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Part I

Two-dimensional chiral quantum
fields
In Section 1, the notion of fields and the residue products are introduced alge-
braically and some elementary properties are summarized. Section 2 is devoted to
the study of the mutual locality of fields. The notion of operator product expansion
is explained and some examples are given. In Section 3, we will derive our identity
(3) in the introduction.

1 Fields and their residue products

We describe the definitions and basic properties concerning two-dimensional chiral
quantum fields in the language of formal Laurent series.

1.1 Preliminaries

Throughout the paper, we always work over a field $k$ of characteristic zero. We
denote by $V[[z, z^{-1}]]$ the set of all formal Laurent series in the variable $z$ with coef-
ficients in a vector space $V$ possibly having infinitely many terms both of positive
and of negative degree:

$V[[z, z^{-1}]]=\{\sum_{n=-\infty}^{\infty}v_{n}z^{-n-1}|v_{n}\in V\}$ .

The subset consisting of all series with only finitely many terms of negative degree
is denoted by

$V((z))=\{\sum_{n=n_{0}}^{-\infty}v_{n}z^{-n-1}|v_{n}\in V,$ $n_{0}\in \mathbb{Z}\}$ .

Similarly we write

$V[[y, y^{-1}, z, z^{-1}]]=\{\sum_{m,n=-\infty}^{\infty}v_{m,n}y^{-m-1}z^{-n-1}|v_{m,n}\in V\}$ ,

$V((y, z))=\{\sum_{m=mo}^{-\infty}\sum_{n=n_{O}}^{-\infty}v_{m,n}y^{-m-1}z^{-n-1}|v_{m,n}\in V,$ $m_{0},$ $n_{0}\in \mathbb{Z}\}$ .
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Let the symbols $(y-z)^{n}|_{|y|>|z|}$ and $(y-z)^{n}|_{|y|<|z|},$ $(n\in \mathbb{Z})$ denote the elements of
$k[[y, y^{-1}, z, z^{-1}]]$ obtained by expanding the rational function $(y-z)^{n}$ into series
convergent in the regions $|y|>|z|$ and $|y|<|z|$ respectively:

$(y-z)^{n}|_{|y|>|z|}=\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}n\\i\end{array}\right)y^{n-i}z^{i}$ , $(y-z)^{n}|_{|y|<|z|}=\sum_{i=0}^{\infty}(-1)^{n+i}\left(\begin{array}{l}n\\i\end{array}\right)y^{i}z^{n-i}$ .

We will often neglect writing the region of expansion in case it is obvious from the
context (see Notation 1.3.3).

The following lemma will be frequently used later.

Lemma 1.1.1. Let $a(y, z)$ be a series with only $Ii$nitely many terms of negative or
positive degree in $y$ or $z$ . If $a(y, z)$ satisfies $(y-z)^{m}a(y, z)=0$ for $some$ nonnegative
integer $m$ , then $a(y, z)=0$ .

Proof. Consider the series $b(y, z)=(y-z)^{m}$
‘ la(y, z) and let the coefficients $ b_{k,\ell}\in$

$V$ be defined by $b(y, z)=\sum_{k,\ell\in \mathbb{Z}}b_{k,\ell}y^{-k-1}z^{-\ell-1}$ . It follows from $(y-z)b(y, z)=$

$(y-z)^{n}a(y, z)=0$ that

(1.1.1) $b_{k+1,\ell}=b_{k,\ell+1}$ for all $k,$ $\ell\in \mathbb{Z}$ .

Since $a(y, z)$ has only finitely many terms of negative or positive degree in $y$ or
$z$ , so does $b(y, z)$ . Thus (1.1.1) implies $b(y, z)=0$ . Repeating this procedure, we
arrive at $a(y, z)=0$ . $\square $

1.2 Series on a vector space

Let $M$ be a vector space and consider the space (End $M$ ) $[[z, z^{-1}]]$ of all formal
Laurent series with coefficients being endomorphisms (operators) on $M$ . We simply
call such series1 $A(z)$ a senes on $M$ . For a series $A(z)$ on $M$ , we set

$A_{n}={\rm Res}_{z=0}A(z)z^{n}=$ coefficient of $z^{-n-1}$ in $A(z)$

so that the expansion of $A(z)$ is

$A(z)=\sum_{n\in \mathbb{Z}}A_{n}z^{-n-1}$
, $A_{n}\in EndM$ .

The $A_{n}$ is called a Fourier mode of $A(z)$ . We write

$A(z)v=\sum_{n\in \mathbb{Z}}A_{n}vz^{-n-1}$

1 It is called a formal distribution in [K].
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for a vector $v\in M$ . Given two series $A(z)$ and $B(z)$ on $M$ , we set

$A(y)B(z)=\sum_{m,n\in \mathbb{Z}}A_{m}B_{n}y^{-m-1}z^{-n-1}$
,

where $A_{m}B_{n}$ denotes the composition of endomorphisms.
The derivative of a series $A(z)$ is defined by

$\partial A(z)=\sum_{n\in \mathbb{Z}}(-n-1)A_{n}z^{-n-2}=-\sum_{n\in \mathbb{Z}}nA_{n-1}z^{-n-1}$ .

More generally, for a nonnegative integer $k\in \mathbb{N}$ , we define

$\partial^{(k)}A(z)=\sum_{n\in \mathbb{Z}}\left(\begin{array}{l}--n1\\k\end{array}\right)A_{n}z^{-n-k-1}=\sum_{n\in \mathbb{Z}}(-1)^{k}\left(\begin{array}{l}n\\k\end{array}\right)A_{n-k}z^{-n-1}$ .

Finally, we set

$A(z)_{+}=\sum_{n\geq 0}A_{n}z^{-n-1}$ and $A(z)_{-}=\sum_{n<0}A_{n}z^{-n-1}$

respectively2. Then we have $\partial(A(z)_{\pm})=(\partial A(z))_{\pm}$ . For two series $A(z)$ and $B(z)$ ,
we set

$\circ\circ A(y)B(z)_{0}^{o}=A(y)_{-}B(z)+B(z)A(y)_{+}$ ,

which is an element of (End $M$ ) $[[y, y^{-1}, z, z^{-1}]]$ .

1.3 Fields on a vector space

Next we consider the notion of two-dimensional chiral3 quantum fields.

Definition 1.3.1. A series $ A(z)\in$ (End $M$ ) $[[z, z^{-1}]]$ is called a field 4 on $M$ if
$A(z)v\in M((z))$ for any $v\in M$ .

In other words, $A(z)$ is a field if and only if, for any $v\in M$ , there exists an
integer $n_{0}$ depending on $v$ such that $A_{n}v=0$ holds for all $n\geq n_{0}$ . In this case,
we will briefly say that $A_{n}v=0$ for $n\gg O$ . Note that if $A(z)$ is a field, then so is
$\partial A(z)$ .

The following simplest example of a field will play an important role later:

2The parts $A(z)_{+}$ and $A(z)_{-}$ respectively appears as the annihilation and the creation parts
in the context of vertex algebra, see the axiom (B2) in Subsection 4. 1

3Here chiral means the “holomorphic part” in the sense of conformal field theory.
4We followed the terminology in [K]. It is also called a weak vertex operator in the literature

of vertex operator algebras (cf. [Li2]).
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Definition 1.3.2. The identity field on $M$ is the field

$I(z)=id_{M}$

of which the only nonzero term is the constant term being the identity operator on
$M$ .

Now, let $A(z)$ be a series and $B(z)$ a field on $M$ . Consider the following ex-
pression

(1.3.1) ${\rm Res}_{y=0}A(y)B(z)(y-z)^{m}|_{|y|>|z|}=\sum_{n\in \mathbb{Z}}(\sum_{i=0}^{\infty}(-1)^{\iota}\left(\begin{array}{l}m\\i\end{array}\right)A_{m-i}B_{n+i})z^{-n-1}$

for a fixed integer $m$ . Then, for any $v\in M$ , the second sum in the right applied
to $v$ is a finite sum for each $n$ since finitely many $B_{n+i}v$ are nonzero. Moreover
$B_{n+i}v$ vanish for sufficiently large $n$ . Therefore (1.3.1) defines a field on $M$ .

Next, assume further that $A(z)$ is a field, and consider

(1.3.2) ${\rm Res}_{y=0}B(z)A(y)(y-z)^{m}|_{|y|<|z|}=\sum_{n\in \mathbb{Z}}(\sum_{i=0}^{\infty}(-1)^{m+i}\left(\begin{array}{l}m\\i\end{array}\right)B_{m+n-i}A_{i})z^{-n-1}$

for a fixed integer $m$ . Then, for any $v\in M$ , the second sum in the right applied to
$v$ is a finite sum for each $n$ since finitely many $A_{i}v$ are nonzero. Let $A_{0}v,$

$\ldots,$
$A_{\ell}v$

be the nonzero vectors. Then, for each $ 0\leq i\leq\ell$ , we have $B_{m+n_{i}-i}A_{i}v=0$ for
sufficiently large $n_{l}$ . Therefore, taking the maximum of $n_{i},$ $(0\leq i\leq\ell)$ , we see that
the above summation is zero for sufficiently large $n$ . Hence (1.3.2) gives rise to a
field on $M$ .

Notation 1.3.3. To simplify the presentation of the paper, we often omit the region
of the expansion of $(y-z)^{m}$ if there is no danger of confusion; The region is
determined by the order of $A(y)$ and $B(z)$ . Namely, we always regard

$A(y)B(z)(y-z)^{m}$ and $B(z)A(y)(y-z)^{m}$

as the series obtained by expanding $(y-z)^{m}$ convergent in the regions

$|y|>|z|$ and $|y|<|z|$

respectively. Hence $A(y)B(z)(y-z)^{m}\neq B(z)A(y)(y-z)^{m}$ for $m<0$ even if
$A(y)B(z)=B(z)A(y)$ . We also obey this rule in case more than two series are
involved.
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If $B(z)$ is a field, then

$\underline{{\rm Res}_{\tau-0}}\partial A(y)B(z)(y-z)^{m}=-m{\rm Res}_{y=0}A(y)B(z)(y-z)^{m-1}$

(1.3.3)
$=\partial(\underline{{\rm Res}_{r-0}}A(y)B(z)(y-z)^{m})-{\rm Res}_{y=0}A(y)\partial B(z)(y-z)^{m}$

and if $A(z)$ and $B(z)$ are fields, then

${\rm Res}_{g=0}B(z)\partial A(y)(y-z)^{m}=-m{\rm Res}_{y=0}B(z)A(y)(y-z)^{m-1}$

(1.3.4)
$=\partial(\underline{{\rm Res}_{r-0}}B(z)A(y)(y-z)^{m})-{\rm Res}_{y=0}\partial B(z)A(y)(y-z)^{m}$ .

We note that normally ordered product5

$\circ\circ A(z)B(z)_{0}^{o}=A(z)_{-}B(z)+B(z)A(z)_{+}$

makes sense if $A(z)$ and $B(z)$ are fields.

1.4 Residue products of fields

Now let us explain the residue products6 ([BG], [Li, Lemma 3.1.4], [LZ1, Definition
2.1]), indexed by integers, which assign a field to an ordered pair of fields for each
integer $m$ .

Definition 1.4.1. For two fields $A(z)$ and $B(z)$ on $M$ , the m-th residue product,
$(m\in \mathbb{Z})$ , is defined by

(1.4.1) $A(z)_{(m)}B(z)={\rm Res}_{y=0}A(y)B(z)(y-z)^{m}-\underline{{\rm Res}_{r-0}}B(z)A(y)(y-z)^{m}$ .

Explicitly, (1.4.1) is written as

$A(z)_{(m)}B(z)=\sum_{n\in \mathbb{Z}}(A_{(m)}B)_{n}z^{-n-1}$
,

where

$(A_{(m)}B)_{n}=\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}m\\i\end{array}\right)(A_{m-i}B_{n+i}-(-1)^{m}B_{m+n-i}A_{i})$ .

We remark that the residue product $A(z)_{(m)}B(z)$ for nonnegative $m$ makes sense
even if $A(z)$ or $B(z)$ is not a field.

5cf. [BBS, (A.2)], [SY, (5.5)]
6In the literature, it is simply called the n-th product. However, to distinguish it from the

abstract products of a vertex algebra, we have added the adjective residue.
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Note 1.4.2. In the physics notation, the residue products are expressed as (cf. [BG,
(2.11)]):

$A(z)_{(m)}B(z)=\oint_{C_{z}}\frac{dy}{2\pi\sqrt{-1}}R(A(y)B(z))(y-z)^{m}$

$=\oint_{|y|>|z|}\frac{dy}{2\pi\sqrt{-1}}A(y)B(z)(y-z)^{m}-\oint_{|y|<|z|}\frac{dy}{2\pi\sqrt{-1}}B(z)A(y)(y-z)^{m}$

where $R$ denotes the radial $orderi\cdot ng$ defined by

$R(A(y)B(z))=\left\{\begin{array}{ll}A(y)B(z), & |y|>|z|,\\B(z)A(y), & |y|<|z|,\end{array}\right.$

and $C_{z}$ is a small contour around $z$ .
Note that if $A(z)$ and $B(z)$ are fields, then $A(z)_{(m)}B(z)$ is again a field on $M$

by the consideration in the preceding subsection.
We always understand that the derivative precedes the residue product:

$\partial A(z)_{(m)}B(z)=(\partial A(z))_{(m)}B(z)$ , $A(z)_{(m)}\partial B(z)=A(z)_{(m)}(\partial B(z))$ .

Then, by (1.3.3) and (1.3.4), we have

(1.4.2) $\partial A(z)_{(m)}B(z)=-mA(z)_{(m-1)}B(z)=\partial(A(z)_{(m)}B(z))-A(z)_{(m)}\partial B(z)$ .

In particular, let us consider the $(-1)$ st product:

$A(z)_{(-1)}B(z)=\sum_{n\in \mathbb{Z}}(\sum_{x=0}^{\infty}(A_{-i-1}B_{n+i}+B_{n-i-1}A_{i}))z^{-n-1}$ .

It coincides with the normally ordered product

$\circ\circ A(z)B(z)_{0}^{o}=A(z)_{-}B(z)+B(z)A(z)_{+}$ .

Therefore, using (1.4.2), we have

$A(z)_{(-k-1)}B(z)=\circ\circ\partial^{(k)}A(z)B(z)_{0}^{o}$

for a nonnegative integer $k$ . Note that the normally ordered product is neither
commutative nor associative in general. However, we have the following property
(cf. [BBS, p.365], [SY, p.292]):

Proposition 1.4.3. Let $A(z),$ $B(z)$ and $C(z)$ be fields. Then

$(A(z)_{(-1)}B(z))_{(-}{}_{1)}C(z)-(B(z)_{(-1)}A(z))_{(-}{}_{1)}C(z)$

$=A(z)_{(-1)}(B(z)_{(-}{}_{1)}C(z))-B(z)_{(-1)}(A(z))_{(-1)}C(z))$
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From this, we easily deduce that the bracket

$[A(z), B(z)]=A(z)_{(-1)}B(z)-B(z)_{(-1)}A(z)$

satisfies the Jacobi identity

$[A(z), [B(z), C(z)]]=[A(z), B(z)],$ $C(z)$ ] $+[B(z), [A(z), C(z)]]$

whereas $[B(z), A(z)]=-[A(z), B(z)]$ is obvious.
Let us close this subsection with the following:

Proposition 1.4.4. Let $A(z)$ be a field and $I(z)$ th $e$ identity field on a vector
space M. Then

(1.4.3) $A(z)_{(m)}I(z)=\left\{\begin{array}{ll}0, & (m\geq 0),\\\partial^{(-m-1)}A(z), & (m\leq-1),\end{array}\right.$

(1.4.4) $I(z)_{(m)}A(z)=\left\{\begin{array}{ll}0, & (m\neq-1),\\A(z), & (m=-1).\end{array}\right.$

We note, in particular,

(1.4.5) $A(z)_{(m)}I(z)=\left\{\begin{array}{ll}0, & (m\geq 0),\\A(z), & (m=-1),\end{array}\right.$

which is a part of the axioms for a vertex algebra (see Subsection 4.1).

2 Mutually local fields

2.1 Locality of fields

The notion of locality for two-dimensional chiral quantum fields is related to Wight-
man’s axioms for quantum field theory (cf. $[K$ , Chapter 1]). We adopt the following
formulation in the language of formal Laurent $series^{7}$ :

7The condition (2.1.1) was first considered by Dong-Lepowsky [DL, (7.24)] under the term
commutativity, while the same was considered in earlier papers in the language of operator valued
rational functions (cf. $[G],[FLM],[FHL]$ ).
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Definition 2.1.1. Two series $A(z)$ and $B(z)$ are called mutually local if

(2.1.1) $A(y)B(z)(y-z)^{n}=B(z)A(y)(y-z)^{n}$

holds for some nonnegative integer $n$ . In this case, we also say $A(z)$ is local to
$B(z)$ .

In terms of Fourier modes, (2.1.1) is written as

$\sum_{x=0}^{n}(-1)^{\iota}\left(\begin{array}{l}n\\i\end{array}\right)A_{p+n-\iota}B_{q+i}=\sum_{i=0}^{n}(-1)^{x}\left(\begin{array}{l}n\\i\end{array}\right)B_{q+l}A_{p+n-i}$ ,

or equivalently

$\sum_{x=0}^{n}(-1)^{\iota}\left(\begin{array}{l}n\\i\end{array}\right)(A_{p+n-i}B_{q+\iota}-(-1)^{n}B_{q+n-i}A_{p+\iota})=0$

where $p,$ $q$ run over all integers. Note that $A(z)$ or $B(z)$ need not be local to itself.
Let us introduce the following notion:

Definition 2.1.2. The order of locality of series $A(z)$ and $B(z)$ is the minimum of
the nonnegative integers $n$ satisfying (2.1.1).

Thus, $A(z)$ and $B(z)$ are mutually local at order $n_{0}$ if and only if (2.1.1) holds
precisely for $n\geq n_{0}$ . Then, by the definition of the residue products, we have

(2.1.2) $A(z)_{(n)}B(z)=0$ , $(n\geq n_{0})$ .

Note that it may happen that $A(z)_{(n)}B(z)=0$ holds for some $0\leq n<n_{0}$ . It is
easy to see that if $A(z)$ and $B(z)$ are mutually local at order $n_{0}(\geq 1)$ , then $\partial A(z)$

and $B(z)$ are mutually local at order $n_{0}+1$ .

Now we turn to the study of the locality of many series. We say that series
$A^{1}(z),$

$\ldots,$
$A^{\ell}(z)$ are mutually local if all the distinct pairs $A^{\iota}(z)$ and $A^{g}(z),$ $(i\neq j)$ ,

are mutually local.
The following proposition is a generalization of [Li, proof of Proposition 3.2.7].

Recall our convention in Notation 1.3.3

Proposition 2.1.3. Let $A^{1}(z),$
$\ldots,$

$A^{\ell}(z)$ be mutually local series an $d$ let $m_{ij}$ be
the $ord$er of $lo$cality of $A^{i}(z)$ and $A^{j}(z)$ for each $i<j$ . Then

$[\cdots[[A^{1}(z_{1}), A^{2}(z_{2})], A^{3}(z_{3})], \cdots A^{\ell}(z_{\ell})]\prod_{l<J}(z_{i}-z_{j})^{n,}’=0$

holds if $\sum_{\iota<j}n_{\iota g}\geq\sum_{x<j}m_{ig}-(P-2)$ .
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Proof. We show by induction on $\ell$ . The case $P=2$ is nothing but the definition of
the locality. Suppose $\ell>2$ . Then, by expanding as

$(z_{i}-z_{\ell})^{n,\ell}=(z_{i}-z_{j}+z_{g}-z_{\ell})^{n_{i\ell}-m_{\iota\ell}}(z_{i}-z_{\ell})^{m_{x\ell}}$

$=\sum_{s=0}^{n_{?\ell}-m_{i\ell}}\left(\begin{array}{l}n_{i\ell}-m_{i\ell}\\s\end{array}\right)(z_{i}-z_{j})^{n_{\tau l}-m_{i\ell}-s}(z_{j}-z_{\ell})^{s}(z_{j}-z_{\ell})^{m_{i\ell}}$

for an appropriate $j$ if $n_{i\ell}\geq m_{i\ell}$ , and by repeating this procedure, the left-hand
side of the desired equality is written as a linear combination of terms of the form

(2.1.3)
$[\cdots[[A^{1}(z_{1}), A^{2}(z_{2})], A^{3}(z_{3})], \cdots A^{\ell}(z_{\ell})]\prod_{i<j}(z_{i}-z_{j})^{p_{?j}}$

where the exponents $p_{ij}$ satisfy

$\sum_{1\leq i<j\leq\ell-1}p_{ij}\geq 1\leq i<\leq\ell-1\sum_{J}m_{ij}-(P-3)$
, or $p_{i\ell}\geq m_{i\ell}$ for all $i$ .

In the former case, (2.1.3) vanishes by the inductive hypothesis, while in the latter
case, by the locality of $A^{i}(z)$ and $A^{\ell}(z)$ . $\square $

In particular, we have

Lemma 2.1.4. Let $A(z),$ $B(z)$ an$dC(z)$ be mutually local $s$eries and let $k_{0},$ $\ell_{0}$ and
$m_{0}$ be th$eord$er of locality of $A(z)$ and $C(z),$ $B(z)$ and $C(z)$ , and $A(z)$ and $B(z)$

respectively. Then, for any integers $k,$ $pm$ ,

$(y-z)^{n}(A(x)B(y)C(z)-B(y)A(x)C(z))(x-y)^{m}(y-z)^{\ell}(x-z)^{k}$

$=(y-z)^{n}(C(z)A(x)B(y)-C(z)B(y)A(x))(x-y)^{m}(y-z)^{\ell}(x-z)^{k}$

holds for all $n\in \mathbb{N}$ satisfying $n\geq k_{0}+P_{0}+m_{0}-k-\ell-m-1$ .

An immediate consequence of this is ([Li, Proposition 3.2.7])

Proposition 2.1.5. $IfA(z),$ $B(z)$ and $C(z)$ are mutually local Felds, then $A(z)_{(m)}B(z)$

an$dC(z)$ are local.

Here the order of locality of $A(z)_{(m)}B(z)$ and $C(z)$ is at most $k_{0}+\ell_{0}+m_{0}-m-1$

for $m<m_{0}$ whereas $A(z)_{(m)}B(z)=0$ for $m\geq m_{0}$ .
Another consequence of the locality is the following:
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Proposition 2.1.6. Let $A^{1}(z),$
$\ldots,$

$A^{\ell}(z)$ be mutually local fi $elds$ . Then, for any
$u\in M$ ,

(2.1.4) $A_{p_{1}}^{1}\cdots A_{p_{l}}^{\ell}u=0$ , $(p_{1}+\cdots+p_{\ell}\geq n,p_{1}, \ldots,p_{\ell}\in \mathbb{Z})$ ,

for suficiently 1arge $n$ .

Proof. Since $A^{i}(z)$ are fields, we have $A_{p}^{i}u=0,$ $(p\geq n_{i})$ , for sufficiently large
$n_{i}$ . Let $m_{ij}$ be the order of locality of $A^{i}(z)$ and $A^{j}(z)$ and set $n=\sum_{i=1}^{\ell}n_{i}+$

$\sum_{1\leq i<j\leq\ell}m_{ij}-\ell+1$ . We shall prove (2.1.4) for this $n$ by induction on $\ell$ . It trivially
holds in the case $\ell=1$ . We suppose $\ell>1$ . Then, by the locality, we have

$A^{1}(z_{1})\cdots A^{\ell-1}(z_{\ell-1})A^{\ell}(z_{\ell})\prod_{i=1}^{\ell-1}(z_{i}-z_{\ell})^{m_{tl}}$

$=A^{\ell}(z_{\ell})A^{1}(z_{1})\cdots A^{\ell-1}(z_{\ell-1})\prod_{\iota=1}^{\ell-1}(z_{i}-z_{\ell})^{m_{\ell}}\cdot$ .

Therefore, we have

(2.1.5)

$\sum_{k_{1},\ldots,k_{p-1}\geq 0}\prod_{i=1}^{\ell-1}(-1)^{k_{z}}\left(\begin{array}{l}m_{i\ell}\\k_{i}\end{array}\right)A_{p_{1}-k_{1}}^{1}\cdots A_{p_{\ell-1}-k_{\ell-1}}^{\ell-1}A_{pp+k_{1}+\cdots+k_{\ell-1}}^{\ell}u$

$=\sum_{k_{1},\ldots,k_{l-1}\geq 0}\prod_{i=1}^{\ell-1}(-1)^{k_{?}\left(\begin{array}{l}m_{i\ell}\\k_{i}\end{array}\right)p}A_{p\ell+\Sigma_{x=1}(m_{i\ell}-k_{t})}^{\ell}\ell-1A_{p_{1}-m,+k_{1}}^{1}\cdots A_{p_{\ell-1}-m_{\ell-1}+k_{l-1}}^{\ell-1}u$

for any $p_{1},$ $\ldots,p_{\ell}\in \mathbb{Z}$ .

Now, suppose $p_{1}+-+p_{\ell}\geq n$ . If $p_{\ell}\geq n_{\ell}$ , then $A_{p_{1}}^{1}\cdots A_{p\ell-1}^{\ell-1}A_{p_{\ell}}^{\ell}u=0$ . If
$p_{\ell}<n_{\ell}$ , then we have

$\sum_{i=1}^{\ell-1}(p_{i}-m_{i\ell})\geq\sum_{i=1}^{\ell-1}n_{i}+\sum_{1\leq i<j\leq\ell-1}m_{ij}-p+2$

so that the right-hand side of (2.1.5) vanishes by the induction assumption. Hence
we have

$\sum_{k_{1},\ldots,k_{\ell-1}\in N}(-1)^{k_{1}+\cdots+k_{\ell-1}}\left(\begin{array}{l}m_{1\ell}\\k_{1}\end{array}\right)\cdots\left(\begin{array}{l}m_{\ell-1\ell}\\k_{\ell-1}\end{array}\right)$

$\times A_{p_{1}-k_{1}}^{1}\cdots A_{p_{\ell-1}-k_{\ell-1}}^{\ell-1}A_{pp+k_{1}+\cdots+k_{\ell-1}}^{\ell}u=0$ .

Therefore, by induction on $n_{\ell}-p_{\ell}$ for fixed $p_{1}+\cdots+p_{\ell}(\geq n)$ , we have (2.1.4). $\square $
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2.2 Operator product expansion

This subsection is devoted to the explanation of the notion of operator product ex-
pansion from the point of view of Kac [$K$ , Subsection 2.3], however, we reformulate
it so that we do not use the delta function.

Let $A(z)$ and $B(z)$ be mutually local series on a vector space $M$ . Then

$[A(y), B(z)](y-z)^{m}=0$

for some $m\in \mathbb{N}$ and we have

$[A(y)_{+}, B(z)](y-z)^{m}=-[A(y)_{-}, B(z)](y-z)^{m}$ .

Since the left-hand side does not have terms of degree greater than $m-1$ in $y$

whereas the right does not have terms of negative degree in $y$ , they are equal to a
polynomial of degree $m-1$ in $y$ . Hence we may write

$[A(y)_{+}, B(z)](y-z)^{m}=\sum_{i=0}^{m-1}C^{i}(z)(y-z)^{m-i-1}$ ,

$-[A(y)_{-}, B(z)](y-z)^{m}=\sum_{i=0}^{m-1}C^{i}(z)(y-z)^{m-i-1}$

where $C^{i}(z)$ are some series. Now, since the difference

$[A(y)_{+}, B(z)]-\sum_{i=0}^{m-1}C^{i}(z)/(y-z)^{i+1}|_{|y|>|z|}$

has only finitely many terms of positive degree in $y$ , and it vanishes if we multiply
it by $(y-z)^{m}$ , it must be identically zero by Lemma 1.1.1. Therefore, we have

$[A(x)_{+}, B(z)]=\sum_{i=0}^{m-1}\frac{C^{i}(z)}{(y-z)^{i+1}}|_{|y|>|z|}$

and similarly

$-[A(y)_{-}, B(z)]=\sum_{i=0}^{m-1}\frac{C^{i}(z)}{(y-z)^{i+1}}|_{|y|<|z|}$

Therefore

(2.2.1) $A(y)B(z)=\sum_{i=0}^{m-1}\frac{C^{i}(z)}{(y-z)^{i+1}}|_{|y|>|z|}+\circ\circ A(y)B(z)_{0}^{o}$ ,

(2.2.2) $B(z)A(y)=\sum_{i=0}^{m-1}\frac{C^{i}(z)}{(y-z)^{i+1}}|_{|y|<|z|}+\circ\circ A(y)B(z)_{0}^{o}$
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where $\circ\circ A(y)B(z)_{0}^{o}=A(y)_{-}B(z)+B(z)A(y)_{+}$ .

Conversely, if (2.2.1) and (2.2.2) hold, then it is obvious that the series $A(z)$

and $B(z)$ are mutually local.
Now, it follows from (2.2.1) and (2.2.2) that $A(z)_{(j)}B(z)=C^{j}(z)$ by the defi-

nition of the residue products.
Hence we have obtained ([K,Theorem 2.3])

Theorem 2.2.1 (Operator product expansion). Let $A(z)$ and $B(z)$ be series
on a $ve$ctor space. They are mutually local if an $d$ only if both

$A(y)B(z)=\sum_{i=0}^{m-1}\frac{A(z)_{(i)}B(z)}{(y-z)^{i+1}}|_{|y|>|z|}+$ ,. $A(y)B(z)_{0}^{o}$ and

$B(z)A(y)=\sum_{i=0}^{m-1}\frac{A(z)_{(i)}B(z)}{(y-z)^{i+1}}|_{|y|<|z|}+\circ\circ A(y)B(z)_{0}^{o}$

hold for some $m\in \mathbb{N}$ .

The two equalities in the theorem are often abbreviated into the single expres-
sion

$A(y)B(z)\sim\sum_{\iota=0}^{m-1}\frac{A(z)_{(i)}B(z)}{(y-z)^{i+1}}$ ,

which is called the operator product expansion (OPE), and the right-hand side is
called the contraction.

Remark 2.2.2. The first equality of Theorem 2.2.1 holds without the assumption
of the locality ([LZ1, Proposition 2.3]):

$A(y)B(z)=\sum_{i=0}^{\infty}\frac{A(z)_{(i)}B(z)}{(y-z)^{\iota+1}}|_{|y|>|z|}+\circ\circ A(y)B(z)_{0}^{\circ}$ ,

where the sum in the right is indeed a finite sum for each degree in $y$ .

Next let us further expand the remainder $\circ\circ A(y)B(z)_{0}^{o}$ in case $A(z)$ and $B(z)$

are fields. To this end, we prepare the notion of a field in two variables: A series
$A(y, z)=\sum_{p,q\in \mathbb{Z}}A_{p,q}y^{-p-1}z^{-q}$

‘ 1 is a field if, for any $u\in M$ , there exists integers
$p_{0}$ and $q_{0}$ such that

$A_{p,q}u=0$ , if $p\geq p_{0}$ or $q\geq q_{0}$ .

In other words, $A(y, z)$ is a field if and only if $A(y, z)u\in M((y, z))$ .
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If $A(z)$ and $B(z)$ are fields, then the normally ordered product $\circ\circ A(y)B(z)_{0}^{o}$ is
a field. If $A(y, z)$ is a field, then

$A(z, z)=\sum_{p,q\in \mathbb{Z}}A_{p,q}z^{-p-q-2}=\sum_{n\in \mathbb{Z}}(\sum_{p+q=n-1}A_{p,q})z^{-n-1}$

makes sense and is a field.

Lemma 2.2.3. If $A(y, z)$ is a fi $eld$ , then there exists a unique Iield $R(y, z)$ such
that

$A(y, z)-A(z, z)=(y-z)R(y, z)$ .

In fact, the series

$R(y, z)=\sum_{p\leq-1,q\in \mathbb{Z}}(\sum_{i=0}^{\infty}A_{p-i,q+i})y^{-p-1}z^{-q-1}$

$-\sum_{p\geq 0,q\in \mathbb{Z}}(\sum_{i=0}^{\infty}A_{p+i,q-i-1})y^{-p-1}z^{-q-1}$

is a field satisfying $A(y, z)-A(z, z)=(y-z)R(y, z)$ . The uniqueness is obvious
by Lemma 1.1.1.

By successive use of this lemma, we obtain ( $[K$ , Proposition 3.1])

Proposition 2.2.4 (Taylor’s formula). If $A(y, z)$ is a field, then, for any posi-
tive integer $N$ , there exists a unique field $R_{N}(y, z)$ such that

$A(y, z)=\sum_{i=0}^{N-1}\partial_{y}^{(i)}A(y, z)|_{y=z}(y-z)^{i}+R_{N}(y, z)(y-z)^{N}$ .

In particular, for a field $A(z)$ , we have

(2.2.3) $A(y)=\sum_{i=0}^{N-1}\partial_{z}^{(i)}A(z)(y-z)^{i}+R_{N}(y, z)(y-z)^{N}$

for some field $R_{N}(y, z)$ .
Therefore ([K,Theorem 3.1])

Theorem 2.2.5. Let $A(z)$ an$dB(z)$ be fields on a vector space. If they are mu-
tually local at order $m$ , then, for any $posi$tive integer $N$ , there exists a unique field
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$R_{N}(y, z)$ such that

$A(y)B(z)=\sum_{i=-N}^{m-1}\frac{A(z)_{(i)}B(z)}{(y-z)^{\iota+1}}|_{|y|>|z|}+R_{N}(y, z)(y-z)^{N}$ ,

$B(z)A(y)=\sum_{i=-N}^{m-1}\frac{A(z)_{(i)}B(z)}{(y-z)^{i+1}}|_{|y|<|z|}+R_{N}(y, z)(y-z)^{N}$ .

This result is seen to be an interpretation in the language of formal Laurent
series of the expressions

$A(y)B(z)=\sum_{\iota=-\infty}^{m-1}\frac{A(z)_{(i)}B(z)}{(y-z)^{-\iota-1}}$ ,

2.3 Tensor product of fields

$B(z)A(y)=\sum_{i=-\infty}^{m-1}\frac{A(z)_{(i)}B(z)}{(y-z)^{-i-1}}$ .

Now, to illustrate the role of the OPE, we consider the tensor products of fields.
Let $A(z)$ and $A^{\prime}(z)$ be fields on vector spaces $M$ and $M^{\prime}$ respectively. Then the

tensor product

$A(z)\otimes A^{\prime}(z)=\sum_{n\in \mathbb{Z}}(\sum_{k\in \mathbb{Z}}A_{k}\otimes A_{n-k-1})z^{-n-1}$

is a field on $M\otimes M^{\prime}$ as easily verified.
Suppose that $A(z)$ and $B(z)$ are fields on $M$ mutually local at order $m_{0}$ and

that $A^{\prime}(z)$ and $B^{\prime}(z)$ are fields on $M^{\prime}$ mutually local at order $m_{0}^{\prime}$ . Then by Theorem
2.2.5, we have

$(A(y)\otimes A^{\prime}(y))(B(z)\otimes B^{\prime}(z))$

$=(\sum_{i=-N}^{m_{0}-1}\frac{A(z)_{(i)}B(z)}{(y-z)^{i+1}}|_{|y|>|z|}+R_{N}(y, z)(y-z)^{N})$

$\otimes(\sum_{i=-N}^{m_{\acute{O}}-1},$
$\frac{A^{\prime}(z)_{(i)}B^{\prime}(z)}{(y-z)^{i+1}}|_{|y|>|z|}+R_{N^{\prime}}^{\prime}(y, z)(y-z)^{N^{\prime}})$ ,

and the similar expression for $(B(z)\otimes B^{\prime}(z))(A(y)\otimes A^{\prime}(y))$ where $|y|>|z|$ is
replaced by $|y|<|z|$ . In particular, they coincide after multiplied by $(y-z)^{mo+m_{O}^{\prime}}$ .
Moreover, by taking sufficiently large $N$ and $N^{\prime}$ , we may compute the residue
products of $A(z)\otimes A^{\prime}(z)$ and $B(z)\otimes B^{\prime}(z)$ . Thus,
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Theorem 2.3.1. Let $A(z)$ and $B(z)$ be $li$elds on $M$ mutually local at order $m_{0}$

and let $A^{\prime}(z)$ and $B^{\prime}(z)$ be fields on $M^{\prime}$ local at order $m_{0}^{\prime}$ . Then th $et$ensor products
$A(z)\otimes A^{\prime}(z)$ and $B(z)\otimes B^{\prime}(z)$ are fields on $M\otimes M^{\prime}$ local at order $m_{0}+m_{0}^{\prime}$ with

$(A(z)\otimes A^{\prime}(z))_{(m)}(B(z)\otimes B^{\prime}(z))=\sum_{i\in \mathbb{Z}}(A(z)_{(i)}B(z))\otimes(A^{\prime}(z)_{(m-i-1)}B^{\prime}(z))$

for any $m\in \mathbb{Z}$ .

Note that we have

$(A(y)\otimes A^{\prime}(y))(B(z)\otimes B^{\prime}(z))$

$=\sum_{i=-\infty}^{mo-1}\frac{A(z)_{(i)}B(z)}{(y-z)^{i+1}}\otimes\sum_{i=-\infty}^{m_{\acute{O}}-1}\frac{A^{\prime}(z)_{(i)}B^{\prime}(z)}{(y-z)^{i+1}}$

$=+m_{0}^{\prime}-1\sum_{(y-z)^{m+1}}^{\sum_{\ovalbox{\tt\small REJECT}}}^{m_{0}}i\in \mathbb{Z}(A(z)_{(i)}B(z))\otimes(A^{\prime}(z)_{(m-i-1)}B^{\prime}(z))$

$ m=-\infty$

formally.

2.4 Affine Lie algebras and the OPE of currents

Let us describe affine Lie algebras as an example of OPE.
Let $\mathfrak{g}$ be a Lie algebra with a symmetric bilinear form $(|)$ : $\mathfrak{g}\times \mathfrak{g}\rightarrow k$ which

is invariant (or associative) in the sense that

$([X, Y]|Z)=(X|[Y, Z])$

holds for any $X,$ $Y,$ $Z\in \mathfrak{g}$ . Set

$\hat{\mathfrak{g}}=\mathfrak{g}\otimes_{k}k[t, t^{-1}]\oplus kK$

and define a bilinear map $[, ]$ : $\hat{\mathfrak{g}}\times\hat{\mathfrak{g}}\rightarrow\hat{\mathfrak{g}}$ by setting

$[X\otimes t^{m}, Y\otimes t^{n}]=[X, Y]\otimes t^{m+n}+m\delta_{m+n,0}(X|Y)K$ ,

$[K, X\otimes t^{n}]=[X\otimes t^{n}, K]=[K, K]=0$ .

Then $[, ]$ gives a Lie algebra structure on $\hat{\mathfrak{g}}$ called the affine Lie algebra associated
to $\mathfrak{g}$ and $(|)$ . A $\hat{\mathfrak{g}}$-module on which the center $K$ acts by a scalar $k$ is called a
$\hat{\mathfrak{g}}$-module at level $k$ .
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Let $M$ be a $\hat{\mathfrak{g}}$-module at level $k$ . We denote the action of $X\otimes t^{n}$ on $M$ by $X_{n}$ ,
and set

$X(z)=\sum_{n\in \mathbb{Z}}X_{n}z^{-n-1}$
, $X\in \mathfrak{g}$ .

The series $X(z),$ $X\in \mathfrak{g}$ , are called the (nonabelian) currents associated to $\hat{\mathfrak{g}}$ . Then

[X $(y)_{+},Y(z)$ ]

$=\sum_{\ell\geq 0}\sum_{m\in \mathbb{Z}}[X_{\ell}, Y_{m}]y^{-\ell-1}z^{-m-1}$

$=\sum_{\ell\geq 0,m\in \mathbb{Z}}[X, Y]_{l+m}\overline{y}\ell z+\sum_{\ell\geq 0,m\in \mathbb{Z}}\ell\delta_{\ell+m,0}(X|Y)ky^{-l-1}z^{-m-1}$

$=\sum_{\ell\geq 0,n\in \mathbb{Z}}[X, Y]_{n}z^{-n-1}y^{-\ell-1}z^{\ell}+\sum_{\ell\geq 0}(X|Y)ky^{-\ell-1}\ell z^{\ell-1}$

$=\frac{[X,Y](z)}{y-z}|_{|y|>|z|}+\frac{(X|Y)k}{(y-z)^{2}}|_{|y|>|z|}$

and

$-[X(y)_{-}, Y(z)]=\frac{[X,Y](z)}{y-z}|_{|y|<|z|}+\frac{(X|Y)k}{(y-z)^{2}}|_{|y|<|z|}$

Hence $X(z)$ and $Y(z)$ are mutually local, and

$X(y)Y(z)=\frac{[X,Y](z)}{y-z}|_{|y|>|z|}+\frac{(X|Y)k}{(y-z)^{2}}|_{|y|>|z|}+\circ\circ x(y)Y(z)_{0}^{o}$

(2.4.1)

$Y(z)X(y)=\frac{[X,Y](z)}{y-z}|_{|y|<|z|}+\frac{(X|Y)k}{(y-z)^{2}}|_{|y|<|z|}+\circ\circ x(y)Y(z)_{0}^{o}$ .

Namely, the OPE is given by

$X(y)Y(z)\sim\frac{[X,Y](z)}{y-z}+\frac{(X|Y)k}{(y-z)^{2}}$ .

Therefore, the m-th residue products, $(m\geq 0)$ , are given by

$X(z)_{(m)}Y(z)=\left\{\begin{array}{ll}0, & (m\geq 2),\\(X|Y)kI(z), & (m=1),\\[X, Y](z), & (m=0).\end{array}\right.$

Conversely, suppose given a linear map

$\mathfrak{g}\rightarrow(EndM)[[z, z^{-1}]]$ , $X-X(z)$
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satisfying the OPE above. Then we recover the commutation relation

$[X_{m}, Y_{n}]=[X, Y]_{m+n}+m\delta_{m+n,0}(X|Y)k$

easily from the OPE (2.4.1).
Therefore,

Proposition 2.4.1. A linear map

$\mathfrak{g}\rightarrow(EndM)[[z, z^{-1}]]$ ,
$X\mapsto X(z)=\sum_{n\in \mathbb{Z}}X_{n}z^{-n-1}$

defines a $\hat{\mathfrak{g}}$ -module struct $ure$ at level $k$ on $M$ by

$\hat{\mathfrak{g}}\rightarrow EndM$ , $X\otimes t^{n}\mapsto X_{n}$

if and only if the $seri$es $X(z)$ and $Y(z)$ are mutually local with the $OPE$

$X(y)Y(z)\sim\frac{[X,Y](z)}{y-z}+\frac{(X|Y)k}{(y-z)^{2}}$

for any $X,$ $Y\in \mathfrak{g}$ .

2.5 Virasoro algebra and the OPE of the energy-momentum
tensor

Let $\mathcal{V}ir$ denote the vector space spanned by $\{L_{n}|n\in \mathbb{Z}\}\cup\{C\}$ :

$\mathcal{V}ir=(\oplus_{n\in \mathbb{Z}}kL_{n})\oplus kC$ .

Define a bilinear map $[, ]$ : $\mathcal{V}ir\times \mathcal{V}ir\rightarrow \mathcal{V}ir$ by setting

$[L_{m}, L_{n}]=(m-n)L_{m+n}+\frac{m^{3}-m}{12}\delta_{m+n,0}C$ ,

$[C, L_{m}]=[L_{n}, C]=[C, C]=0$ .

Then $[, ]$ gives a Lie algebra structure on $\mathcal{V}ir$ called the Virasoro algebra. A $\mathcal{V}ir-$

module on which the center $C$ acts by a scalar $c$ is called a Vir-module of central
charge $c$ .

Let $M$ be a Vir-module of central charge $c$ . We denote the action of $L_{n}$ on $M$

by the same symbol, and let

$T(z)=\sum_{n\in \mathbb{Z}}L_{n}z^{-n-2}$
.
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Then

$[T(y)_{+}, T(z)]$

$=\sum_{\ell\geq-1,k\in \mathbb{Z}}[L_{p}, L_{m}]y^{-\ell-2}z^{-m-2}$

$=\sum_{\ell\geq-1,m\in Z}(\ell-m)L_{l+m}y^{-\ell-2}z^{-m-2}+\sum_{p\geq-1,m\in Z}\frac{\ell^{3}-p}{12}\delta_{\ell+m,0}cy^{-\ell-2}z^{-m-2}$

$=\sum_{\ell\geq-1,n\in \mathbb{Z}}(2p-n)L_{n}y^{-\ell-2}z^{\ell-n-2}+\sum_{p\geq-1}\frac{\ell^{3}-\ell}{12}cy^{-\ell-2}z^{l-2}$

$=\sum_{n\in \mathbb{Z}}(-n-2)L_{n}z^{-n-3}\sum_{\ell\geq-1}y^{-p-2}z^{\ell+1}$

$+2\sum_{n\in \mathbb{Z}}L_{n}z^{-n-2}\sum_{\ell\geq-1}(P+1)\overline{y}\ell-2z^{p}+\frac{c}{2}\sum_{\ell\in \mathbb{Z}}\left(\begin{array}{l}\ell+1\\3\end{array}\right)y^{-\ell-2}z^{\ell-2}$

$=\frac{\partial T(z)}{y-z}|_{|y|>|z|}+\frac{2T(z)}{(y-z)^{2}}|_{|y|>|z|}+\frac{c/2}{(y-z)^{4}}|_{|y|>|z|}$

and

$-[T(y)_{-}, T(z)]=\frac{\partial T(z)}{y-z}|_{|y|<|z|}+\frac{2T(z)}{(y-z)^{2}}|_{|y|<|z|}+\frac{c/2}{(y-z)^{4}}|_{|y|<|z|}$

Hence $T(z)$ is local to itself, and

$T(y)T(z)=\frac{\partial T(z)}{y-z}|_{|y|>|z|}+\frac{2T(z)}{(y-z)^{2}}|_{|y|>|z|}+\frac{c/2}{(y-z)^{4}}|_{|y|>|z|}+\circ\circ\tau(y)T(z)_{0}^{o}$ ,

$T(z)T(y)=\frac{\partial T(z)}{y-z}|_{|y|<|z|}+\frac{2T(z)}{(y-z)^{2}}|_{|y|<|z|}+\frac{c/2}{(y-z)^{4}}|_{|y|<|z|}+\circ\circ\tau(y)T(z)_{0}^{o}$ .

Namely the OPE is given by

$T(y)T(z)\sim\frac{\partial T(z)}{y-z}+\frac{2T(z)}{(y-z)^{2}}+\frac{c/2}{(y-z)^{4}}$ .

Therefore, the m-th residue products, $(m\geq 0)$ , are given by

$T(z)_{(m)}T(z)=\left\{\begin{array}{ll}0, & (m\geq 4),\\c/2I(z), & (m=3),\\0, & (m=2),\\2T(z), & (m=1),\\\partial T(z), & (m=0).\end{array}\right.$
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Conversely, if a series $T(z)$ on $M$ satisfies the OPE above, then we recover the
commutation relation

$[L_{m}, L_{n}]=(m-n)L_{m+n}+\frac{m^{3}-m}{12}\delta_{m+n,0^{C}}$ .

Therefore,

Proposition 2.5.1. A series $T(z)$ on a vector space $M$ defines a Vir-module struc-
ture of central charge $c$ on $M$ by the Fourier modes of

$T(z)=\sum_{n\in \mathbb{Z}}L_{n}z^{-n-2}$

if and only if $T(z)$ is local to itself with the $OPE$

$T(y)T(z)\sim\frac{\partial T(z)}{y-z}+\frac{2T(z)}{(y-z)^{2}}+\frac{c/2}{(y-z)^{4}}$ .

Such a series $T(z)$ appears as the (chiral) energy-momentum tensor in conformal
field theory.

3 Borcherds identity for local fields

In this section, we show the identity satisfied by three mutually local fields with
respect to the residue products, which is a consequence of the usual Jacobi identity

$[[A(x), B(y)], C(z)]=[A(x), [B(y), C(z)]]-[B(y), [A(x), C(z)]]$ .

The strategy is, roughly speaking, to multiply this Jacobi identity by the rational
function

$(x-y)^{r}(y-z)^{q}(x-z)^{p}$

and take the residue after expanding it in various regions. Special cases of such
derivation are considered by Li [Li, p.166] and Kac [$K$ , Proposition 2.3 (c) and
Proposition 3.3 $(c)$ ]. However, to execute it in full generality, one has to be careful
about divergence, which can be avoided by clever use of the locality.

3.1 Binomial identities

Let us consider the rational function

$F(x, y, z)=(x-y)^{r}(y-z)^{q}(x-z)^{p}$ , $p,$ $q,$
$r\in \mathbb{Z}$ ,
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which has the expansions

$F_{0}(x, y, z)=\sum_{l=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)(x-y)^{r+i}(y-z)^{p+q-i}$ , $(|y-z|>|x-y|)$ ,

$F_{1}(x, y, z)=\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(x-z)^{p+r-i}(y-z)^{q+i}$ , $(|x-z|>|y-z|)$ ,

$F_{2}(x, y, z)=\sum_{i=0}^{\infty}(-1)^{r+i}\left(\begin{array}{l}r\\i\end{array}\right)(y-z)^{q+r-i}(x-z)^{p+i}$ , $(|y-z|>|x-z|)$

convergent in the respective regions.
Expanding these series again into series in $x,$ $y,$ $z$ , and comparing them with the

corresponding expansions of $F(x, y, z)$ , we have, for example,

$F(x, y, z)|_{|x|>|y|>|z|}=F_{1}(x, y, z)|_{|x|>|y|>|z|}$ ,

for all integers $p,$ $q$ and $r$ . To be precise, we have

$\sum_{i,j,k\geq 0}(-1)^{i+j+k}\left(\begin{array}{l}r\\i\end{array}\right)\left(\begin{array}{l}q\\j\end{array}\right)\left(\begin{array}{l}p\\k\end{array}\right)x^{p+r-i-k}y^{q+i-j_{Z}\gamma+k}$

$=\sum_{x,j,k\geq 0}(-1)^{i+j+k}\left(\begin{array}{l}r\\i\end{array}\right)\left(\begin{array}{ll}p+r & -i\\j & \end{array}\right)\left(\begin{array}{ll}q & +i\\ & k\end{array}\right)x^{p+r-i-j}y^{q+i-k}z^{j+k}$

which is equivalent to a set of identities for binomial coefficients (See Appendix $C$

for detail).
Now, let $A(z),$ $B(z)$ and $C(z)$ be fields on a vector space $M$ which are not

necessarily mutually local. The above argument shows that we have the following
set of identities involving these fields:

Lemma 3.1.1. For all $p,$ $q,$
$r\in \mathbb{Z}$ , we have

$A(x)B(y)C(z)F(x, y, z)=A(x)B(y)C(z)F_{1}(x, y, z)$ ,

A(x)C(z)B(y)F(x, $y,$ $z$ ) $=A(x)C(z)B(y)F_{1}(x, y, z)$ ,

$B(y)A(x)C(z)F(x, y, z)=B(y)A(x)C(z)F_{2}(x, y, z)$ ,

$B$ (y)C(z)A(x)F(x, $y,$ $z$ ) $=B(y)C(z)A(x)F_{2}(x, y, z)$ ,

C(z)A(x)B(y)F(x, $y,$ $z$ ) $=C(z)A(x)B(y)F_{0}(x, y, z)$ ,

$C(z)B(y)A(x)F(x, y, z)=C(z)B(y)A(x)F_{0}(x, y, z)$ ,

where $A(z),$ $B(z),$ $C(z)$ are fields on a vector space $M$ .
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Here we have omitted the regions of the expansions according to our convention
in Notation 1.3.3.

Note that, for example, the identity

$A(x)B(y)C(z)F(x, y, z)=A(x)B(y)C(z)F_{0}(x, y, z)$

is not valid in general. In fact,

$F_{0}(x, y, z)|_{|x|>|y|>|z|}=\sum_{i,j,k\geq 0}(-1)^{j+k}\left(\begin{array}{l}p\\i\end{array}\right)\left(\begin{array}{ll}r & +i\\ & j\end{array}\right)\left(\begin{array}{ll}p+q & -i\\k & \end{array}\right)x^{r+i-j}y^{p+q-i+j-k_{Z}k}$

is divergent for negative $p$ since each of the coefficients becomes an infinite sum. On
the other hand, the coefficients are finite sums for nonnegative $p$ and the equality
is valid in this case.

Such cases are summarized as follows:

Lemma 3.1.2. For all $p\in N$ and $q,$ $r\in \mathbb{Z}$ , we have

$A(x)B(y)C(z)F(x, y, z)=A(x)B(y)C(z)F_{0}(x, y, z)$ ,

$B(y)A(x)C(z)F(x, y, z)=B(y)A(x)C(z)F_{0}(x, y, z)$ .

For all, $p,$ $q\in \mathbb{Z}$ and all $r\in \mathbb{N}$ , we have

B(y)C(z)A(x)F(x, $y,$ $z$ ) $=B(y)C(z)A(x)F_{1}(x, y, z)$ ,

$C(z)B(y)A(x)F(x, y, z)=C(z)B(y)A(x)F_{1}(x, y, z)$ ,

$A(x)C(z)B(y)F(x, y, z)=A(x)C(z)B(y)F_{2}(x, y, z)$ ,

C(z)A(x)B(y)F(x, $y,$ $z$ ) $=C(z)A(x)B(y)F_{2}(x, y, z)$ .

3.2 Borcherds identity for non-local fields

If $p$ and $r$ are both nonnegative, then all the identities of Lemma 3.1.1 and Lemma
3.1.2 are valid. Therefore

$[[A(x),B(y)], C(z)]F_{0}(x, y, z)=[[A(x), B(y)])C(z)]F(x, y, z)$

$=([A(x), [B(y), C(z)]]-[B(y), [A(x), C(z)]])F(x, y, z)$

$=[A(x), [B(y), C(z)]]F_{1}(x, y, z)-[B(y), [A(x), C(z)]]F_{2}(x, y, z)$ .

Thus we have obtained
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Theorem 3.2.1. Let $A(z),$ $B(z)$ and $C(z)$ be fields on a $ve$ctor space. Then, for
any $p,$

$r\in \mathbb{N}$ and any $q\in \mathbb{Z}$ ,

$\sum_{x=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)[[A(x), B(y)], C(z)](x-y)^{r+i}(y-z)^{p+q-i}$

$=\sum_{x=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)[A(x), [B(y), C(z)]](x-y)^{p+r-i}(y-z)^{q+i}$

$-\sum_{\iota=0}^{\infty}(-1)^{r+i}\left(\begin{array}{l}r\\i\end{array}\right)[B(y), [A(x), C(z)]](y-z)^{q+r-\iota}(x-z)^{p+i}$ .

Taking ${\rm Res}_{y=0}{\rm Res}_{x=0}$ of the both sides, we have8

Corollary 3.2.2. Let $A(z),$ $B(z)$ and $C(z)$ be fields on a vector space. Then, for
any $p,$

$r\in \mathbb{N}$ and any $q\in \mathbb{Z}$ ,

$\sum_{\iota=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)(A(z)_{(r+\iota)}B(z))_{(p+q-i)}C(z)$

$=\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(A(z)_{(p+r-i)}(B(z)_{(q+i)}C(z))-(-1)^{r}B(z)_{(q+r-i)}(A(z)_{(p+i)}C(z)))$

This result is not true in general if $p$ or $r$ is negative. It is because of the failure
of Lemma 3.1.2 for such indices. However, if we assume the locality of the fields
$A(z),$ $B(z)$ and $C(z)$

ノ. then the theorem is generalized to arbitrary integers $p,$ $q,$ $r$ ,
as we will see in the following two sections.

3.3 Consequences of locality

Now assume that the fields $A(z),$ $B(z)$ and $C(z)$ are mutually local. Then, by
Lemma 2.1.4, we have

$(y-z)^{n}[A(x).B(y)]C(z)(x-y)^{k}(y-z)^{p}(x-z)^{m}$

$=(y-z)^{n}C(z)[A(x), B(y)](x-y)^{k}(y-z)^{\ell}(x-z)^{m}$

for sufficiently large $n$ . This reduces a calculation involving the left-hand side to
that involving the right-hand side.

In this way, we obtain the following lemma.
8A special case $(r=0)$ of this result is described by Kac [ $K$ , Proposition 3.3 $(c)$ ]. General case

is deduced from this case by the inductive structure of the Borcherds identity (cf. Proposition
4.3.1).
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Lemma 3.3.1. If $A(z),$ $B(z)$ and $C(z)$ are mutually local, then for any $p,$ $q,$ $r\in \mathbb{Z}_{\rangle}$

$[A(x), B(y)]C(z)F(x, y, z)=\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)[A(x), B(y)]C(z)(x-y)^{r+i}(y-z)^{p+q-i}$ ,

$[B(y), C(z)]A(x)F(x, y, z)=\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)[B(y), C(z)]A(x)(x-z)^{p+r-i}(y-z)^{q+i}$ ,

$[A(x), C(z)]B(y)F(x, y, z)=\sum_{i=0}^{\infty}(-1)^{r+i}\left(\begin{array}{l}r\\i\end{array}\right)[A(x), C(z)]B(y)(y-z)^{q+r-i}(x-z)^{p+i}$ .

Here the right-hand side of each equality is a finite sum because of the locality.

Proof. By Lemma 2.1.4 and Lemma 3.1.2,

$(y-z)^{n}\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)[A(x), B(y)]C(z)(x-y)^{r+i}(y-z)^{p+q-i}$

$=(y-z)^{n}\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)C(z)[A(x), B(y)](x-y)^{r+i}(y-z)^{p+q-i}$

$=(y-z)^{n}C(z)[A(x), B(y)]F_{0}(x, y, z)$

$=(y-z)^{n}C(z)[A(x), B(y)]F(x, y, z)$

$=(y-z)^{n}[A(x), B(y)]C(z)F(x, y, z)$

for sufficiently large $n$ . Therefore the series

$D(y, z)=\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)([A(x), B(y)]C(z)(x-y)^{r+i}(y-z)^{p+q-i}$

$-[A(x), B(y)]C(z)F(x, y, z))$

satisfies $(y-z)^{n}D(y, z)v=0$ for any vector $v\in M$ . Moreover, since $D(y, z)vh$as
only finitely many terms of negative degree in $z$ , we must have $D(y, z)v=0$ by
Lemma 1.1.1. Thus we have shown the first equality of the lemma. The other
equalities are proved similarly. $\square $

Remark 3.3.2. Note that the right-hand side of the first equality, for example,

makes sense if $A(z)$ and $B(z)$ are mutually local. However, in order the equality
to hold, we need not only this but also the locality of $A(z)$ and $C(z)$ , and of $B(z)$

and $C(z)$ in general.
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3.4 Borcherds identity for local fields

Now we arrive at the main result of this part.

Theorem 3.4.1. Let $A(z),$ $B(z)$ and $C(z)$ be fields on a vector space. If they are
mutually local, then for any $p,$ $q,$

$r\in \mathbb{Z}$ ,

$\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)[[A(x), B(y)], C(z)](x-y)^{r+i}(y-z)^{p+q-i}$

$=\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)([A(x), [B(y), C(z)]](x-z)^{p+r-i}(y-z)^{q+i}$

$-(-1)^{r}[B(y), [A(x), C(z)]](y-z)^{q+r-i}(x-z)^{p+i})$ .

Proof By Lemma 3.1.1 and Lemma 3.3.1, we have

$\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)([A(x), B(y)]C(z)-C(z)[A(x), B(y)])(x-y)^{r+i}(y-z)^{p+q-i}$

$=([A(x), B(y)]C(z)-C(z)[A(x), B(y)])F(x, y, z)$

$=(A(x)[B(y), C(z)]-[B(y), C(z)]A(x))F(x, y, z)$

$-(B(y)[A(x), C(z)]-[A(x), C(z)]B(y))F(x, y, z)$

$=\sum_{i=0}^{\infty}(-1)^{\iota}\left(\begin{array}{l}r\\i\end{array}\right)(A(x)[B(y), C(z)]-[B(y), C(z)]A(x))(x-z)^{p+r-i}(y-z)^{q+i}$

$-\sum_{i=0}^{\infty}(-1)^{r+i}\left(\begin{array}{l}r\\i\end{array}\right)(B(y)[A(x), C(z)]-[A(x), C(z)]B(y))(y-z)^{q+r-\iota}(x-z)^{p+i}$ ,

as desired. $\square $

Taking ${\rm Res}_{y=0}{\rm Res}_{x=0}$ , we have9

Corollary 3.4.2 (Borcherds identity for local fields). Let $A(z),$ $B(z)$ and $C(z)$

be fields on a vector space. If th $ey$ are mutually local, then for any $p,$ $q,$ $r\in \mathbb{Z}$ ,

$\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)(A(z)_{(r+i)}B(z))_{(p+q-\iota)}C(z)$

$=\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(A(z)_{(p+r-i)}(B(z)_{(q+i)}C(z))-(-1)^{r}B(z)_{(q+r-i)}(A(z)_{(p+i)}C(z)))$ .

9This result is implicitly shown in the work of Li. In fact, by [Li, proof of Proposition 3.2.9],
we can apply [Li, proof of Proposition 2.2.4] to $a=A(z),$ $b=B(z),$ $c=C(z)$ , and $T=\partial_{z}$ ; the
result follows (cf. Proposition 3.4.3 and Note 6.2.2).
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The following special case of the Borcherds identity holds under a weaker as-
sumption ([Li, proof of Proposition 3.2.9]).

Proposition 3.4.3 (Li). Let $A(z),$ $B(z)$ and $C(z)$ be fields. If $A(z)$ and $B(z)$ are
mutually local at $ord$er $n_{0}$ , then

$\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}n\\i\end{array}\right)A(z)_{(p+n-i)}(B(z)_{(q+i)}C(z))$

$=\sum_{i=0}^{\infty}(-1)^{n+i}\left(\begin{array}{l}n\\i\end{array}\right)B(z)_{(q+n-i)}(A(z)_{(p+i)}C(z))$

for all $n\geq n_{0}$ .

Proof. By Lemma 3.1.1 and 3.1.2 for $r=n\geq 0$ , we have

$\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}n\\i\end{array}\right)[A(x), [B(y), C(z)]](x-z)^{p+n-i}(y-z)^{q+i}$

$=[A(x), [B(y), C(z)]]F_{1}(x, y, z)=[A(x), [B(y), C(z)]]F(x, y, z)$ ,

$\sum_{i=0}^{\infty}(-1)^{n+i}\left(\begin{array}{l}n\\i\end{array}\right)[B(y), [A(x), C(z)]](y-z)^{q+n-i}(x-z)^{p+i}$

$=[B(y), [A(x), C(z)]]F_{2}(x, y, z)=[B(y), [A(x), C(z)]]F(x, y, z)$ .

They coincide by the locality of $A(z)$ and $B(z)$ . Take
$\underline{{\rm Res}_{\tau-0}}{\rm Res}_{z=0}$ to get the result. $\square $

3.5 Skew symmetry

Let us discuss the identity satisfied by two fields with respect to the residue prod-
ucts. We first consider the non-local case:

Proposition 3.5.1. Let $A(z)$ an$dB(z)$ be fields. Then for any integer $m$ , we have

$(B(z)_{(m)}A(z))_{+}=\sum_{i=0}^{\infty}(-1)^{m+i+1}\partial^{(i)}(A(z)_{(m+i)}B(z))_{+}$ .
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Proof. Let $n$ be a nonnegative integer. Then

$z^{n}[B(y), A(z)](y-z)^{m}=(-1)^{m+1}z^{n}[A(z), B(y)](z-y)^{m}$

$=(-1)^{m+1}\sum_{\iota=0}^{n}\left(\begin{array}{l}n\\i\end{array}\right)y^{n-i}(z-y)^{i}[A(z), B(y)](z-y)^{m}$

$=(-1)^{m+1}\sum_{i=0}^{n}(\partial_{y}^{(t)}y^{n})[A(z), B(y)](z-y)^{m+i}$

$=(-1)^{m+1}\sum_{i=0}^{n}(-1)^{i}y^{n}\partial_{y}^{(i)}([A(z), B(y)](z-y)^{m+i})+$ (total derivative).

Take ${\rm Res}_{z=0}{\rm Res}_{y=0}$ of the both sides, to get

$(B_{(m)}A)_{n}=\sum_{i=0}^{n}(-1)^{m+i+1}\partial^{(\iota)}(A_{(m+i)}B)_{n}$ .

Since this holds for all nonnegative integers $n$ , we have the result. $\square $

If the two fields are mutually local, then the equality holds also for the negative
parts:

Proposition 3.5.2. Let $A(z)$ and $B(z)$ be fields. If $A(z)$ and $B(z)are$ mutually
local, then for any integer $m$ , we have,

$B(z)_{(m)}A(z)=\sum_{i=0}^{\infty}(-1)^{m+i+1}\partial^{(\iota)}(A(z)_{(m+i)}B(z))$ .

This is a special case of Corollary 3.4.2. In fact, substituting the identity fields
$I(z)$ for $C(z)$ and setting $p=-1,$ $q=0$ and $r=m$ in the corollary and using
Proposition 1.4.4, we have the result (see (4.2.6) in Subsection 4.2).

An alternative proof is as follows (cf. $[K$ , Proof of Proposition 3.3 $(b)]$ ). Since
$A(z)$ and $B(z)$ are local,

$A(z)B(y)=J\sum_{=-N}^{mo-1}\frac{A(y)_{(j)}B(y)}{(z-y)^{j+1}}|_{|z|<|y|}+R_{N}(z, y)(z-y)^{N}$

by the operator product expansion, where $N>-m$ . Here we have used Theorem
2.2.1 of which the roles of $y$ and $z$ are swapped. Applying Taylor’s formula (2.2.3)
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to $A(z)_{(j)}B(y)$ , we rewrite the right-hand side as

$\sum_{j=-N}^{m_{O}-1}\frac{(-1)^{j+1}}{(y-z)^{j+1}}|_{|y|>|z|}(\sum_{i=0}^{M-1}\partial^{(i)}(A(z)_{(j)}B(z))(y-z)^{i}+S_{M}^{j}(y, z)(y-z)^{M})$

$+R_{N}(y, z)(y-z)^{N}$

where $S_{M}^{j}(y, z)$ are some fields. This is written as

$\sum_{j=-N}^{m_{O}-1}\sum_{\iota=0}^{M-1}(-1)^{j+1}\frac{\partial_{y}^{(x)}(A(y)_{(j)}B(y))}{(y-z)^{j-i+1}}|_{|y|>|z|}+T_{N}(y, z)(y-z)^{N}$

for some fields $T_{N}(y, z)$ if $M$ is sufficiently large. Comparing the coefficient to
$(y-z)^{-m-1}$ with that in

$A(z)B(y)=\sum_{k=-N}^{m_{0}-1}\frac{B(z)_{(k)}A(z)}{(y-z)^{k+1}}|_{|y|>|z|}+U_{N}(y, z)(y-z)^{N}$ ,

we have the result. Note that we formally have

$\sum_{k=-\infty}^{m_{O}-1}\frac{B(z)_{(k)}A(z)}{(y-z)^{k+1}}=\sum_{j=-\infty}^{m_{O}-1}\frac{A(y)_{(j)}B(y)}{(z-y)^{j+1}}=\sum_{j=-\infty}^{m_{0}-1}\sum_{i=0}^{\infty}\frac{(-1)^{j+1}\partial^{(i)}(A(z)_{(i)}B(z))}{(y-z)^{j-i+1}}$ .

3.6 OPE of normally ordered products

To illustrate the role of the Borcherds identity, we will describe some of its conse-
quences when applied to the normally ordered products of fields.

Let $A(z),$ $B(z)$ and $C(z)$ be fields on a vector space. Recall that the normally
ordered product of $A(z)$ and $B(z)$ is given by

$\circ\circ A(z)B(z)_{0}^{o}=A(z)_{-}B(z)+B(z)A(z)_{+}=A(z)_{(-1)}B(z)$ .

Now suppose that the fields $A(z),$ $B(z)$ and $C(z)$ are mutually local. Then so are
$A(z)$ and $\circ\circ B(z)C(z)$ ”, and the Borcherds identity Corollary 3.4.2 for $p=m,$ $q=$

$-1,$ $r=0$ yields

(3.6.1)

$A(z)_{(m)\circ}^{o}B(z)C(z)_{0}^{o}=\circ\circ B(z)(A(z)_{(m)}C(z))_{0}^{o}+\sum_{i=0}^{\infty}\left(\begin{array}{l}m\\i\end{array}\right)(A(z)_{(i)}B(z))_{(m-i-1)}C(z)$ .
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Similarly, Corollary 3.4.2 for $p=0,$ $q=m,$ $r=-1$ reads

(3.6.2)

’. $A(z)B(z)_{\circ(m)}^{o}C(z)$

$=\sum_{i=0}^{\infty}(A(z)_{(-i-1)}(B(z)_{(m+i)}C(z))+B(z)_{(m-i-1)}(A(z)_{(x)}C(z)))$ .

We may likewise compute the residue products of the normally ordered products
of $m$any number of fields.

Now, let $\mathfrak{g}$ be a Lie algebra with a symmetric invariant bilinear form $(|)$ and let
$\hat{\mathfrak{g}}$ be the associated affine Lie algebra. Let $M$ be a $\hat{\mathfrak{g}}$-module at level $k$ and suppose
that the currents $X(z),$ $(X\in \mathfrak{g})$ , are fields on $M$ . Recall that the residue products
are given by (see Subsection 2.4)

$X(z)_{(m)}Y(z)=\left\{\begin{array}{ll}0, & (m\geq 2),\\(X |Y) kI(z), & (m=1),\\[X, Y](z), & (m=0).\end{array}\right.$

Then, by (3.6.1), we have

$X(z)_{(m)_{0}^{o}}Y(z)Z(z)_{0}^{o}=\left\{\begin{array}{ll}0, & (m\geq 3),\\([X, Y]|Z)kI(z), & (m=2),\\(X|Y)kZ(z)+(X|Z)kY(z)+[[X, Y], Z] (z), & (m=1),\\0\circ[X, Y](z)Z(z)_{0}^{o}+\circ\circ Y(z)[X, Z](z)_{0}^{o}, & (m=0).\end{array}\right.$

Now, suppose that $\mathfrak{g}$ is a finite-dimensional simple Lie algebra over $k=\mathbb{C}$ and
let $(|)$ be a nondegenerate symmetric invariant bilinear form on $\mathfrak{g}$ , which is unique
up to a normalization. Then, for a basis $\{J^{i}\}$ of $\mathfrak{g}$ , we may consider the dual basis
$\{J_{i}\}$ with respect to $(|)$ . Set

$S(z)=\sum_{i=1}^{\dim \mathfrak{g}}\circ\circ J^{\iota}(z)J_{i}(z)_{0}^{o}$ .

It does not depend on the choice of the basis $\{J^{i}\}$ .

To compute the residue products of $S(z)$ , let us recall the property of the
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Casimir element $Q=\sum_{i=1}^{\dim \mathfrak{g}}J^{t}J_{i}\in U(\mathfrak{g})$ . For any $X\in \mathfrak{g}$ ,

[X, $Q$ ]
$=\sum_{j}[X, J^{j}]J_{j}+\sum_{i}J^{i}[X, J_{i}]$

$=\sum_{i,j}(J_{i}|[X, J^{j}])J^{i}J_{j}+\sum_{i,j}J^{i}([X, J_{i}]|J^{j})J_{j}$

(3.6.3)

$=\sum_{i,j}((J_{l}|[X, J^{j}])+([X, J_{i}]|J^{j}))J^{i}J_{j}$

$=0$ .

Hence $Q$ acts as a scalar on an irreducible $\mathfrak{g}$-module. In particular, we have

(3.6.4) $\sum_{i=1}^{\dim \mathfrak{g}}[J^{i}, [J^{i}, X]]=2h^{\vee}X$

for some scalar $h^{\vee}$ independent of $X\in \mathfrak{g}$ . If $(|)$ is normalized so that $(\theta|\theta)=2$

for the highest root $\theta$ , the scalar $h^{\vee}$ coincides with the dual Coxeter number of $\mathfrak{g}$ :
$h^{\vee}=(\theta|\theta+2\rho)/(\theta|\theta)$ , where $\rho$ is half the sum of positive roots, called the Weyl
vector. We also note

$\sum_{i=1}^{\dim \mathfrak{g}}(J^{i}|J_{i})=\dim \mathfrak{g}$ , $\sum_{i=l}^{\dim g}[J^{i}, J_{i}]=0$ .

By using these properties, we obtain

$X(z)_{(2)}S(z)=\sum_{l}([X, J^{i}]|J_{i})kI(z)$

$=(X|\sum_{i}[J^{i}, J_{i}])kI(z)=0$ ,

$X(z)_{(1)}S(z)=\sum_{i}((X|J^{i})kJ_{i}(z)+(X|J_{i})kJ^{i}(z)+[[X, J^{i}], J^{i}](z))$

$=k(\sum_{i}(X|J^{i})J_{i}(z)+\sum_{:}(X|J_{i})J^{i}(z))+\sum_{i}[J_{i}, [J^{i}, X]](z)$

$=2(k+h^{\vee})X(z)$ ,

$X(z)_{(0)}S(z)=\sum_{j}\circ\circ[X, J^{j}](z)J_{j}(z)_{0}^{o}+\sum_{i}\circ\circ J^{i}(z)[X, J_{i}](z)_{0}^{o}$

$=\sum_{i,j}(J_{i}|[X, J^{j}])_{0}^{o}J^{i}(z)J_{j}(z)_{0}^{o}+\sum_{i,j}([X, J_{i}]|J^{i})_{0}^{o}J^{i}(z)J_{j}(z)_{0}^{o}$

$=0$ .
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Therefore,

$S(z)_{(m)}S(z)=\left\{\begin{array}{ll}0, & (m\geq 4),\\2(k+h^{\vee})k(\dim \mathfrak{g})I(z), & (m=3),\\0, & (m=2),\\4(k+h^{\vee})S(z), & (m=1),\\2(k+h^{\vee})\partial S(z), & (m=0).\end{array}\right.$

Since $S(z)$ is local to itself, we have the following OPE,

$S(y)S(z)\sim 2(k+h^{\vee})(\frac{k\dim \mathfrak{g}}{(y-z)^{4}}+\frac{2S(z)}{(y-z)^{2}}+\frac{\partial S(z)}{y-z})$

Hence, if $k\neq-h^{\vee}$ , the field

$T(z)=\frac{1}{2(k+h^{})}S(z)=\frac{1}{2(k+h^{\vee})}\sum_{i=1}^{\dim \mathfrak{g}}\circ\circ J^{i}(z)J_{\iota}(z)_{0}^{o}$

satisfies the OPE of Virasoro field

$T(y)T(z)\sim\frac{c/2}{(y-z)^{4}}+\frac{2T(z)}{(y-z)^{2}}+\frac{\partial T(z)}{y-z}$

where the central charge is given by

$c=\frac{k\dim \mathfrak{g}}{k+h^{\vee}}$

The field $T(z)$ is called the Segal-Sugawam form.
We finally note that if $k=-h^{\vee}$ , we have

$[S(y), X(z)]=0$ for all $X\in \mathfrak{g}$ .

This case is called the critical level.


