorem 8.5.2.

PRooOF oF THEOREM 10.2.1. Since B # 0 and p(X) = 1, —Kx is ample.
Hence X is rational. By Lemma 10.2.2 Then C := C; + C3 has only normal
crossings at smooth points of X, SuppF does not pass C; NC; and b; + bs < 13/7
(by Lemma 9.1.8).

Write

Ci,=diH, —-Kx=rH, F =qH.
We assume that d; < ds. Since —(Kx + B) is nef,
(10.6) g(az1 +dp) < brdy + bydy +q <.
Take b so that Kx + C; + bCy + F =0, i.e.

d, +bds +q=r.

Then

’I‘—q-dl > b1d1+b2d2—d1

(10.7) b= 2 7

d
bg—(1—b1)ai > by +by—1>5/7.
2
Since Kx + C + F' is ample, b < 1.
Recall that Kx + C + F is analytically dlt except for the case (ii) of
Lemma 10.2.2. In particular, X is smooth at points C; NCs and C; NCyNSuppF =
@. By Adjunction,

(10.8) K¢, + Diff¢, (bC2 + F) = 0.

If po(Cv) > 0, then K¢, = Diffe,(bC2 + F) = 0. This is impossible because
C1 NCy # @. Therefore C; ~ P! and degDiff¢, (bCy + F) = 2.
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10.2.6. Case: X is smooth. Then X ~ P? and r = 3. From (10.6) we
obtain (d;,d2) = (1,2) or (1,1). On the other hand, Kx + C + F is ample. This
gives

g>3—dy —ds.

If (di,d2) = (1,2), then by (10.6), 0 < ¢ < 3 — —1.—,§ = % < %, a contradiction.
Therefore Cy, Cy are lines on X ~ P2. Then

1
> (1-1/m;)deg F; <3-12/7=9/7, ¢>1.

If deg 1 > 2, then F = %Fl, deg Fi = 2 and q = 1, a contradiction. Hence
all the components of F' are lines. From (10.9) we have only two possibilities:
F=3F+ 2F, and F = 1F; + 3F,. These are cases (A}) and (AY').

From now on we assume that X is singular. Since p,(C) < 1, we have two
possibilities: #C1 NCy; =2 and #C1 N Cy; = 1.

10.2.7. Case: #C1NCy =2. Let C1 NCy = {P;,P}. Then

2= Cl . CQ = d1d2H2.
Equality (10.8) gives
Diffc, (bC2 + F) = bPl + bP, + Diff ¢, (F).
Hence |
deg Diff o, (F) = 2 — 2b < 4/7.

By Inversion of Adjunction, Kx + C; + F is plt near C;. Assume that
Diffc,(F) = 0. Then F = 0 and b = 1, a contradiction with b < 1. Therefore
Diff ¢, (F') # 0.

Since Diff¢, (F) € ®sm (see Corollary 2.2.8), we have only one possibility:
Diff¢, (F) = 1Q, where Q € C; is a single point # Py, P,. Moreover, b = 3/4 and
dl + %dz +qg=r.

If @ € X is smooth, then F = 1 Fy, where F} is irreducible, F; NC; = {Q} and
Fy - Cy, = 1. Thus C) is Cartier (see 2.2.4),d; € Nand r =d; + %dg +q > %. By
Lemma 10.2.4 X is a cone over a rational normal curve of degree d > 2. In this case
r =(d+2)/d > 7/4 and d = 2. Therefore X C P? is a quadratic cone. Further,
d; = dz = 1, so Cy, C; are hyperplane sections (and they do not pass through the
vertex of the cone). Finally, from F; - C; = 1 we see that F} is a generator of the
cone. This is case (I3).

Therefore Q € X is singular. Then it must be DuVal of type A;. Moreover,
F = 0 and 2C), is Cartier (but C; is not, because C; is smooth at Q). Hence
d, € %N. Further, d; + %d2 =r.

Ifdy > 1, then d > 1 and r > 7/4. By Lemma 10.2.4 and our assumption

that X is singular, r = 2 and X is a quadratic cone. But then d; = 4/3, a
contradiction. Hence d; = 1/2, dy > 1/2. Put k:= C; - H € N. Then H? = 2k,
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2=C;-Co=3dyH?,s0dy, =2/k>1/2, k<4 Thisgivesr =1 +3d, =1+ 3.
On the other hand, by Lemma 10.2.4, r = %— 1, where | € N. Therefore 3k +3 = 2/
and £k € {1,3}. If Kk =1, then! = 3, r = 2, d2 = 2. But this contradicts
g(d1+dg) < r. Weobtain k = 3,1l =6, r = 1, dy = 2/3, H> = 6. By
Lemma 10.2.5, X ~ P(1,2,3). We may assume that C; € |Op(3)| and C; € [Op(4)|.
Then C; = {z3 = 0} and C2 = {22 = 12} + a27%1s + a37173}, @1,09,0a3 € C.
But a3 # 0 (otherwise C, is singular at (0,0,1)). Moreover, (a;,az) # (0,0),
because C; N Cs consists of two points. This is case (I3).

10.2.8. Case: p,(C;) = 1. By 10.2.7 we may assume that C; N C: is a single
point, say P. As in (10.7) take b’ so that Kx + b'C; + Cy, + F =0, i.e.

b,dl +d2+q=r.

Since K¢, + Diff,(b'Cy + F) = 0, we have deg(K¢, + Diff¢,(¥'Cy)) < 0 and
K¢, =0, ¥ <0. This yields

—qg—d d
y="_"9"% _ 4 _(1_-p)82 <«
i 1~ ( 2)d1 <0,
6 1
(10.10) 7d1 <bidy < (1 =by)dy < §d2, 6d; < d,.

Assume that r < 1. Then
(10.11) 1>7r>bidi + byda +q > (by + 6b2)dy + g > 6d;.
On the other hand, by (10.8),

deg Diff¢, (F) = 2 — b,

where

(10.12) 1>b2b2—(1—b1)ﬁ>b2+1b1—

1.5
- > —.
ds 6 6 6

(see (10.7) and (10.10)). Hence
1 < deg Diff¢, (F') < 7/6.

Since Diff ¢, (F') € ®sm, we have only one possibility Diff ¢, (F) = 1Q, + 2Q, and
b = 5/6. In particular, 6C; is Cartier (see Theorem 2.2.4), so d; > 1/6. On the
other hand, d; < 1/6 (see (10.11)). Hence d; = 1/6 and kC, is not Cartier for
1 < k < 5. This gives us that ' = 0. Moreover, in (10.12) equalities hold, so
1 = 6d; = d2 and by = by = 6/7. From (10.11) we have r > 6d; = 1. Hence
r = 1. Further, C; - C; = gH? = 1, gives H> = K% = 6. By Lemma 10.2.5,
X ~P(1,2,3). We get case (A$).

Now assume that 7 > 1. Then X is a cone. From 2 > r > bjd; + bads + ¢ >
(b + 6b2)dy + g > 6d; we see that d; < 1/3 and C; is not Cartier. Hence C,;
contains the vertex and C; does not. Thus C; is Cartier. Finally, C; - Cy =1
Therefore C; is a generator of the cone and C; is a smooth hyperplane section.
But then Cj is rational, a contradiction.
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10.2.9. Case C1 NCy = {P} and p,(C1) = po(C1) = 0. Then C,; - Cy = 1.
By (10.7), 1 > b > 5/7. Hence 1 < deg(Diff¢,(F)) = 2 —-b < 9/7. Using
Diff¢, (F) € ®sm we get the following cases:

. 1 2 1 3
(10.13) Diffc, (F) = §Q1 + §Q2, §Q1 + ZQz.

By Inversion of Adjunction, Kx + C; + F is plt near C;. In particular, either
4C; or 6C is Cartier (see 2.2.4) and F has at most two components. Thus 4d; or
6d; € N. Note that

1 1
= < = <1.
g H-Cz_l, d H-Cy —
10.2.9.1. Subcase d; = 1. It is easy to see H - C; = d1H? =1,s0d; = 1/H>.
We claim that r > 1. Indeed, if r < 1, then

(10.14) 1>7r> g(l +dy)

and d; < 1/6. Thus mC; is not Cartier for m < 6. By (10.13) we have that
6C, is Cartier, Diff¢, (F) = 1Q., + 2Q- and d; > 1/6. Therefore d; = 1/6 and
in 10.14 the equality holds. In particular, r = 1, K% = H2 = 6C; - C; = 6. By
Lemma 10.2.5, X ~ IP(1,2,3) and Weilj;,(X) ~ Z. But then Cy; ~ —Kx ~ H is
Cartier and p,(C3) = 1, a contradiction.

Thusr > 1and X C P4+ is a cone of degree d := H? (see 10.2.4). Hence C» is a
smooth hyperplane section and C} is a generator of the cone (i.e., dy = 1,d; = 1/d).
Write F; = £ H. (Note that ¢; € N and F; ~ q;C; because Weilj;,(X) ~ Z - C; in
our case). We have

1\ g
10.15 1+ + (1——) >r=
(10.15) > )
d+2
d > bo 4+ — b1+§ (1—"—) ’

¢ €N, m; €{0,2,3,4,5,6}
Assume that F' has a component F; which does not pass through the vertex. Then
q1 > d, so

2 1 6 1 1
1 > 1__>_ -
+- b2+db1+ 7(1+d)+1 o

82d(6-i>
ma

This gives d = 2 or d = 3. If d = 3, then m; = 2. From (10.15) we get F' = 1 Fj,
i.e., case (A3). If d = 2, then m; = 2 or m; = 3. In both cases by (10. 15) we.

)
> —d.
-2
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(10.15). We obtain case (A3).

Now we assume that all components of F' pass through the vertex v of the cone
(in particular, F # 0). Since Kx + C + F' is plt at v (see Lemma 10.2.2), there is
at most one such a component and F = (1 — le)Fl. We claim that either ¢; = 1
or g; > d+ 1. Indeed, assume that 1 < ¢ < d. Then

Flclz%liH2=%S1

Since X is smooth outside of v, F; N C; = {v}. By Adjunction, |Diff¢,(F)| =0
at v. On the other hand, by 2.2.8, the coefficient of Diff¢, (F') at v is

1 1 _1_1 1)\
(- M)y =1- e (1)

have F' = (1 — —1—) F|. For m; = 2 we derive a contradiction with the left side of

1 my
We obtain
l—(1—i)q—1>0 1>(1—i)q1 and q < —2 _ <9
d mq d ’ my m;—1~— ’

a contradiction. Therefore ¢ = 1 or ¢; > d + 1. But the second case is impossible
by the right side of (10.15). Hence ¢; = 1. But this contradicts to the left side of
(10.15).

From now on we assume that d; < ds < 1.

REMARK 10.2.10. If r > 1, then X is a cone and contains exactly one singular
point, say P, and P ¢ C1 N C2. Hence we may assume that P ¢ C; and C is
Cartier. Thus we may assume that r < 1 and C, C3 are not Cartier.

10.2.10.1. Subcase d; = 1/2. Then we have
1=Cl'02=d1H'C2, H'Cz=2, d2H2=2.

Since 1 > dy = ‘1%’5 >d = %,Hz = 3 or H? = 4. On the other hand, H-C; =
TH? € N. Hence H2 =4,d, =1/2and N> —Kx - H = rH? = 4r. By symmetry,

taking into account d; = d2 = 1/2, one can see that (10.13) holds also for Cs:
Diffc,(F) = 5Q1 +2@4, or Q%+ 3@Q%

From r > %(d; +d;) = & we get 7 > 1. Thus 7 = 1 and X is Gorenstein by
10.2.10 and Lemma 10.2.5. By Theorem 5.2.3 all singular points are contained in
C. Since Kx + C is dlt (see Lemma 10.2.2), we obtain that X has only DuVal
points of types A,,,2=1,...,s. Since p(X) =1, ;] ,n; =10—4—p(X) = 5. By
(10.13), n; < 3 and (nq,-..,n,) # (1,1,1,1,1). Now we can use the classification
of Gorenstein del Pezzo surfaces with p = 1 (see e.g., [Fu]). The configuration of
singular points on X is {24;A3}. We may assume that C; contains the point of
type As. Hence Diff¢, (F) = 1Q: + 3Q2 (see (10.13)). At least one of points Q1,
Q2, @1, Q% is smooth. Hence F' # 0 and SuppF NC; = Q;. Thus F = %Fl,
where F; N C; = @Q; and Fy - C; = 1. This implies F; = C; = 1H. But then
1=r< 2(dy +do) + ¢ = 2 + %, a contradiction.
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10.2.10.2. Subcase d; = 1/3. Since 4C is not Cartier, Diff ¢, (F) = $Q1+ 2Q>
and Q2 € X is singular (of type A; or %(1, 1)). Moreover, no components of F
pass through Q2. Further,

1=C,-Co=d,H-Cy, H-Co=3, dyH?=3.

Since 1 > d; = '1:137 >dy = %, 9 > H? > 4. On the other hand, H - C;, =
%Hz € N. Thus H? = 6 or 9. Further, by Lemma 10.2.4, r = -127!2- — 1, wherel e N
and [ < H? + 1.

If H? = 6, then d; = 1/2 and

l 6/1 1 5
127'—3 1> (3+2)— .
This gives | = 6 and » = 1. By Lemma 10.2.5, X ~ P(1,2,3). In particular,
Weiljj, (X) ~ Z. Since —(Kx +C) = (1-1/3 —1/2)H is ample, F' # 0. Therefore
@1 = SuppF N C; and moreover (J; € X is smooth, F' = %Fl and the intersection
of F; and C; is transverse. Thus 1 = F; - C; = %Fl -H and F} = 1H. We may
assume that C; = {z2 = 0}, C2 = {z3 = 0}, and Fi = {z3 = o123 + asz172},
ar,a3 € C. But if Fy = {z3 = z}}, then Kx + C + F is not lc at (0,1,0). On
the other hand, if F} = {3 = 122}, then F; passes through the point C; N Ca, a
contradiction. Therefore a;,as # 0 and we may put Fy = {z3 = z3 + z,22}. This
is case (A3%).
If H2 =9, then d; = 1/3 and

21 6 /1 1 4
>Sr==—1>=-(2+=) == Z.
1>r 9 1_7(3+3) 7 le

This gives I = 9 or | = 8. But in the first case r = 1 which is a contradiction with
H? = 9 (see 10.2.5). Hence | = 8 and r = 7/9. Since d, = d2, similar to 10.13 we
have Diff¢,(F) = $Q} + 2Q5%. In particular, this means that C contains no points
of index > 3. But X \ (C) contains such a point (because r = 7/9), a contradiction
with 5.2.3.

10.2.10.3. Subcase d; = 1/4. Since mC is not Cartier for m < 4, Diff¢, (F') =
Q1 + 3Q2 > Diff¢,(0) and @2 € X is a singular point of type Az or 1(1,1).
By Theorem 5.2.3, @1 € X is smooth. Thus F = 1F;, where F; N C; = @; and
C,-F, =1. Put k:= H-C,. Then H? = 4k, dy = 1/k. Since dy > dy, k < 4.
If i = qH, then1=C,-F, = ;¢1H?> = q1k. Hence F} = +H. Further, by
Lemma 10.2.4,

l 6 1 6 /1 1 1 3k+5
=——1>= L ==|~-+~- — —2k-2> .
r=gp 12zlitd)toa 7(4+k)+2k’ ! =77
On the other hand, KX+C+—%F1 is ample, so 0 < —r +d; +d2+%q1. This gives
l 1 1 1 —I+2k+k/24+2+1
0<——=4+14+-4+—-4+ == 2+ k/2+ 24 , 1—2k—2<k/2+1.

2k 4 k2% 2k
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We get the following case:

k=3, 1=10, r=2/3, dy=1/3, F15§H, H? =12.

We claim that Kx + C is 1-complementary. Note that —(Kx +C) = (2 -1 -1)H
is ample. By Theorem 5.2.3 and because r = 2/3, C; contains exactly one singular
point of X, say Q'. Therefore Diff ¢(0) is supported at two points Q' and Q,. It
is easy to verify that K¢ + Q' + @2 is an l-complement. By Proposition 4.4.3
this complement gives an 1-complement Kx + C + ©, where © is reduced and
oNnC ={Q',Q2}. By Theorem 8.5.2, (X, C + ©) is a toric pair. Such X is defined
by a fan A in R? = Z2 @ R. Let v, v2, v3 be generators of one-dimensional cones
in A. Since X \ C is smooth, we may assume that v; and v, generate Z2. Thus
we can put v; = (1,0,0) and v, = (0,1,0). Therefore X is a weighted projective
space P(1,az2,a3), C1 ~ Op(az), C2 ~ Op(as) and ~Kx ~ Op(1 + a2 + a3). Since
X 3 Q- is singular of type %(l,s), where s = 1 or 3 and Q2 € C;, we can take
a3 = 4. Finally, from

2 2 16 (a1 + az + 0,3)2 (5 + 02)2
K2 =(ZH) =—=. K2 = =
X (3 ) 3’ X a a2a3 4a

we obtain a; = 3. This is case (A3).

10.2.10.4. Subcase d; = 1/6. Since mC is not Cartier for m < 6, Diff, (F) =
3@1 + 3Q, > Diff¢,(0) and Diff¢, (0) = Diff¢,(F) = 1Q, + 2Q,. Hence F =0
and points @1, Q2 € X are singular. This contradicts to Theorem 5.2.3.

Theorem 10.2.1 is proved. g

Theorem 10.2.1 completes the classification of log pairs with §( X, B) = 2. The
case 6(X, B) = 1 was studied by Abe [Ab]. In particular, he completely described
so called “elliptic curve case”, i.e., the case p,(C) = 1. A different approach to the
classification of exceptional complements was given in [KeM].

10.3. Examples

EXAMPLE 10.3.1. Let X = P2 and B = Y_ d;B;, where all B; are lines on P2
such that no three of them pass through one point, and d; = 1 — 1/m;. Assume
that —(Kx + B) is ample. By definition, Kx + B is n-complementary if and only
if deg(—nKx — [(n+1)B]) >0 (ie, > |(n+1)(1 — 1/m;)] < 3n). We give the
list of all possibilities for (my,...,m,) (with m; < --- < m,). These were found
by means of a computer program. Here n = compl(X, B).

NONEXCEPTIONAL PAIRS

n = 1: (m), (m1, mza), (M1, m2, m3) (type Al}, see 5.3.7);

n=2: (2,2,m;,ms), (2,2,2,2,m) (types D2% and E2}, respectively);
n=23: (2,3,3,m), (3,3,3,m) (type E3});

n=4: (2,3,4,m), (2,4,4,m) (type E4g);

n =5: (2,3,5,5) (there is also a regular 6-complement of type E6});
n =6: (2,3,5,m), m > 6, (2,3,6,m) (type E6}).
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EXCEPTIONAL PAIRS

n=4: (3,3,4,4), (3,4,4,4), (2,2,2,3,3), (2,2,2,3,4);

n =5 (2,4,5,5), (2,5,5,5) (in these cases there are also regular 6-
complements);

n=6:(2,4,56), (2,4,6,6), (2,5,5,6), (2,56,6), (3,3,4,5), (3,3,5,5),
(3,3,5,6), (3,3,4,6), (2,2,2,3,5);

n="7:(23,7,7);

n=28:(23,7,8), (2,3838), (2,4,57), (2,4,58), (2,4,6,7), (2,4,6,8),
(2,4,7,7), (2,4,7,8);

n =9 (2’33 7, 9)’ (2’3’8’ 9)’ (2’3, 9, 9)3 (3) 3,4, 7)3 (3a3)4,8)7 (3a3’ 4, 9))

n=10: (2,3,7,10), (2,3,8,10), (2,3,9,10). (2,3,10,10), (2.4,5,9),
(2a4’ 9, 10)5 (2a 9, 9, 7)7 (215757 8)7 (2’57 579)7

n=12: (2,3,7,11), (2,3,7,12), (2,3,8,11), (2,3,8,12), (2,3,9,11),
(2,3,9,12), (2,3,10,11), (2,3,10,12), (2,3,11,11), (2,3,11,12), (2,4, 5,11),
(2,4,5,12), (2,4,6,9), (2,4,6,10). (2,4,6,11), (3,3,4,10), (3,3,4,11),
(3,4,4,5);

n=14: (2,3,7,13), (2,3,7,14);

n =15: (3,3,5,7), (2,3,7,15);

n=16: (2,3,7,16), (2,3,8,13), (2,3,8,14), (2,3,815), (2,3,8,16),
(2,4,5,13), (2,4,5,14), (2,4, 5,15), (2,4, 5, 16);

n=18: (2,3,7,17), (2,3,7,18), (2,3,8,17), (2,3,8,18), (2,3,9,13),
(2,3,9,14), (2,3,9,15), (2,3,9,16), (2,3,9,17);

n=20: (2,4,5,17), (2,4,5,18), (2,4,5, 19);

n=21: (2,3,7,19), (2,3,7,20), (2,3,7,21);

n=22: (2,3,7,22);

n=24: (2,3,7,23), (2,3,7,24), (2,3,8,19), (2,3,8,20), (2,3,8,21),
(2,3,8,22), (2,3, 8,23);

n =28: (2,3,7, 25), (2,3,7, )a (2,3,7,27), (2,3,7,28), (234’ 7,9);

n = 30: (2’ 3, 7’ 29)7 (213, )> ( » 3,10, 13)a (2) 3a 10, 14)3 (27516a 7)3

n = 36: (2'137 7731)7 (2a ’ a32)7 ( » 3, 7733)’ (2,3a 7, 34)a (2733 7735)7
(2, 3,7, 36);

n=42: (2,3,7,37), (2,3,7,38), (2,3,7,39), (2,3,7,40), (2,3,7,41);

n = 66: (2,3,11,13).

Thus the set of all compl(X, B) in this case is

{1,2,3,4,5,6,7,8,9,10,12, 14, 15,16, 18, 20, 21,
22, 24,28, 30, 36,42, 66}.

It is easy to see that this set is contained in {n € N | p(n) < 20,n # 60}, which is
related to automorphisms of K3 surfaces [I] (see also [Ts, Sect. 2]).

EXAMPLE 10.3.2. Replace the condition of the ampleness of —(Kx + B) in

Example 10.3.1 with numerical triviality. We obtain only exceptional cases:

n=2:(2222,2,2);
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n=4: (4,4,4,4), (2,2,2,4,4);

n =6: (2,6,6,6), (3,3,6,6), (2,2,2,3,6), (2,2,3,3,3);
n = 8: (2,4,8,8);

n =10: (2,5,5,10);

n =12: (2,3,12,12), (2,4,6,12), (3, 3,4,12), (3,4,4,6);
n = 18: (2,3,9,18);

n = 20: (2 4,5, 20)

In these cases (X, B) is a log Enriques surface and n(K x +B) ~ 0. Construction 1.3
gives a ramified cyclic cover ¢: X' — P2 such that Kx: = ¢*(Kx + B). Then
Kx: ~ 0 and is plt, so X' is a surface with Du Val singularities and Kx: ~ 0. Note
that if we replace the condition B € ®g, with B € ®,,, we can get bigger values
of compl(X, B). For example, take B = 1B1 + 232 + 33 + 1?134, where, as
above, B; C PP? are lines such that no three of them pass through one point. Then

compl(X, B) = 78.

EXAMPLE 10.3.3. Let G C PGL3(C) be a finite subgroup, X := P?/G, and
f: P2 - X the quotient morphism. Define the boundary B on X by Kp =
f*(Kx + B) (see (1.4) and (1.5)). Then (X, B) is exceptional if and only if G has
no semiinvariants of degree < 3 (see [MP]). There are only four types of such
groups up to conjugation in PGL3(C).

ExAaMPLE 10.3.4 ([Ab]). Let X := P(1,2,3). Take a general member E €
|-K x| (a smooth elliptic curve) and let L be a line on X (with respect to —Kx).
Then E ~ 6L. Since (X, L) is toric, K x + L is plt. Hence (X,aFE + 3L) is a log del
Pezzo if and only if 6a + 3 < 6, a < 1, 8 < 1. Moreover, if « > 6/7 and 3 € &,
then (X, aFE + (L) is exceptional. Indeed, by Corollary 8.4.2 it is sufficient to show
that there are no regular nonklt complements. If Kx + B* is such a complement,
then BT > E + BL, a contradiction. This gives the following exceptional cases
with § = 1:

B=1/2 6/7<a < 11/12
B=2/3 6/7 < a < 8/9
B=3/4 6/7<a<7/8
B=4/5 6/7 < a < 13/15
B=5/6 6/7 < a < 31/36.

EXAMPLE 10.3.5 ([Ab]). Let X C P3? be a quadratic cone, E € |-Kx| a
smooth elliptic curve, and L a generator of the cone. Then (X, %E + %L) is an
exceptional log del Pezzo with § =1 and Kx + %E + %L is a 7-complement.

EXERCISE 10.3.6. Let C C P? be a smooth curve of degree d. Assume that
—(Kx+(1—1/m)C) is nef. Prove that Kx + (1 —1/m)C is exceptional only if and
only if (d,m) € {(4,3),(4,4),(5,2),(6,2)}. For (d,m) = (4,3), (5,2) such log Del
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Pezzos can appear as exceptional divisors of plt blowups of canonical singularities
(see [P1]). Hint. The nontrivial part is to prove that Kx + (1 —1/m)C is excep-
tional in these cases. Assuming the opposite we have a regular nonklt complement
Kx + B. Then we can use the following simple fact: if Y d;B; is a boundary on
C? such that all the B; are smooth curves and }_ d; < 1, then (C2, B) is canonical.

EXAMPLE 10.3.7. Let (X 3 o) be a three-dimensional klt singularity and D an
effective reduced Weil divisor on X. Assume that D is Q-Cartier. Let ¢,(X, D) be
the log canonical threshold. Assume that 1 > c:=c¢,(X,D) > 6/7. Let f: Y —» X
be a plt blowup of (X,D). Write Ky + S + ¢B = f*(Kx + c¢D), where B is the
proper transform of D. Then (S, Diff s(¢B)) is a log Enriques surface with § > 1.
We claim that Kg + Diffs(cB) is klt. Indeed, if Kg + Diff g(cB) is not klt, then
by the Inductive Theorem 8.3.1 there is a regular complement Kg + Diffs(cB)*.
Since —(Ky + S + (¢ — ¢€)B) is f-ample for ¢ > 0, by Proposition 4.4.1 we have a
regular complement Ky + S + (¢ — €)B. This gives a regular complement Kx + A
of Kx + (¢ — e)D. We can take ¢ so that ¢ — ¢ > 6/7. Then A is reduced and
A = D. Hence ¢ = 1, a contradiction. This method can help to describe the set of
all lc thresholds in the interval [6/7,1] (cf. [Ku]). For example, take X = C? and
D = {¢(z,y,2) = 0}, where ¥(z,y,2) = 23 + y22 + %y? + 252 (see [Ku]). Then
co(C?, D) = 11/12 and f: Y — C3 is the weighted blowup with weights (4,2, 5).
So § = P(4,2,5). It is easy to compute that Diffs(cD) = HC + 1L, where
C := {z® + y2%2 + z%y? = 0} and L := {z = 0}. Both C and L are smooth rational
curves which intersect each other twice at smooth points of S. Such complements
were studied in [Ab, Sect. 2] and called there “sesqui rational curve” complements.



