Chapter 5

Homogeneous quasilinear

hyperbolic systems

In Chapter 3 and Chapter 4 we systematically study the global existence and the
blow-up phenomenon of C! solutions to Cauchy problem for general quasilinear
hyperbolic system with small and decay initial data. However, the whole discus-
sion is based on the existence of the normalized coordinates. Unfortunately, for
the non-strictly hyperbolic case, in general we do not know if there exist the nor-
malized coordinates, and even if the normalized coordinates exist, it is still very
hard to check the hypotheses given in the normalized coordinates. Therefore, a
consideration without the normalized coordinates is needed. Such a discussion for
homogeneous quasilinear hyperbolic systems is carried out in this Chapter. Es-
sentially restricting our system in such a way that each characteristic is either
genuinely nonlinear or linearly degenerate in the sense of P.D.Lax, we only require
the assumption that 6 (see (1.14)) is small instead of the hypothesis that 6 (see
(1.13)) is small, eliminate the use of the normalized coordinates and obtain more
results including a sharp estimate on life span of C! solutions. In particular, we
give a lower bound of life span of the C! solution to the Cauchy problem (1.1)

and (1.7) for the small initial data with certain monotone properties. Moreover,
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126 Homogeneous quasilinear hyperbolic systems

by construct some examples, we illustrate two mechanisms of breakdown of the Cct
solutions to the homogeneous quasilinear hyperbolic systems, and the difference

between diagonalizable and non-diagonalizable systems.

§5.1. Basic assumptions and preliminaries

Consider the following quasilinear hyperbolic system
ou ou

1A= =0, 1.1

ot M (“)am (5-1.1)
where u = (uj,---,uy)" is the unknown vector function and A (u) = (a;; (u)) is
an n x n matrix with C? elements a,; (u) (4,5 = 1,---,n).

By hyperbolicity, for any given u on the domain under consideration, A (u) has
n real eigenvalues A; (u), -, A, (u) and a complete system of left (resp. right)
eigenvectors. For i = 1,---,n, let [, (u) = (i1 (u), -, lin (u)) (resp. 7;(u) =

(ri(u), - T (1))T) be a left (resp. right) eigenvector corresponding to A, (u):
li(u) A(u) = A (w)l; (u)  (resp. A(u)ri (u) = A (u) 1y (u)). (5.1.2)
We have
det|l;; (u)| # 0 (equivalently, det |r;; (u)| # 0). (5.1.3)

All X, (u), U;(u) and r;; (u) (4,5 =1,---,n) are supposed to have the same
regularity as a;; (u) (4,7 =1,---,n).

Without loss of generality, we suppose that on the domain under consideration
Lwr;(w)=6; (t,j=1,---,n) (5.1.4)
and
rF(w)r(u) =1 (E=1,---,n), (5.1.5)
where §,; stands for the Kronecker’s symbol.
In this Chapter, we suppose that on the domain under consideration, each

eigenvalue of A(u) has a constant multiplicity. Without loss of generality, we may

suppose that

Mu)=- =2 (u) < Appr (u) < - < Ap(u), (5.1.6)
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where 1 < p < n. When p = 1, system (5.1.1) is strictly hyperbolic; while, when
p > 1,(5.1.1) is a non-strictly hyperbolic system with characteristics with constant
multiplicity.

We suppose furthermore that on the domain under consideration each multiple
characteristic is linearly degenerate in the sense of P.D.Lax. Then, by (5.1.6), when

> 1 we have
VAi(u)ri(u) =0 (i=1,---,p). (5.1.7)

Remark 5.1. If system (5.1.1) can be written in the form of conservation laws

ou 4 af(u) —0

ot Jzr

where f(u) = (fi(u),-- -, fa(u))?, then (5.1.6) implies (5.1.7) (see [Bo] or [Fr]). O

In the present situation, (2.2.9) simply reduces to

C::; = > Bur(Wowy (G=1,---,n), (5.1.8)
Jok=1
where
Bijk (w) = (Mg (w) — X (w)) I; (w) Vry (w) e (w) - (5.1.9)
Hence, we have
Bijk (u) =0, Vi, ke{l,---,p}, Vj, (5.1.10)
Biji(u) =0, Vie{p+1,---,n}, Vj (5.1.11)

On the other hand, (2.2.19) becomes

dw; = .
clAtz - Z Vg (W) wjwy,  (E=1,--+,n), (5.1.12)
t i k=1

where

ik () = 5 {00 () ~ A () s () Vi ()75 () = Vg () 7 () Gt + IR}
(5.1.13)
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in which (7]k) denotes all the terms obtained by changing 7 and k in the previous

terms. Hence, noting (5.1.6)-(5.1.7), we have

Yk (W) =0, Vi, Vg, ke{l,---,p}, (5.1.14)
Vi (W) =0, Vi, Vji#i, je{p+1,---,n} (5.1.15)

and
Yiii (W) = =VA; (u)ri (v), Vie{p+1,---,n} (5.1.16)
Fori=p+1,---,n, when the i-th characteristic \; (u) is linearly degenerate in the

sense of P.D.Lax, we have

Yiii (u) = 0. (5.1.17)

Moreover, we have (see (2.2.25)-(2.2.26))

dw; (dz — A, (u)dt)] = z": Tijk (u) wywedt A dz, (5.1.18)
k=1
where
Piji (u) = % (A, (w) = Mg (w) ; (u) [Vrg (u) ry (u) = Ve (w) rg (w)] . (5.1.19)

By (5.1.6), we have
Py (u)=0, Vi, Vyj, ke{l, --,p} (5.1.20)

and
Ty; (u) =0, Vi,j. (5.1.21)

On the other hand, by (5.1.18) we have

Ou D0 _ S p e G
ot + Oz _jglrwk(u)ijk (t=1,---,n). (5.1.22)

Similar to Lemma 2.3, we have

Lemma 5.1. Suppose that v = u(¢,z) is a C! solution to system (5.1.1), 7, and

15 are two C! arcs which are never tangent to the :-th characteristic direction, and
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D is the domain bounded by 7;, 75 and two i-th characteristic curves L. and Lf,

see Figure 1. Then we have

/ lw; (dx — A; (u) dt)| < / [w; (dz — X; (u) dt)| + // Z Lijk (u) wjwyg | dtde,
1 J T D |1.k=1

(5.1.23)
where w; and I';;1(u) are defined by (2.2.2) and (5.1.19) respectively. O

§5.2. Main results

Consider the Cauchy problem for system (5.1.1) with the initial data (1.7), i.e.,
t=0: u=p(z). (5.2.0)

The main results of the Chapter are the following four Theorems.

Theorem 5.1. Suppose that in a neighbourhood of u = 0, A (u) € C?, (5.1.1) is
a hyperbolic system and (5.1.4)-(5.1.7) hold. Suppose furthermore that in a neigh-
bourhood of u = 0, system (5.1.1) is linearly degenerate, namely, all characteristics
are linearly degenerate in the sense of P.D.Lax. Suppose finally that ¢ (z) is a C?!

vector function satisfying that there exists a constant g > 0 such that
A
0 sup {(1+]a])' ™" |(p'(x)|} < . (5.2.1)
TER

Then there exists 8y > 0 so small that for any given 6 € [0, 8], the Cauchy problem
(5.1.1) and (5.2.0) admits a unique global C! solution v = u (¢,z) on R x R. O

Theorem 5.2. Suppose that in a neighbourhood of u = 0, A (u) € C?, (5.1.1)
is a hyperbolic system and (5.1.4)-(5.1.7) hold. Suppose furthermore that in a
neighbourhood of u = 0,

Vg (u) =0, Viel, Vj, k¢l (5.2.2)

where 7,1 is defined by (5.1.13) and I C {1,---,n} is an index set such that \;(u)
is not linearly degenerate if and only if ¢ € I. If p(z) satisfies (5.2.1) and

Li(p(z)'(2) =0, VezeR, Viel, (5.2.3)
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where [;(u) denotes the i-th left eigenvector, then the conclusion of Theorem 5.1

holds. O

Remark 5.2. (5.2.2) is essentially T.P.Liu’s hypothesis that “linear waves do not
generate nonlinear waves” (see [Lu]), however, we do not ask A;(u) to be genuinely

nonlinear for ¢ € I. O

Remark 5.3. Noting (5.1.14)-(5.1.15), we have
Yk (W) =0, Viel, Vj kgl and Aj(u)= A(u). (5.2.4)
Hence, in order to have (5.2.2), it suffices to check
Yk (W) =0, Veel, Vj, kgl and Aj(u)Z A(u). (5.2.5)
Fori € I, 7, k ¢ I with A;(u) # Ax(u), by (5.1.13) we have
Yigk (w) = % (A (w) = Ae(w) Li(u) [Vre (u) 7y (u) = Ve (u) ry (u)] (5.2.6)

It follows from (5.2.6) that if all the right eigenvectors corresponding to linearly
degenerate characteristics can be chosen to be constant vectors, then (5.2.2) is

automatically satisfied. O

Theorem 5.3. Suppose that in a neighbourhood of v = 0, 4 (u) € C?, (5.1.1) is a
hvperbolic system and (5.1.4)-(5.1.7) hold. Suppose furthermore that there exists
a nonempty index set J C {1,---,n} such that in a neighbourhood of v = 0, when
1 € J, X\;(u) is genuinely noulinear; while, when ¢ € J, A;(u) is linearly degenerate.
Suppose finally that ¢ (x) = e¥ (), where € > 0 is a small parameter and ¥ () is
a C*! vector function satisfying that there exists a constant g > 0 such that

sup {(1 + 1z W (@) |} < co. (5.2.7)

T€R

If there exist g € J and z¢ € R such that
sgn (V;, (0)r;,(0)) - 1;, (0) ' (z0) <O, (5.2.8)

where 1;, (u) (resp. 7, (u)) stands for the io-th left (resp. right) eigenvector cor-

responding to the eigenvalue A;, (u), then there exists €9 > 0 so small that for any
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fixed € € (0,g¢] the ﬁfs"c order derivatives of the C! solution u = u(t,z) to the
Cauchy problem (5.1.1) and (5.2.0) must blow up in a finite time and the life span
T (e) of u = u(t,x) satisfies
-1
tsg (<T(6)) = [max sup (=X O)ri0) L O} (5.2.9)
_ ,

"Remark 5.4. Obviously, if ¥ (z) satisfies
|¥(z)| — const. as |z| — oo, (5.2.10)
then the condition that there exists ig € J such that

l;,(0)yY(z) # const. (5.2.11)

implies that there exists zo € R such that (5.2.8) holds. In this case, the hypothesis
(5.2.8) can be replaced by (5.2.11). In particular, if the system (5.1.1) is strictly
hyperbolic and ¢(x) has a compact support, Theorem 5.3 gives the same result
as in [Jo], [Lu] and [Hol], but we only ask the C! regularity for the solution and
the initial data; moreover, T.P.Liu’s hypothesis that “linear waves do not generate

nonlinear waves” is not required. 0O

Theorem 5.4. Suppose that in a neighbourhood of v = 0, 4 (u) € C?, (5.1.1)
is a hyperbolic system and (5.1.4)-(5.1.7) hold. Suppose furthermore that there
exists an index set J C {1,---,n} such that in a neighbourhood of u = 0, A;(u) is
genuinely nonlinear if and only if 7 € J. Suppose finally that ¢ (z) = ey (z), where

e > 0 is a small parameter and 9 (z) is a C! vector function satisfying (5.2.7). If
sgn (VX;(0)r;(0)) - ;(0)y'(z) >0, VzxeR, Viel, (5.2.12)

then there exists 9 > 0 so small that for any fixed e € [0, gy], the life span T(e) of

the C! solution u = u(t,z) to the Cauchy problem (5.1.1) and (5.2.0) satisfies
T(e) > Coe~2, (5.2.13)

where C. is a positive constant independent of e. O
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Remark 5.5. In Theorem 5.4, the index set J might be empty, in which case
(5.2.12) is eliniinated. On the other hand, when i ¢ J, A;(u) might be neither

genuinely nonlinear nor linearly degenerate, or might be linearly degenerate. O

Remark 5.6. Under the hypotheses of Theorem 5.4, by (5.2.13), we have

- —1
lim (7(e)) =0, (5.2.14)
namely,
lim (ET(S)) = 0. (5.2.15)

This is compatible with (5.2.9) because (5.2.12) holds. O

§5.3. Two mechanisms of breakdown of C'! solutions

In this section, by constructing some quasilinear hyperbolic systems with con-
stant characteristics, we illustrate two mechanisms of breakdown of the classical
solutions to the homogeneous quasilinear hyperbolic systems, and the difference
between diagonalizable and non-diagonalizable quasilinear hyperbolic systems.

It is well-known that Cauchy problem for a hyperbolic system of linear par-
tial differential equations with smooth coefficients always admits a unique global
classical solution on the whole domain, provided that the initial data is suitably
smooth. This situation is due to the “linearity” of system. However, the situation
for quasilinear hyperbolic equations is quite different. Generally speaking, in the
quasilinear case the classical solution to the Cauchy problem exists only locally in
time and singularities may occur after a finite time, even for the sufficiently smooth

and small initial data.

Consider the following Cauchy problem for quasilinear hyperbolic system in

diagonal form
aui au,-
ot oz

t=0: u=¢p(x), (5.3.2)

W) ZE =0 (G=1,---,n), (5.3.1)
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where \;(u) (¢ = 1,---,n) are ('! function satisfying
Ar(u) < - < Ap(u), (5.3.3)

and o(x) is a C! vector function with bounded C! norm.

B.L.Rozdesstvenskii and A.P.Sidorenko [RS] and D.Hoff [Hf] proved

Proposition 5.1. If

ONi(p1(ar), -, pici(aiz1), @i(ai), @i (ig1), -+ onlan)) >0 (i

= 1a My,
B, n)
(5.3.4)
where a; (7 = 1, --,n) satisfying a; > -+ > «,, then the Cauchy problem (5.3.1)

and (5.3.2) admits a unique global C! solution on ¢t > 0. O

Corollary 5.1. In particular, if system (5.3.1) is linear degenerate in the sense of

P.D Lax, ie.,
OAi(u)

ou;
then the Cauchy problem (5.3.1) and (5.3.2) always has a unique global C! solution

ont>0. O

=0 (i=1,--,n), (5.3.5)

On the other hand, if system (5.3.1) is genuinely nonlinear in the sense of

P.D.Lax, i.e.,

8?92,(%) #0 (i=1,---,n), (5.3.6)

then (5.3.4) is necessary to guarantee the global existence on t > 0 of the C!

solution to the Cauchy problem (5.3.1) and (5.3.2) (see [K4]).

By the argument mentioned above, we observe that the breakdown of the C!1
solution to the Cauchy problem (5.3.1) and (5.3.2) is due to the “non-constant” of
eigenvalues A;(u) (i = 1,---,n) of system (5.3.1), because in this case, eigenvectors

of system (5.3.1) can be chosen as constant vectors, i.e., left eigenvectors are

(i)
Li(u) = (o,---,o, 1,0,---,0) (G=1,---,m) (5.3.7)

and the right eigenvectors read

. T
(i)
m(u)——-(0,-~,0,1,0,~--,0> (i=1,---,n). (5.3.8)
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They do not produce the singularity of solutions. The situation for non-diagonal

systems is quite different, the conclusion of Proposition 5.1 might be false.

Example 5.1. Consider the following quasilinear system!

uy + A(uw)uz = 0, (5.3.9)
where
-1 0 O
A(u) = e 0 0 |, (5.3.10)
-2 0 1

It is easy to sez that (5.3.9) is a strictly hyperbolic system with three distinct real

eigenvalues:

M) = =1, do(u)=0, s(u) = 1. (5311

Clearly, \,(u) (i = 1,2,3) are linearly degenerate in the sense of P.D.Lax. Right

eigenvectors can be chosen as follows

1 0 0
ri(u) =] e , rw)y=1 11, m=] 0 |- (5.3.12)
e~ 12 0 1

Consider the Cauchy problem(5.3.9) and (5.3.2). The solution is given by

’U,l(t,l') = ‘Pl(x + t)’
us>(t,x) = —In (e"*;—‘(f) + p1(x) — p1(x + t)) , (5.3.13)
usz(t,r) = p3(x —t) + G(t, ),

where
¢
G(t,z) = 2/ [e—mfﬂ—f) Yo +x—1) — oz + T)] o\ (z +7)dr. (5.3.14)
0
In particular, we take

p1(z) = sinz, ¢a(z) = p3() =0, (5.3.15)

I Examples 5.1-5.2 are provided by Ta-tsien Li and Fa-gui Liu.
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then, it follows from (5.3.13) that
ug(t,z) = —In (1 +sinz — sin(z + ¢)) . (5.3.16)
From (5.3.16), we see that
uy(t,z) > 00 as (t,z)— (g—,O) . (5.3.17)

(5.3.17) implies that the Cauchy problem (5.3.9) and (5.3.2) with (5.3.10) and
(5.3.15) does not have any C* solution on ¢t > 0. O

Example 5.2. In system (5.3.9), we take

—1 0 0
Alw)=| —(1+u3) 0 0 |. (5.3.18)
Us 0 1

In this case, (5.3.9) is still a strictly hyperbolic system with three distinct real

eigenvalues:

A(w) = -1, A(u)=0, As(u)=1. (5.3.19)

Moreover, right eigenvectors can be taken as follows

1 0 0
ri(u) =1 1+u3 |, m(uw)=| 1|, r(w)=] 0 |. (5.3.20)
—%’LLQ 0 1

In the present situation, the solution to the Cauchy problem (5.3.9) and (5.3.2)

is given by

ui(t,z) = p1(z + 1),
uz(t,z) = tg(p1(z +1) — p1(2)), (5.3.21)
us(t,z) = — fot LT+ aig(pi(t+x—t) —e1(7 +2))dr.

A discussion similar to Example 5.1 can be carried out, and a result on the break-

down of the C! solution (5.3.21) can be obtained. O
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Example 5.3 (Jeffrey’s model). As in [Je], we consider system (5.3.9) with

—cosh(2uz) 0 —sinh(2us)
Au) = cosh us 0 sinh us : (5.3.22)
sinh(2uz) 0  cosh(2ug)

For this model, we can discuss similarly and obtain the corresponding conclusion. O

By these examples mentioned above, we see that the breakdown of the C*! solu-
tions to the Cauchy problem (5.3.9) and (5.3.2) is due to “non-constant” eigenvec-
tors instead of eigenvalues, because in this case, eigenvalues are constants, certainly,

they are linearly degenerate in the sense of P.D.Lax. Thus, we have

Conclusion 5.1. There exist two kinds of mechanisms to produce the singularity
of C! solutions to quasilinear hyperbolic systems. One is due to the “non-constant”
of eigenvalues. This case generally corresponds to the formation of envelope of
characteristics of the same family (see §3.8 and [K4]). The other is owing to the
“non-constant” of eigenvectors. For this case, the envelope of characteristics of
the same family might never appear (for instance, see Example 5.1-5.3). It is very

possible that the two mechanisms occur simultaneously. O

Conclusion 5.2. The C! solutions to non-diagonalizable quasilinear hyperbolic
systems with linearly degenerate characteristics (even for constant characteristics)
may blow up in a finite time. This is quite different from quasilinear hyperbolic

systems in diagonal form. O

§5.4. Global existence of C! solution
—Proof of Theorems 5.1-5.2

For simplicity and without loss of generality, we may suppose that

©(0) =0,

(5.4.1)
0 <A(0) < Ap41(0) <--- < A (0),
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where A(u) = Ar(u) == A, (u).

By the existence and uniqueness of local C'! solution to the Cauchy problem
(see Chapter 1 in [LY]), in order to prove Theorem 5.1 it suffices to establish a
uniform a priori estimate on the C° norm of v and u, on the existence domain of
the C! solution u = u (¢, ).

By (5.4.1), there exist positive constants § and &, so small that

A(0) > bo,
Ap“l”l (U) - X (U) > 46y, V \H’I’ |Ul <é (7' =1,-- 7p)3 (542)
Ajg1(u) = X; (v) > 46y, Viu,lv|<é (G=p+1,---,n-1),

and

A () = M) < 2,

For the time being, we assume that on the existence domain of the C! solution

Viul, lv|] <6 (i=1,---,n). (5.4.3)

u = u(t,x)
lu (t,z)| < 6. (5.4.4)

After Lemma 5.4, we will explein that this hypothesis is reasonable.

By (5.4.1) and (5.4.4), on the existence domain of C! solution we have
0 < A(u) 2 At(u) = = A (u) < Appr () < --- < Ay (u), (5.4.5)

provided that 6 > 0 is suitably small.
Similar to §4.4, for any fixed T > 0, let

DT ={(t,z)|0<t<T, x < —t}, (5.4.6)

Df ={(t,2)|0<t < T, -t <z < (MO) — &)t} (5.4.7)

DT = {(t,2)|0<t < T, (M0) —8p)t <z < (A, (0)+ &) ¢}, (5.4.8)

DT ={(t,x)|0 <t < T, x> (X, (0) + &) t} (5.4.9)
and forte=1,--- n,

DT = {(t,z)|0 <t < T,

—[60 + 1 (X:(0) = MO)]t < & — A (0) ¢t < [0 + 7 (An(0) = A:0))] £},
(5.4.10)
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where n > 0 is suitably small.

Noting (5.4.1)-(5.4.2), when n > 0 is suitably small, we have

pf=pf=...=DT £ DT, (5.4.11)
DI'nDf =0, Vi#yj, ije{mp+1,---,n} (5.4.12)
and §
pfL|J) Y bl cD” (5.4.13)
1=p+1
Let
. 1+
W(DY) = max [[(1+|2)"" w, ()|~ (1), (5.4.14)
1
% (Dg) = vi:nil,i-a'}»{,n H (1 + t) th w; (t, J)) HL*(DF;)’ ) (5415)
WS (T) = max sup (14 |z =X 0) )" w, (¢, 2) | (5.4.16)
1=1,-.n (t,I)EDT\D:F
and
We (T) = max sup |w;(t,x)]|, (5.4.17)
1=1,---,n 0<t<T
z€R
where DT (t) (t > 0) denotes the t-section of DI:
DI (t) = {(r,2) |7 =t,(r,x) €D} . (5.4.18)
Noting (5.4.11), we get
N
D{ (t)=DJ (t)=---= D] (t) = DL (t). (5.4.19)
Therefore, by '5.4.1) and (5.4.11) we have
W& (T) := max{ max sup (1+ ]z —A(0)¢)'* lw, (¢, x) |,
1:1""’p(t,.’E)€DT\DZ‘,
 max sup (14 ]z = X (0)t))' ™ |w; (t,2) |}
=PFLnn (4 e DT\DT
(5.4.20)

By the definition of DI and D7, it is easy to get the following
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Lemma 5.2. Foreach:=1,---,n, on the domain DT\D;‘F we have
ct < |z — X (0)t] < Ct, (5.4.21)
cx < |z — X (0)t] < Cx, (5.4.22)

where ¢ and C are positive constants independent of T. O
Similar to Lemma 3.3, we have

Lemma 5.3. Suppose that in a neighbourhood of u = 0, A(u) € C? and (5.1.1)
is a hyperbolic system. Suppose furthermore that ¢ (z) is a C! vector function
satisfying (5.2.1) and the first equality in (5.4.1). There exists 8 > 0 so small
that for any fixed 6 € [0,6p], on any given existence domain 0 < ¢t < T of the C*
solution u = u (¢, z) to the Cauchy problem (5.1.1) and (5.2.0) there exist positive
constants k; and k, independent of # and T, such that the following uniform a

priori estimates hold:

W (DT) < k.6 (5.4.23)
+

and

W (DF) < k6. (5.4.24)
O
Remark 5.7. By the definiticn of DI, for any given (¢,z) € D we have
|z| < max {1, A(0) — o} t. (5.4.25)
Introduce
W (DTUD]) = max |0+ 12D wilt)llpeorong). (5:4:26)
By (5.4.23)-(5.4.25), we obtain
W (DL uDT) < kb, (5.4.27)

where ks is a positive constant independent of § and T'. Thus, under the hypotheses

of Lemma 5.3, on any given existence domain 0 < t < T of the C! solution
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u = u(t, z) to the Cauchy problem (5.1.1) and (5.2.0), for any fixed t € [0, T},
lw(t,z)] — 0 as |r| — oc. (5.4.28)

Moreover, w(t. x) is integrable in space, i.e.,

/00 |lw,(t,x)|lde (i=1,---,n) (5.4.29)

— o0

make sense for any fixed ¢t € [0,7]. O
The following Lemma can be found in Appendix 3.

Lemma 5.4. Suppose that in a neighbourhood of u = 0, A(u) € C?, (5.1.1)
is a hyperbolic system and (5.1.4)-(5.1.6) hold. Suppose furthermore that ¢(z)
is a C! vector function satisfying (5.2.1) and the first equality in (5.4.1). There
exists 6y > 0 so small that for any fixed 6 € [0, 6], on any given existence domain
0 <t < T of the C! solution u = u(t,z) to the Cauchy problem (5.1.1) and (5.2.0)
there exist positive constants ks and ks independent of € and T, such that the

following unifcrm a priori estimates hold:
Hu(t, z)|lcoo,ryxr) < k40 (5.4.30)

and
/ |w;(t, x)|dz < k56, (5.4.31)
L.l

where L; stands for arbitrary j-th characteristic: * = x,(t) (¢t € [0,T]) defined by

dz
= = Aj(u(t, z(1))), (5.4.32)

in which j € {p+1,---,n} if ¢ € {1,---,p}; while j #¢if1 € {p+1,---,n};

moreover, ks is independent of L;. O

When system is quasilinear strictly hyperbolic, Lemma 5.4 is due to [Sc] and
[Ho2).

Taking 6y so small that
k409 <

N O

, (5.4.33)
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we obtain from (5.4.30) that
)
|u(t, 2) oo, mxr) < kb < kg < 5 (5.4.34)

This implies that the hypothesis (5.4.4) is reasonable.

Lemma 5.5. Suppose that in a neighbourhood of v = 0, A(u) € C?, (5.1.1)
is a hyperbolic system and (5.1.4)-(5.1.7) hold. Suppose furthermore that ¢ (z)
is a C! vector function satisfying (5.2.1) and the first equality in (5.4.1). There
exists 6y > 0 so small that for any fixed 8 € [0, 6p], on any given existence domain
0 <t < T of the C"' solution u = u(¢,z) to the Cauchy problem (5.1.1) and (5.2.0)
there exists a positive constant ks independent of # and T, such that the following

uniform a priori estimate holds:
WS (T) < keb. (5.4.35)

O

Proof. Let

W, (T) = max{ max max 51_1p/ lw; (t,z) |dt,

=lLwpje{p+l o} &0 /¢,

(5.4.36)

i (t dt
z:p%?i(‘-,n I?QZX ngp/('j‘j |wL ( ’ :C) | }’

where, when i € {1,---,p}, C; denotes any given j-th characteristic in DT (where
J €{p+1,---,n}); while, when 7 € {p+1,---,n}, C'j stands for any given j-th
characteristic in DT (where j # 1).
By (5.4.31) we have
W1 (T) < ks6. (5.4.37)

Using (5.4.37) and repeating the proof of (5.4.26) in [LK], we get (5.4.35) directly.
Q.E.D.

As in [LK], we have

Lemma 5.6. Under the assumptions of Lemma 5.5, suppose furthermore that

in a neighbourhood of u = 0, system (5.1.1) is linearly degenerate. Then there
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exists 8y > 0 so small that for any fixed 6 € [0, 6], on any given existence domain
0 <t < T of the C! solution u = u (¢, x) to the Cauchy problem (5.1.1) and (5.2.0),
there exists a positive constant k7 independent of § and 7', such that the following

uniform a priori estimate holds:

W (T) < k6. (5.4.38)

Using Lemmas 5.3-5.6 and completely repeating the proof of Theorems 3.1-
3.2 in [LK], we can easily obtain Theorem 5.1 and Theorem 5.2. The details are

omitted.

§5.5. Blow-up phenomenon and life span of C! solution
— Proof of Theorems 5.3-5.4

Under the hypotheses of Theorem 5.3, Lemma 5.3-5.5 are still valid and can be

stated as the following three lemmas.

Lemma 5.7. Suppose that in a neighbourhood of ©u = 0, A(u) € C? and (5.1.1)
is a hyperbolic system. Suppose furthermore that p(z) = ey(x), where € > 0 is a
small parameter and ¥ (z) is a C! vector function satisfying (5.2.7). There exists
g0 > 0 so small that for any fixed € € (0, ¢e4], on any given existence domain 0 < ¢
< T of the C! solution u = u (¢, ) to the Cauchy problem (5.1.1) and (5.2.0) there
exist positive constants k; and k, independent of € and T, such that the following

uniform a priori estimates hold:
W (Di) < ke (5.5.1)

and

W (Dg) < kae. (5.5.2)
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Lemma 5.8. Suppose that in a neighbourhood of u = 0, A(u) € C?, (5.1.1) is a
hyperbolic system and (5.1.4)-(5.1.6) hold. Suppose furthermore that ¢ = ey(x),
where € > 0 is a small parameter and ¥(z) is a C! vector function safisfying (5.2.7).
There exists €9 > 0 so small that for any fixed € € (0,&0], on any given existence
domain 0 < t < T of the C! solution u = u (¢,7z) to the Cauchy problem (5.1.1)
and (5.2.0) there exist positive constants k3 and k, independent of ¢ and T, such

that the following uniform a priori estimates hold:

[|w(t, 2)||lcoo,rixr) < k3e (5.5.3)
and
/ lwi(t, z)|dt < kae, (5.5.4)
L;

where L; stands for arbitrary j-th characteristic, in which j € {p + 1,---,n} if
i € {1,---,p}; while j #iifi € {p+1,---,n}; moreover, k4 is independent of L.
(]

Lemma 5.9. Suppose that ir: a neighbourhood of u = 0, A(u) € C?, (5.1.1) is
a hyperbolic system and (5.1.4)-(5.1.7) hold. Suppose furthermore that p(z) =
ey(x), where ¢ > 0 is a small parameter and ¢(z) is a C? vector function safisfying
(5.2.7). There exists €9 > 0 so small that for any fixed € € (0,&0], on any given
existence domain 0 < ¢t < T of the C! solution u = u (¢, z) to the Cauchy problem
(5.1.1) and (5.2.0) there exist positive constants ks and kg independent of £ and

T, such that the following uniform a prior: estimates hold:
W (T) < kse (5.5.5)

and

W1 (T) < kge. (5.5.6)

O

Proof of Theorem 5.3. It suffices to prove (5.2.9). Obviously, it follows from
(5.2.8) that the right-hand side of (5.2.9) is a positive number. We denote this
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number by M,. Noting the fact that A,(u) is linear degenerate when ¢ ¢ J, we

have

>

My {max sup {—V/\z'(O)Ti(o)li(o)"/’,(m)}] :

‘€J zeR (5.5.7)

= { max sup{—V)\L-(O)rl(O)ll(O)w’(m)}}_.

i€{l,--,n} reR

Moreover, it follows from (5.2.7)-(5.2.8) that there exist an index :, € J and a

point z, € R such that
Mo = [= Vi (0)r, (0),, (0)' (z.)] " . (5.5.8)

We first estimate w;(t,z) (z =1,---,p).

Let
W2 (T)= max sup |w;(t,x)|. (5.5.9)
Z:l’...!p OStST
zeR

For each 7 = 1,-- -, p, integrating (5.1.12) along the i-th characteristic, noting
(5.1.7) and (5.1.14)-(5.1.16), and using Lemma 5.2, we get

wit,2)] < e {W (DF) + W (DF) + (W&(D)* +

) (5.5.10)
Wi(T)W&(T) + W5 (IW(T) }

henceforth ¢; (j = 1,2) will denote positive constants independent of ¢, (¢,r) and
T. Then, using (5.5.1)-(5.5.2) and (5.5.5)-(5.5.6), from (5.5.10) we obtain

W™ (T) < cye. (5.5.11)
(5.5.11) gives an estimate of w;(t,z) (z = 1,---,p). This estimate implies that
w;(t,z) (i =1,---,p) remain bounded on any given existence domain 0 <t < T of

the C! solution to the Cauchy problem (5.1.1) and (5.2.0).

Hence in what follows, it suffices to consider w;(t,z) t =p+1,---,n).

On any given existence domain 0 < ¢t < T of the C?! solution u = u(t,z) to the
Cauchy problem (5.1.1) and (5.2.0), we consider equation (5.1.12) again along the
i-th characteristic x = z;(t,y) (¢ = p+1,---,n) passing through an arbitrary fixed
point (0,y) on z-axis. Noting (5.1.14)-(5.1.15), we may write (5.1.12) as

dwi

71 = ag(t; 1, y)wi + ar(t:4,y)w; + ag(t;i,y), Vie{p+1,---,n}, (5.5.12)
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where

ao(t;4,y) = Yur(u),  ac(t;i,y) =D (Yisy () + ya0(w)) wy,
I (5.5.13)
az(t;,y) = vij(wwjwy,
J,k#1

in which v = u (¢, z,(t,y)) and w; = w; (t,z;(t,y)) G=1,---,n).
Noting (5.1.14)-(5.1.16) and the fact that 2 € {p+1,---,n}, and using Lemma
5.2 and Lemma 5.7-5.9, by (5.5.13) we have

ao(t;4,4) = 1:(0) + O(e) = —=VA(0)ri(0) + O(e), Vtel[0,T],  (5.5.14)

/Tlal(t;i,y)}dt < {W(D;{;) + W(DT) + We (T) + Wl(T)} < Coe  (5.5.15)
0

and
T
/0 jax(ts3,p)ldt < Cs { (W (DL) + W(DT))* + (WE(T))? + W& (TWA(T) }

< 0462,

(5.5.16)
provided that € > 0 is small enough, henceforth C; (j = 1,2, - - -) will denote positive

constants independent of €,y and 7. Hence,

T T
K(i,y) 2 / lax(t:4, y)|ds - exp ( / Ial(t;i,y)ldt)SCssz, (5.5.17)
0] 0

provided that € > 0 is small enough.

(I) Upper bound of the life span — Estimate on TII(I) (ET(E))

Without loss of generality, we may suppose that
-V, (0)r;, (0) > 0. (5.5.18)

Otherwise, replacing u by —u we can always realize (5.5.18).
By (5.1.7) we observe that J N {1,---,p} = 0, and then we see that i, €
{p+1,---,n}. Thus, it follows from (5.5.14) that

ao(t;iv,x) >0, Vitel[0,T], (5.5.19)
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provided that € > 0 is small. Noting (5.5.8) and (5.5.18), we have

w; (0,z.) = el (ev(x,)) ¥ (z.)

(5.5.20)
= el (0)'(x.) + O (e%) > 0,

provided that ¢ > 0 is suitably small. Then it follows from (5.5.17) and (5.5.20)
that
w;, (0,2.) > K(14,24), (5.5.21)

provided that ¢ > 0 is suitably small. We now consider equation (5.5.12) along the
characteristic x = z,_(t,z.). Noting (5.5.19)-(5.5.21), we observe that Lemma 2.1

can be applied to the initial value problem for (5.5.12) with the initial condition
t=0: w,;, = Wy, (O,x*). (5522)
It follows from (2.1.4) that

T T
(w;, (0,z,) - K(i*,x*))/ ao(t; 1., x,)dt - exp (—/ lal(t;i*,x*)|dt) <1,
0 0

(5.5.23)
provided that = > 0 is suitably small.

Taking T = T'(e) — 1 in (5.5.23) and noting (5.5.14)-(5.5.15), (5.5.17), (5.5.20)
and (5.5.8), from (5.5.23) we obtain

Tim (e’f‘(s)) < M,. (5.5.24)

This gives an upper bound of the life span T ().

(II) Lower bound of the life span — Estimate on lim (sf(s))

]

By (5.5.24), in order to prove (5.2.9) it remains to show

lim (5T(5)) > M. (5.5.25)

e—0

To prove (5.5.25), it suffices to show that, for any given constant M satisfying that

0< M < M, (5.5.26)
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we have

T(e) > Me™? (5.5.27)

for small € > 0, where M, is defined by (5.5.7).

To do so, it suffices to establish a uniform a priori estimate on the C! norm of the
C' solution u = u(t,z) on any given existence domain [0, T] x R with T < Me™1,
A uniform a priori estimate on the C° norm of u = u(t,z) has been established
in Lemma 5.8, hence it remains to establish a uniform a priori estimate on the C°
norm of the first derivatives of v = w(t,z), namely, a uniform a prior: estimate
on the C° norm of w; = w,;(t,2) (i = 1,---,n). By (5.5.11), it suffices to estimate
w; (¢ =p+1,---,n). To estimate w; (t =p+1,---,n), we still consider equation
(5.5.12) along the ¢-th characteristic z = z;(¢,y) passing through an arbitrary fixed
point (0,y) on z-axis. However we will make use of Lemma 2.2 instead of Lemma

2.1.

Without loss of generality, we may assume that

w;(0,y) = el; (e(y)) ¥'(y) = 0. (5.5.28)

Otherwise, replacing w; by —w; we can draw the same conclusion. Noting (5.5.3),
(5.1.16), (5.5.7) and (5.5.26), when € > 0 is small enough we have
Mgt + M1

Yiii(w)w; (0,y) < —————§—~———£ (5.5.29)‘

on the i-th characteristic z = 1;(¢,y). Thus we get

T —1 -1 -1 -~1

M, M M, M

w,0.9) [ af(tip)ae < HoF M e < Mo A
0

IN

M<1,  (5.5.30)

where ad (t;4,y) = max {ao(t;4,y), 0}. In (5.5.30) we have made use of the fact
that 7' < Me~!. Noting (5.5.14) and the fact that T < Me~!, we obtain

T
/ lao(t;4,y)|dt < CeT < CeMe™t < Cre™t. (5.5.31)
0

By (5.5.15) and (5.5.17), it follows from (5.5.30)-(5.5.31) that (2.1.7)-(2.1.8) hold
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for small € > 0. Therefore, using Lemma 2.2 we get
T
(wi(T,z(T,9)) " > (wil0,y) + K(5, )" — / ag (t;1,y)dtx
Jo

T
€Xp (/ Ial(tvzay)ldt> 3 if w?.(T’ ‘Tl(Tay)) >0
0
(5.5.32)

and

T T
lw; (T, z(T, )|~ > (K (i,9) " - /0 lao(t; 7, y)|dt - exp (/0 Ial(t;i,y)ldt) ,

if wi(T,zi(T,y)) > 0.
(5.5.33)

Noting (5.5.15), (5.5.17) and (5.5.30)-(5.5.31), from (5.5.32)-(5.5.33) we obtain

@)™ 2 0y + K™ (1= S,
If 'le(T, xl(T,y)) > 0
and
lw (T, zs(T,y))| ™" > %(K(i,y))_l, if wi(T,z;(T,y)) <0, (5.5.35)

provided that € > 0 is small enough. For w;(¢,z;(¢t,y)) (V t € [0,T]) we have the
same estimate. Thus, on the strip 0 < t < T we get the following uniform a priors

estimate
lwi(t,z)| < Cge (i=p+1,---,n), Vte[0,T], Vz€R, (5.5.36)
where T < Me¢~1. Combining (5.5.11) and (5.5.36), we obtain
llw(t, z)||cop,mxr < Coe, (5.5.37)

where T < Me~!. (5.5.37) implies that (5.5.27) holds for small € > 0, and then
(5.5.25) holds. (5.5.25) gives a lower bound of the life span T(¢).

Combining (5.5.24) and (5.5.25) yields (5.2.9). The proof is completed.
Q.E.D.

Proof of Theorem 5.4. Theorem 5.4 can be proved in a way similar to the proof
of (5.5.27). In what follows, we only point out the essentially different part in the

proof.
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Under the hypotheses of Theorem 5.4, Lemma 5.7-5.9 are still valid. Moreover,
on any given existence domain 0 < t < T of the C! solution u = u(t,z), (5.5.11)
and (5.5.14)-(5.5.17) (in which ¢ = p+ 1,---,n) also hold when gy > 0 is suitably
small. In order to prove Theorem 5.4, it suffices to show that there exist a small
constant €y > 0 and a positive constant C. independent of € such that for any given
e € [0, o], the Cauchy problem (5.1.1) and (5.2.0) admits a unique C* solution
w = u(t,z) on the strip 0 < t < C.e~2. To do so, by (5.5.3) and (5.5.11), it suffices
to establish a uniform a priori estimate on the C°® norm of w; (1t = p+1,---,n)

on any given existence domain 0 < ¢t < T with T < C.e™2.

In order to estimate
w; (1 = p+1,---,n), we still use equation (5.5.12) satisfied by w; along the i-th
characteristic x = z;(¢t,y).
Noting that
w;(0,y) = cli(ev(¥)Y'(y) (i=1,---,n), (5.5.38)

we have
lw;(0,9) — el;(0)¢' (y)| < Croe? (i=1,---,n), Vy€R. (5.5.39)

We first ask the positive constant C, to satisfy

—1

0<C. < |2(C5 +2C10) Hléij( [V (0)r;(0)]

o

C, (5.5.40)

where Cs and C, are two positive constants given by (5.5.17) and (5.5.39) respec-

tively.

Case I: i € Ji, = {7 e{p+1,---,n} | Aj(u) is linearly degenerate}. In this

case, A;(u) is linearly degenerate. Let

Wr(T) = max sup |w;(¢, ). (5.5.41)
i€ 0<t<T
TER

Integrating (5.1.12) along the i-th characteristic and noting (5.1.14)-(5.1.15) and
(5.1.17), we have

wi(t,2)] < Oy {W(DE) + W(DF) + (W& (D)) + Wi (T) W (T)+

We (T)YW,(T)}, V(t,z)€[0,T)xR, Yi€Js.
(5.5.42)
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Using (5.5.1)-(5.5.2) ‘and (5.5.5)-(5.5.6), on any given existence domain 0 <t < T

of the C! solution u = u(t, ) we obtain from (5.5.42) that

WL(T) < Crae. (5.5.43)

Case II: 1 € J. In this case, A;(u) is genuinely nonlinear. As before, without

loss of generality, we may suppose that
VA:(0)r;(0) > 0. (5.5.44)

Otherwise, replacing u by —u, we can always realize (5.5.44).

In this case, by (5.2.12) we have
1,(0)Y'(y) >0, Vy€R. (5.5.45)
Moreover, it follows from (5.5.14) that |
af (t:i,y) £ max{ao(t;7,y), 0} =0, (5.5.46)

provided that €y > 0 is suitably small.
If

w,;(0,y) = eli(ev(y)¥'(y) > 0, (5.5.47)

then (2.1.7) always holds. On the other hand, noting (5.5.14)-(5.5.15), (5.5.17),
(5.5.40) and the fact that T < C.c72, we see that, when €¢ > 0 is small enough,
(2.1.8) holds. Then, using (5.5.46), (5.5.14)-(5.5.15), (5.5.17) and (5.5.40), by

Lemma 2.2 we get
(wi(T,2:(T,y))) " > (wi0,9) + K(i,9) ™", if wi(T,z.(T,y)) >0 (5.5.48)
and

AT, (T )™ 2 5 (K™, i w(Ta(Ty) <0, (5549)

provided that eg > 0 is small enough, where we have made use of the fact that
T < C.,e"2.
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If
wi(0,y) = eli(ev(y))¥'(y) <0, (5.5.50)

then, by (5.5.39) and (5.5.45) we have

lwi(0,y)| < 2C10e*. (5.5.51)
Let
W, (t) = —w; (¢, (¢, y)) - (5.5.52)
It follows from (5.5.12) that
dﬁ;t(t) = ~ag(t;4,y)W? + a; (¢;1,y)W; — ax(t;i,y)- (5.5.53)

Noting (5.5.14), (5.5.44), (5.5.50) and (5.5.51), we get

at (t;i,y) = max{—ao(t;i,y),O} = VX (u)r;(u) >0, (5.5.54)
’IIJI(O) = —'wz-(O,y) >0 (5555)

and
w;(0) < 2C10€?, (5.5.56)

provided that €9 > 0 is small enough. On the other hand, using (5.5.14)-(5.5.17),
(5.5.40), (5.5.56) and the fact that T < C,e~2, we observe that, when g5 > 0 is
suitably small, (2.1.7)-(2.1.8) 1 old. Then, we can apply Lemma 2.2 to the initial
value problem (5.5.53) and (5.5..55). It follows from (2.1.9) and (2.1.10) that

(@0 (T)™" > = (0;(0) + K(i,9)) ", if @(T)>0 (5.5.57)

N

and

|y (T)| ™ > %(K(z’,y))_l, if w(T) <0, (5.5.58)

provided that €5 > 0 is small enough, where we have made use of (5.5.40) and the
fact that T < C.e~2. Thus, noting (5.5.17) and (5.5.38), from (5.5.48)-(5.5.49)
and (5.5.57)-(5.5.58) we get immediately

|lwi (T, x;(T,y))| < Ci3e, Vi€J,
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where T < C,e72.

Similarly, for w;(t,z,(t,y)) (Vt € [0,T], Vi € J) we have the same estimate
lwi(t, z;(t,y))| < Crae, Vtel[0,T], VieJ, (5.5.59)

where T < C,e2.
Let

We(T) = max sup |wi(t, z)|.
z€ER

Noting the fact that (0,y) is an arbitrary point on z-axis, by (5.5.59) we have
Wa(T) < Crue, (5.5.60)
where T < C,e72.
Case III: : € Jy = {p+1,---,n}\ (JUJL). In this case, it follows that
VAi(0)r;(0) =0, Vieldp. (5.5.61)
On any given existence domain of the C! solution u = u(t, z), by (5.5.3) we have
[7isi(u)] < Cise. (5.5.62)

Integrating (5.5.12) along the i-th characteristic = z;(¢,y) and noting (5.5.62)
and (5.5.38), we obtain

t
itz w)l < Jwi(0,9)] + Crse / wldr+
0

t t
/ s (&5 4, ) [wsldt + / las (53, ) dt
0 ‘ 0

(5.5.63)
< 0166+C15€/ w?dr+
t 0 t
[lasiliwdde+ [ laa(tii.lar
0 0
Let
W(;(t): sup lwi(T7'Ti(T)y))|' (5564)

o<t
yER
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It follows from (5.5.59) that

lwi(t,zi(t,y))] < Cige + Crse fot (”/3(7))2(”“{“

o . . (5.5.65)
W{(t) fol lay (7;¢,y)ldr + fo lax (754, y)|dT.

Noting the fact that (0, y) is an arbitrary point on z-axis and using (5.5.15)-(5.5.16),

we get
t ¥
VVg(t) < Chre + C]sE/ (Wé(T))Z dr. (5566)
0
It follows from (5.5.66) that

Wi(t) < 2Cire, Vi€ [o, (201701852)'1] . (5.5.67)

Let
Wo(t) = max {Wi)}. (5.5.68)

It follows from (5.5.67) that
0(T) < Chre, (5.5.69)

where T satisfies that T < C*e~?, in which C* = (2C17;C15)~? .

Furthermore, the constant C. is required to satisfy
0<C,<C".
Then, from (5.5.11), (5.5.43), (5.5.60) and (5.5.69) it follows that
Woo(T) K WZ(T) + Wr(T) + Wa(T) + Wo(T) < Cyoe, (5.5.70)

where T satisfies that T < C.e™2, in which C, satisfies that 0 < C,. < min {C,C*}.
Thus, (5.5.70) gives a uniform a priori estimate on w = w(t,z) on any given
existence domain 0 < t < T of the C! solution u = u(t,z), where T satisfies that

T < C,e~ 2. Hence, the proof of Theorem 5.4 is finished. = Q.E.D.



