Chapter 6

Applications

In this Chapter we give the applications of our general theory to some physical
systems and a system related to geometric problems. These systems include the
quasilinear canonical system related to the Monge-Ampeére equation, the system
of nonlinear three-wave interaction in plasma physics, the nonlinear wave equation
with higher order dissipation, the system of one-dimensional gas dynamics with
higher order damping, the system of motion of an elastic string, the system of
plane elastic waves for hyperelastic materials and the nonlinear wave equation
with scalar operators of higher order. For these systems, we give a complete result
on the global existence or the blow-up phenomenon, particularly, the life span of

the C'! solutions to their Cauchy problems.

§6.1. Quasilinear canonical system related to

the Monge-Ampére equation

We consider the following quasilinear canonical system

iaij(u’)% =0 (i:17"'7m)a (611)
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Zaw(w% =0 (i=m+1,,n), (6.1.2)
: s
71=1
where a,;(u) (i,j = 1,---,n) are C? functions of u = (u1,- -, u,) with
det Iaij (U)I 75 0. (613)

Obviously, (6.1.1)-(6.1.2) is a hyperbolic system with two families of linearly

degenerate characteristics with constant multiplicity:
a = constant (multiplicity = n — m) (6.1.4)

and

B = constant (multiplicity = m). (6.1.5)
However, is general, system (6.1.1)-(6.1.2) can not be written in a form of con-
servation laws and it is impossible to have the normalized coordinates for system
(6.1.1)-(6.1.2).

Consider the Cauchy problem for system (6.1.1)-(6.1.2) with the following initial
data:

a=af: u=1u+ 'I,Lo(ﬂ), (616)

where a # 0 is a real number, i is a constant vector, up(8) is a C! vector function

satisfying that there exists a constant g > 0 such that

62 sup {(1+18)"* |up(B)1} < oo, (6.1.7)
BER

By Theorem 5.1 we have

Theorem 6.1. Under the previous assumptions, there exists 8, > 0 so small that
for any given 8 € [0, 6], Cauchy problem (6.1.1)-(6.1.2) and (6.1.6) admits a unique
global C*! soluzion v = u(a, 3) on the whole (a, §)-plane. O

As an application of Theorem 6.1, consider the Monge- Ampere equation

Ar + Bs+ Ct+ D(rt — s*) — E = 0, (6.1.8)
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where , . )
0°z 0%z 0%z
= = —, t=—-=, 6.1.9
"T 8 T Groy ay? (6-1.9)
A,B,C,D and E are smooth functions of (z,y, z,p, q) with
_ 0z _ 0z

-7z = 2=, 1.10
P=5- 4 3y (6 )

The characteristic strip method originally suggested by G.Darboux [Da], E.Goursat

[(Go] and used with improvement in M.Tsuji [Ts] asks to solve the following system

[ % -pfz-at =0
D%+C%§+)\l%zoa
§ Dot g+ A% =0, (6.1.11)
DEE+C% + 2258 =0,
| D5+ M+ AL =0,

where A1 and Ay are two solutions of the equation

A 4+ BA+ (AC + DE) = 0. (6.1.12)
Suppose that
| A2 B? — 4(AC + DE) > 0, (6.1.13)
then
A1 # A (6.1.14)

are real numbers. Suppose furthermore that
D #0. (6.1.15)

Hypotheses (6.1.13) and (6.1.15) mean that (6.1.8) is a non-degenerate Monge-
Ampere equation of hyperbolic type. Noting (6.1.14)-(6.1.15), the determinant of
the coefficient matrix of (6.1.11) is different from zero, therefore we can use Theo-
rem 6.1 to get a global C! solution (z,v, z,p,q) = (z(a, B),y(a, 8), z(a, B), p(a, B),
q(e, B)) to system (6.1.11) on the whole (a, 3)-plane.

For the special case that

A=B=C=0 and D=1 (6.1.16)
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and E(< 0) depends only on z,y,p and g, instead of (6.1.11) we only need to

consider the following system:

+ gL =0,
oz __
- A5z =0,

5 (6.1.17)
— A2 =0,

—
SRS S

dr
+ 255 =0,

where

A= MNz,y,p,9) 2 v—-E > 0. (6.1.18)

Similar results hold for this situation.

§6.2. System of nonlinear three-wave interaction
in plasma physics

Consider the Cauchy problem for the following semilinear system

du duy __
Br TGy = auaus,

dusz Qus __
—“aut +CQ—-—"0; = aU1Uus, (621)

du . Oug __ ,
S8 T35 = azuug,

t=0: u; =pi(x), (6.2.2)

where ¢, (i = 1,2,3) are distinct real numbers, a; (i = 1,2,3) are three constants
and @i(z) (z = 1,2,3) are (! functions satisfying that there exists a positive

constant u > 0 such that

62 sup {(1 ) S @)+ |so;<z>|1} < 0. (6.2.3)

reR i=1

System (6.2.1) may describe the motion of particles of a rarefied gas in a thin
infinite tube. The Broadwell model of the discrete Boltzmann equation consists in
discretization of the velocity of molecules, that is, the molecules take only a finite
number of velozities C; € R® (here we assume that 7 = 1,2,3). The solution u;(¢, X)

represents the distribution function of the molecules animated with the velocity C;,
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ie., u;(t, X) is the density of molecules with the velocity C;; at time t and at the
point X = (z,y,2). By virtue of the thinness of tube, we may assume that the
function u;(t, X)) is homogeneous with respect to the variables y and z, where we
take x-axis as a variable along the axis of the tube. Let ¢; be the z-component of the
velocity C;. Thus, the soltuion u,;(t, z) satisfies system (6.2.1). On the other hand,
system (6.2.1) can also be used to describe the nonlinear three-wave interaction
arising from plasma physics (sce [WW]). The Cauchy problem (6.2.1)-(6.2.2) has
‘been studied by many people, some results on the global existence and the blow-up
phenomenon of solutions have been obtained under various assumptions (see [AH],
[Be], [NM], [SK], [TC], etc.). In this subsection we give the applications of our
theory to system (6.2.1).

Clearly, (6.2.1) is strictly hyperbolic system with three distinct real eigenvalues

/\1 = C, Ag = C9, A3 = C3. (624)

Moreover, system (6.2.1) is linearly degenerate in the sense of P.D.Lax and the
inhomogeneous term satisfies the matching condition. Then, by Theorem 3.1 we

have

Theorem 6.2. Under the hypotheses mentioned above, there exists 6y > 0 so
small that for any fixed 6 € [0,6], the Cauchy problem (6.2.1)-(6.2.2) admits a
unique global C*! solution u = (uy (¢, ), us(t, z),uz(t,z)) on t > 0. O

Remark 6.1. We have a similar result for the following system describing the

propagation of waves in optical fibre (see [BFJ])

uq + 85;1 — au%,

aat ; (6.2.5)
Qua _ Qua _ __ .

ot or — _au1ua,

where a is a fixed real number. O

§6.3. Nonlinear wave equation with higher order dissipation
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Consider the following Cauchy problem for the nonlinear wave equation
uy — (K (ug)), = "a’Ut|p_1’lLt, (6.3.1)

t=0: u=b+eop(x), uy =ey(x), (6.3.2)

where K (v) is a suitably smooth function satisfying
K'(0) > 0, (6.3.3)

p > 1 is an integer, ¢ > 0 is a small parameter, a and b are two real numbers
(when a > 0, the right-hand side of (6.3.1) stands for the dissipation), ¢(z) € C?,
Y(z) € C! and (¢'(z),(x)) satisfies that there exists a positive constant g > 0
such that

sup {@+ 2D (' ()] + [¥(@)] + " (@)] + [¥'(2)])} < co. (6.3.4)

In 1-D elasticity, the nonlinear wave equation (6.3.1) arises with u(¢t,z) + z the
deformed location at time t of the material initially located at z, uw, the strain,
and K(u,) the stress-strain function. In particular for a hard spring, or a "non-
Hookian” material in a neighborhood of zero, typically K(u,) is a smooth odd

function such as
qu'

Jira

where 7(u;) is an even function representing the tension in the string corresponding

K(uy) =

to the strain u, (see [KM] or [Ma}). Moreover, let
T = Uy, UV = Uy,

then (6.3.1) reduces

9t _ Qv _
ot dr —
(6.3.1a)
aP(r,S _
G + 2 = abol

In fluid dynamics, (6.3.1a) arises as the equations of one-dimensional gas dynamics

in Lagrangian coordinate. Here = is a mass coordinate, in this context, 7 = p L,

the specific volume, and v = u; the fluid velocity. When a > 0, the term a|v|P~!v
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stands for the dissipation. The Cauchy problem (6.3.1)-(6.3.2) has been studied by
T. Nishida [Ni] for the case p = 1 and D. Kong [K2] for the case a > 0.

Introduce the Riemann invariants

rnen) = 3 (w [TE@ER) s =5 (- [ K@)

o

).

(6.3.5)
The Cauchy problem (6.3.1)-(6.3.2) can be rewritten as
ar ar a —1
ST —k(r—s)5= = —S|r+s|P7 (r + s),
0 — k(= )3 = ~3lr + 5P (7 +9) 635)
98 4 k(r —8) = —&lr + s|P7I(r + 3),
t=0:71=r0(e,2), s = so(e,x), (6.3.7)
where
kw) = [K'(H-Y(w))]?, (6.3.8)
v = H~1(w) stands for the inverse function of w = H(v) in which
v 1
He) = [ 1K) (6.3.9)
0

ro(e,x) and so(e, z) are given by

ro(e,z) 2 {¥(z) + ¢'(x) + O()}

'(2) 1
Y(z) + /(:P [K'(ew)]? dw ¢ =

[\
N|™

2

bo(™m

{v(z) —¢'(z) + O(e)} .
(6.3.10)
Obviously, in a neighbourhood of (r,s) = (0,0), (6.3.6) is a strictly hyperbolic

NI

'90(57 :I’)

o' () L
w(z) - / (K ()]t o b =

system in a diagonal form. Moreover, (r, s) are just the normalized coordinates.

We assume that there exists an integer a > 0 such that
Kt 0)=0 (j=1,---,a) but K**2(0) #0. (6.3.11)
Moreover, without loss of generality, we may assume
K'(0) = 1. (6.3.12)
Then it follows from (6.3.8) that‘
1 K‘”?(O)

k(r—s)=1+ 3 @i 1) (r—8)*t + 0 ((r —5)*™?), (6.3.13)
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provided that |r| and |s| are small.

Applying Theorem 3.3 to the Cauchy problem (6.3.6)-(6.3.7) and noting the
fact that the C*? solution of the Cauchy problem (6.3.1)-(6.3.2) is equivalent to the
C! solution of the Cauchy problem (6.3.6)-(6.3.7), we have

Theorem 6.3. Under the hypotheses (6.3.11)-(6.3.12), if p > 2 + a and
(¢' (z),v (x)) is not identically equal to zero, then there exists g > 0 so small
that for any € with 0 < € < ¢g, the C? solution u = u (¢, z) to the Cauchy problem
(6.3.1)-(6.3.2) must blow up in a finite time and the life span 7'(¢) satisfies

lim (aa“T(g))_l = (22%2.a!) ' max {C], C}} > 0, (6.3.14)

where
¢y = sup {(-1)?K@D(0) [u(2) - ¢' (@) [W'(2) - ¢"(2)]}  (6:3.15)
TER

and

CY = sup {K(“”)(O) [(z) + @' ()] [@'(x) + w”(x)]} : (6.3.16)

z€R

O

§6.4. System of one-dimensional gas dynamics
with higher order damping

Consider the following Cauchy problem for the system of one-dimensional gas

dynamics

%% o,
gu 4 OP(LI) — gly|p-1y, (6.4.1)
%0

t=0: 7T=Tg+em(x),v==cvp(x), S =2¢5(z), (6.4.2)

where 7 is the specific volume, v is the velocity, S is the entropy, P is the pres-
sure, a is a real number (when a < 0, the right-hand term stands for the dissipa-

tion), p > 1 is an integer, 7o > 0 is a constant, € > 0 is a small parameter and
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(10 () ,v0 (z), S0 (x)) is a C*! vector function satisfying that there exists a positive
constant g > 0 such that
sup {(1+ 2D (jro(a)| + vo(z)| + [Soe)| + [1(@)] + loh(@)] + Sy(@)) } < oo.
(6.4.3)
When a = 0, the Cauchy problem (6.4.1)-(6.4.2) has been studied by T.P. Liu [Lu]
for the case that the initial data has a compact support and by [LZK?2] for the case
“that (6.4.3) holds.
Assume that the state equation P = P(7, S) satisfies

P, <0, VT>0 (6.4.4)
and, without loss of generality, we may assume
P.(7,0) = —1. (6.4.5)

Obviously, on the domain under consideration, (6.4.1) is a strictly hyperbolic sys-

tem with three distinct real eigenvalues
Alé—\/—Pr<)\zéO<)\3é\/~P'rv (64’6)

in which X, is linearly degenerate in the sense of P.D.Lax, then weakly linearly
degenerate.

Introduce the following transformation
Uy = v+ / v/ —P,(v,S)dv 2 v+ h(7,8S),
To

ug = v —/ v —P,(v,S)dv 2y- h(r,S)
\ To

’

and let

u = (uy,us,us). (6.4.8)
Then system (6.4.1) can be equivalently rewritten as
G = Auw) G + £(u) G2 = ((u),

ot
ous _ g (6.4.9)

ot

2 4 Aw) 2 + £(u) 5 = ((u),
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where
AMu) = [Py (r,u2)]* (6.4.10)
§(u) = Py, (7, u2) + A(w)hy, (7, u2), (6.4.11)
C(u) = 27 Palur + uz|P (w1 + u3) (6.4.12)
and
7= G(u1 — us, uz) (6.4.13)
1s the inverse function of
(u; —uz) = 2/ vV P, (v,us)dv. (6.4.14)

Moreover, noting (6.4.5), we can rewrite the initial data (6.4.2) as

u1(0,z) = e(vo(z) + 70(2)) + O(e?),
us(0, z) = eSo(x), (6.4.15)
u3(0,2) = e(vo(z) — To(x)) + O(e?).

The left and right eigenvectors of system (6.4.9) can be chosen as

h(u) = (1,—§,o), Lo (u) = (1,———~—-—VA2+252 o), ls (u) = (o,i,l) (6.4.16)

A A ’ A
and

-5
1 /a2y2¢2 0
A

ri(u) = 0|, 72(u)= VeaETS , r3(u) = o 1l, (6.4.17)

0 N S 1

where A = A(u) and £ = £(u) are defined by (6.4.10)-(6.4.11) respectively. Clearly,
in the present situation, (1.4)-(1.5) hold.

It follows fiom (6.4.17) that the 1st (resp. 3rd) characteristic trajectory passing
through w = 0 is just the u;-axis (resp. uz-axis).

We assume that ﬁhere exists an integer a > 1 such that

81+aP a2+aP
PTT('T'O,O) == ... = 37i7a (To,O) =0 but 09 = Sr2ta (T(),O) 7(—‘ 0. (6418)
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Noting (6.4.5), (6.4.7), (6.4.10) and (6.4.13)-(6.4.14), we have

8‘)\1(u1,0 0) 81+a)\1(u1 0 0) ado
: =0 =1,---, but - = —
aull =0 ( ’ ’ a) u aui+a 120 22+a
(6.4.19)
and
BlAg(O 0 U3) 81+a)\3(0,0 U3) (—1)0‘00
— =0 (I=1,---,a) but — =
aué u3=0 6u§+ u3=0 22'+
(6.4.20)

Moreover, noting the fact that A,(u) is linearly degenerate in the sense of P.D.Lax,

then weakly linearly degenerate, by Theorem 3.3 we get

Theorem 6.4. Under the hypotheses (6.4.4)-(6.4.5) and (6.4.18), if p > 2+ a and

(vo(x), T0(z) —p0So(x)) is not identically equal to zero, where
00 = Ps (7o, 0), (6.4.21)

then there exists g > 0 so small that for any € with 0 < € < gg, the C?! solution to
the Cauchy problem (6.4.1)-(6.4.2) must blow up in a finite time and the life span
T (e) satisfies

- ‘ -1 —
lim (5a+1T(5)) = (227 - o) ! max {C;, CF} > 0, (6.4.22)

e—0

where

Cy = SIGII[){{—UO [vo(2) + To(®) — 0050 ()] [vp(x) + o(x) — @05 (7)]}, (6.4.23)

Cf = su% {(=1)"* %0 [vo(z) — T0(2) + 00S0(x)]* [vh(z) — T9(z) + 0054(2)]} 5
TE
. (6.4.24)
oo and gg are defined by (6.4.18) and (6.4.21) respectively. O

Remark 6.2. In particular, saking So(z) = 0 and K(v) = —P(v), from (6.4.22)
we get (6.3.14) immediately. O

§6.5. System of motion of an elastic string
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Consider the following Cauchy problem

u; — vy = 0,
Ut — (7_'5:72,“) = 07

t=0: u=1u’+ecu’(z), v =ev’(z) (6.5.2)

(6.5.1)

where u = (u1,u2)?, v = (v1,v2)T, r = Ju| = Vu? + u2, T(r) is a given smooth
function of the stretch r(> 1) satisfying

Io) o, (6.5.3)
To

T' (7o) >

where 7o = |G| = /(49)2 + (@3)%2 > 1, € > 0 is a small parameter, u°(z) and v°(x)

are C! vector functions satisfying that there exists a positive constant x such that

mp&1+MDH“( >}<am ' (6.5.4)

TE€ER
System (6.5.1) describes the planar motion of an elastic string (see Chapter 3

du®(z)

dv®(x)
dx M

dx

in [An]), where u stands for the displacement of a point from the position z in
the natural state, v is the velocity, and T'(r) is the tension of the string. The
generalized Riemann problem for system (6.5.1) was studied by [LSZ]. Later, Li,
Kong and Zhou [LKZ] discussed the blow-up phenomenon of classical solution to
the Cauchy problem (6.5.1)-(6.5.2). In this subsection, we shall give the asymptotic
behaviour of life span of C! solution to the Cauchy problem (6.5.1)-(6.5.2).

Let

T u
U = (uy,uz,v1,v2)" = : (6.5.5)
v
By (6.5.3), in a neighbourhood of
~0
v=[" |2,
0

(6.5.1) is a strictly hyperbolic system with four distinct real eigenvalues

VT () <A 2 —\/TQ <324/ TY) <M E VT, (6.5.6)

>

A1
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in which Ay and A3 are linearly degenerate in the sense of P.D.Lax. The corre-

sponding left and right eigenvectors can be taken as follows

Uy —Ug
R 1 U , 1 Uy
1= T J 2= T ’
VT T, r/1+ 52 |~ ﬂrﬁug
T'(r)usg ﬂrﬂul
(6.5.7)
Uz —Uu
—Uy —U2
rg= — L Y W
ry/1+ T TS.T)W ro/14+T7(r) T (r)u;
oy, VT (r)uz
and
L = % (\/ mur, /T (r)ug, u1, Uz)
/14 T
I = ?( T \/‘-(—Tlula—w u1>,
i (6.5.8)
13 = %—_ (\/ Lir) lsfﬂula —Us, U’l) 3
Iy = x 1+;I((:)) ( VT () uy, —/T'(r)us, ug, ug) .
We first consider a special but important case’
T(ry=r-1. (6.5.9)
In this case, by (6.5.6) we have
A1 =-—1 and Ay =1. (6.5.10)

Obviously, A; and A4 are linearly degenerate in the sense of P.D.Lax. Thus, by

Theorem 5.1 we have

Theorem 6.5. Under the hypotheses (6.5.3)-(6.5.4) and (6.5.9), there exists g9 > 0
so small that for any given ¢ € [0, o], the Cauchy problem (6.5.1)-(6.5.2) admits a
unique global C! solution U = U(¢t,z) on the whole (¢,z)-plane. O

n fact, for the case that 7"'(r) := 0, Theorem 6.5 is still valid.
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In what follows, we consider another important case that 7(r) is a nonlinear
function satisf/ing that
T"(79) # 0. (6.5.11)

In this case, A; and A4 are genuinely nonlinear in the sense of P.D.Lax, moreover,

I‘l/(fo) A
VAL (U7 (U®) = V(U ry (U°) = — = — = 0. (6.5.12)
2\/T"(70)(1 + T"(70))
We assume that there exists a point g € R such that
or
Z4+(zg) <0, (6.5.14)
where
~ dul(z) _ydud(z) —1 f _odv¥(z) _,dvi(x)
= _ ~o AUj o QU3 1= 3 [ ~09Y] 0 43
ZE_(x)=06 [ul = + Uy I + (T"(79)) (ul I + g 12 ) ,
(6.5.15)
~ w1 [ _odd(x) _,dvI(z) dul(z) _,dud(z)
= (g) = (T 3 [ ~04V1 0 2% [ s02U%; L 50 QU2
+(Z") © I:T (TO)) (ul dz +u2 dr ) <ul dr + Uy dr ] )
(6.5.16)

in which © = (27) "' /1 + T"(7,)©. Thus, by Theorem 5.3 we have

Theorem 6.6. Under the hypotheses (6.5.3)-(6.5.4), (6.5.11) and (6.5.13) (or
(6.5.14)), then there exists g > 0 so small that for any fixed € € (0, ] the first
order derivatives of the C! solution U = U(¢,z) to the Cauchy problem (6.5.1)-
(6.5.2) must blow up in a finite time and the life-span T'(¢) satisfies

lim (‘T(s)) _‘1 = max {:lég {-Z2_(z)} ,ilé% {-Z4+ (:c)}} . (6.5.17)

e—0

For the following Cauchy problem of the system for the general motion of an
elastic string:

us — vy =0,

vy — (y_)u)x ~0, (6.5.18)

r
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t=0: u=1a"+eul(z), v=2ev"(z), (6.5.19)

where u = (u1,---,u,)7, v = (v, -, v,)7, r = |u] = Vui+- w2, T(r) is a

suitably smooth function of r(> 1) such that

T(r
T'(7) > (o) 0, (6.5.20)

To
where 7o = |2 = /(@)2+ -+ (@%)2 > 1, &€ > 0 is a small parameter, 40 =
(af,---,a3)T is a constant vector, u®(z) and v°(z) are C? vector functions satis-

fying (6.5.4), we have similar results.

Remark 6.3. For the system modeling the dynamics of a moving threadline (see

[ALZ]), we can obtain similar results. O

86.6. System of plane elastic waves for
hyperelastic materials

Now we consider the time dependent deformation of an elastic medium from
the natural state, in which the position vector of a particle is denoted by X =
(X4, Xz,Xg)T. At the time ¢, the same particle has a position vector Y = Y (¢, X) =
(Y1, Y5, Yg)T. For homogeneous hyperelastic materials there exists a stored energy
function W = W (p), where

p=(pix) = (g—,};‘:) (6.6.1)
is the strain tensor.

In the isotropic case, W = W (p) satisfies

W (Qp) =W (pQ) = W (p), (6.6.2)

where () is an arbitrary orthogonal matrix.
The system of motion is given by
8?Y, : 82Y,
= E e —_— 6.6.3
p atz Czk S(p) 6XkaXs ( )

k,r,s=1
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where p denotes the density, without loss generality, we may suppose that p = 1,

and

O*W (p)

_— 6.6.4
apikaprs ( )

Cikrs (p) =

Let m be a non-singular square matrix of order 3. For any given vector w =

(w1,ws,ws) with |w| = 1, the solution of plane elastic waves will be given by

Y =X+ f(t,z), (6.6.5)
where
r=wX (6.6.6)
and f = (f1, f2, f3)". Then
p=7+ frw. (6.6.7)

Without loss of generality, we may suppose that # = I. In fact, taking the

following invertible linear transformtion:
Y=r"1Y, f=n"'f, (6.6.8)

we have 7 = [ in new variables (?, 7), however, the initial data of f should be
changed according to the second equation of (6.6.8).

For the solution of plane elastic waves (6.6.5), system (6.6.3) reduces to

i " *f
where V" = (17;), in which
o*vV(n) ,. .

"z] (77) V]l (77) 0771677] (,La] 13273) (66 10)

with
Vin) =W+ nw), (6.6.11)
where 1 = (771,772,773)T-
Let
Of _0fi

U; = E’ Ui4-3 ot (i = 1,2,3). (6.6.12)
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uw = (ug,--- ,ue)T satisfies the following system
u + A(u) uz =0, (6.6.13)
where
0o -I ' |
A(u) = : (6.6.14)
A =V 0

in which 0 and I stand for the zero matrix and the unit matrix of order 3 respec-

tively. Obviously, A (u) depends only on the components u;, us, uz of u.

In what follows we consider so-called Ciarlet-Geymonat material, the stored

energy function of which is given by

W(p)=all pll®? +b| Cof p||? +T (detp) + e, (6.6.15)

where a, b are positive constants, e is a real number and

(ST

| pll= (tr p'p)*, Cof p = (detp) (p"l)T, I'(6) =c6% —dlogé, V>0,
(6.6.16)
where c, d are two positive constants (see [Ci]).
In this case it is easy to see that
V" (u) = 2(a+b) I + [2 (b+c)+d(1+ wa)“z] wlw, (6.6.17)

where @ = (uy,uz,u3)?, then the corresponding matrix A (u) has the following six

real eigenvalues:
Al - —)\, Ag’g = —)\0, )\4’5 = /\0, A(-; = )\, (6618)

where

A=/2@+b) +2(b+ ) +d(1+wi) 2 Ao =+/2(atb). (6.6.19)
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Moreover, the corresponding right and left eigenvectors can be taken as follows:

T 3\T
w (w?)
" = 12 )’ T2 = -

VA2 (Wi +w?) /\0(w3)T

1 ()T 1 ()"
r3 = VN ) ) Ty = YA
VA N (wi+wd) /\O(wZ)T VIHA) (Wi +w3) —-/\o(w3)T
. (w'Z)T . wT
5= VA2 (wi+w?) —)\g(w2)T v 6= Ui T
(6.6.20)
and
3 1+2;
L= YA (N, W), I, = /\J%(Aow w?),
ERVAE Y 2 IRVit Y 3
ls = m(/\ow ,w?), ly = \/—:-:(/\OW —w?), (6.6.21)
. 1+>\ 9 _ ,/1+A‘
respectively, where
w‘Z = (w33 0, _wl)a wS = (w2v —Wr, 0)’ (6622)

provided that w; # 0. Hence, (6.6.13) is a hyperbolic system of conservation laws,
and Az, A3z, A4, A5 are linearly degenerate in the sense of P.D.Lax; while both A;

and A\g are genuinely nonlinear in the sense of P.D.Lax, moreover

-1
2

AM(u)ry(u) = d(1 +wd) A7 (1 + A%) 7% = =V Ag(u)re(u). (6.6.23)

For Ciarlet-Geymonat material, consider the Cauchy problem for system (6.6.9) of

plane elastic waves with the initial data
t=0: f:?0+5f0($)7 ft 2590(3:)7 (6624)

or, equivalently, the Cauchy problem for system (6.6.13) with the initial data

t=0: u=((fy@)7, (egol@)T)", (6.6.25)
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where fo is a constant vector, fo(xr) € C? and go(x) € C! are two given vector

functions and € > 0 is a small parameter. By Theorem 5.3, we have

Theorem 6.7. Suppose that there exists a constant g > 0 such that

sup {(1+ |24 (1ff (2)] + lgh(2)])} < oo (6.6.26)

Suppose furthermore that there exists a point o € R such that

A_(z0) < 0 T (6.6.27)
or
| A (z0) < 0, (6.6.28)
where
A_(z) = d (w\/Q(a+b) +2(b+c)+dfy(z) +w '(:r))
2[2(a + b) + 2(b + ¢) + d] 0 o
(6.6.29)
and
d 12 11
D) = S TR T T v (wgo (z) — wy/2(a + b) + 2(b + ¢) + df} (m)) .

(6.6.30)
Then, there exists ¢g > 0 so small that for any fixed € € (0, eg], the second order
derivatives of the C? solution to the Cauchy problem (6.6.9) and (6.6.24) must

blow up in a finite time and the life-span T'(¢) satisfies

;Er%) (ET(E))“l = max {31612{— A (x)}, 216111)2{— AN (x)}} . (6.6.31)

On the other hand, noting that rp,73,74 and 75 are all constant vectors, by

Theorem 5.2 and Remark 5.3 we can easily get the following.

Theorem 6.8. Suppose that (6.6.26) holds and

w1+ A2(z)f}(x) = constant and w A~ (z)\/1+ A2(z)go(x) = constant

(6.6.32)
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where A(z) = \/2(a + b) + 2(b+ ¢) + d(1 + ewf{(x))~2. Then, there exists g > 0
so small that for any fixed € € [0,&0], the Cauchy problem (6.6.9) and (6.6.24)
admits a unique global C? solution for all t € R. O

Remark 6.4. For some other classical hyperelastic materials such as compress-
ible Mooney-Rivlin material, Hadamard-Green material, neo-Hookean material,

Burgess-Leginson material, etc. (see [Ci|), we can obtain similar results. O

§6.7. INonlinear wave equation with scalar operators

of higher order

L.Hormander [Hol] studied the following nonlinear wave equation with scalar

operators of higher order in one space dimension |

> e (0" )] T 8u =0 (6.7.1)

7=0

with Cauchy boundary condition

u—ep=0(") as t—0, (6.7.2)
where u = u(t.z) is the unknown function, ¢; = ¢;(v) (j = 0,1,---,m) are C*
smooth functions of v = (v1,---,vm)T and ¢g # 0, 0™ tu = (O tu, 8" 20,u, - -,

om—tu)T | » € C$(R?) and £ > 0 is a small parameter. Under the assumption
that system is genuinely nonlinear, he proves that the C* solution must blow up

in a finite time and gives a limit formula on the life span.

Since he assumes that the equation is genuinely nonlinear and the initial data
has a compact support, a general consideration is needed for the nonlinear wave
equation (6.7.1). In this section, we shall introduce the concept of weak linear
degeneracy and present a quite complete result on the global existence and the life
span of C™ solution to the Cauchy problem (6.7.1)-(6.7.2) for small initial data

with certain decay properties as |z| — oo.
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Consider equation (6.7.1) and introduce

U=0m"tu= (9" u,d" 20,u, 07 u)" . (6.7.3)
Without loss of generality, we may suppose that ¢y = 1.
Define .
PU;§) =) _¢;(U)E" ¢, (6.7.4)

J=0

‘where £ = (&,&).

Definition 6.1. Equation (6.7.1) is strictly hyperbolic, if, for any given u on the
domain under consideration, the polynomial P(U;£) is strictly hyperbolic, i.e.,

there exist m real eigenvalues:

such that .
PU; &) = [ (& + M () &) (6.7.6)
k=1
(]
Let
1 T
&(U) = (-2 (U),1) and () = (=2 (@)™, =M (U),1)
- (6.7.7)

Definition 6.2. The k-th eigenvalue A, (U) is genuinely nonlinear, if, for any given
w on the domain under consideration, along the curve U'*) = U(*)(s U) passing

through the point U = 0™ 'y, defined by

W= = S(UW),

(6.7.8)
s=0: U® =7,

we have
oP (U("’)(s, U); §k(U))
0s

#0, VU; (6.7.9)
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The k-th eigenvalue A\ (U) is linearly degenerate, if

P (UM (s,U); & (U))
0s

=0, VU. (6.7.10)

Equation (6.7.1) is called to be genuinely nonlinear (resp. linearly degenerate),

if all eigenvalues are genuinely nonlinear (resp. linearly degenerate). O

Another definition on the genuine nonlinearity and linear degeneracy can be

given as follows.

Definition 6.3. The k-th eigenvalue A\ (U) is genuinely nonlinear, if, for any given

u on the domain under consideration

O:P (U +eZi (U); €k (U))|,=0 #0, VU, (6.7.11)
The k-th eigenvalue A\, (U) is linearly degenerate, if

O P(U+eZk (U); & (U)o =0, VU. (6.7.12)

If all eigenvalues are genuinely nonlinear (resp. linearly degenerate), equation

(1.1) is said to be genuinely nonlinear (resp. linearly degenerate). O
It follows easily from (6.7.6)-(6.7.8) that

Lemma 6.1. Definition 6.2 is equivalent to Definition 6.3. Particularly, (6.7.9) is

equivalent to (6.7.11), and they are all equivalent to
< oM (U), Ze(U) >#£0, YU; (6.7.13)
while, (6.7.10) is equivalent to (6.7.12), and they are all equivalent to

< IM(U), Ex(U) >=0, VU (6.7.14)

As in Chapter 3, we can also define the concept of weak linear degeneracy for

the k-th eigenvalue Ay = A\ (U).
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Definition 6.4. The k-th eigenvalue A, = A\ (U) is weakly lincarly degenerate at
a point U on the domain under consideraiion, if, along the curve U®) = UK (5, 0)

passing through the point U = U, defined by

” (kN — K
Wl oz, (),

| s=0: UK =1,

~

(6.7.15)

we have

OP (UM (r,UR) (5,0)); & (UM (5,0)))

=0, V|s| small, (6.7.16)
or

where U%) = (%) (T, Uk) (5, U)) is given by

du®) = 1\~ 
= =i U( ) ,
ar L) i (6.7.17)
7=0:U% = Ukl(s 7).

Equation (6.7.1) is called to be weakly linearly degenerate at U, if all eigenvalues

are weakly linearly degenerate at U. O

Similar to Definition 6.3, another definition on the weak linear degeneracy is

given as follows.

Definition 6.5. The k-th eigenvalue A\, = M\ (U) is weakly lincarly degenerate at
a point U, if, along the curve U(*) = U(*)(s, ) defined by (6.7.15) we have

P (UP (5,0) +eZ4 (UF (5,0)) 5 & (UP (s, =0, V 11,

8. P (U (s,0) + =4 (U (s,v)) & (U (s,v)))Lzo 0, VY |s| sma
(6.7.18)

Equation (6.7.1) is called to be weakly linearly degenerate at U, if all eigenvalues

are weakly linearly degenerate at U. O
Similar to Lemma 6.1, by (6.7.6)-(6.7.7) and (6.7.15) we have

Lemma 6.2. Definition 6.4 is equivalent to Definition 6.5. Particularly, (6.7.16)

is equivalent to (6.7.18), and they are all equivalent to

< A(U), 2 (U) >=0 (6.7.19)
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along U%) = UK (s5,U) for small |s|, namely

Ak (U“") (3,0)) = \(0), Vs

small, (6.7.20)

where U*) = UF) (5, T) is defined by (6.7.15). O

Obviously, it follows from the definition of linear degeneracy and definition of

weak linear degeneracy that

Lemma 6.3. The k-th eigenvalue A, (U) is linear degenerate if and only if it is

weakly linearly degenerate at all points U on the domain under consideration. O

In this section, we will discuss the “small” solutions for equation (6.7.1), so we
pay more attention whether eigenvalue Ay = Ai(U) is weakly linearly degenerate
at U = 0 or not. For simplicity, in what follows, we say the eigenvalue Ax = Ax(U)
is weakly linearly degenerate means that it is weakly linearly degenerate at U = 0,

namely,

A (U("" (s)) = 2 (0), ¥ |s| small, (6.7.21)

where U = 75 (s) denotes U*) = U¥)(s,0), namely, U¥) = U¥)(s) satisfies
5 (6.7.22)

By a direct calculation, we have

Lemma 6.4. There exists an integer a, > 0 such that

d'P (UM (s); (=X:(0),1))
ds!

=0 (I=1,---,a;) but

s=0

d* 1P (UD (s); (=X (0),1))
dsa: t+1

#0 (6.7.23)

if and only if

d' )\, (U (s)) do X (UW (s))

=0 (I=1,---,a;) but Jea F1 # 0;

s=0 s=0
(6.7.24)
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moreover, we have

deitlp (U(i)(s); (_)\z, (O) , 1)) da,:+1)\¢ (U(i) (s))

= H ()\k (O) - /\1; (O)) dsa.,-,+1

2o+ 1
ds s=0 ket s=0
(6.7.25)
Furthermore,
le U(l) S); '_)\1 0 )1
WD) (=M@, 1)) _ 1=1,2,--) (6.7.26)
ds!
‘ s=0
if and only if
dl/\q; (7)
(CARNC) I 1=1,2,-). (6.7.27)
ds! —o

In the case that (6.7.26) or (6.7.27) hold, we define a; = +o0.

Definition 6.6. Equation (6.7.1) is critical, if equation (6.7.1) is not weakly
linearly degenerate but (6.7.26) or (6.7.27) always hold for all ¢ = 1,---,m, i.e.,
a, =400 (2 =1,---,n). O

Recall (6.7.3), i.e.,
U= U, -, Un)T =8 u = (0" u, 0 20,u,---,00  tu)T. (6.7.28)

Equation (6.7.1) can be then written as

m

8:Uy + Y ¢;(U)8:U; =0

J=1

and together with the compatibility conditions
6tUj+] "6ZUJ"-:0, 1§y§m—1

for any classical solution, i.e., C™ solution. Then we obtain

8,U + a(U)0,U = 0, (6.7.29)
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where
(o) @) - enal) en)
a(U) = 0 -1 ... 0 0 . (6.7.30)
\ 0 0 - ~1 0/
The determinant of a(U) — A is Z (m=3)¢ ;(U). Obviously, the roots of

a(U) — A, i.e., the eigenvalues of system (6.7.29) are nothing but the eigenval-
ues of the polynomial P = P(U;&): AM(U),---,An(U). It follows that (6.7.6)
holds. On the other hand, if we assume that equation (6.7.1) is strictly hyper-
bolic, then (6.7.5) implies that system (6.7.29) is also strictly hyperbolic. In the
present situation, the right eigenvector r, = r;(U) (corresponding to the eigenvalue
Ak = A(U)) (k=1,---,m) can be chosen as =y = Z;(U), that is, r, = Z;. Thus,
the definitions of genuine nonlinearity, linear degeneracy and weak linear degen-
eracy for equation (6.7.1) are nothing but the corresponding concepts for strictly
quasilinear hyperbolic system (6.7.29). Therefore, all the results on quasilinear
hyperbolic systems can be applied to equation (6.7.1).

To do so, we consider equation (6.7.1) with the following Cauchy boundary
condition?

w—cp=0(tm), as t—0, (6.7.31)

where ¢ € C™!R x R) is given and satisfies that there exists a constant x > 0 such

that

sup {(@+ ]z (o™ 1o (0,3)] + |8:0™ 1 (0,2)|) } < o0, (6.7.32)
re

where 0™~ 1 = {a,m"'ag*l}

1<j<m

2Usually, the Cauchy data for equation (6.7.1) should be given by the following form
t=0: u=o, ur =1, -, up "l = Ppm_1.

Here, we use the form (6.7.31) only for the simplicity of statement. We can discuss the Cauchy

problem for (6.7.1) with usual initial data with the above form in a similar way.
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To apply the results on quasilinear hyperbolic systems, we must write U =

m
Z viTx(0) when ¢t = 0. Let
k=1

Qi =[] (0 + X (0)8,),
I#k
m—1 T
and note that if we take U = r;(0) = Z,(0) = ((—/\7 on"TT, -, =25 (0), 1) at
(0, ), then

Qru =[] (A (0) = X, (0)). (6.7.33)
I#£k

This is 0 if 7 # k. Hence we have when ¢t = 0

vi(@) [T 0 (0) = X (0)) = Quu = e [T (8: + X1 (0) 82) . (6.7.34)
I#£k 1#k

First of all, by Theoremn 3.1 we have

Theorem 6.9. Suppose that in a neighbourhood of U = 0, equation (6.7.1)
is strictly hyperbolic and weally linearly degenerate. Suppose furthermore that
¢;(U) e C? (3 =1,---,m) in a neighbourhood of U = 0 and ¢ = ¢(t,z) is a C™
function satisfying (6.7.32). Then there exists £o > 0 so small that for any given
e € [0,€0], the Cauchy problemn (6.7.1) and (6.7.31) admits a unique global C™

solution v = u(t,z) on ¢t > 0. O

When equation is not weakly linearly degenerate, there exists a nonempty set

J C {1,2,---,n} such that X,(u) is not weakly linearly degenerate if and only if

1€ J.
Noting (6.7.21), for any fixed 7 € J, either there exists an integer a; > 0 such
that
A, (U (s)) do+i, (U0 (s))
dSl L —0 (l_—— 1,...3()@) bllt ds“i+1 By #O
- (6.7.35)
or
d'x; (UMW
AR} (1=1,2,--), (6.7.36)
ds! L
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where U = U (s) is defined by (6.7.22). In the case that (6.7.36) holds, we define
«; = +ocC.

By Theorem 3.2 we have

Theorem 6.10. Suppose that (6.7.5) holds and ¢;(U) (j = 1,---,m) are suitably
smooth in a neighbourhood of U = 0. Suppose furthermore that ¢ = ¢(t,z) €
C™(R x R) and satisfies (6.7.32). Suppose finally that equation (6.7.1) is not

weakly linearly degenerate and

a = min{a;,i € J} < oo, (6.7.37)
where «; is defined by (6.7.35)-(6.7.36). Let

Jh={ilieJ a =a}. (6.7.38)
If there exists iy € J; such that

vip () = JT (A (0) = s, (0) 71 (8 + A (0) 8:) 0 # 0. (6.7.39)
l?fiu

Then there exists €¢g¢ > 0 so small that for any fixed ¢ € (0,e9] the m order
derivatives of the C™ solution v = wu(t,z) to the Cauchy problem (6.7.1) and

(6.7.31) must blow up in a finite time and the life span T(e) of u = u(t, z) satisfies

. a+17 _
lim (5 T(s)) =C, (6.7.40)
where
a+1 (1) s o
C-' = max{sup{—L 2 2(:{1 () [vi(2)]” vi(z)
1€y z€R & S s=0
= —LTT (A (0) = X (0)7F .
max ¢ sup a,g( 1(0) = X (0)) 7" x (6.7.41)
a1 P(UY(s)i(—=X,(0),1) a
WO OD) @@}
s=0 .

in which U = UU(Y)(s) is defined by (6.7.22) and v;(z) is given by

wi(@) =[O =X )" @ +X0d)¢| . (67.42)

t=0
I#1
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O

For the critical case, corresponding to Proposition 3.2, we have

Theorem 6.11. Suppose that (6.7.5) holds and ¢;(U) (j = 1,- -, m) are suitably
smooth in a neighbourhood of U = 0. Suppose furthermore that ¢(t,z) € C™(R x
R) is a C™ function satisfying (6.7.32). Suppose finally that equdtion (6.7.1) is
critical. Then, for any fixed integer N > 1 there exists g = €¢(IN) > 0 such that
for any fixed € € (0, ¢¢],

T(e) > Cne™ ™. (6.7.43)

O

Corollary 6.1. If equation (6.7.1) is genuinely nonlinear in a neighbourhood of
U = 0, then, under the assumption that ¢;(U) (j = 1,---,m) are C? functions of
U, for any nontrivial C"™ initial data ep(t,z) with compact support, the m order
derivatives of the C™ solution to (6.7.1) and (6.7.31) must blow up in a finite time

and the life span T'(¢) satisfies

lim (aT(s)) = Oy, (6.7.44)

c;l= —VAi -1 lu=0 V! =
0 ie{r}}_e}?fm}{:gg{ T |u ovz(w)}}

() (s): (—2i(0),
max ¢ sup ¢ — [ (A (0) — A, (0))* 2L ENOD)
1€{1,--,m} | zeR vz

(6.7.45)
(I}

Remark 6.5. Corollary 6.1 gives the corresponding result given in [Hol]. O

Remark 6.6. If system (6.7.29) is non-strictly hyperbolic, then we have the

corresponding results similar to those in Chapter 4 and Chapter 5. O

Remark 6.7. If we multiply all coefficients by the same function ¢(U) # 0, we
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see that the right-hand side of (6.7.41) is invariant. So it is unnecessary to assume

that co is normalized to be equal to 1 in our theory. O



