Chapter 3

Quasilinear strictly

hyperbolic systems

In this chapter, we consider quasilinear strictly hyperbolic systems and study sys-
tematically classical solutions in the large to their Cauchy problems. Throughout
this chapter, we always assume that system (1.1) is strictly hyperbolic in a neigh-

bourhood of v = 0.

§3.1. Matching condition

Consider system (1.1) and assume that

A1(0) < - < A,(0). (3.1.1)

Definition 3.1. The i-th characteristic A; (u) is weakly linearly degenerate, if,
along the s-th characteristic trajectory u = u(®) (s) passing through u = 0, defined

by

du — .
as =7i(v), (3.1.2)
s=0: u=0,
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we have
VA (w)r; (u) =0, V |u|small, (3.1.3)

namely,
by (u“‘) (s)) =, (0), VY|s|small (3.1.4)

If all characteristics are weakly linearly degenerate, then system (1.1) is called

to be weakly linearly degenerate. 0O
Definition 3.1 and the following Lemma 3.1 can be found in [LZK1].

Lemma 3.1. Suppose that A(u) € C*, where k > 1 is an integer. Then there
exists an invertible C**! transformation u = u (@) (u(0) = 0) such that in -
space, for each ¢ = 1,---,n, the i-th characteristic trajectory passing through

i = 0 coincides with the u;-axis at least for |4;| small, namely,
7 (;e;) = e;, V|@;|small (i=1,---,n), (3.1.5)
where

(%)
e‘i:(09”'10ai707"'a0)T- (316)

Such a transformation is called the normalized transformation and the corre-
sponding unknown variables @ = (%, - - - ,ﬂn)T are called the normalized variables -
or normalized coordinates. Obviously, in the normalized coordination (3.1.4) simply

reduces to
Proof of Lemma 3.1. Let
vV =g (@)

be the 1st characteristic trajectory passing through the origin u = 0, where u; is a

variable parameter;

w® = 4(2) (u(l),ﬂz) =a? (U1, u2)
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be the 2nd characteristic trajectory passing through u(!), where %, is a variable

parameter; ------ ;
CO N CO) (u<n—1>,an) =a™ (@, -, 5n)

be the n-th characteristic trajectory passing through u(”_l), where u,, is a variable
parameter. By (3.1.2), © = (4, -+, u,) can be taken as normalized coordinates

and u = @™ (%) is a normalized transformation. Q.E.D.

For the normalized transformation v = u (%) (u(0) = 0), we have

59; 0)//r:(0) G=1,---,n). (3.1.8)

Since the property that coordinates are the normalized ones or not is invariant

under any invertible smooth transformation in the following form:

= fi(w) (E=1,---,n), . (3.1.9)

in which f;(0) = 0 and f/(0) # 0, we can always choose suitable normalized
coordinates @ = (iq, - - - ,ﬂn)T such that
Ou .
%, 0)=r(0) (t=1,---,n), (3.1.10)
namely,
%(0) = R(0), (3.1.11)

where R(u) = (r;;(u)) is the matrix composed by the right eigenvectors 7;(u) (i =
1,---,n). Therefore, noting (1.4) we have
o1i;
ou

(0) =4L(0) (i=1,---,n), (3.1.12)
namely, i
22 0) = £(0), (31.13)

where L(u) = (I;;(u)) is the matrix composed by the left eigenvectors ;(u) (3 =
1,--+,n).

We now introduce the concept of matching condition.
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Definition 3.2. The inhomogeneous term B(u) is called to satisfy the matching
condition, if, along any characteristic trajectories u = u{*)(s) (i = 1,---,n) passing

through u = 0 (see (3.1.2)), we have

B (u<i>(s)) =0 (G=1,--,n), V|s|small (3.1.14)

In the normalized coordinates, (3.1.14) simply reduces to

B(ue;))=0 (i=1,---,n), V|u;| small (3.1.15)

Definition 3.3. The functions b;(u) (¢ = 1,---,n) are called to satisfy the match-
ing condition, if B(u) satisfies the matching condition, where b,(u) are defined by
(2.2.3). O

§3.2. Some relations in the normalized coordinates

In this section we establish some relations on the decomposition of waves in the
normalized coordinates. These relations play an important role in our proof.
Noting (3.1.5), from (2.2.10) and (2.2.11) we observe that in the normalized
coordinates |
Bij; (uje;) =0, Vu;|small, Vj (3.2.1)
and

vijj (uje;) =0, Vluj|small, Vj. (3.2.2)

When B(u) satisfies the matching condition, it follows from (1.6), (2.2.3) and
(3.1.14) or (3.1.15) that in the normalized coordinates
bi(u) = bijk(u)uju, Vi, (3.2.3)
J#k
where b;;;(u) are continuous functions of u, which are produced by Taylor’s for-

mula.
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Noting (3.2.1), from (2.2.16) we see that in the normalized coordinates
Bm (uje;) =0, Vuj|small, Vj#1 (3.2.4)

and, when the i-th characteristic A;(u) is weakly linearly degenerate, by (3.1.4) or
(3.1.7) we get
ﬂm (ue;) =0, V |u;| small. (3.2.5)

Moreover, when A; (u) is weakly linearly degenerate, it follows from (2.2.22)
and (3.1.4) or (3.1.7) that in the normalized coordinates

Yiis (uiei) = O, A4 [uzl small. (326)

Noting (2.2.6), we have

(bi(u)), Z bir (u)wg, (3.2.7)
where .
bit) = 3 T, i) (328

In the normalized coordinates, by (3.1.5) we get

c‘9b (ukek)

Sur (3.2.9)

Eik (ukek) =

When B(u) satisfies the matching condition, in the normalized coordinates, by

(2.2.3) and (3.1.14) or (3.1.15) we have

bi(ukek) = O, v |uk| small, v i, k,‘, (3.2.10)
and then
Obi(uker) _ o |y, small, Vi,k. (3.2.11)
6uk .

Thus, when B(u) satisﬁes the matching condition, in the normalized coordinates,
by (3.2.9) and (3.2.11) we obtain

bir(urer) =0, V |ug|small, Vi, k. (3.2.12)
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§3.3. Main results

Consider Cauchy problem
u; + A(u)u, = B(u), (3.3.1)

t=0: u=yp(z), (3.3.2)

where A(u) = (a;;(u)) is an n x n matrix with suitably smooth elements a;;(u),
B(u) = (By(u),---,Bn(u))T is a suitably smooth vector function of u, and ¢(z)
is a C! vector function of z. Suppose that in a neighbourhood of u = 0, system

(3.3.1) is strictly hyperbolic:
A1(0) < -+ < An(0) (3.3.3)
and the following normalized conditions hold:
Lwrj(u)=6y; (,j=1,---,n) (3.3.4)

and

rF(w)ri(w)=1 (i=1,---,n). (3.3.5)

Obviously, all A;(u), I;(u) and 7;(u) (¢ = 1, -, n) have the same regularity as A(u).

Furthermore, suppose that B(u) satisfies
B(0)=0 and VB(0)=0. (3.3.6)

Finally, suppose that p(z) satisfies that there exists a constant g > 0 such that
0 2 sup {(1+]a)'** (Ip(@)] + |¢'(@)D} < oo (3.3.7)

We shall prove in §3.4 the following.

Théorem 3.1. Under the hypotheses mentioned above, suppose that A(u) and
B(u) are C? in a neighbourhood of u = 0. Suppose furthermore that system (3.3.1)
is weakly linearly degenerate and B(u) satisfies the matching conditon. Then there
exists 8y > 0 so small that for any given 6 € [0,6,], the Cauchy problem (3.3.1)-
(3.3.2) admits a unique global C? solution u = u(t,r)on ¢t > 0. O
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In particular, we have

Corollary 3.1. If, in a neighbourhood of v = 0, system (3.3.1) is linearly degen-
erate in the sense of P.D.Lax and B(u) satisfies the matching condition, then the

conclusion of Theorem 3.1 holds. O

A discussion on the large time behaviour of the global classical solution will be
_given in §3.5.

In the case that system (3.3.1) is not weakly linearly degenerate, we will show
that, for a quite large class of initial data, the first order derivatives of the C!
solution to the Cauchy problem (3.3.1)-(3.3.2) must blow up in a finite time, and
give a sharp estimate of life span of the C! solution.

When system (3.3.1) is not weakly linearly degenerate, there exists a nonempty
set J C {1,2,---,n} such that \; (u) is not weakly linearly degenerate if and only
ifi € J.

Noting (3.1.4), we observe that for any fixed 7 € J, either there exists an integer

a; > 0 such that

dlAi (u(i) (3)) dai+1Ai (u(’i) (S))
7al _ =0 (l =1,--- ?ai) but dsi+1 3 # 0
= T (33.8)
or
dl)\i (4)
(U (5)) =0 (I=1,2,--"), (3.3.9)
ds o

where u = u(? (s) is defined by (3.1.2). In the case that (3.3.9) holds, we define
o; = +400.

In the normalized coordinates, conditions (3.3.8)-(3.3.9) simply reduce to

Bl/\,- aai‘l—l)‘i
5 (=0 (=1 ,0) but —3(0)#0 (3.3.10)
and z
%\;—(0) =0 (I=12,---) (3.3.11)

respectively.
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Definition 3.4. The ¢-th characteristic A;(u) is critical, if it is not weakly linearly
degenerate but satisfies (3.3.9).

If all characteristics are critical, then the system is called to be critical. O
The following Theorem will be proved in §3.6.

Theorem 3.2. Under the assumptions mentioned at the beginning of this section,
suppose that A (u) is suitably smooth and B (u) € C? in a neighbourhood of u = 0.
Suppose furthermore that ¢(z) = ¢ (z), where € > 0 is a small parameter and

Y (z) is a C! vector function satisfying that there exists a constant g > 0 such that
sup { (1 + 12 (1¢ (2) | + ¥/ (@) )} < oo. (3.3.12)
z€R

Suppose finally that B(u) satisfies the matching condition, system (3.3.1) is not

weakly linearly degenerate and
a=min{o; |t € J} < o0, (3.3.13)
where «; is defined by (3.3.8)-(3.3.9). Let
Jh={i|li€J, a=a}. (3.3.14)
If there exists 79 € J; such that

where [;, (u) stands for the ip-th left eigenvector, then there exists €g > 0 so small -
that for any fixed € € (0, &¢] the first order derivatives of the C! solution u = u (¢, z)

to the Cauchy problem (3.3.1)-(3.3.2) must blow up in a finite time and the life

span T (&) of u = u (¢, ) satisfies

- -1
lim (a"“T(s)) =
e—0
1 d"+lAl(u(i)(S))

max sup {_E ¥ T [L(0)y(z)]* lz’(O)W(x)} ;

1€Jq TER s=0

(3.3.16)

where u = u(*)(s) is defined by (3.1.2). O
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Remark 3.1. Noting (3.3.12) and (3.3.15), we observe that the right-hand side of
(3.3.16) must be a positive number. For the quasilinear strictly hyperbolic systems,
each left (resp. right) eigenvector possesses a degree of freedom with an arbitrary
non-zero factor for any given u on the domain under consideration. However, using
(3.3.4) and (3.1.2), we see that the constant defined by the right-hand sidé of
(3.3.16) is invariant under such a change of eigenvectors. O

Remark 3.2. By the definition of J, né%x can be replaced by max in (3.3.16).

O

Remark 3.3. By §3.1, there exists a suitable normalized transformation v =

u() (u(0) = 0) such that (3.1.13) holds. In the normalized coordinates @, let
Mi(@) = X(w) (=1, --,n). (3.3.17)

Noting (3.3.8), for each ¢ € J; we can prove

alj‘i aa+1/\ dot1), (u(i)(s))
W(o)zo (I=1,---,a) and et £ (0) = Jeatl

(3

(3.3.18)

s=0
Thus, under- the hypotheses of Theorem 3.2, in the normalized coordinates

(3.3.16) simply reduces to

lig (- 7)) =

1O 0) (1.(0 100 ) (3.3.19)
masup { = 2 55 (0) (1(0)(@))* L)W' (2) }
O
Remark 3.4. Introduce
@ = L(0)u (3.3.20)
and let
Ai(@) = Xi(w) (E=1,---,n), (3.3.21)
where L(u) = (I;;(u)) is the n x n matrix composed by the left eigenvectors

li{(u) ({ = 1,---,n). Under the hypotheses of Theorem 3.2, we furthermore as-
sume that o = 0, where « is defined by (3.3.13). Similar to (3.3.18), for each ¢ € J;
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we can easily prove
i gy = P (u0(s))
817,1' - ds

(3.3.22)

s=0
In the present situation, similar to (3.3.19), in the coordinates @ (3.3.16) simply

reduces to ~
lim (sT(e)) ™ = maxsup {—ggz (0)1,-(0)¢'(:c)} . (3.3.23)

e—0 i€Jq z€R

a

Remark 3.5. In the special case that B(u) = 0, Theorem 3.1 and Theorem 3.2
give the results presented in [LZK1]-[LZK2] as well as the limit formula on the life
span of the C! solution to the Cauchy problem (3.3.1)-(3.3.2). In particular, when
B(u) = 0 and a = 0, Theorem 3.2 goes back to the corresponding result given by
F.John [Jo], T.P.Liu [Lu] and L. H6rmander [Hol]. O

The results mentioned above are obtained under the assumption that B(u)
satisfies the matching condition. If this condition fails, then the question becomes

quite complicated.

In the case that system (3.3.1) is weakly linearly degenerate but B(u) does not
satisfy the matching condition, the Cauchy problem (3.3.1)-(3.3.2) might admit a
unique global C! solution on t > 0; on the other hand, it is also possible that the
Cauchy problem (3.3.1)-(3.3.2) does not have any global C! solution on ¢t > 0 even
if (3.3.1) is linearly degenerate in the sense of P.D.Lax!. For instance, consider the

following Cauchy problem

du =,u2,

ot (3.3.24)
t=0: u=ug(x),
where ug(z) is a C! function with bounded C! norm. It is easy to see that the
first equation in (3.3.24) is linearly degenerate in the sense of P.D.Lax but the

inhomogeneous term u? does not satisfy the matching condition. We can easily

1Up to now, we do not have a systematic result yet even for the case of ordinary differential

equations.
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prove that the Cauchy problem (3.3.24) admits a unique C! solution on ¢t > 0 if
and only if ug(z) < 0.

In the case that system (3.3.1) is not weakly linearly degenerate and B(u) does

not satisfy the matching condition, we shall prove in §3.7 the following.

Theorem 3.3. Under the assumptions mentioned at the beginning of this section,
.suppose that A(u) and B(u) are suitably smooth in a neighbourhood of v = 0 and
p(z) = ey(z), where € > 0 is a small parameter and ¥(z) is a C! vector function
satisfying (3.3.12). Suppose furthermore that system (3.3.1) is not weakly linearly
degenerate and a < oo, where a is defined by (3.3.13). Suppose finally that B(u)

satisfies

B(u) = O (|ul?) (3.3.25)

in a neighbourhood of u = 0, where p > a + 2 is an integer. If there exists ig € J;
such that (3.3.15) holds, where J; is defined by (3.3.14), then there exists g > 0
so small that for any fixed € € (0,¢g] the first order derivatives of the C*! solution
u = u(t, z) to the Cauchy problem (3.3.1)-(3.3.2) must blow up in a finite time and
the life span T'(¢) of u = u(t, ) satisfies (3.3.16). O

Remark 3.6. The condition that p > a + 2 is essential. If this condition does
not hold, then the Cauchy problem (3.3.1)-(3.3.2) might admit a unique global C*

solution on t > 0. Moreover, a + 2 is a critical power. O

To illustrate the above fact, we consider the following Cauchy problem

Ou a+1 Ou — p—1
5 T s = —|ulP™ u, (3.3.26)

t=0: u=ey(x), (3.3.27)
where a > 0 and p > 1 are two integers, € > 0 is a small parameter and (z) is

a nontrivial C! function with compact support. It is easy to prove the following

proposition by means of a classical argument of the standard characteristic method
(see [ZK]).
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Proposition 3.1. Suppose that p < a + 2. Then there exists g9 > 0 so small
that for any given ¢ € [0, go], the Cauchy problem (3.3.26)-(3.3.27) admits a unique
global C! solution u = u(t,z) on t > 0.

Suppose that p = a + 2. If there exists a point x¢o € R such that

[W(20)|°* + (¥(20))* ¥/ (z0) < 0, (3.3.28)

then there exists €9 > 0 so small that for any given ¢ € (0,g0] the first order
derivatives of the C! solution u = u(t,z) to the Cauchy problem (3.3.26)-(3.3.27)

must blow up in a finite time and the life span T'(¢) of u = u(t, z) satisfies

. 1
e“tT(e) = . (3.3.29)
sup {—(a+ 1) (@I + @@)*¥(@) }
z€eR
If
19(z)|** + (¥(2))*¥'(x) 20, Vz€R, (3.3.30)

then, for any given € > 0, the Cauchy problem (3.3.26)-(3.3.27) admits a unique
global C! solution u = u(t,z) on t > 0.

Suppose that p > a + 2. Then there exists o > 0 so small that for any fixed
e € (0,&0] the first order derivatives of the C! solution u = u(¢,z) to the Cauchy
problem (3.3.26)-(3.3.27) must blow up in a finite time and the life span T'(¢) of
u = u(t, z) satisfies

1

sup {~(a + 1) (%(2)" ¥’ ()}

lim (ea“’f(s)) - (3.3.31)

e—0

0O

Remark 3.7. Proposition 3.1 shows that, in the case that p < a + 2, the Cauchy
problem (3.3.1)-(3.3.2) might admit a unique global C* solution on t > 0 for small
initial data with compact support. On the other hand, when p < a + 2, it is easy
to give another kind of examples to show that the Cauchy problem (3.3.1)-(3.3.2)
might not have any global C! solution on ¢ > 0 even for small initial data with

compact support. For example, consider the following Cauchy problem

du a+1du __ ,.2
- + U = = u°,
{ ot oz (3.3.32)

t=0: wu=-cup(z),
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where a > 0 is an integer, € > 0 is a small parameter and ug(z) > 0 is a nontrivial
C! function with compact support. It is easy to show that the Cauchy problem
(3.3.32) does not have any global C! solution on t > 0.

Moreover, when p > «a + 2, (3.3.31) is nothing but (3.3.16) in the present

situation. 0O
Applying Theorem 3.2 and Theorem 3.3, in §3.8 we shall show the following.

Theorem 3.4. Under the hypotheses of Theorem 3.2 or Theorem 3.3, on the
existence domain 0 < t < T'(¢) of the C* solution u = u(t, x) to the Cauchy problem
- (3.3.1)-(3.3.2), the solution itself remains bounded, but the first order derivatives
of u'= u(t,z) tend to the infinity as t ,~ T(e) . Moreover, singularities just occur
at the starting point of the envelope of characteristics of the same family, i.e.,
the point with minimum ¢-value on the envelope. Particularly, for each 7 & J;, the
family of i-th characteristics never forms any envelope on the domain 0 < ¢ < T'(¢).

(]

Corollary 3.2. Under the hypotheses of Theorem 3.2 or Theorem 3.3, each fam-
ily of weakly linearly degenerate characteristics and then each family of linearly
degenerate characteristics never form any envelope on the domain 0 < t < T(e).

a

Corollary 3.3. In the case that
Ji=J={1,---,n} and a< +oo, (3.3.33)

for any nontrivial initial data (3.3.2) (in which ¢(z) = ey (x) with ¢(z) # 0),
the conclusion of Theorem 3.2, 3.3 and 3.4 holds. More particularly, when system
(3.3.1) is genuinely nonlinear, i.e., @ = 0 in (3.3.33), we have the same conclusion.

0
Some remarks on the critical case will be carried out in §3.9.

We finally point out that our theory is established under the assumption that
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the initial data (3.3.2) satisfies the decay property (3.3.7). The condition that
p > 0 is essential; otherwise the conclusion may be false (see Appendix 1, also see
[K5] for a detailed discussion). By the way, we point out that this condition is also

essential in Chapter 4 and Chapter 5.

§3.4. Global existence of C! solution
— Proof of Theorem 3.1

For simplicity and without loss of generality, we may suppose that
0< A (0)<A2(0) <--- <AL (0). (3.4.1)

By the existence and uniqueness of local C* solution to the Cauchy problem (see
Chap. 1 in [LY]), in order to prove Theorem 3.1 it suffices to establish a uniform
a priori estimate on the C° norm of u and % on the existence domain of the C!
solution u = u (¢, x).

By (3.4.1), there exist positive constants 6 and §p so small that
Aig1(u) = A (v) 246, Vlu|,p|<é (E=1,---,n-1) (3.4.2)

and

A (uw) — X (v)] < %O—, Viul, |v|] <6 (i=1,---,n). (3.4.3)

For the time being it is supposed that on the existence domain of the C* solution
u = u (t,z) we have

lu(t,z)| < 6. (3.4.4)

At the end of the proof of Lemma 3.4, we shall explain that this hypothesis is
reasonable. Thus, to prove Theorem 3.1 we only need to establish a uniform a
priori estimate on the C° norm of v and w defined by (2.2.1)-(2.2.2) on the existence
domain of the C?! solution u = u (¢, z).

By (3.4.1) and (3.4.4), on the existence domain of C! solution we have

0< A (u)<A(u) < - <Ay(u), (3.4.5)
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provided that é is suitably small.
For any fixed T' > 0, let

DT = {(t,z)|0<t< T, z < —t},
DI ={(t,z)|0<t<T, -t <z < (A (0)—6)t},
DT = {(t,z)|0 <t < T,z > (A (0) + &)1},
DT = {(t,)[0<t < T, (A (0) = &) t <z < (An (0) + &) t}
and for: =1, ---,n,

DT = {(t,z)|0<t<T,

35

(3.4.6)

(3.4.7)
(3.4.8)

(3.4.9)

=60 +n (A (0) = A (0))]t <z — X (0)t < [6o +7(An (0) — A (0))] 2},

where 77 > 0 is suitably small, see Figure 2.

Noting that n > 0 is small, from (3.4.2) we see that
DINDT =0, Vi#j
and "
DI c DT.
=1
Let
v (DT) = max |1(1+]a)* v (6,2) ll o 1),

V(DF) = max [[(1+8)"*vi(t,2) llp=(pr),
W (D) = max ||(1+]e))" wi(t,2) |l = (pr),

W(Dg) = max H(l+t)1+“w¢(t,.’1?)HL°o(Dg),

i=1,.m

Us (T) = max sup  (L+ |z — XA (0)¢))" ™ |us (¢, 7) |,
=17 (4 2)eDT\DF

Ve (T) = max sup (L4 ]z — A (0)¢))' ™ |ui (8, 3) |,
i=1,-,n (t,.’E)EDT\D;-T

W (T) = max sup (14 ]z — X (0)¢))! ™ Jw; (8,3) |,

i=1,--,n (t,x)EDT\D,.T

(3.4.10)

(3.4.11)

(3.4.12)

(3.4.13)
(3.4.14)
(3.4.15)

(3.4.16)

(3.4.17)

(3.4.18)

(3.4.19)
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Uy (T) = max sup / lu; (t,z)|dx, (3.4.20)
i=1,-,n 0<t<T D;r(t)
Vi(T) = max sup / |v; (¢, ) |dz, (3.4.21)
i=1,-m 0<t<T JDT(t)
Wy (T) = max sup / |w, (¢, x) |dz, (3.4.22)
1=1,---,n 0<t<T D:T(t)
Voo (T) = max sup |v;(t,z)]| (3.4.23)
=lenm o<
zeR
and
We (T) = max sup |w;(t,z)|, (3.4.24)
i=1,-,n 0<t<T
zER

where DT (t) (t > 0) denotes the t-section of DI
DI (t) = {(r,2) |7 =t,(r,2) e D}.

Obviously, V., (T') is equivalent to

Uw (T) = max sup |u;(t,z)| (3.4.25)
t=lm gy
T€R

By the definitions of DT, DT and DI, it is easy to get the following.

(3

Lemma 3.2. The following inequalities hold:

(t=1,---,n), V(t,z)e DT\DT (3.4.26)

ct <lz— A (0)¢] < Ct,
cx<|lz—-X(0)t| <Cxz

and

0<t<Colz|, V(tz)eDTuDT, (3.4.27)

where ¢, C and Cj are positive constants independent of (¢,z) and 7. O

Lemma 3.3. Suppose that (3.3.3) and (3.3.6) hold, and A (u),B(u) € C? in a
neighbourhood of u = 0. Suppose furthermore that ¢ (z) is a C! vector function
satisfying (3.3.7). There exists 6y > 0 so small that for any fixed 8 € [0, 8], on any

given existence domain 0 < t < T of the C! solution u = u (¢,z) to the Cauchy
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problem (3.3.1)-(3.3.2) there exist positive constants k; and k; independent of 6

and T, such that the following uniform a priori estimates hold:

vV (DL), W (D) < k.8 (3.4.28)
and

vV (DE), W (DI) < k0. (3.4.29)

0
Proof. Noting (3.4.4), from (3.3.7) we see that for¢=1,---,n,
lv; (0,2) |, |w; (0,2)| < C16 (1 + |z|)" "™, VzeR, (3.4.30)

henceforth C; (j = 1,2,---) will denote positive constants independent of 8 and 7.
According to the local existence and uniqueness theorem, there exists 7o > 0
such that the Cauchy problem (3.3.1)-(3.3.2) admits a unique C! solution v =
u(t,z) on 0 <t < 7.
Let

Vv (07 T) = 1=HllaXnH (1 + |.’IJ])1+I—L v (ta $) HL"‘({OStST}xR): (3431)

W(0,7) = max ||(1+|z))"™ w; (t,2) || = ({ost<r) xR)» (3.4.32)

in which 7 € [0, 7).

For each 7 = 1,---,n, suppose that on the domain 0 < ¢ < 19 the -th charac-
teristic passing through any given point (¢, x) intersects the z-axis at a point (0, y).
This characteristic is denoted by & = z; (s,y), where (s, £) denote the coordinates

of variable point on this characteristic. It satisfies

efer) = ) (u(s,2i(s,y))), 0<s<t<m,

(3.4.33)

Noting (3.4.4), from (3.4.33) we get

Co(I+[y) €14z (s,9) | S C3 (L +yl), VYsel0,7]. (3.4.34)
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By (2.2.13) and (2.2.24), we have
(

J,k=1

v; (t,x) = vi(O,y)+/0 [Zﬂijk(u)vjwk+

< > vijk (u) vsbe(u) + bz’(ﬂ)} (s,7i(s,y))ds, 0<t <,
7,k=1

wi(t7) = w(0,y)+ /0 [Z%jk(wijn(bi(u))x] (s, (5,9)) ds,

7,k=1
L 0<t< T0
(3.4.35)
Noting (3.3.6) and using Taylor’s formula, by (2.2.3) and (2.2.5)-(2.2.6) we have
n ~
b,(u) = Z bijk(u)vjvk (’L = 1, T ,n) (3.4.36)
J k=1 .
and
(bi(u))e = (li(u))eB(u) + l:i(w)(B(u))e
= B:(u)VliT(u)uz + L;(v)VB(u)u, (3.4.37)
= Ezjk(u)vjwk (Z = 1)"'7"’)7
7,k=1

where Bijk(u) and Bijk(u) are continuous functions of u.
Multiplying both sides of (3.4.35) by (1 + |z|)'** and noting (3.4.34), (3.4.30),
(3.4.36)-(3.4.37) and (3.4.4), we get

t
Z(t) < Cab + Cs / 22 (s)ds, Vtel0,ml, (3.4.38)
0

where

Z(t)=V(0,t)+ W(0,¢t). (3.4.39)
Herice, we can choose 19 so small that
Z (t) <(Ce¢l, Vte [O,To] . (3440)

Thus, if
k1 > Cs, (3.4.41)
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then we get

V (0,70), W(0,70) < k16. (3.4.42)

Particularly, we have
V (D%;0,m), W (D%I;0,70) < k16, (3.4.43)
where
T. _ 14u
V (D;};> TI,TQ) - 2:1’111?‘)%‘”” (1 + ImD # v; (ta m) ”Loo(Din{TlstSTz}) (3444)

etc.

We now prove (3.4.28) for DT. The proof of (3.4.28) for DT is similar.

For each i = 1,---,n, let £ = z,(s,y) be the i-th characteristic defined by
(3.4.33) as before. Noting (3.4.4) and (3.4.2)-(3.4.3), we see that the whole char-
acteristic £ = z; (s,y) (0 < s < t) is included in DT (see Figure 3, where L% (resp.
LY) stands for the line £ = (An(0) + &)t (resp. z =y + (Xi(0) + %) ¢)).

Noting (3.4.4), (3.4.5) and (3.4.3), we get

y<z;(s,y) <y+ (Ai (0) + %?—) s, Vse|l0,t], (3.4.45)
then

A 1

<t<t
PR TN O - N0+ &

y. (3.4.46)
Hence, it follows from (3.4.45) that
l+y<l4+z,(5,y)<Cr(l+y) (¢=1,---,n), Vsel0,t]. (3.4.47)

Noting (3.4.43), in order to prove (3.4.28) we only need to show that we can
choose k7 in such a way that for any fixed 7o (0 < Ty < T') such that

vV (DT:0,T,), W (DT;0,T,) < 2k46, (3.4.48)
+ +

we have

V (DT;0,Ty), W (DL;0,T,) < k18. (3.4.49)
+ +
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In fact, for t < Ty, by (2.2.13) we have
t n
vi(t,z) = v (0,y)+ / Z Bijk (w) vwe+
0 ;
7,k=1

Z Viji (u) vjbe(u) + bi(u)] (s,z; (s,y))ds.

J.k=1

(3.4.50)

Noting (3.4.4) and using (3.4.30), (3.4.36), (3.4.48) and (3.4.46), when 8y > 0 is
suitably small, from (3.4.50) we have

v (t,z)| < C18(1+y) P 4+ 4Csk262 (1 + y) 20 ¢
< G +y)T I 4 aCek20% (14 y) T (3.4.51)
< 2C160(1 +y)"

then, noting (3.4.47) we get
1+ ) v, (t,z)| < 2C,CET#6. (3.4.52)
Thus, if
ky > 2C,CitH, © (3.4.53)

then we get the first inequality in (3.4.49). The second inequality in (3.4.49) can
be obtained in a similar way. This proves (3.4.28).

It remains to prove (3.4.29).

In order to prove (3.4.29), similar to (3.4.44) we introduce

V (Dg; Tla TZ) = z:IIlla.Xn ” (1 + t)l_’_p, V; (t7 z) ||CU(Dg‘n{TlstST2}) (3.4.54)

etc.

Noting (3.4.40), we can choose 7y so small that
|14 (DE;O’TO) , W (Dg’ 0,7‘0) < Chof. (3.4.55)

Thus, if
ko > Cho, (3.4.56)

then we have

V (D§;0,70), W (DF;0,70) < ka. (3.4.57)
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For any given (t,z) € DT, let ¢ = z;(s,y) (¢ = 1,---,n) be the i-th characteris-
tic defined by (3.4.33) as before. Noting (3.4.4), by (3.4.2)-(3.4.3) we see that the
characteristic £ = z,(s,y) intersects the line L% : £ + s = 0 at a point denoted by
P; 2 (1;,—7;) and € = x,(s,y) (1; < 8 < t) is included in D{’, where (s, £) denote
the coordinates of variable point on this characteristic and the line L% (see Figure

4, where LY stands for the line z = (A1(0) — &) t). Moreover, we have
<7<t (3.4.58)

where 70 is the t-coordinate of the intersection point P? of the line £ + s = 0 with
the line £ — (A1 (0) — 80)t = (X;(0) — %) (s —t), where (s, &) denote the coordinates

of variable point on these lines (see Figure 4). It is easy to see that

o _ X0 = X(0) + &

T 1. (3.4.59)
A(0)+1- 5
Hence, by (3.4.58) we get
a;t <1 <1, (3.4.60)
where s
_AO-nO+%

A(0)+1— &
Noting (3.4.57), in order to prove (3.4.29) we only need to show that we can
choose k; in such a way that for any fixed Ty (0 < Ty < T') such that

V (D§;0,70), W (Dg;0,To) < 2k, (3.4.61)

we have

V (Dg;0,70), W (Dg;0,Tp) < kaf. (3.4.62)

In fact, for t < Ty, by (2.2.13) we have

t n
vi (t,x) = vi(Ti,-Tz)+/ > Bigk (u) vywi+
T Lok=t (3.4.63)

> ik (W) vbe(u) + bi(u) | (s, (s,9)) ds.
1,k=1
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Noting (3.4.4) and using (3.4.28), (3.4.36) and (3.4.60)-(3.4.61), when 6y > 0 is
suitably small, from (3.4.63) we have

i (t,2)] < k101 +7)" M 440, k2602 (1 + 5) 7208 (1 — 7,)
< kB (1+71) M 4 002 (14 7)) T

< 2k0(1+m) M,
then, noting (3.4.60) again we get
(1 + )" v (t,2) | < Cr3k1.
Thus, if
ks > Ciski,
then we get (3.4.62). The second inequality in (3.4.62) can be obtained in a similar

way. This proves (3.4.29). The proof of Lemma 3.3 is completed. Q.E.D.

Remark 3.8. By the definition of DT, for any given (t,z) € DI we have
Let
V(DI UDF) = max ||(1+[z)"™ vit,2)llz=(pruny)

and

W (DT uD{) = max (1 + Je])! w;(t, T)|| L= (pTUDT)-

By (3.4.28)-(3.4.29) and (3.4.64) we get
v (DT uDT), W (DTuD]) < ksb, (3.4.65)

where k3 is a positive constant independent of § and 7. 0O

Lemma 3.4. Suppose that (3.3.3) and (3.3.6) hold, A (u), B (u) € C? in a neigh-
bourhood of © = 0, and (3.3.4)-(3.3.5) hold. Suppose furthermore that system
(3.3.1) is weakly linearly degenerate and B(u) satisfies the matching condition.
Suppose finally that ¢ (z) is a C! vector function satisfying (3.3.7). In the normal-

ized coordinates there exists 6y > 0 so small that for any fixed 8 € [0, 6], on any
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given existence domain 0 <t < T of the C* solution u = u (t,z) to the Cauchy
problem (3.3.1)-(3.3.2) there exist positive constants k; (z = 4, -- -, 10) independent

of § and T, such that the following uniform a priori estimates hold:

US, (T) < k48, (3.4.66)
VE(T) < ksb, | (3.4.67)
WS (T) < ke, (3.4.68)
Vi (T) < k79, (3.4.69)
W1 (T) < ksb, (3.4.70)
Vio (T) < ko8 (3.4.71)
and
Woo (T) < ky08. (3.4.72)
O

The key idea of the proof of Lemma 3.4 is as follows: (I) noting that the system is
weakly linearly degenerate and using Hadamard’s Lemma and some relations given
in Subsection 3.2, we observe that there are only some transversal terms such as
vV, V;wg and w;wg with 5,k = 1,2,---,n and j # k, but no non-transversal
terms such as v, vjw; and w? in the right-hand sides of (2.2.9), (2.2.19) and
(2.2.28)-(2.2.29); (II) integrating (2.2.9), (2.2.19) and (2.2.28)-(2.2.29) along the
1-th characteristic, then using the fact mentioned in (I) and noting the notations of
the norms introduced at the beginning of this subsection, we may obtain a complete
system on the inequalities of those norms; (III) by continuous induction, from the

complete system we can successfully get the estimates given in Lemma 3.4. In what

follows we give the details of the proof.
Proof of Lemma 3.4. We first prove that

Uso(T') < C15Vo(T) + Cr6Veo (T)U s (T) (3.4.73)
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and

In fact, for any given point (¢t,z) € DT\D7, by (2.2.5) we have
u,(t,z) = uT (t,z)e; = kar,{(u)ei, (3.4.75)
k=1

where e; is defined by (3.1.6). If (t,x) ¢ DF (k = 1,---,n), then, noting (3.4.26)
and (3.3.5), we get

(1+ |z = M(0)E) ™ |us(t, 2)| < CroVi(T). (3.4.76)

On the other hand, if there exists some j(# i) such that (t,z) € DJ-T, then, noting
(3.4.11) we see that (t,z) € DI (k # j), and using (3.1.5), in the normalized

coordinates we can rewrite (3.4.75) as

w;(t,x) = kar,{(u)ei + v; (r;‘r(u) - ro(ujej)) €;. (3.4.77)
k#7

By Hadamard’s formula, we have

1

or;

ri(u) —ri(uje;) = /0 Zgu—i(sul,---,suj_l,uj,sujH, oo, Sup)ukds, (3.4.78)
k#3

then it follows from (3.4.77) that
(1 + |z = X (00t T Juit, )| < CooVE(T) + Cor Vo (TYUS(T). (3.4.79)

The combination of (3.4.76) and (3.4.79) leads to (3.4.73).
Noting (3.4.4) and (3.4.26), by (2.2.5) we have

ui(r,z)|dz / v,;17i;(u)| dx
/,Jg(t>' (1,2)| ) >0

;=1

Co2Vi(T) + C23VOCO(T)/ (1+ )~ 0+mdy
0

(3.4.80)

IN

< CpVi(T) + CasVE(T).

(3.4.80) gives (3.4.74) immediately.
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We now estimate

Wy (T) = _max maxsup/ |w, (t,z) |dt, (3.4.81)

where C; (j # 1) stands for any given j-th characteristic in DI, see Figure 5. -
Let

Cj T =T (t) (tl _<_ t S tg) y (3482)

where 0 < t; <ty < T. By (3.4.3), the whole i-th characteristic passing through
02 (0,0) is included in DI. Let P, = (to,zj (to)) be the intersection point of
this characteristic with C;. Passing through the point P, = (t1,z;(t1)) (resp. P; 2
(t2,z; (t2))), we draw the i-th characteristic which intersects * = (A (0) — 8p)¢t
(resp. = = (A, (0)+6p)t ) at A; 2 (Wg)l:ﬁ—“,yl) (resp. As 2 (m&_ﬂ,yz)).
We have

/_ Iwi(t,m)ldtz/0|wz-(t,acj(t))|dt+/Qlwi(t,mj(t))|dt. (3.4.83)

Cj t1 to

t2
In order to estimate / |lw;(t,z;(t))|dt, using (2.2.31) on the domain PyOA;P,,
we get ' o

/2 lws (8,25 (£)) | [As(u(t, 2;(2))) — Aa(u(t, z;(2)))|dt

to

< /m”_"m(t, (Ar(0) + 0)t)|(An(0) + 8o — Ai(t, (An(0) + 80)t))dt

// 2”: Fije(w)wjwy + (bj(u)), | dtdx.

PO0A2P2 J,k=1

(3.4.84)
Noting (3.2.12) and using Hadamard’s formula, by (3.2.7) we get
Bi(w)z = (z’ik(u) - Ezk(ukek)) Wy,

k=1

n 1

= Z [/ Pk (su, - C SUR—1, Uk, SUk+1, " 5 SUp)dS | U;wg.

jk=1 =70
J#k

(3.4.85)
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Then, noting (3.4.2), (3.4.4), (3.4.28), (2.2.27), (3.4.85) and (3.4.26), from (3.4.84)

we obtain

/ fwi(t, 25 (1)) dt <

0 025{0+(W50(T))2/00 /T(l+s)"(1+“)(1+m)_(1+“)dsd:v
+We(T WI(T)/ (14 s)~(1+#)ds
+US (TYW (T/ / (1 + s)~ 8 (1 4 )~ (+1)dsdx (3.4.86)
+Wgo(T)U1(T)/0 (1 + 5)~ (1) ds
+Ugo(T)W1(T)/OT(1 +s)‘(1+“)ds} <

Cas {6+ (W& (D)) + W (T)Wi(T) + U (T)W(T)
+WE(T)UL(T) + U (TW(T)}

Hence, using (3.4.74) we have

[ hwittay @it < Car {8+ (W (T))? + WE(DWA(T) + UL (T)WE(T)

’ +WE (T)VE(T) + WS, (T)WVA(T) + US, (T)W: (T)} -
(3.4.87)

to
In a similar manner, we can estimate / lwi(t, z;(t))|dt, where we use (3.4.29)
ty :

instead of (3.4.28). Thus we get

Vi(T) < Cas {0+ (WS(T))? + WE(DW(T) + U (T)W(T)

(3.4.88)
+WS(T)VS (T) + W (T)Vi(T) + UL (TYWi(T)}
Similar to (3.4.81), let
V(T) = max maxsup/ lvi(t, z)|dt. (3.4.89)

Similarly, in order to estimate V;(T), it suffices to estimate / lvi(t, z,(t))|dt
t1

t2
and / (s (¢, 2, (£))]dt.
to
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Using (2.2.30) on the domain PO A3 P, (see Figure 5) and noting (3.2.4)-(3.2.5)
and (3.2.3), we get

/ s (b (0) ] I (ult 25(8)) — i(ut, 25 (8))de

to

< /x,,,(i>)+6(> [vi (¢, (An(0) + 80)t)|(An(0) + 8o — Ai(t, (An(0) + 60)t))dt
0

dtdx

+ // > " Bijk(w)viwy

PO0A2P2 I#k

dtdx

+ // i (Bijj(u) - ,éijj(ujej)) VW

POOA2P2 7=1

+ // Z Vijk (W)bkim (W) VU, | dtdT

PyOA3Py |jk,lm=1
l#m

+ // > bijk(w)usu

PyOA Py |53k

dtdz.

(3.4.90)

By Hadamard’s formula, we have

3B;
Bij;i(u) — Bizj(uje;) /Z 5171] (TUL,  TUG— 1, Ujy TUj1, " TUp) W dT.

(3.4.91)
Then, noting (3.4.2), (3.4.4), (3.4.28), (3.4.74) and (3.4.26), similar to (3.4.87),
from (3.4.90) we obtain

/ Yl by 0)1dt < Cus {04 VETIWE(T) + Vi(T)WS (T)

to

+VE(TIWA(T) + U (D)W (T) + Ur(T)W (T)

+US (TWE(T) + (UL(T))” + Ui (T)UL(T) }

Cs0 {8 + V& (T)WE(T) + Vi(T)WE,(T)

+VE(T)WA(T) + U (TIWA(T) + U (T)WE(T)

+(US(T))? + UL (DT + US(TVS(T) }
(3.4.92)

IA
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to
In a similar way, we can estimate / lvi (t,z;(t)) |dt. Hence we get
Jty

Vi(T) < Cs {0+ VE(TWE(T) + Vi(T)WE(T)
+VE(T)W(T) + US, (TYW(T) + U, (T)WE,(T) (3.4.93)
+ (U (D)) + UL (TVA(T) + U (TIVE(T) }

We next estimate W5 (T).
For any given point (¢,z) € DT but (¢t,z) ¢ DI, by the definition of DT, for

fixing the idea we may suppose that
z — A (0)t > [6o + n(An(0) — X:(0))] ¢, (3.4.94)

which implies ¢ < n. Let £ = z,(s;t,z) be the i-th characteristic passing through
(t,z), which intersects the boundary z = (A,(0) + &)t of DT at a point (o, y), see
Figure 6. It follows from (3.4.3) that

:1:——( (O)+62)t<y—</\ (0) + 620)150. (3.4.95)

Since

y = (An(0) + &) to, (3.4.96)

noting (3.4.94) and the fact that ¢t > to, from (3.4.95) we get
t > to > nt. - (3.4.97)

Noting (2.2.24), we have

w;(t,x) = wz‘(to,y)+/ 2

to

[ Z Yijk (w)wjwg + (b,(u))x} (s,zi(s;t,x))ds. (3.4.98)

k=1

Using Lemma 3.3 and noting (3.4.96)-(3.4.97), we obtain

lwi(to,y)] < k181 +y)~ 1) < C300(1 + o)~ (18
< 0339(1 + t)_(l+“).

(3.4.99)

Similar to (3.4.81), let

02(T) = max maxsup / lus(t, )| dt. (3.4.100)

i= a" s .7
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Similar to (3.4.74), it is easy to show that

Ui(T) < C34Vi(T) + C35VE(T). (3.4.101)

Noting (2.2.21), (3.4.85), (3.4.97), (3.4.99) and (3.4.26), from (3.4.98) we have

WET) < Cio {8+ (WE(T))’ + WE(T)Wi(T) + UL (T)WS,(T)

- i (3.4.102)
+O(T)WS(T) + UgO(T)Wl(T)} .
Substituting (3.4.101) into the right-hand side of (3.4.102) gives
WS (T) < Csr40+ (WS(T))? + WE(T)W(T) + U (TYWE (T
(T) 37 {0+ (WE(T)) + WS (DWA(T) + U (T)WE(T) (34109

+A(T)WE(T) + VE(TIWE(T) + UL (T)WA(T) }.
In a similar manner, we can show

VE(T) < Cas {8+ VL (D)W (T) + VE D W(T) + Vi (T)WE(T)
+US(TIW5(T) + U (D Wi(T) + Vi(T)WE,(T)

+(U& (D) + UL (D)A(T) + UL (TVE(T) } -
(3.4.104)

Moreover, similar to (3.4.88) and (3.4.93), we can prove

Wi(T) < Coo {6+ (W&(T))* + WE(T)WA(T) + UL (T)WE(T)
WS (TVE(T) + W (DVA(T) + UL (T)Wi (T))

(3.4.105)

and
Vi(T) < Cao {0+ VE(MWE(T) + Vi(T)WE(T)
+VE(TYWi(T) + US(TYWy(T) + US (T)WE(T) (3.4.106)
+(US(T))? + UL (MV(T) + U (TVE(T) }

We finally estimate Uo, (T'), Vo (T') and W (T).
For any given point (t,z) € DT, we have

u(t,z) = u(t,xo) + /xug(t,f)df, (3.4.107)

Zo
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where (t,z) is located on the left boundary of DT. Noting (2.2.6), (3.4.4) and
(3.4.29), we obtain

Uso(T) < Cy1 {6 + WE(T) + Wi (T)}. (3.4.108)
By the equivalence of Uy (T) and Vo (T'), we get immediately
Voo (T) < Cy2 {6 + WE(T) + Wi (T)}. (3.4.109)

We now estimate Wy (T').

The ¢-th characteristic £ = z;(s;t,z) passing through any given point (¢,z) €
DT intersects one of the boundaries of DT at one point. For fixing the idea, suppose
that this characteristic intersects £ = (A,(0)+8p)t at a point (m, y). Noting
(2.2.21), (3.2.6)-(3.2.7) and (3.2.12), in normalized coordinates, by (2.2.24) we have

t
Wy (t’m) = w; (,\" 0)+d¢ 1y> +/ ” nyijk (U) 'U.)j'U)k(S,.Ti(S;t,w))dS

, () F6y j#EkK
b [ Ol = e s msit, )
—_—
An (0)+6(
¢ n )
+ > (bik(u) - bz’k(ukek)) wi(s, z:(s; ¢, 7))ds.

1/
A () +6) k=1

(3.4.110)
Using Hadamard’s formula and noting (3.4.26) and (3.4.28), by (3.4.110) we get

wi (t,3) ] < Cas {8+ (W& (1)) + WE (T) Weo (T)
+Us (T) (WS (T))? + UL, (T) Woo (T))? + US, (T) WE(T)

+Uoo (T) WE(T) + US (T)Weo (T)} -
(3.4.111)

On the other hand, for any given point (¢,z) ¢ DF (i =1,---,n), |w; (t,z)| can
be controlled by W<, (T) or W (DY) or W (D) . Thus, using (3.4.4) and Lemma

3.3, we have

Woo (T) < Caa {0+ WS (D) + (WE (D) + W5 (T) Weo (T)
+Uoo (T) (W& (T))? + US, (T) (Woo (T))? + US, (T) WE,(T)

+Uoo (T) WS(T) + U (T)Woo (T) } -
(3.4.112)
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We now prove (3.4.66)-(3.4.71),
Wi(T) < kg6 (3.4.113)

and
Vi(T) < k6. | (3.4.114)

Noting (3.4.30), evidently we have

U, (0), V5 (0), WE(0), Voo (0) < Casf (3.4.115)
and

V1(0) = W1(0) = W1 (0) = V;1(0) = 0. (3.4.116)
Hence, by continuity there exist positive constants k; (i = 4, - - -,9) independent of 8

and T, such that (3.4.66)-(3.4.71) and (3.4.113)-(3.4.114) hold at least for 0 < T <
To, where 79 is a small positive number. Thus, in order to prove (3.4.66)-(3.4.71)
and (3.4.113)-(3.4.114) it suffices to show that we can choose k; (i = 4,---,9) in
such a way that for any fixed 7 (0 < Tp < T') such that

US (Ty) < 2k48, (3.4.117)
VE (To) < 2ks6, (3.4.118)
W (To) < 2ke9, (3.4.119)
Vi(To) < 2k-6, (3.4.120)
W1 (To) < 2ks#, (3.4.121)
Wi(To) < 2ks0, (3.4.122)
Vi(To) < 2k+6, (3.4.123)
Voo (To) < 2ko0, (3.4.124)
we have
US (Ty) < k46, (3.4.125)

VE (Ty) < ks, (3.4.126)
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WS (To) < ke, (3.4.127)
Vi(To) < k-9, (3.4.128)
W1 (To) < kg, (3.4.129)
Wi (To) < kg8, (3.4.130)
Vi(To) < k78, (3.4.131)
Voo (T0) < k. (3.4.132)

Substituting (3.4.117)-(3.4.124) into the right-hand sides of (3.4.73), (3.4.88),
(3.4.93), (3.4.103)-(3.4.106) and (3.4.109) (in which we take T = Tj) yields that,

when 6y > 0 is suitably small, we have

US (To) < 3C15ksH, (3.4.133)

W1 (To) < 2Cas6, (3.4.134)

Vi(To) < 2C540, (3.4.135)

W (To) < 2C549, (3.4.136)
VE(To) < 2C3s6, (3.4.137)
Wi(Ty) < 2C348, (3.4.138)

Vi(To) < 2C408, (3.4.139)

Voo (T0) < Caa {1+ 2ks + 2ks} 6. (3.4.140)

Hence, if

ks 2 3Cisks, ks > 2C3g, ke > 2C3y,
k7 > 2max {031, C40} s kg > 2max {028:039} y (34141)
ko > Cyo {1 + 2ke + 2k3} ,

then we get (3.4.125)-(3.4.132). Thus, we proves (3.4.66)-(3.4.71) and (3.4.113)-
(3.4.114).

We now estimate U, (7).
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Using (3.4.68) and (3.4.70), from (3.4.108) we have
UOO(T) < Cyqu {1 + kg + k’g} 6. (3.4.142)

By the way, we point out that when 6y > 0 is suitably small

Uso(T) < Cu{l+ks+ks}b

(3.4.143)
< Ca{kr+ ks + ks}by < %6.
This implies the validity of hypothesis (3.4.4).
Finally, we prove (3.4.72).
Noting (3.4.66), (3.4.68) and (3.4.142), from (3.4.112) we get
Weo(T) < Cis {1 + Weo(T) + (Woo (T))?} 6. (3.4.144)

It follows from (3.4.42) that if k1o > k,, then there exists 7o > 0 such that
Weo(70) < k108. (3.4.145)

Hence, in order to prove (3.4.72) it suffices to show that we can choose k1 in such

a way that for any fixed 7 (0 < 71 < T') such that
Weo(11) < 2k100, (3.4.146)

we have

Substituting (3.4.146) into the right-hand side of (3.4.144) (in which we take T =
71) gives that if
k1o > 2C4s,

then we get (3.4.147) and then (3.4.72). This completes the proof of Lemma 3.4.
Q.E.D.

Proof of Theorem 3.1. It suffices to prove Theorem 3.1 in the normalized
coordinates. Under the assumptions of Theorem 3.1, Lemma 3.4 holds. By (3.4.71)
and (3.4.72) we know that if 8y > 0 is suitably small, then for any fixed 8 € [0, 8],
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on any given existence domain 0 < t < T of the C' solution v = u(t,z) to the
Cauchy problem (3.3.1)-(3.3.2), we have the following uniform a priori estimate on

the C! norm of the solution
A
Nu (t, ) ller = Hu(t, ) e, + lue (¢, ) oo < K1, (3.4.148)

where K is a positive constant independent of § and T. Then we immediately get

the conclusion of Theorem 3.1. Q.E.D.

§3.5. Large time behaviour of the global classical solution

We first recall the definitions of DT, DI, DT DT and DY (see (3.4.6)-(3.4.10)).
Taking T = +oo in (3.4.6)-(3.4.10), in the present situation we denote them by
D> ,D§°, D, D> and Dg® respectively. From the proof of Theorem 3.1, we ob-

serve

Lemma 3.5. Under the assumptions of Theorem 3.1, if & > 0 is suitably small,

then in the normalized coordinates
lu(t, 2), lus(t, )] < K16(1 +8)~0*), v (¢,2) € D, (3.5.1)

henceforth I;’j (j = 1,2,---) will denote positive constants independent of ¢,z and

8, and where D¢° is defined by
D¥® = D®UDPUDPU (D°°\ U D;.>°) : (3.5.2)
i=1
a

Proof. In fact, noting (3.4.27), from (3.4.28) we have

(1 + ) (Jug (8, 2)| + |wi(t,z)]) < K20 (i=1,---,n), V(t,z) € D®UDY.
(3.5.3)
Hence, noting (2.2.5)-(2.2.6) and employing (3.4.29), (3.4.67)-(3.4.68) and (3.5.3),
we obtain (3.5.1) immediately. The proof is completed. Q.E.D.
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By §3.1, there exists a suitable normalized transformation v = u(@) (u(0) = 0)

such that (3.1.13) holds. In the normalized coordinates @, let

v =L(@)a (=1,---,n), (3.5.4)
w; = lj(@)a, (Gi=1,---,n) (3.5.5)

and
Xi(@) = X(w) (E=1,---,n). (3.5.6)

Lemma 3.6. Under the hypotheses of Theorem 3.1, if 8§ > 0 is suitably small,

then in the normalized coordinates i, for any y € R
|D:(t, z:(t,y)) — L(0)p(y)| < K160 (i=1,---,n), Vt>0 (3.5.7)
and
[wi(t, zi(t,y)) — L(0)¢' (y)| < K26° (i=1,---,n), Vt2>0, (3.5.8)

where £ = x;(t,y) stands for the i-th characteristic passing through the point (0, y)
and henceforth —R'_j (7 =1,2,---) will denote positive constants independent of ¢,y

and 8. O

Proof. By §3.1, in the normalized coordinates i, the initial data (3.3.2) reduces

to
t=0: u=%(x) (3.5.9)
with
o® , -
(@)~ LOW@)], |22 — 1(0)¢'(@)| < Kob?, (3.5.10)
where L(0) is given by (3.1.13). Thus, we have
5:(0,y) — L:(0)¢(y)] < K36® (i=1,---,n), Vy€ER (3.5.11)

and
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Hence, in order to prove (3.5.7) and (3.5.8) it suffices to show

|0:(¢, zi(t,y)) — 0:(0,y)| < Ks6* (i=1,---,n), VyeR (3.5.13)
and

|w;(t, zi(t,y)) — 0:(0,y)| < Kgb* (i=1,---,n), Vy€R. (3.5.14)

We only prove (3.5.14). The proof of (3.5.13) is similar.

Similar to (3.4.111), we have?

[@i(t, z:(t,y)) — @:(0,9)] < Ko [(V(DL) + V(DY) (W(DL) + W(D§))
+(W(DL) + W(Dp)* + (W& (1))
FWE () Woo(t) + Uoo(t) (WE(1))?
+US () (Woo(1)* + U, ()W (1)
+ Uso (0 )WE (1) + US, (1) Woo (2)] -
(3.5.15)
Making use of Lemma 3.3 and Lemma 3.4, from (3.5.15) we get (3.5.14) immedi-
ately. The proof is finished. Q.E.D.

Lemma 3.7. Under the hypotheses of Theorem 3.1, if # > 0 is suitably small,

then in the normalized coordinates 4, for any y € R
@i (t, zi(t,y)) — L(0)p(y)| < Kgb® (i=1,---,n), V>0 (3.5.16)
and
%%(t,xi(t,y)) - L0 ()| < Kgb?> (i=1,---,m), Vt>0. (3.5.17)
a

Proof. We only show (3.5.17). The proof of (3.5.16) is similar.

Noting that in the normalized coordinates

?9? — i = ) (r; (@) — 15(Tge;)) e (3.5.18)
7

—1

ere , , etc. are define y (3.4.13)-(3.4.17),(3.4.19) and (3.4.24)-(3.4.25) (in
2Here V(DY), V(D§) defined by (3.4.13)-( ),(3-4.19) and (3.4.24)-( ) (@

which T' = t) in the normalized coordinates .
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and employing (3.4.71)-(3.4.72}, we obtain
ot
O0x

Thus, the combination of (3.5.8) and (3.5.19) gives (3.5.17) immediately. The proof
is completed. Q.E.D.

(t,z) — wi(t, z)| = K462 (3.5.19)

Introduce the following Cauchy problem for a linear system

ou;
Ot

+ 2;(0) o

=0 (G=1,---,n), (3.5.20)

t=0:7; =L(0)p(z) (i=1,---,n). (3.5.21)

The solution to the Cauchy problem (3.5.20)-(3.5.21) is given by

(¢, z) = L(0)p(z — X (0)t) (i=1,---,n). (3.5.22)

Theorem 3.5. Under the assumptions of Theorem 3.1, suppose that ¢(z) € C?

and

lo"(z)| < K58, VYzeR. (3.5.23)

If & > 0 is suitably small, then in the normalized coordinates i, the C! solution
@ = u(t,z) to the Cauchy problem (3.3.1)-(3.3.2) exists globally on ¢t > 0; moreover,

the following estimates hold:

|ﬂz(t,$) _ﬂi(t7:v)| < K602 (Z = 17 e an)a v (t,.’l?) € R+ X R’ (3524)
8'&1 671/_ g 2 . -+
e .8_;(15,;5) <K (1=1,---,n), V(t,z) € R xR, (3.5.25)

particularly, on the domain D2° (see (3.5.2))
li(t, T)|, i (t, z)] < Ksf(L + )~ (1), (3.5.26)
where ©@ = %u(t, x) is defined by (3.5.22). O

Proof. (3.5.26) follows from (3.5.1) directly.
We only show (3.5.24). The proof of (3.5.25) is similar.
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Let & = &(7;t,x) be the i-th characteristic passing through the point (¢,z).
Denote the space coordinate of the intersection point of this characteristic with

z-axis by y. On the other hand, let
7=1x— \(0)t. (3.5.27)
Then
| (t, x) — T (¢, x)| = |&:(¢, 2) — Li(O)p(y)] + [L:(0)p(y) — Li(0)p(P)].  (3.5.28)
Noting (3.5.16) and (3.3.7), from (3.5.28) we get
@i (¢, z) — Ti(t, x)| < Kob? + K108ly — . (3.5.29)

We now estimate |y — 7.

By the definitions of y and ¥, we have

t
ly —yl = ‘/0 [:\i (@(r, & (73 t,x))) — :\i(O)] dr|. (3.5.30)

Noting the fact that % is the normalized coordinates and system (3.3.1) is weakly

linearly degenerate, we have
Xi(@ze;) = X(0) (6=1,---,n), V|| small (3.5.31)

Making use of Hadamard’s formula, we get

Xi(@) — As(0) = Z [ Olg—%(sal, ey Sy, g, Stip1, siln)ds] ;.
o (3.5.32)
Then, noting (3.5.30) and (3.5.32), and using (3.4.101), we obtain
y-91 < Ku [V (DL)+ V(D) +Us(®) +Ui(b)] (3.5.3)
< Kip [V (DY) + V(D)) + UL () + Va() + VS ()] a

where V (DY) ,V(D{), etc. are defined as in (3.5.15). Noting (3.4.28)-(3.4.29),
(3.4.66)-(3.4.67) and (3.4.114), from (3.5.33) we get easily

ly — 3l < Ka3. (3.5.34)
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Substituting (3.5.34) into (3.5.29) leads to (3.5.24). Thus, the proof is finished.
Q.E.D.

Remark 3.9. We do not require (3.5.23) in the proof of (3.5.24), however we need
it in the proof of (3.5.25). O

8§3.6. Blow-up phenomenon and life span of C' solution (I)
— Proof of Theorem 3.2

In order to precisely estimate the life span of C! solution, we consider the

following Cauchy problem

Ju Ou
e + A (u) = B(u), (3.6.1)
t=0:u=c¢y(x), (3.6.2)

where € > 0 is a small parameter and ¥ () is a C! vector fundtion satisfying
sup { (1 + |z))) (j9 (z) | + [¢' (z) |)} <oo (>0, constant).  (3.6.3)
TER

In the present situation, Lemma 3.3 is still valid and can be stated as the

following.

Lemma 3.8. Suppose that (3.3.3) and (3.3.6) hold, and A (u),B(u) € C? in a
neighbourhood of u = 0. There exists g > 0 so small that for any fixed € € [0, o],
on any given existence domain 0 < t < T of the C! solution u = u (t,z) to the
Cauchy problem (3.6.1)-(3.6.2) there exists a positive constant k; independent of

e and T, such that the following uniform a priori estimates hold:
V(Dg), V(DI), W(DJ), W (D) < kse. (3.6.4)
O

Lemma 3.9. Under the assumptions of Theorem 3.2, in the normalized coor-

dinates there exists €9 > 0 so small that for any fixed £ € (0,0}, on any given
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existence domain 0 < t < T of the C?! solution u = u (¢, ) to the Cauchy problem
(3.6.1)-(3.6.2) there exist positive constants k; (i = 2,---,10) independent of € and

T, such that the following uniform a prior: estimates hold:

US(T) < kse, (3.6.5)
Vo (T) < kse, (3.6.6)
WE(T) < kqe, (3.6.7)
Wi (T) < k56, (368)
Vi(T) < kee + ke teT, (3.6.9)
Voo (T) < kse, (3.6.10)
where
Teit® < 1. (3.6.11)
Moreover,
Weo (T) < koe, (3.6.12)
where
Telte™ < kyp. (3.6.13)
O

Proof. This lemma will be proved in a way similar to the proof of Lemma 3.4.
In what follows we only point out the essentially different part in the proof and

€o > 0 is always supposed to be suitably small.

For ¢ ¢ J, we can estimate (3.4.90) just as in the proof of Lemma 3.4; while,
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for © € J, noting (3.2.4), instead of (3.4.90) we have

/ Jon (625 (0) | I (ult 25 () = AdCult, 2, (6)))]de

to

< /mwi(t’ (An(0) + 80)t)|(An(0) + 80 — Ai(t, (An(0) + 6p)t))dt

+ // > Bk (w)vjwy

PyOAP, |j#k

dtdx

+ / / Zn: (Bm'(U) - szj(ujej)) vjw;| dtdz

POOA2P2 7j=1

+ // Z Vijk (U)bgim (W) VU U, | dtdz

POOA2P2 7,k,l,m=1
l#m
dtdx + //

P00A2P2

Biis(uie;)vsw; | didz,

+ // Zbijk(ﬂ,)“jﬂ:k

P00A2P2 J#k

(3.6.14)
hence, we only need to estimate the last term of the right-hand side of (3.6.14).

Noting the fact that in the normalized coordinates

aAi(O,"'aOau‘hOa"'aO)

Biii (uvie;) = 5u. (3.6.15)
and the difinition of o; and «, we have
|,Bm (use;) | < Crlusl®, (3.6.16)

henceforth C; (7 = 1,2, ---) will denote positive constants independent of € and 7.

Thus, noting (3.4.26) we get

/]

Py,OA,P,

Bisi(wies)viw; | dtdz < Co (Voo (T))' (W (T) + Wi (T) T,

(3.6.17)
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then, noting Lemma 3.8, instead of (3.4.93) we have

Vi(T) < Cs{e+VE(TYWE(T)+ Vi(T)WE(T)
Vo (TYW(T) + UL (TIYWi(T) + USL(T)WE(T)

9 (3.6.18)
+ (Use(T))" + U (T)VA(T) + U (TH)V(T)
+ (Vao(T)' (W, (T) + Wi(T)T .
Similar to (3.4.106), we obtain
Vi(T) < Cif{e+ VL (TWSL(T) + Vi(T)W(T)
Vo (TIW(T) + U (TYW(T) + U (T)W(T) (3.6.19)

+(UL(T))? + USL(T)A(T) + UL (T)VE(T)
+ (Voo (T) T (WE(T) + WA(T) T §.

Moreover, similar to (3.4.73), (3.4.88), (3.4.103)-(3.4.105) and (3.4.109), we have

US,(T) < CsVE(T) + CoVeo T)US(T), (36.20)

WAT) < Cr{e+ (W) + W MWD + UL (DWET) oo
+WE(TIVE(T) + Wa (TVA(T) + U (T)Wi(T)} -

WE(T) < Co{e+ (WE(D) + Wa(T)Wi(T) + US(DWE(T) (3622

+HAUTIWE(T) + VE(TIWE(T) + U (D)W (T) },

VE(T) < Cuof{e+VE(MWL(T) + VS (MWiT) + i(DWE(T)
+US(TIWE(T) + UL (T)WA(T) + Vi(T)WE, (T) (3.6.23)
+ (U (T))* + UL (T)VA(T) + U, (T)VE(T) }

Wi(T) < Cs{e+(W&(T)® + We(T)WA(T) + UL (T)W(T)

(3.6.24)
FWE(T)VE(T) + WE(T)VA(T) + US, (T)W1(T)},

Voo (T) < C11 {e + WE(T) + Wi(T)} . (3.6.25)

It follows from (3.6.3) that

Us(0), Vo (0), W5 (0), Vo(0) < Chr2e (3.6.26)
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and

W1(0) = W1(0) = V4 (0) = V; (0) = 0. (3.6.27)

Then, by continuity there exist constants k; (¢ = 2,---,8) independent of € and T,

such that (3.6.5)-(3.6.10),
Wi (T) < kse : (3.6.28)

and

ViI(T) < kee + kre?toT (3.6.29)

hold at least for 0 < T < 79, where 7y is a small positive number.

Thus, in order to prove (3.6.5)-(3.6.10) it suffices to show that we can choose
k; (i = 2,---,8) in such a way that for any fixed Tp (0 < Ty < T') with Tpe2+> < 1
such that

US (To) < 2kse, (3.6.30)
VE(To) < 2kse, (3.6.31)
WS (To) < 2kqe, (3.6.32)
W1 (To), Wi(To) < 2kse, (3.6.33)
Vi(To), Vi(Tyo) < 2kge + 2k7e2TTy, (3.6.34)
Vo (To) < 2kse, (3.6.35)

we have
US (To) < ke, (3.6.36)
Voo (To) < kse, (3.6.37)
W& (To) < kae, (3.6.38)
Wi (To), Wi(To) < kse, (3.6.39)
Vi(To), Vi(Tyo) < kee + kre2tTy, (3.6.40)

Voo (To) < kge. (3.6.41)
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Substituting (3.6.30)-(3.6.35) into the right-hand sides of (3.6.18)-(3.6.25) (in
which we take T' = Tp) and noting the fact that Toe3+* < 1, we get

US,(To) < 3Cskse, (3.6.42)
W1 (To) < 2Cre, (3.6.43)
W1 (Tp) < 2Cse, (3.6.44)
WE (To) < 2Cye, (3.6.45)
VE (To) < 2Choe, (3.6.46)
Voo (To) < C11 {1 + 2kq + 2ks} €, (3.6.47)
Vi(To) < Cs {2e + 22 *(kg)* ! (kg + ks)e®TT, } (3.6.48)
and

Vi(To) < Cy {2 + 27 (kg)** (kg + ks)e* T } . (3.6.49)

Hence, if

ko > 3Csks, ks > 2Cio, k4 > 2Cy, ks > 2max{C7,Cs},
ks > 2 max {03, C4} y k7 > 22+a max {Cg, C4} (kg)a+1(k4 + k5), (3650)
ks > C11 {1+ 2(ks + k5)},

then we have (3.6.36)-(3.6.41). This proves (3.6.5)-(3.6.10).

Finally, we prove (3.6.12).
For any given point (t,z) € DY, similar to (3.4.110), it follows that

t
w; (t,z) = w; (3‘—"—(6)%6—0,3/) +/ 1 Z%-jk (u) wijwk(s, z:(s; t, x))ds
. O 7k
e [ O () s () w5, )
PR R—
A'n,(U)*“"Q

+ / z (E,—k(u) — Bik(ukek)) wk(s,a:i(s; t7 x))ds

Atn (0)+50 k=1

+ / yiss (wies) (s, za(s; ¢, 2))ds.
v
An (0)+8g

(3.6.51)
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Noting that in the normalized coordinates

6A7, 0,"',0,“1,0,"',0
Yiii (Uie;) = — ( D ), (3.6.52)

similar to (3.6.16), we have
l"f’iii (uzez) | _<_ C’lglui|a. (3653)
Hence, similar to (3.4.111), it follows from (3.6.51) that

i (t,2)| < Cuf{e+ (W (T) + WS (T) We (T)

| +Uoo (T) (WS, (T))? + US (T) (Weo (T))*
+US (T) WS, (T) + Us (T) W, (T)
+US, (T) Weo (T) + (Voo (1)) (Weo (T))* T} .

(3.6.54)

Then, substituting (3.6.5), (3.6.7) and (3.6.10) into (3.6.54) and noting (3.6.4) and
(3.6.7), similar to (3.4.144), we get

Weo (T) < Cys {s (1 + W (T) + (We (T))2) + T (W (T))2} . (3.6.55)

where T satisfies (3.6.11).

Noting (3.4.42), we see that there exists a positive constant kg independent of €
and T', such that (3.6.12) holds at least for 0 < T < 7y, where 7 is a small positive
number. Hence, in order to prove (3.6.12) it suffices to show that we can choose kqg
and ky in such a way that for any fixed Ty (0 < Ty < T) with Tpel*t® < k;o such
that

Wo (To) < 2kge, (3.6.56)

we have

For this purpose, substituting (3.6.56) into the right-hand side of (3.6.55) (in

which we take T = Tp)3, we obtain

Weo (To) < Cig {1 + kgklo} €.

3Noting (3.6.11), we observe that (3.6.55) always holds for the case that Toelt® < ko,

provided that €9 > 0 is small enough.
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Hence, if
kg > 2016 and kgklo = 1,

then we have (3.6.57). This proves (3.6.12). The proof of Lemma 3.9 is finished.
Q.E.D.

Remark 3.10. By (3.6.10) and (3.6.12), when €¢ > 0 is suitably small, the Cauchy
problem (3.6.1)-(3.6.2) admits a unique C! solution u = u (¢,z) on 0 < t < T, where
T satisfies (3.6.13). Hence, we get the following lower bound on the life span of the
C! solution

T () > K,e~(F9),

where K, (= k19) is a positive constant independent of e. O

Proof of Theorem 3.2. By Remark 3.3, in order to prove Theorem 3.2 it suffices
to show that, in the normalized coordinates @, (3.3.19) holds, where the corre-
sponding normalized transformation v = u(@) (u(0) = 0)) satisfies (3.1.13). In
what follows, we will consider the problem in the normalized coordinates 4 men-
tioned above. For the sake of the simplicity of statement, we still denote the
normalized coordinates @& and the functions X;(&) (see (3.3.17)) by u and \;(u)

respectively. Thus, by Remark 3.1 and Remark 3.2, (3.3.19) can be rewritten as

lim (e"‘“f’(e)) = M, (3.6.58)
where

M, = {max sup{ L a +”\ 2 (0) (L (0)y(z))* L (0)y] (fﬂ)}}

1€J1 zeR

= { max, s {-2 22O OB LOR@] ) >
i=1,n 2eh
(3.6.59)

Hence we only need to show (3.6.58).

In order to prove (3.6.58) it suffices to show that

(I) for any fixed constant M* satisfying M* > My, there exists a constant
€g > 0 so small that T(e) < M*e~(e+1) for any € € (0, o], namely,
Tim (c2*17(e)) < Mo;

e—0
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(IT) for any fixed constant M, satisfying 0 < M, < My, there exists a coﬁstant
g0 > 0 so small that T(¢) > M,e~(>+1) for any ¢ € (0, €o], namely,
lim (eaHT(e)) > M.
e—0
Thus, in the proof it is sufficient to discuss solutions defined in the strip 0 < ¢t <
Me—(e+1) for some fixed M. |
In what follows, we always suppose that €5 > 0 is suitably small.

In the present situation, the initial data (3.3.2) reduces to

t=0: u=e¥(x,e), (3.6.60)
where
¥(z,e) = L(0)y(z) + O(e) and B\Il—é;rc,_s_)_ = L(0)y'(z) + O(e), (3.6.61)

in which L(0) is the same as the one in (3.1.13). Noting (2.2.1) and the fact that
the present variables u are the normalized coordinates, from (3.6.60)-(3.6.61) we
get

t=0: v =eli(0)Y(z)+0(E?) (i=1,---,n). (3.6.62)

On the other hand, noting (2.2.6) we have

Ou,

37 (0,z) —w;(0,2) = Zwk(O,x) (ri(u(0,2)) — Tk (ur (0, z)ex)) €. (3.6.63)

k=1
Then it follows from (3.6.61) that
lwi(0, ) — el;(0)y'(x)| < Crre? (i=1,---,n). (3.6.64)
Let
To=e 319 T, = K,em(+®) and T* = M*e~ (1t (3.6.65)

where K, is the positive constant given in Remark 3.10 and M* is an arbitrary

fixed constant satisfying that Af* > Mj. It is easy to see that

To < T* <e®*% and Ty < T, <e®ti, (3.6.66)
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provided that = > 0 is suitably small.
By Lemma 3.9, on the existence domain 0 < ¢t < T (< T*) of the C! solution
u = u(t,x), we have

lu(t, z)|, |v(t,z)| < Cise. (3.6.67)

On the other hand, by Remark 3.10, the C! solution v = wu(t,z) to the Cauchy
problem (3.6.1)-(3.6.2) exists at least on the strip 0 < t < T,; moreover, by (3.6.12)

we have

lw(t, )|, |%(t,m) < Cioe, Vte(0,T.]. (3.6.68)

Let x = z;(t,y) (¢ = 1,---,n) be the i-th characteristic passing through an
arbitrary given point (0, ).

We now estimate |u;(t,z;(t,y)) — eli(0)¥(y)] (+ = 1,---,n) on the existence
domain 0 < t < T (< T*) of the C! solution v = u(t,z). To do so, we first
estimate |v;(t, z;(¢t,y)) — vi(0,y)|. By (2.2.13) we get

I'Ui (t’ z; (t, y)) - Uy (07 y) | <

t n
/0 I:Z/szk (u) vjwg + Z viji (w) vibg(u) + b (u) | (s,z:(s,y))ds| <

k#1 1,k=1

t, n
/0 > Bijk (W vwe + Y vigk () vsbe(u) + bi(u)} (s,2i(s,y))ds

L% i j"C—l
t?l
/
t

v

[Zﬂzjk (u) vywy + Z Vijk (w) vibg(u) + bi(u):| (s,zi(s,y))ds

k#1 7,k=1

+ /f > Bk (W) vjwe + D vk (w) vsbe(u) +bi(u)} (5,7 (s,y))ds

ty | ki jok=1

2740+ 1,
| (3.6.69)

where t, (resp. t,) stands for the t-coordinate of the intersection point of the
characteristic z = z;(t,y) with the boundary of DT (resp. DT ). It is possible that
the characteristic = x;(s,y) does not intersect the boundary of DT (resp. D7 ),

in this case, we take t, = t, =t (resp. t, = t). Noting (3.4.3), we see that

(s, z:(s,9)) e DIuDI uDT Vtelo,t,), (3.6.70)
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(s, z:(s,y)) € DT\ DI vte [t, ] (3.6.71)
(s, zi(s,y)) € DT Vite [ty t] - (3.6.72)
Noting (3.2.3), (3.6.70), (3.4.27) and Lemma 3.8, we have

I < Coo (V (D) +V (D7) (V (DX) + V (DF) + W (DI) + W (D))

S C?l 621
(3.6.73)

henceforth C; (j = 20,21, ---) will denote the positive constants independent of
€,y and T. Noting (2.2.12) and (3.2.1), we get

A,
| = /
t

v

{Zﬂmk(w%w + D (Bigs () = Big;(uge;)) vjw;
7k 77k (3.6.74)

+ Z Viji, (w)vbg(u) + bz(u):l (s,z;(s,y))ds.

Applying Hadamard’s formula to 8;;;(u) — B:;;(use;) and noting (3.2.3), (3.6.71)
and (3.4.26), from (3.6.74), we obtain
1l < Con {VE(MWET) + (TIWE(T) + V& (T)Wi(T)
+Vio(T) (Ugo(T)Wgo (T) + Uy (T)WS (T) + Ugo(T)Wl(T)) (3.6.75)
+ (14 Veo D)) (Ou(DUS (D) + (U(T)) } -

Noting the fact that T < T* 2 M*¢~(+®) and using (3.4.101), (3.6.5)-(3.6.7),
(3.6.10) and (3.6.28)-(3.6.29), from (3.6.75) we get immediately

|II| < Co3e?. (3.6.76)

Similarly, we have

| < Coa {Vao IIWE(T) + (1 + VaolT) (T1(TVUE(T) + (UL (T))?) }

< 02552.

(3.6.77)
Thus, from (3.6.69), (3.6.73), (3.6.76) and (3.6.77) we obtain |

lvi (t, i (t,9)) —vi (0,9) | < Coge®, Vte[0,T], (3.6.78)
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where T satisfies that T < T*.

Noting that in the normalized coordinates

n

U; — V; = Z ve (Tx (w) — 75 (uker)) T e; 4 (3.6.79)

k=1

and using (3.6.67), on the existence domain 0 < t < T (< T*) of the C! solution

we have

lu; (¢, ) — v (¢, ) | < Coqe?. (3.6.80)

In particular, it follows from (3.6.62) that

|vi (0,) — el;(0) (y) | < Cage®. (3.6.81)

Hence, noting (3.6.78) and (3.6.80)-(3.6.81), on the existence domain 0 <t < T (<

T*) of the C! solution we obtain
lu; (¢, z: (8, y)) — eli(0)Y(y)| < Ca9e® (i=1,---,n). (3.6.82)

We next estimate |w; (t,z; (¢,y)) — wi (0,y)| (¢ =1,---,n) on the strip 0 < ¢t <
T..
Similar to (3.6.69), noting (2.2.21), (3.2.7) and (3.2.12), from (2.2.24) we have

w; (8, zi(t,y)) —wi(0,y) = /0 [Z Yijk (W) wijwg + (bi(u))g | LY (s)ds

G k=1

) [ngk(wwgww(b (u))z | LY(s)ds
k

’ [ Z Yijk(w)w;we + (bi(uw))s } LY(s)ds

ty

[ Z Yije(w)wjwg + (b,(u))x] LY(s)ds

7,k=1

He>

T+II+1II, te[0,T.,],
(3.6.83)
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where LY(s) = (s,z;(s,y)). Noting (3.4.85), (3.6.70), (3.4.27) and (3.6.4), we get
7 < cu(w(0F)+w (o))
x (W (D;{*) i (DOT*> +V (Di*) TV (D{{*)) (3.6.84)
< Cs€2.
Noting (2.2.21), (3.4.85), (3.6.71) and (3.4.26), we obtain

/ t-y
t

Y

7| = [Zw () wywy + Yogk (w)w? + (Mu)»] (s, 7i(s,y))ds
J#k
< Cs {Wl (T WE(Ty) + (W (T)? + Uy (T.) WE (T2

+ Wi (T.) US(T.) + Ugo(T*)Wgo(T*)} .

(3.6.85)
Noting (3.4.101) and using (3.6.5)-(3.6.7) and (3.6.28)-(3.6.29) (in which we take
T =T, = K,e~(1%%), from (3.6.85) we get

’fIi < Caze?. (3.6.86)

Noting (2.2.21), we have

Ifl\[‘ = |A [Z 'yijk(u)ijk + (bi(u))z](saxi(say))d‘S'

Yy j,k=1

= |/t. [Z'Yijk(u)ijk + (Vs (w) — Yais(use;)) w2 (3.6.87)

vk
+yais(use)w? + (bi(w))e)(s, zi(s,y))ds|.
Applying Hadamard’s formula to 7;;;(u) —v:::(use;) and using (3.6.53) and (3.4.85),
from (3.6.80) we get

{fﬁ. < Csa {WOO(T*)W;‘O(T*) + (Woo (T))2 US, (T')
+ (Weo (T*))2 (Voo (Tu))* t + Uy (TO)We(T) + Wi (T4 ) Voo (T¥)
UL (TIWS(T.)}
(3.6.88)
Then, noting (3.4.101) and using (3.6.5)-(3.6.7), (3.6.10), (3.6.12) and (3.6.28)-
(3.6.29) (in which we take T' = T,), from (3.6.88) we obtain

'fﬁ' < Cs {e? + €22t} Vie[o,T.]. (3.6.89)



72 Quasilinear strictly hyperbolic systems
Thus, by (3.6.84), (3.6.86) and (3.6.89), from (3.6.83) it follows that

wi(t, zi(t,y)) —wi(0,y)] < Cs6 {e* + 7%t} (i=1,---,n), Yte[0,T.].
(3.6.90)
Particularly, noting (3.6.65)-(3.6.66), from (3.6.90) we have

lwi(t, z:(t,y)) — wi(0,9)] < Care?  (i=1,---,n), Vte[0,Ty (3.6.91)
Noting (3.6.64), from (3.6.91) we obtain

wi(t,:vi(t,y))=5li(0)w'(y)+0(e%) (i=1,---,n), VyeR, Vtel0,T
(3.6.92)

The above arguments can be summarized as

Lemma 3.10. On any given existence domain 0 < ¢t < T (< T*) of the C! solution

u = u(t, x), it follows that

lui(taxi('s)y)) -511(0)7#'(3/” S ]::152 (Z = ]-"",n)a Vy € R) Vte [OaT]a
(3.6.93)
henceforth k; (i = 1,2, 3) will denote the positive constants independent of ¢,y and

T. Moreover, on the strip 0 < t < T, the following estimates hold:

|lw;(t, zi(t,y)) —eliy(0)Y'(y)| < ks {62 + 52+°‘t} (t=1,---,n),

(3.6.94)
VyeR, Vte][0,T.].

Particularly,

twi(t’zi(tay)) —511(0)'/)/(3/” < ]}35% (7' = 1)"')”)’ Vy € Ra Vte [O,Tg]
(3.6.95)

On any given existence domain 0 < ¢t < T (< T*) of the C? solution u = u(t, ),
we consider (2.2.19) along the ¢-th characteristic x = z;(s,y). Noting (2.2.21),
(3.2.7) and (3.2.12), we can rewrites (2.2.19) as

dwi

dit = a'O(t; 27y)w12 +a; (t;iay)wi + a?(t;ia y): (3696)
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where
ao(t;%,y) = v4ii(u), (3.6.97)
J#e
as(t;i,y) = Z YVijk(w)wjwy + Z (E,k(u) - I;ik(ukek)) W, (3.6.99)
G k#i ki

in which v = u(t, z;(t,y)) and w; = w;(t,z:(t,y)) G =1,---,n).

Lemma 3.11. On any given existence domain 0 < t < T (< T*) of the C! solution
u = u(t,x), there exist positive constants k4, ks and kg independent of €,y and T

- such that the following estimates hold:

T
/[al(t;z’,y)[dtShE, (3.6.100)
0]
T ~
/]ag(t;i,y)ldt§k562 (3.6.101)
0
and
A [T T _
KGi5:0.7) & [ jaatii,pld -exp [aioie) sket (36102
0 0
O

Proof. Similar to (3.6.69), we have

T T, T, T
| msiae = [Caila+ [ il [l
(3.6.103)
where the definition of T, (resp. 7)) is similar to that of ty (resp. t,) in (3.6.69).
Similarly, by (3.6.98) we get

T
/0 lax(t;2,9)ldt - < Css {W (DE) + W (D7) + V (D) +V (D7) (3.6.104)

+ WA(T) + W (T) + Un(T) + US,(T) }.

Noting (3.4.101) and using (3.6.4)-(3.6.7) and (3.6.28)-(3.6.29), from (3.6.104) we
obtain
T
/ la1(;4,y)|dt < Csge. (3.6.105)
0
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Similarly, we have

T
[ taattsiiae < Cuo { (W (DD) + W (DF))’

(D
+ (W (DY) + W (D7) (V (PE) +V (D7)
)’

+(WE(T))* + WE(T)Wi(T) + US,(T)W,(T)
+ WE(T)OL(T) + U (DWA(T) + Voo (T)WE(T) }
< Cuces
(3.6.106)
The combination of (3.6.105) and (3.6.106) gives
K(i,4;0,T) < Cyae>. (3.6.107)
Taking
’214 = C3g, ]’;)5 = 041 and kﬁ = 042, . (36108)

we see that (3.6.105)-(3.6.107) are just the desired (3.6.100)-(3.6.102). The proof
is completed. Q.E.D.

(I) Upper bound of the life span — Estimate on rr% (e“’a’f’(e))
£—

Noting that the initial data satisfies (3.3.12) and (3.3.15), we observe that there

exist an index iy € J; and a point ¢ € R such that

-1
61 a)\m
AIO = |:— ' Ou 1+a (0) (lz()(O)w(xO)) lz()(0)¢ ($0)] ’ (36109)
where M is defined by (3.6.59).

By (3.4.3), it follows that
1 1
g + (/\1'0(0) - 5(50) t < :L‘i()(t,mo) < zo+ (’\io (0) + —2'(50) t. (36110)

Hence, by the definition of DT, the characteristic z = z;, (t,zo) must enter D] at

a finite time ¢ty < 31530‘—’[ and stay in D;—'; for t > ty. Clearly, when gy > 0 is suitably

small we have

To 2 g—(at3) 5 to, Vee€(0,eo].



Blow-up phenomenon and life span of solution (I) 75

In what follows, we always suppose that €9 > 0 is so small that Ty > t;.
Noting (3.6.52) and (3.3.10), we have

a FY'L()’LU'LU aa’ylt)l(ﬂo 61+a/\
= Tt gy — =0.1.--.a—1 t —_lwio
(3.6.111)
Then (3.6.109) becomes |
1 a ’Yl(m)lu (o3 / !
MO - Ot' ou’ (O) (llo( )1,0(130)) lio(o)'lp ($0) . (36112)
10
Let
— 1 aa'yz(ﬂnlo _ o
a = a——é—z——(O) and b=a (lio (0)’!/)(.’130)) . (36113)
Without loss of generality, we may suppose that
b>0 and [;,(0)¢'(z0) > 0. (3.6.114)
Otherwise, changing the sign of u, we can draw the same conclusion.
Noting (3.6.111), we get
’yil,ml,(ui“ei(,) aum + O (lui(,}l““") s A4 Iuml small. (3.6.115)

We further rewrite (3.6.115) as

’Wlﬂu’iu(u‘iu e’io) = a (sliu (0)¢(To))a +a [(ui() (t) T (t’ xo)))a - (glio (0)¢(x0))a]
+0 (Jug, '), V |uy,| small.
(3.6.116)

Noting (3.6.113), (3.6.67) and (3.6.93), on any given existence domain 0 < t <
T (< T*) of the C! solution u = u(t,x) we obtain

Yioigio (Uig€iy) = be* + O (e'1*), Vte[0,T). (3.6.117)

Noting (3.6.5) and the fact that the characteristic z = z;,(t, o) must stay in Dg(;

for any t > Ty, on = = z;,(t,z0) we have

I’Yiuioiu(u) - ’7i()iui()(uiueiu)| < C43(1 + t)_(l-hu)Ugo (T)

< 0446(1 -+ t)_(H'“)

< Cyse(l 4+ Tp)~(+w) (3.6.118)
< C46E%+a+%u+ua

< C47€%+a, Vte [To, T] .
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Thus, on z = z;,(t, o) it follows that
a0 (£5i0,%0) = Tigigio(v) = be® + O (e3¥9) >0, Vte [, T],  (36.119)

provided that € > 0 is small enough, where T satisfies that 7" < T'™*.
From (3.6.114) and (3.6.95) it follows that

wio (To, T4, (To, o)) = eli, (09 (z0) + O (e*") >0, (3.6.120)

provided that £ > 0 is small enough.
Finally, noting (3.6.102) and (3.6.120), we get immediately

wiy (To, zig (To, T0)) = els, (0)%' (z0) + O (e) > kse? > K(io, z0; To, T) (3.6.121)

provided that € > 0 is small enough, where

A T T
K(ig,z0;T0,T) = laz(t; 20, xo)|dt - exp / lay (t; 20, xo)|dt | .
To To

Hence, noting (3.6.119) and (3.6.121), we observe that Lemma 2.1 can be ap-
plied to the initial value problem for (3.6.96) (in which we take i = iy and y = o)

with the following initial condition
A
t=Tp: w; = w; (To,SB-,;O (To,l‘o)) = Wy, (To) , (3.6.122)

and then we obtain

T T
/ ao(t;’io,mo)dt - eXp ('— |a1 (t, io,l’o)ldt) < (w,-o (TO) - K(io,l’o;Tg,T))_l y

Ty To
(3.6.123)
namely,
T
exp (— |a1(t;_io,$o)|dt> X
A (3.6.124)
/ Yivioio ('Ll, (t’ Ty, (t7 :L‘()))) (wio (TO) - K(iOv xO;TOa T)) dt < 1.
Ty

Noting the fact that T < T* = M*e~(1+%) and using (3.6.119)-(3.6.120) and
Lemma 3.11, from (3.6.124) we obtain

T {e“aT -1 9% wiin () 1, (0 (0)] lio(ow'uo)} <1 (36.125)

e—0 a!l 3uf§)
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Noting (3.6.112) and taking T = T'(¢) — 1, from (3.6.125) we get immediately
Tim (£1+°‘f‘(5)) < M,. (3.6.126)

(3.6.126) gives an upper bound of the life span T'(¢).

(IT) Lower bound of the life span — Estimate on lim (5““'.?(&:))

e—0

By (3.6.126), in order to prove (3.3.19) it remains to show that

lim (s“""f"(s)) > M. (3.6.127)

e—0

To do so, it suffices to prove that, for any fixed constant M, satisfying that
0 < M, < M,, (3.6.128)

we have :
T(e) > M.e~(+e), (3.6.129)
provided that € > 0 is small enough. Hence, we only need to establish a uniform a
priori estimate on C! norm of the C! solution u = u(t,z) on any given existence
domain 0 < ¢t < T < M,e~(1+2) The uniform a priori estimate on the C°® norm of
u = u(t,z) has been established in Lemma 3.9. It remains to establish a uniform
a priori estimate on the C® norm of the first derivatives of u = u(t, ), namely, a
uniform a priori estimate on the C° norm of w = (w; (¢, x),---,w,(¢,z))7.
In order to estimate w; = w;(¢, z) on the existence domain 0 <t < T (where T
satisfies T < M*e‘(1+“)) of the C! solution u = u(t,z), we still consider (3.6.96)
along the ¢-th characteristic x = z;(¢,y) passing through an arbitrary fixed point

(0,y). Without loss of generality, we may suppose that
w;(0,y) > 0. (3.6.130)

Otherwise, changing the sign of w;, we can draw the same conclusion.

Using Hadamard’s formula, from (3.6.97) we get

ao(t;t,y) = vii(w) = (vaaa(u) — yui(wies)) + Yiso(wees) = Yiie(uiei)+
1
Z [ J_%uj (SUp,* ) 8Us—1, Uiy SUi1, " -+, SUp)dS Uj.
J#i

(3.6.131)
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On the other hand, noting (3.6.52), (3.3.10) (or (3.3.11)), (3.3.13) and (3.6.93),
similar to (3.6.115), we have

Viss(uies) = —g %1&(0) (w)® + O (Jui]'*9)
af; \ . (3.6.132)
= —z%a—ﬂ-—'(o) (el:(0)Y(y))* + O (e+e).
Substituting (3.6.132) into (3.6.131) gives
ao(tiiy) = —aGorer(0) (li(0)u(y))” + O (e+2)
+Z [/ au, S(SUy, o, SUG_1, Ui, SUsq1, - 7, SUR)AS| u; .
J#
(3.6.133)
Let

ad (t;1,y) = max {ao(¢;4,y),0} . (3.6.134)

We now calculate w,(0, y)/ F(t; 4, y)dt.
Noting the fact that T < M,e~(1*®) and using (3.6.64), (3.4.101), (3.6.4)-
(3.6.6), (3.6.29), (3.6.59) and (3.6.128), we obtain

T
wi(O,y)/ ad (t;4,y)dt
0

< (eL(00'(y) + Crre?) { max { -1 252 (0) (eli(0)(v))*, 0} T
.
+Cas |€'TOT + ; (/ lu;ldt + /Ty lujyldt + /T” |u]|dt)} }

< max { — 4 252 (0) (O )", 0} (L(0)Y' ()M, + M.Cize)
+Cage {M* £V (D) +V (DF) + Uu(T) + Us,(T) }
< My ' M, + Csoe < 1,
(3.6.135)
provided that ¢ > 0 is small enough, where T}, (resp. Ty) is defined as before. In
(3.6.135) we have made use of Lemma 3.2. On the other hand, noting (3.6.133),

we get similarly

T
/0 jao(t.y)ldt < Cs1e°T + Cso { (V (D) + V (DF)) + Ti(T) + US,(T) }

< Cs;M,e™! + Csze < Csge™?,

(3.6.136)
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provided that € > 0 is suitably small. Then, noting (3.6.135)-(3.6.136) and Lemma

3.11, we obtain

T T
/ ag (t;4,y)dt - exp (/ |a1(t;i,y)|dt) < (wi(0,y) + K(5,5;0,T)) ™" (3.6.137)
0 0
and

T v T : ‘
/Olao(t;i,y)ldt'exp (/0 Ial(t;i,y)ldt)<(K(i,y;0,T))_1, (3.6.138)

provided that € > 0 is small enough, where T' < M,e—(1t+a),

Noting (3.6.130) and (3.6.137)-(3.6.138), we observe that Lemma 2.2 can be
applied to the initial value problem for equation (3.6.96) with the following initial
conditon

t=o0: w; = w;(0,y).
Then it follows from (2.1.9) and (2.1.10) that
(wi(T,z:(T,y))) ™" = (wi(0,y) + K(5,5;0,T)) " -
/OTagf(t;i,y)dt - exp </0Tla1(t;i,y)|dt) ,  (3.6.139)
if w(T,z;(T,y)) >0

and

T T
lwi(T, +(T))| ™" = (K(5,y;0,T)) ™" — /0 lao(t; 7, y)|dt exp (/0 |01(t;i,y)|dt) ’

if wz(T, Zi(T, y)) > 0.
(3.6.140)
Noting (3.6.135)-(3.6.136) and Lemma 3.11, from (3.6.139)-(3.6.140) we get respec-

tively

(wilT,z(T,y) ™ 2 3 (1 - 4% ) (wi(0,9) + K(G,3;0,T) ",

(3.6.141)

and

lwi(T, 2T, y)| ™" = 5 (K(6,9;0,T) 7, if wi(T,ai(T,y)) <0, (3.6.142)

N =
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provided that = > 0 is small enough. It follows from (3.6.141)-(3.6.142) that
|wi(T, z:(T, y))| < Csse. (3.6.143)

For each i = 1,---,n and any t € [0,T], we can prove similarly that w;(t,z;(t,y))
satisfies the same estimate. On the other hand, noting the fact that (0,y) is

arbitrary, then we obtain
[|[w(t, z)|lcop,71xr < Csse, (3.6.144)

where T satisfies that 7' < M,e~(1+®). Hence, (3.6.129) holds and then (3.6.127)
is valid.

The combination of (3.6.126) and (3.6.127) gives (3.6.58). Thus, the proof of
Theorem 3.2 is completed. Q.E.D.

From the proof of (3.6.127), we can easily obtain the following.

Remark 3.11. Suppose that there exist y € R, ¢ € {1,---,n} and a positive

constant By such that

1 91N,

~a gurra (0 (LOPE)* L0} (y) < (3.6.145)

1
By’
For any given positive constant B < By, if the Cauchy problem (3.3.1)-(3.3.2)
admits a unique C! solution u = u(¢,z) on the domain 0 < t < T with 0 < T <
Be~—(1+2) then, for suitably small ¢ > 0 we have

lwi (¢, z:(t,y))| < Koe, Vtel[0,T], (3.6.146)

where x = z,(t, y) stands for the i-th characteristic passing through the point (0, y), |

and Ky is a positive constant independent of 2,7,y and e. O

§3.7. Blow-up phenomenon and life span of C?! solution (II)
— Proof of Theorem 3.3

Theorem 3.3 will be proved in a way similar to the proof of Theorem 3.2. In

what follows, we only point out the essentially different part in the proof and ¢g > 0
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is always assumed to be suitably small. As in §3.6, in order to precisely estimate
the life span of the C! solution, we consider the Cauchy problem (3.6.1)-(3.6.2).
In the present situation, Lemma 3.8 is still valid. Moreover, similar to Lemma,

3.9, we have

Lemma 3.12. Under the assumptions of Theorem 3.3, in the normalized coor-
dinates there exists g > 0 so small that for any fixed ¢ € (0,¢0], on any given
existence domain 0 < ¢ < T of the C! solution u = u(t,z) to the Cauchy problem
(3.6.1)-(3.6.2) there exist positive constants k; (i = 2,-- -, 10) independent of € and

T, such that the following uniform a priori estimates hold:

US (T) < kae, (3.7.1)
Ve (T) < ke, (3.7.2)
WS (T) < kae, (3.7.3)
Wi (T) < kse, ‘ (3.7.4)
Vi(T) < kee + kqe®toT, (3.7.5)
Voo (T') < kge, (3.7.6)
where
Tet+e < 1. | (3.7.7)
Moreover
Weo(T') < kge, (3.7.8)
where |
Tel*® < kyp. (3.7.9)
O

Proof. This Lemma can be shown in a Way‘similar to the proof of Lemma 3.9. In
what follows, we only point out the essentially different part in the proof.

Without loss of generality, we may suppose that

0O<p< (3.7.10)

6+ 7
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Noting (3.3.25) and using Taylor’s formula, in the normalized coordinates we

have

bi(u) = En:b{(u) (uj)? +b(u) (¢=1,---,n), (3.7.11)
j=1

where b7 (u) and b*(u) (i,j = 1,---,n) are C! functions which are given by Taylor’s
expansion, and b} (u) (¢ = 1,---,n) satisfy the matching condition. It follows from

(3.7.11) that

T,

(bi(w)e = 3 [Be(w) ()" wi + B () ()P~ ] + (B1 @), G =1,-++,m),

7,k=1
(3.7.12)
where
bl (u) = Vb (u)ry(u) (3.7.13)
and |
B (u) = pbl (w)ri; (u). (3.7.14)

Then, in the present situation, instead of (3.6.14) we have
t2
/t lvi (8,25 () | 1A (u(t, z;(2))) — Ai(u(t, z;(2)))|dt

. /mm(t, (An(0) 4 80 )| (An(0) + 86 — Xi(t, (An(0) + 80)t))dt
0

+ // Zﬁijk(u)vjwk

PO0A2P2 J#k

+ // Zn: (,Bijj(u) - B,-jj(ujej)) VW

PO0A2P2 j=1

=+ // an (uiei)viwi } dtdx

PyOA, P,

dtdx

dtdx

dtdz

+ / / Z vigk(w)v;b%(u) + b;-*(u)]

POOA2P2 | 7,k=1

n

+ // Z Vijk ()b (w)v; (w)? + Zb{(u)(uj)p]

' POOA2P2 | 7,k =1

dtdzx.

(3.7.15)
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Since b} (u) (¢ = 1,---,n) satisfy the matching condition, we only need to estimate

the last term of the right-hand side of (3.7.15). Noting (3.4.26), we get

//

POOA2P2
< C1 [+ Voo D) (UL + (Voo DY (DT |,

dtdz

[ D vigk(wb (w)v;(w)? + b (u)(uj)p]

1,7,k=1 j=1

(3.7.16)

‘henceforth C; (7 = 1,2,---) will denote positive constants independent of ¢ and
T. Thus, noting (3.4.4) and (3.4.74), similar to (3.6.18), from (3.7.15)-(3.7.16) we

obtain

Vi(T) < Co{e +VE(MWE(T) + Vi(T)WS(T)
+VE(T)Wi(T) + UL (T)Wi(T) + UL (T)WE,(T)
+ (US(T))? + UL (T)VA(T) + UL (T)VE(T) (3.7.17)
+ (Voo (T) ' (WE(T) + Wi(T)) T + (UL (T))”
+ (Voo (T)P ™ VA(T)T + (Ve (T))P ™ VS (T)T } .

Similarly, instead of (3.6.19) we have

Vi(T) < Cs{e+VS(TWL(T) + i(T)WS(T)
+VE(TYWL(T) + UL (TYW1(T) + UL (T)WE(T)
+(US(T))? + UL (T)VA(T) + UL (T)VE(T) (3.7.18)
+ (Voo (T) T (WE(T) + Wi (T)) T + (UL (T))?
+ (Voo (D)) VA(T)T + (Voo (T))P T VS(TIT }

Clearly, (3.4.73) is still valid, namely, we have
USL(T) < CuVE(T) + Cs Voo (TYUS(T). (3.7.19)
Moreover, noting (3.7.11)-(3.7.12), similar to (3.6.21)-(3.6.25), we have

Wi(T) < Co{e+(Wa(T) + Wa(TIWi(T) + U (T)W5 (T)
+WE(TYVE(T) + WE(TIVA(T) + US (TYW(T) (3.7.20)
+WE(T) (US(D) ™ + (Voo (1)) WA(T)T ],
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Wo(T) < Cg{e+ (WD) + WE(TIWL(T) + UL (T)WE(T)
HVUDIWE(T) + VS (T)WE(T) + UL (T)Wi(T) (3.7.21)
FWE(T) (US(T)P ™ + (Voo (T)P ™ Wa(T)T 4
VS(T) < Co{e+VS(TIWL(T) + VE(T)WA(T) + Vi(T)WE,(T)
HUS(DWE(T) + UL (T)Wi(T) + Vi (T)WE(T)

- (3.7.22)
+(US(T))* + UL(TYA(T) + UL (T)VE(T)
+ (U (D) + (Voo D) (DT 0]

Wi(T) < Cr{e+(WS(D) + WS (M)W (T) + UL (T)WE(T)
+WE(T)WVE(T) + W (TWVA(T) + UL, (T)Wi(T) (3.7.23)
+WE(T) (US(T) ™ + (Voo (T))" ™ WA(T)T },

Voo (T) < Cho{e+ WS (T) + Wi(T)}. (3.7.24)
Noting (3.7.10) and the fact that p > 2 + a, we have
eP~1. g2tag—(atg) . o~(at)I+u) < F (3.7.25)

In a manner similar to the proof of (3.6.5)-(3.6.10), noting (3.7.25) and using
(3.7.17)-(3.7.24), we can easily prove (3.7.1)-(3.7.6) under the condition (3.7.7).

The proof of (3.7.8) is almost the same as that of (3.6.12) and can be handled
similarly. For brevity, we omit the details. Thus the proof of Lemma 3.12 is
finished. Q.E.D.

Remark 3.12. By (3.7.6) and (3.7.8), when €9 > 0 is suitably small, the Cauchy
problem (3.6.1)-(3.6.2) .-admits a unique C' solution v = u(t,z) on 0 < t < T,
where T satisfies (3.7.9). Hence, we get the following lower bound on the life span
T(e) of the C?! solution

T(e) > K,e~ 1+, (3.7.26)

where K, (= k10) is a positive constant independent of e. O
Proof of Theorem 3.3. In a manner similar to the proof of Theorem 3.2, using

Lemma 3.8 and Lemma 3.12, we can easily prove Theorem 3.3. For brevity, the
details are omitted. Q.E.D.
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§3.8. Formation of envelope of characteristics of
the same family — Proof of Theorem 3.4

We prove Theorem 3.4 only under the hypotheses of Theorem 3.2. Under the
assumptions of Theorem 3.3, the proof of Theorem 3.4 is similar.

We still adopt the normalized coordinates % mentioned in Remark 3.3, and still
simply denote it by u. Let (t*,z2*) be a starting point of singularity of the C*
solution to the Cauchy problem (3.3.1)-(3.3.2). By (3.6.58), we have

1

—2‘M0€_(1+a) <t < 2M0€_(1+a), (381)

where My is given by (3.6.59). In the domain
R(t") £ {(t,2)|t € [0,t*), « € R) (3.8.2)

the Cauchy problem (3.3.1)-(3.3.2) admits a unique C? solution u = u(t,z), and
by Lemma 3.9 we have ‘

[|lu(t, z)l|co(rer)) < K€, (3.8.3)

where K is a positive constant independent of €.

Let £ = (s, y:) be the i-th characteristic passing through any given point (¢, z)
in the domain R(t*), where (s,£) denote the coordinates of variable point on this
characteristic and y; stands for the z-coordinate of the intersection point of this

characteristic with the z-axis. We have

d:L‘z' S,Y;
20B) _ (s, (o), (3.8.4)
z:(0,y:)) =y and z(t,y;) = = (3.8.5)
Lemma 3.13. Foreachi =1,2,---,n and for any given point (¢, z), in the domain
R(t*) we have
w;(t, x)aig%’?’—") < K, (3.8.6)

provided that € > 0 is suitably small, where K> is a positive constant independent

ofi,t,y;, (orz) and e. O
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Lemma 3.13 shows that the singularity is produced by the envelope of charac-
teristics of the same family, and this solution is a “blow-up solution of cusp type”
according to the terminology of [Al]. In particular, if the ¢-th characteristics is
genuinely nonlinear, then our result goes back to the corresponding result in [A1]

and [Ma)].

Proof of Lemma 3.13. As in the proof of Theorem 3.2, the initial condition is
given by (3.6.60), and (3.6.61) holds. Let

¥i(z) = LOW(z) (@E=1,---,n). (3.8.7)

It follows from (3.6.61) that

'Ui(07x) = 612;'&(1‘) + 0(52) ('L = la U ,TL) (388)

and
w;i(0,z) = edl(z) + O(e?) (i=1,---,n). (3.8.9)
For each ¢ = 1,2,---,n and for any given point (¢,z), in the domain R(t*),

noting the definition of M, (see (3.6.59)) we see that

max
i=1,-,

{ 1 61+a)‘2_

al aull+a

O (Bw) G < g (3810)

Hence, for any fixed y; € R, there are two and only two possibilities:
Case I:

a: (#w9) " ¥iw) < o (3.8.11)
and
Case II:
o (5:) " F) € | i 3] (38.12)
where )
a; = —é%(O). (3.8.13)

1

We first consider Case 1.
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Noting (3.8.11), by Remark 3.11 (in which we take By = 4M, and B = 2M,)

we get

lw;(t,z:(t,y:))| < Cie, Vite|[0,t"), (3.8.14)
henceforth C; (j = 1,2,---,) denote positive constants independent of i,t,y; and
E.

Differentiating (3.8.4) with respect to y; gives
d axi('s;yi) au axz(s yz)
—_— | ——= _— 3.8.15
in which
w=u(s,z;(s,y:)). (3.8.16)

Noting (2.2.6) and (2.2.22), from (3.8.15) we obtain
d axz S ? Ti\S,Yi S,
( — ) nyl] (u) J ( .y ) uz( ) z_(Tyz_), (3817)

ds 0y; = i
where
'yij(u) = V)\l(u)'r](u) (3818)
Making use of Hadamard’s formula, we have
Yiii(w) = Yize(use;) = / Do (Tur, e TU 1, Wiy T 1, TUR U AT
J#1
A
= Z'}’z’ii(u)uj’
J#i
(3.8.19)

then (3.8.17) can be rewritten as

a (0zi(s,y:)\ _ N i oo\ Ozi(s,y) o Ox(s, ¥i)
(—'—"—"—) = Z (71] (u)wj 7iii(u)ujwz) B Yisi(wi€;)w; e .

ds Byi Py
(3.8.20)
On the other hand, it follows from the first equality of (3.8.5) that
am’i(O,yi)
—_— =1. 3.8.21
By, ( )

Solving the initial value problem (3.8.20)-(3.8.21) along the characteristic { =
xi(s,y;) yields

azi(sa y’L)

oy = &P [ /O (Py(7) + Po(r) + P3(r))dr|, Vse(0,t7], (3.822)
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where
Pi(r) =) (v (w)wy) (7, 24(7, 32)), (3.8.23)
J#1
Py(T) = ——Z (Vgii(u)ujwj) (r,zi(7,91)) (3.8.24)
i
and
P3(1) = — (vais(uses)w;) (1, 2:(7, ¥3))- (3.8.25)
Then it follows from (3.8.22) that
%;;yi) >0, Vsel0t) (3.8.26)
and
———axia(;;yi) < exp [/0 (1P (T + |Pe(7) + | Ps(T))dr |, Vs €[0,87). (3.827)

We first estimate/ | Ps(7)|dT.
0
Noting (3.6.53) and using (3.8.3) and (3.8.14), from (3.8.25) we get

|P3(7)] < Colus®lwi] < Csel*®, Ve [0,7). (3.8.28)
Then, noting (3.8.1) we obtain

/ |Ps(7)|dr < C3e'+ot* < 2C3M,, Vs € [0,t"). (3.8.29)
0

We now estimate /SIPI(T)IdT.
Noting (3.8.3), by (03.8.23) we have
[P < D> | tstrzrwar
< Cs {Wils) + (W(D2) + W(D§) + W(D3) + W () I(s) }
< Cs{Wi(s) + W(D2) + W(D§) + W(D3) + We ()},

Vs €[0,tr),
. (3.8.30)
where I(s) = / (1 + 7)~(t+#)dr. Then, by (3.6.4), (3.6.7) and (3.6.39) we get
0

/ \Py(7)|dr < Cye, Vs € [0,t"). (3.8.31)
0
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Finally, we estimate/ | P2(7)|dT.

0
Making use of (3.8.3) and (3.8.14), from (3.8.24) we obtain

/ |Po(7)|dr < C’SEZ/ lw; (T, z:(7, y5))|dT
0 J#i

< Coe{Ta(s) + (V(D2) + V(D) + V(D3) + U (s)) I(s) }
< Cuoe {Th(s) + V(D) + V(D§) + V(D}) + Ug(s) }
Vs €[0,t*),
s (3.8.32)
where, as before, I(s) = / (1 + 7)~(+#dr. Noting (3.4.101), (3.6.4)-(3.6.6),
(3.6.40) and (3.8.1), from (3?8.32) we have

‘/OSIPz(T)IdT < Cne{Ta(s) + VE(s) + V(D) + V(D) + V(D3) + Ug () }

< Ci2e%, Vselo,tY).
(3.8.33)

Hence, noting (3.8.26)-(3.8.27) and combining (3.8.29), (3.8.31) and (3.8.33),
we have proved that, for any fixed y; belonging to Case I, there exists a positive
constant K3 independent of ¢,t,y; and € such that

amz(ta yz)

0<
Oy:

< K3z, Vte]o,t"). (3.8.34)
Thus, by (3.8.14) and (3.8.34), (3.8.6) is proved in Case I.

We next consider Case II.

By (3.3.12), there exist two positive constants b; and b, independent of &, such

that for all y; satisfying (3.8.12) we have
Yi € [b1,b2]. (3.8.35)

Then it is easy to show that there exists a positive number ¢y independent of &,
such that for each ¢ = 1,---,n the i-th characteristic z = z;(¢,y) passing through
any given point (0,y) on the interval [b;, b2] on the z-axis must stay in the domain

DY for ty <t < t*.
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Consider any fixed y; satisfying (3.8.12). Without loss of generality, we may

assume that
>, ~ [ 2
Piw) >0 and ai (du(y)) - (3.8.36)
Noting (3.6.68), we have

lw;(t,z)| < Cize, V(t,z)€[0,T.] xR, Vj=1,---,n, (3.8.37)

where T, = K.e~(1+®) > ¢, in which K, is a positive constant independent of ¢

(see Remark 3.10 or Lemma 3.9).
Furthermore, by (3.6.94) there exists a constant § > 0 suitably small and inde-

pendent of € such that for € > 0 suitably small we have
1 -
wi(t, z;(t,y:)) > evi(y;) >0, Vtel0,T;3, (3.8.38)
where T; = 6e~(1*2) with
to < T; <T.. (3.8.39)

We now prove that w;(t, z;(t,y:)) is a strictly increasing function of ¢ for ¢ > T,

and then
1 -
wi(t, zi(t, y:)) > 5ez/zé(yz-) >0, Vte/[T;,t*). (3.8.40)
In fact, in the present situation, (3.6.96) reduces to

dw,»
dit

= ao(t; 4, ¥:)w? + a1 (t; 4, y:)wi + az2(t;4,v:), (3.8.41)

where ag(t;¢,y:), ai1(t;4,¥:), az(t;3,y:) are defined by (3.6.97)-(3.6.99), in which
u =u(t,zi(t,y:)) and w; = w;(¢,z:(t,y:)) ( = 1,---,n), respectively.
Similar to (3.6.117), we have

Yiii (wi(t, zi(t, y:))es) = bie® + O (e'1%), Vite [0,t%), (3.8.42)

where

b; = a, (Ja(yi))a > 0, (3.8.43)
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in which a; is defined by (3.8.13). Furthermore, similar to (3:6.118), we have

Iviss (w(t, 24(t,1:))) — yaua(ws (b, it 9:))es)] < Cra(1+8)~FRIUE (2)
< Cise(1+t)~(+m)
< Cree(1 + T5)~0+4)
< Cirelte, Vite [T;th).
(3.8.44)
‘Then we obtain
ao(t;i,y:) = bie® + O (e't?), Vite [T5,t%). (3.8.45)

On the other hand, using Lemma 3.9 and noting the fact that the characteristic
x = z;(t,y;) must stay in D} for ¢ > T}, from (3.6.98) we obtain

laa(t;4,9:)] < Cis {Z(lel + 'ujl)(t,xi(t,yj))}

J#
Cio {(W5(t) + US (1)) (1 + Tj) =1+ }
< Cype®t, Vite [T;t%),

(3.8.46)

IA

where we have made use of Hadamard’s formula for Bu(u) - Eii(uiei):

bm(u) bn(uzez E/ gzﬂ (TUL, - TUG—1, Uiy TUG41,* *, TUR)UAT.  (3.8.47)
J#i J

Similarly, we can show that
laa(t;4,y:)| < Co1e®Te, Vte€ [T5,t%). (3.8.48)

Noting (3.8.45)-(3.8.46) and (3.8.48), from (3.8.41) we get

dw;
d;t

> —bie®w? — Coe®t, Vit € [T, t%). (3.8.49)

1
27"

At t = T3, by (3.8.38) we observe that the right-hand side of (3.8.49) is positive.
Hence w;(t, z;(t,y;)) is a strictly increasing function of ¢ at lease in a neighbourhood
of t = T}, then noting (3.8.49) again, w;(t,z;(¢,y:)) is always a strictly increasing
function of ¢ for t € [T;,t*). Thus, (3.8.40) holds.
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For any j # 1, using (3.6.7) we have

lwj(t, z:(t,9:))] < Coz(1+t)"FWIWE (¢)
Caa(1+ T3)~(+r)g (3.8.50)
< 02552, Vte [Ts, t*),

IA

provided that € > 0 is suitable small.
Since the C*! norm of ¥(z) is bounded, using the first inequality of (3.8.36) and
noting (3.8.12), for any j # 7 we have

ij(t’xi(t:yi)” < wi(t7$i(t>yi))’ Vte [TS! t*)' (3851)

Noting (3.8.37) and (3.8.39) and making use of (3.8.23)-(3.8.25), similar to Case I,

we can prove easily

axi(ta y‘t)
Ay;

where K4 is a positive constant independent of ¢,¢,y, and €. Moreover, (3.8.26)
still holds.
Noting (2.2.19), (2.2.6) and (3.8.15), we have
d aazl(t ;) (t yz) Oxi(t, y:)
= Azt y) —F— ij z ;
(3.8.53)

0< < K4, Vte[0,Ty, (3.8.52)

where 7;;1(u) is defined by (2.2.26).
Noting (3.8.3), (3.8.26), (3.8.51), (2.2.27), (3.2.7) and (3.2.12), from (3.8.53) we

obtain

ad 1 YyYi 15} T T') i
[wi(t, (8, y:))| Z2528) < (T3, 24(T5, )| 22 50) 4

t
c —(14u) 1., . , Ozi(7,yi)
026 {Woo(t)/ (1 + T) |’UJ1(T, mz(Tay))l Ay dr + (3854)

T;

By Hadamard’s formula, we have

bik (u) — Bik(ukek)l Iwklgﬂa;’ildr} , Vte [T t").

Abyy
zk(u) _bzk(ukek) Z/ 61: (TU1,“',TUk_l,Uk,TUk+1,'",Tun)'ll,jd’r.
i#k J

(3.8.55)
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Noting (3.8.3) and (3.8.40), we get

Then, using (3.8.55)-(3.8.56) and noting the definitions of US, (t) and W, (t), from
(3.8.54) we obtain

Jwi(t, @i (8, y:))| 22442 < |y (T, 24(T3, v:)) IM + Cas (W5 (1) + U (1)) x
/ (1 + 1)~ O+ w, (7, 24 (7, yi))l_%_?:_jiddT’ Vte[T;t),

s (3.8.57)
where we are aware of the fact that the term |u, (7, zi(7, y:))|wi(T, (7, %)) (5 #
i) can be controled by (1 + 7)~(+KUC (t)w;(7, z:(7,y;)), and the fact that the
term |u; (7, (7, v:))we (7, 2:(7,4:))| (J = 1,---,n; k # i) can be bounded by
Cor|wi (7, zi(7, ¥:)) |wi(T, z:(7,9:)), then by Cor(1 + 7)WL ()w, (7, z: (7, v3)),
in which 7 satisfies that T; < 7 < ¢t < t*. Hence, noting Lemma 3.9 and using
(3.8.57), we can easily prove

Ozi(t, 0z:(T5, y .
st (e, 9 ) TG < O fun(Tp, (T3, 00) | ZEEE ) ),

' (3.8.58)
provided that ¢ > 0 is suitably small. Thus, noting (3.8.39) and using (3.8.37) and
(3.8.52), we get easily

Oz ;(t,y;)

< (Cs0e, Vte [O,t*). (3859)
9y;

lwi(t, z:(t,y:))|

This proves (3.8.6) in Case II.
" Therefore the proof of Lemma 3.13 is completed. Q.E.D.

Proof of Theorem 3.4. By Lemma 3.9, on the existence domain of the C!
solution u = u(t,z) to the Cauchy problem (3.3.1)-(3.3.2), the C° norm of v =
u(t, z) is uniformly bounded, then the first order derivatives of v = u(t,z) must
tend to the infinity at the starting point of singularity. By Lemma 3.13, if there
exist yo € Rand ¢ € {1,---,n} such that
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then
M —s0 as t 7t". (3.8.61)
dyo
In particular, for any given 7 ¢ J1, a; (see (3.8.13)) is equal to zero, thus
for any given y; € R, (3.8.11) holds and then (3.8.14) is valid. That is to say,
the corresponding value of w; remains bounded, hence it is impossible to have
(3.8.60) and (3.8.61)*. Therefore, the characteristics of the i-th family never form

an envelope on the domain 0 < ¢t < T(g). This proves Theorem 3.4. Q.E.D.

§3.9. Remarks on the critical case
Similar to Remark 3.10, we can easily prove the following proposition.

Proposition 3.2. Under the assumptions mentioned at the beginning of §3.3,
suppose that A(u) € C* and B(u) € C? in a neighbourhood of u = 0. Suppose
furthermore that ¢(z) = ey (x), where € > 0 is a small parameter and ¥(z) is a
C* vector function satisfying (3.3.12). Suppose finally that each characteristic of
system (3.3.1) is either critical or weakly linearly degenerate, and B(u) satisfies
the matching condition. Then, for any given integer NV > 1, there exists g =
g0(N) > 0 so small that for any fixed € € (0,¢], the life span T(¢) of the C1
solution u = u(t, ) to the Cauchy problem (3.3.1)-(3.3.2) satisfies

T(e) > Cne™ v, (3.9.1)
where C'y is a positive constant independent of . 0O
When B(u) does not satisfy the matching condition, we have

Proposition 3.3. Under the assumptions mentioned at the beginning of §3.3,

suppose that A(u) and B(u) are suitably smooth in a neighbourhood of u = 0.

4In the present situation, (3.8.14) is valid. Then it follows from (3.8.14) directly that (3.8.60)
is impossible. Noting (3.8.29), (3.8.31) and (3.8.33), from (3.8.22) we observe that (3.8.61) is also

impossible.
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Suppose furthermore that p(z) = ey(x), where € > 0 is a small parameter and Y(x)
is a C! vector function satisfying (3.3.12). Suppose finally that each characteristic

of system (3.3.1) is either critical or weakly linearly degenerate, and B(u) satisfies
B(u) = O (Jul?) (3.9.2)

in a neighbourhood of u = 0, where p is an integer > 2. Then there exists £ =
g0(p) > 0 so small that for any fixed € € (0, g], the life span T'(¢) of the C* solution
u = u(t, ) to the Cauchy problem (3.3.1)-(3.3.2) satisfies

T(g) > Cpe~(P1-A) (3.9.3)

where & € (0,1) is an arbitrary fixed real number and C, is a positive constant

independent of . 0O

* In the present situation, Lemma, 3.8 is still valid. In order to prove Proposition

3.3 it suffices to show the following.

Lemma 3.14. Under the assumptions of Proposition 3.3, in the normalized co-
ordinates there exists €9 > 0 so small that for any fixed € € (0,0, on any given
existence domain 0 < t < T of the C* solution u = u(t,x) to the Cauchy problem
(3.6.1)-(3.6.2) there exist positive constants k; (¢ = 1,2,---,8) independent of ¢

and T, such that the following uniform a priori estimates hold:

US(T) < ke, (3.9.4)
VE(T) < kae, (3.9.5)
WE(T) < ke, (3.9.6)
Wi(T) < ke, (3.9.7)
Vi(T) < ks, (3.9.8)
Voo (T) < Kee (3.9.9)

and
Woo(T) < K7€, (3.9.10)
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where

TeP~17A < kg, (3.9.11)

and i € (0,1) is an arbitrary fixed real number. O

Proof. The proof of this Lemma is almost the same as that of Lemma 3.12 and
can be handled similarly.
Without loss of generality, we may suppose
p—1—-14p
(3.9.12) implies that
gP . g~ UH(P—1-0) < ¢ (3.9.13)

In a way similar to the proof of (3.7.1)-(3.7.6) and (3.7.8), noting (3.9.13) and
using (3.7.17)-(3.7.24) (in which we may assume that a > p since each characteristic
of system (3.6.1) is either weakly linearly degenerate or critical), we can prove that
there exist positive constants x; (¢ = 1,---,7) and a small kg > 0 such that, when
T satisfies (3.9.11), the estimates (3.9.4)-(3.9.10) hold. For brevity, the details are
omitted. Q.E.D.

In the critical case, however, the precise estimate on the life span of the C!
solution might be very complicated. A discussion for a single equation can be
found in §5 of [LZK2]. Recently, A.Hoshiga [H] generalizes the result given in §5
of [LZK2] to the case that system may be 2 x 2, under some assumptions he gives
a similar result. A discussion on general critical quasilinear hyperbolic systems in
diagonal form is carried out in Appendix 2, and a sharp estimate on life span of

the classical solutions is given.



