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Abstract

This article is intended to be an introduction (for real novices) to the area
of proof systems and type systems. We provide very basic notions and their
fundamental properties together with some informal ideas behind them.

We start by describing how ‘logical reasoning’ can be formulated into a
proof system, and how structures of proofs can be studied based on this sys-
tem. We then proceed to a concise exposition of the notion of computable
functions, which emerged from proof theory in the early 1930’s (during the de-
velopment of the incompleteness theorems by Godel). Next, after a short ac-
count of pure (type-free) A-calculus in connection with computable functions,
we discuss three typed A-calculi (the simple type system, the second-order
type system, and the calculus of constructions) as representatives of type
systems, with emphasis on their relation to the corresponding intuitionis-
tic proof systems (the implicational fragment, the second-order propositional
logic, and the higher-order predicate logic, respectivelv).

1 Introduction

In the long history of mathematics, one might say mathematical logic started
very late. Of course, certain patterns of logical inference, in particular those called
syllogisms, were studied by Aristotle, but they are very restrictive and too weak
to be considered as a foundation of mathematics,! and unfortunately the tradition
of syllogistic logic lasted for more than two thousand years. It was in the middle
of the nineteenth century that significant contributions in propositional logic were
made by Boole, de Morgan, etc.

The propositional logic is a framework for investigating logical reasoning by
taking propositions as basic units. Here by propositions we mean sentences which
are either true or false. The main objective of propositional logic is then to study

! For instance, nested quantifiers are not considered in syllogisms, hence one cannot state
Euclid’s theorem; for any integer n there exists a prime number which is greater than n.
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the role of propositional connectives such as and, or, not, implies, etc., from which
the notion of Boolean algebras (i.e., complemented distributive lattices) naturally
emerges.

Thus in propositional logic one is concerned exclusively with the relation be-
tween sentences, but of course this is not enough. The framework is naturally
extended to that of predicate logic, in which one can consider predicates, i.e.,
sentences possibly with parameters, and quantifiers (for all, and there exists). Al-
though a part of predicate logic had been discussed in ancient Greek times, it was
C.S.Peirce and G.Frege in the late nineteenth century who started its systematic
study as a foundation for mathematics.

When we look at mathematical developments in the late nineteenth century
from the logical point of view, we note that Cantor developed transfinite set theory,
and Dedekind studied fundamental properties of natural numbers, which were later
formulated as Peano axioms. Stimuli from geometry, such as the axiomatization of
projective geometry, are also worth mentioning.

Then in 1901 B.Russell discovered his famous paradox? in naive set theory (cf.
[37]). This discovery, together with a number of other paradoxes discovered around
the turn of the century, was a strong attack on the mathematical study of logic
which was still in its infancy, but at the same time it was these paradoxes that gave
incentives to subsequent attempts to search for rigorous logical systems on which
mathematics could safely be based.

In the early twentieth century, the major objectives of studying logical founda-
tions of mathematics may be classified as follows.

e To formulate and investigate purely logical reasoning, which is somewhat
innate in human thought as natural languages.

e To find appropriate axiomatic systems for numbers, sets, and other basic
mathematical entities, and prove their consistency and completeness.

As to the first objective, it was proved by Godel that the goal is accomplished
by the system which is essentially due to Frege and later refined by Whitehead-
Russell. In section 2, we will explain the result together with its basic notions and
the informal ideas behind them.

The system in Principia Mathematica by Whitehead-Russell was primarily in-
tended to formalize a mathematical foundation, and so was the system by Hilbert-
Ackermann. In addition to those systems, Zermelo’s set theory and many others
aimed at the second objective, and they were also successful in the sense that these
systems had encouraged and given enormous influence on the later development of
mathematical logic. However it was proved also by Godel in two incompleteness
theorems that the second objective cannot be fulfilled.

Godel’s first incompleteness theorem proved the following: Any consistent for-
mal axiom system, say 7', which includes elementary arithmetic is incomplete in
the sense that there exists a sentence A in the language of T" such that neither .4 nor

2 Let Y be the set of all sets X such that X is not a member of itself; that is, ¥ = {X|X ¢ X'}.
Then we have Y € Y <= Y € Y, a contradiction.
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its negation can be proved in T'. This implies that there is no formal axiom system
in which all and only the true sentences of elementary arithmetic are provable.

Godel went on further and proved the second incompleteness theorem, which
says: for any consistent formal system which includes elementary arithmetic, its
consistency cannot be proved in the system itself. (See [14] for Godel’s works, and
[13] and [51] for their historical background.)

By a formal system, we mean a system to generate theorems and their proofs by
using a specified set of formulas as axioms and a specified set of rules of inference
such that one should be able to check by a finite procedure whether a given formula
is one of the azioms or not, and likewise for the rules of inference. The reason to
require the existence of finite procedures is that otherwise a formidable system like
the one containing all sentences which are true (under the standard interpretation)
as axioms might be considered. But such a system would contribute nothing to
our understanding of natural numbers and other mathematical entities.

General understanding of the notion of finite procedures mentioned in Godel’s
paper was at that time still in embryo. But in the subsequent short period a
number of proposals were made by Kleene [25], Church [7], Turing [49], etc. to
formalize the notion, and they turn out to be equivalent each other in spite of
totally different appearances. In section 3, we give a concise account of the notion
both from a mathematical viewpoint (based on recursive functions) and from a
computer-scientific view (based on simple languages for describing procedures). In
section 4, we discuss another framework, called (type-free) A-calculus, to express
finite procedures or computation, and the discussion is extended in section 5 to
a number of type structures built over the A-calculus. We can observe that some
type systems show a great affinity with (intuitionistic) logical systems discussed
in section 2 and their extensions. We will focus our attention on three typical
examples of such systems; the ones with simple types, with second-order types,
and with higher-order dependent types.

The paper is intended to be a first guide to theories of proofs and types, and
anyone who has moderate mathematical maturity should have no difficulty in un-
derstanding the contents.

2 Formal proof systems

Logical connectives commonly used in mathematics are; and (A), or (V), not
(=), implies (=), equivalence (<), for all (V), and exists (3). In the mathemat-
ical context, their meanings are fixed,® and by combining them with expressions
specific to the field under consideration one can compose propositions. A proof in
mathematics then can be considered as a process to derive a proposition by a series
of valid inferences from some postulates such as axioms of the field, known results,
assumptions, etc., which are also expressed as propositions.

3 The standard (classical) meanings of propositional connectives A,V, =, =, <> are determined
by the truth tables, and those of quantifiers V,3 are determined as the wordings ‘for all’ and
‘there exists’ suggest.
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Here. the validity of inferences of course means logical validity. Typical exam-
ples of logically valid inferences are the argument by contraposition; to infer 4 — B
from =B — =4, and the argument by contradiction; to infer 4 from the fact that
a contradiction follows from —.A. We will denote a contradiction by L.

There exist a large variety of logically valid inferences, ranging from trivial ones
to those which are too complicated to be appreciated. We will be concerned here
with their totality frorn mathematical point of view. A device which will be useful
for the purpose is a system to generate precisely all logically valid inferences. In-
deed, a number of such systems have been discovered. The basic idea common to
all of them is to decompose complicated patterns of inference to simpler ones. In
effect, the systems specify (i) the simplest patterns of inference, and (ii) possible
ways to construct complicated patterns out of simpler ones. We will call such a
system a proof system. By adding appropriate axioms to such a proof system, one
can obtain an axiom system suitable for a specific field under consideration.

2.1 Logical formulas

Before presenting the proof systems, let us first recall how propositions are
constructed. They are composed of mathematical formulas (such as (z -y) -z =
x-(y-z), zNy C z, etc) combined with logical symbols. A mathematical formula
used in this context consists of a predicate (in the above examples, = and C) and
some mathematical terms as its parameters (z,y,x -y, (r-y) - z,z Ny, etc. in the
above examples), which are composed of variables and function symbols.

We will define logical formulas by extracting the syntactic aspect of proposi-
tions. The reason for doing so is that patterns of logical inference are syntactic by
nature, and unless we distinguish the syntactic part from the semantic part, it is
very difficult to focus our attention on purely logical relations among propositions.
Indeed, in the long history of mathematics, the writing of propositions with logical
symbols started only in the nineteenth century, and before then logical connectives
had been expressed in natural languages. But usage of logical connectives such as
‘or’ and ‘implies’ in natural languages is context-dependent,? and one can imagine
how difficult it is to study logical inferences in such situations. Thus one of the first
important steps towards mathematical study of logic was to formulate propositions
with syntax/semantics dichotomy.

2.1.1 Definition First, we define terms recursively,” as follows.

(t1) Variables zg,xy,2,... are terms.

(t2) If f is an n-ary function symbol where n > 0 and t;, ¢, - -, t, are terms, then
flti,ta, -, t,) is a term. (0-ary function symbols may be called constant
symbols.)

1 For example, ‘or’ in English often means ‘exclusive or’ but not always.

5 In a recursive definition of a notion, as in the case of proof systems one specifies the list of
simplest items of the notion, and the list of possible ways of constructing complicated items out
of simpler ones. In recursive definitions, we always assume that the specified lists are exhaustive.
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Next, we define logical formulas recursively, as follows.

(f1) If p is an n-ary predicate symbol where n > 0 and t;,%o,---,t, are terms,
then p(ty,ts,---,t,) is a logical formula.

(f2) L is a logical formula.

(f3) If A, B are logical formulas and z is a variable, then (AA B), (AV B), (=4),
(A — B), (Vz.A) and (3z.A) are logical formulas.®

Logical formulas may be called simply formulas. The formulas of the form (f1) are
called atomic formulas. When a logical formula has a subformula of the form Vz.A
or dx.A, then occurrences of z in the subformula are said to be bound. Occurrences
of variables which are not bound are said to be free.

As we claimed before, what we defined above is mere syntax of propositions.
Then what we should do next in order to obtain actual propositions is to assign
appropriate meanings to logical formulas.

For the purpose, we first specify what values the variables in (t1) can take
(e.g., natural numbers, real numbers, etc), and then specify what functions are
meant by function symbols f in (t2), and what predicates’ are meant by predicate
symbols p in (f1). Once we provide these items of information and actual values of
variables, we can evaluate the ‘value’ of each atomic formula, which is either true or
false. As for the logical formula L in (f2), its ‘value’ is defined to be always false, as
mentioned before. Finally, the ‘values’ of compound formulas in (f3) are determined
as usual based on the standard (classical) meaning of logical connectives. The
above mentioned information for specifying the semantic part of propositions is, as
a whole, called an interpretation of logical formulas. In case where an interpretation
is well-understood or immaterial to evaluate a certain formula, we may simply say
a formula is true or false.

Note that all variables in our logical formulas range over a single domain; thus,
in particular, we have no function/predicate variables. It is possible to relax the
restriction, but for simplicity we stay in this section with this conventional defini-
tion, which is called the first-order formulas, and later in 5.3 we will consider more
general framework.

2.2 The classical system NK

Among a number of proof systems known today, we first present the classical
calculus of natural deduction NK introduced by Gentzen [15]. One of the advan-
tages of the system is that it reflects, to a certain extent, the kind of inferences
that human beings practise in mathematical reasoning and also in everyday life.
Let us first take a close look at simple examples and see how we proceed with our

% When there is no ambiguity we may omit parentheses in logical formulas and the dots after
Vz and Jz. Also for simplicity we omit A <> B from the definition of logical formulas and take it
as an abbreviation of (4 — B) A (B — A).

7 A function that takes values in B = {true, false} is called a predicate.
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2.2.1 Examples
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1. ((AAB)V(AAC)) > (AN(BVC(C)). In order to verify this formula, suppose either
ANAB or AANC holds. In the first case, from AA B follow both A and B, and from B
follows BV C. Thus in this case we have AA (B V C). Similarly, in the second case,
we get AN (BV C). As the same conclusion AA (BV C) is drawn from both cases,
it also follows from (AAB)V(AAC). Thus we get (AAB)V(AAC) > AN(BVC).

2. =(3z.A(x)) = Vz.(mA(z)). Assume —(3z.A(x)); that is, there exists no x such that
A(z) holds. In order to verify Vz.(—A(x)), take any y. Then —A(y) holds, because
otherwise there is y such that A(y) holds, which contradicts our assumption. Since
y is arbitrary, we conclude Vz.(—A(z)). Thus we get -(3x.A(x)) — Vz.(-A(x)).

One may observe that the above arguments can be decomposed into a number of
small steps, and some of the steps follow the same pattern; for example, the last
steps of the two examples do. It is indeed shown (cf. theorem 2.2.4 below) that
there exist a finite number of patterns of inference, into which any purely logical
reasoning can be decomposed. The following table illustrates the list of all rules of
the system NK; these rules except the first two are divided into six ‘introduction’
rules (AI), (VI), (=I), (—1I), (VI) and (3I), and six ‘elimination’ rules (AE), (VE),

(-E), (»E), (VE) and (3E).

2.2.2 Rules of NK

A
‘4‘1 A'Z 4’11 /\ ‘42
AL M T
(4] ,
i (-1) = ;A (-E)
Ioll Vz.C
® ., V=l@
Vr.C(x) C(t)

VE)

[-4]
% (1)
[Ai] [A2]
A; o A,v4, B B or)
V4 B :
[A]
B ASB A
15 B (—>1I) ———-——B———-— (—E)
[C(y)]
& A Jz.C(x) a6
Jz.C(z) B

In these rules, A, Ay, A, B and C(x) range over arbitrary logical formulas, and ¢
over {1,2}. All the rules except the first one show how smaller derivations can be



A PRIMER ON PROOFS AND TYPES 7

combined to make larger ones, and these are called inference rules. In each of them,
derivations already obtained are shown schematically over the horizontal line and
the consequence of the current step is shown below the line. The first rule, which
is the only rule without horizontal line, shows the simplest derivation; to derive a
formula A from A itself. It is used as the base step of construction of derivations
and we will call it the (start) rule.

The conjunction introduction rule (AI) represents the following pattern of ar-
gument; if we have two derivations, for A; and for A, respectively, then we can
combine them to make a derivation for 4; A A5. Similarly for (AE) and (VI). Next,
the disjunction elimination rule (VE) shows the pattern of argument by cases:

Suppose we have derivations for
(0) A1V Ag,
(1) B from assumptions possibly including A;, and
(2) B from assumptions possibly including A.
Then we can conclude B.

Note that in this argument, the assumption 4, is local to the derivation (1); it is
no longer necessary as an assumption in the whole argument. Likewise, A, is local
to the derivation (2). Note also that these are the only local assumptions, and all
other assumptions in (0) ~ (2), if any, remain to be the assumptions of the whole
argument. To indicate the locality of 4; and A., they are enclosed by square
brackets in the table 2.2.2, and said to be discharged in this step. Throughout
the table we follow the convention of indicating discharged assumptions by square
brackets. Note that the number of occurrences of the discharged assumptions is
not necessarily one, but could be any finite number (including 0).

The next rule (—I), called the negation introduction rule, claims that if a con-
tradiction L follows from A then —A is derivable (under the same assumptions as
before except A being discharged).

In the rules (VE) and (31), we write C(t) for the formula obtained from C(x) by
substituting® an arbitrary term t for each free occurrence of the variable . Then
the rule (VE) says that C(t) follows from Vz.C'(x), while the rule (3I) says dz.C(x)
follows from C'(t).

In (VI) and (3E), C(y) stands for the result of substitution of a variable y for
free occurrences of z in C(x), but here y must be a variable not free in Vz.C'(x)
and subject to additional conditions specified below for the two rules separately.
The rule (VI) says that

if C(y) follows from assumptions in which y has no free occurrence,
then Vz.C(z) follows from the same assumptions.

The rule (JE) says

if 32.C(z) follows from assumptions, say I', and B follows from some
assumptions, say I/, such that y has free occurrences neither in B nor
in I'" except in C(y), then we can derive B from T'U (I' — {C'(y)}).
& By substitution, we always mean replacement of variable occurrences with some expression
) > Y p

under the condition that the replacement does not create any new bound occurrence of variables,
in the same sense as we cannot substitute z for z in {z € Z |z < z} # 0.
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Similar accounts for the rest of rules should be clear. The rule (L), called the
classical absurdity rule, describes the pattern of argument by contradiction. The
rule (—E) is also known by the name of Modus Ponens.

We can apply these patterns consecutively to obtain a logically valid deriva-
tions, and the process is illustrated in the form of trees, which are called proof trees.

2.2.3 Examples The arguments in Example 2.2.1 can be illustrated in the follow-
ing proof trees, in which labels u, v, ... attached to discharged assumptions indicate

the steps at which the assumptions are discharged.

(1) A proof tree for (AANB)V(AANC) = AAN(BVC).

[AA B . [AAC]
[A A B]* 5 B \(/;\h) [AANC] . C \(//I\E)
—a BVCEM; E BVCEMi
[(AAB)V(ANC)Y AN (BVC) AAN(BVC) )
AAN(BVO) (VE)
(—=D)"

(AANB)V(ANC) > AN(BV(O)

(2) A proof tree for ~(Iz.A(x)) — Vz.(-A(x)).

L2 -
Jr @)~ PEeA@)
L u
(=D
;/“_y)_ (V)
Vr.(—A(x))

@A) = Vo (=A@)

The first proof tree shows that (AAB)V (AAC) - AN (BVC) is derivable
without assumption, because in the proof tree all forinulas at the leaf nodes are
discharged. Likewise the second proof tree shows that —(3z.A(x)) — Vz.(=A(x))
is derivable without assumption.

Now let us define two notions necessary to state Godel’s completeness theorem.
We suppose A is a formula and I is a set of formulas. First, by writing

' -nk A

we mean that A is derivable in NK from assumptions in I'. More precisely, the
notation means that there is a proof tree constructed by rules in 2.2.3 such that A4 is
at the root node and all undischarged formulas at the leaf nodes belong to I'. Note
that it is a purely syntactic notion; that is, whether it holds or not depends, by
definition, only on the forms of formula. The other notion is a semantic entailment

relation
=4,
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which means that to infer A from I' is a valid inference. More precisely, it means
that for any interpretation I, A is true under I if all members of I are true under I.
Godel’s completeness theorem says that the two notions above coincide. In other
words, all and only valid inferences can be attained by applying rules of NK.

2.2.4 Completeness Theorem for NK For a formula 4 and a set I'" of formulas,
'bknk A <= T = A

The = direction of the theorem, which is sometimes called the soundness theorem
of NK, can be verified by induction on the number of steps in the derivation of A
from I". The more difficult part of the theorem is the < direction, and its proof
can be sketched as follows. First note that the proof can be reduced to the special
case where A is |, because I' Fxk A is equivalent to I'U {—A} Fnyk L by the rules
(mE) and (1), and I' |= A is equivalent to 'U{-A} |= L by definition of |=. In the
syntactic side, when I' Fnk L holds we say I' is inconsistent, and otherwise T" is
consistent. In the semantic side, I' = L means that there is no interpretation under
which all members of I" are true (since L is false under any interpretation). In this
case, we say I is unsatisfiable, and otherwise I' is satisfiable. Now, in order to prove
I''= L = T knk L by contraposition, let us assume that I' is consistent. Then
it can be shown that there exists a consistent extension I'' of T (i.e., ' C IV and
I'" /N L) from which one can directly construct an interpretation such that all
members of IV are true. Thus I' is shown to be satisfiable; i.e., I' & L. For more
details, see for example [50].

Now that the purely logical part of mathematics is formulated by NK, we can
construct an axiom system for a certain field by specifying a set of appropriate
formulas as axioms of the field. For example, an axiom system for group theory
may be obtained by specifying

(G1) ‘v’xVsz[(:c-y) z=x-(y-2)]
(G2) Vzle -z = x].

(G3) Vx3Iyly -z =e].

(E1) Vz [z = x].

(E2) VaVylz=y — (A(z) — ‘A(y))]-

as axioms? where = is a binary predicate symbol, e is a 0-ary function (or constant)
symbol and - is a binary function symbol. Let I' be the set of all these axioms.
Then we know from the completeness theorem that I' Fnyk A holds if and only if
A is true for all groups. "

The best-known axiom system for natural numbers is the Peano arithmetic (PA,
for short). Here, by natural numbers we mean the nonnegative intergers 0,1,2, ...

9 (E1) and (E2) are general axioms for congruence relations; they guarantee, with the help of
the rules of NK, the reflexivity, symmetry, transitivity, and congruency of =. In (E2), A(z) and
A(y) are respectively the results of substitution of new variables x and y for free occurrences of
z in an arbitrary formula A(z). Thus (E2) is actually not one axiom, but an axiom scheme.
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(including 0). In the axioms of PA below, the intended meanings of the symbols 0,
s, +, x, = are the natural number 0, the successor function s(z) = z + 1, addition,
multiplication, and the equality of natural numbers, respectively. The first six
axioms specify basic properties of these functions. (PA7) states the induction
principle, in which A(z) is an arbitrary formula, and A(¢) for a term ¢ (e.g., 0,s(x))
stands for the result of substitution of ¢ for free occurrences of the variable z in
A(z). The equality axioms (E1) and (E2) are the same as before.

(PA1) Vz[-(s(z)=0)].

(PA2) VzVy[s(z) =s(y) = z=y]

(PA3) Vz[z+0==zx].

(PA4) VzVy[z +s(y) =s(z+y)]

(PA5) Vz[z-0=0].

(PA6) VzVy|z-s(y)=z-y+<z].

(PA7) A(0) — [Vz(A(z) — A(s(z))) — VzA(z)].
(E1) Vz[z = z].

(E2) VzVy[z=y — (A(z) = Ay))]

It is for the system PA and arbitrary extensions of it that Godel proved his in-
completeness theorems mentioned in section 1. In general, if an axiom system
T is obtained from NK by adding a set Ax(T') of axioms, we will write ' k1 A
for ' U Ax(T) Fnk A. Thus for example we have Fpy VaVy[z +y = y + z],
Fpa Vz[—(z = 0) = Jy (z = s(y))], Fpa 2+ 3 =5, etc. where 2 stands for s(s(0))
and similarly for other natural numbers.

2.3 The intuitionistic system NJ

A proof system weaker than NK, which is called the intuitionistic calculus of
natural deduction NJ, is also introduced by Gentzen [15]. The system is obtained
from NK by replacing the classical absurdity rule (L) with the intuitionistic ab-
surdity rule

Loy
1 (L)

which says that from a contradictioin any formula can follow (without changing
the assumptions). The difference between the two rules is that in (L) one can
discharge —A from assumptions, but in (1)’ one cannot. A typical example to
show the difference of the two systems is the law of the excluded middle 4 v = A.
It is derivable!? in NK as shown below

10 When a formula is derivable in a system T without assumption, we simply say it is derivable
in T.
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__[_14_]_1‘_ (\/I)
AV -A [—'(A \Y "!A)]U E
n - (—E)
— (=I)
A (vI)
AV -A [-(AV-A4))° E)
L (L)” o
Av-A

but in NJ, since we cannot discharge the assumption —(A V —A) in the last step
of the proof tree above, what we can get in this argument is only ~(AV —A4) Fny
AV —A. Other examples which are derivable in NK but not in NJ are -—A4 — A,
(wA - -B) - (B > A), ((A— B) > A) —» A (Peirce’s law), etc. In fact, in NJ
logical connectives A, V, —,V, 3 are independent of each other,!! while in NK they
are dependent; e.g., Fnk (AV B) & ((A - L) = B).

All of the above mentioned properties of NJ are proved by way of the normaliza-
tion theorem for NJ (cf. [35] Ch.IV). The statement of the theorem itself is rather
involved, but in effect it says that every formula derivable in NJ can be derived
by a ‘normal’ (or ‘detour-free’) derivation. Here, a detour means an application of
an introduction rule immediately followed by an application of the corresponding
elimination rule in the following way

)" N

I, _ N | SR V1

r : H2 A B

A ANB o
A

A— B (=D

B (—E)

and they can be removed without changing the assumptions and the conclusions;
for example, the detours above can be removed, as follows.

: I,
A
B A

The detour removal process may not necessarily decrease the size of proof trees,
because in some cases it involves copying of subderivations.!? Nevertheless, the
detour removal process can always be terminated, resulting in a normal (or detour-
free) derivation; this is what the normalization theorem for NJ claims.

Another important consequence of the normalization theorem for NJ is due
to the ‘subformula property’ of the normal derivations; the normal derivation of
I' FnJ A contains only subformulas of A or of those in I', providing that we take -4

11 That is, there is no A-free formula which is equivalent in NJ to A A B, and similarly for v, —,
¥, and 3. Note however that ~A is equivalent to A — 1 in NJ. That is, Fny (-A) & (A — 1).

12 Recall that IT; in the left detour may contain more than one occurrences of the discharged
assumption [A], and the detour removal process replaces each occurrence of [A] with ITz.
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as an abbreviation of A — L.!3 Thus. for example, if T Fnj A and if formulas in
I' and A consist of only atomic formulas and —, then we know that A4 is derivable
from I' by using only the rules (start), (—I), (=E). Likewise for other logical
constants A,V,—, 1,V, 3, and for any combination of them. These facts can be
summarized, as follows: NJ is a conservative extension!'? of its S-fragment!® where
S is any set of logical constants. As a special case, we obtain the consistency
of NJ, i.e., /Ny L. In passing, we note that the consistency can also be proved
semantically by using theorem 2.2.4. Indeed, from [~ 1 we know t/nk L; hence
Fng L.

We have also a normalization theorem for NK (cf. [35] Ch.III), but because of
the presence of the classical absurdity rule (L), the notion of normal derivation of
NK is not so well-behaved as that of NJ, and as a consequence the theorem is less
powerful.

We will come back to the (strong) normalization theorems for intuitionistic
proof systems in section 5 in relation with the (strong) normalization theorems for
type systems, because the latter can be stated and proved more easily than the
former and the latter imply the former.

The system NJ is called ‘intuitionistic’ because it is formulated based on the
intuitionistic (or constructive) view of logical formulas, in which a formula is con-
sidered to be true only if it has a constructive proof of the following nature.

e A proof of A A B is given by presenting a proof of A and a proof of B.

A proof of AV B is given by presenting either a proof of A or a proof of B together
with information to tell which of A, B is the case.

A proof of A — B is a method of transforming any proof of A to a proof of B.

L (contradiction) has no proof; = A is taken as an abbreviation of 4 — 1.

e A proof of Vz.A(x) is a method of transforming a proof of d € D, where D is the
intended domain of variables, to a proof of A(d).

A proof of 3z. A(x) is given by presenting an clement d of the intended domain D
together with a proof of A(d).

This view is known as the Brouwer-Heyting-Kolmogorov interpretation. It turns
out that the law of the excluded middle 4V —A is not necessarily true in this view,
because one may not be able to tell whether A4 is true or —.4 is. Logical systems
in which AV =4 is derivable are called ‘classical’.

Historically, intuitionism was advocated by L.E.J.Brouwer and others in the
early twentieth century from a certain philosophical point of view. Apart from

13 See footnote 11.

14 First, for any proof system 7', when a formula A is derivable from I' in the svstem T" we write
I' b1 A as in the case of NK and NJ. For two proof systems T and 7", if all T-formulas (i.e.,
formulas of the system T") are T’-formulas, and moreover I' b7+ A == I' b, A holds for every
T-formula A and every set I of T-formulas, then we say T’ is an extension of T'. A conservative
extension of a proof system T is an extension 7”7 of T' in which ' Fp A <= I" 4+ A holds for
every T-formula A and every set I' of T-formulas.

15 1n general, when S is a set of logical constants, the S-fragment of a proof system 1" means
the subsystem of T" obtained by restricting formulas to those consisting of atomic formulas and
logical constants in S, and restricting inference rules accordingly.
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their philosophical motivations, constructive logics have been attracting much at-
tention recently both in mathematical logic and in theoretical computer science (cf.
[29], [45], [48]). We will see in section 5 that intuitionistic logics can be embedded
in some type systems very smoothly so that one might consider type theory as the
theory of computation which is founded on the ground of intuitionistic logics. On
the other hand, proof theory can be encouraged by and can benefit from devel-
opment of type theory through intuitionistic logics. A typical contribution from
type theory to proof theory is the proof by J.-Y.Girard [17] of the consistency of
second-order Peano arithmetic through the consistency of its intuitionistic coun-
terpart, second-order Heyting arithmetic. He proved the latter by introducing a
second-order type system A2 and proving its strong normalization theorem. We
will come back to the subject in 5.2.

We close this subsection with a remark on the sequent-style presentation of the
systems NK and NJ. The two systems can be presented directly in terms of the
derivability relation I' b A where T' € {NK, NJ}, which in this context is called a
sequent. For example, in terms of sequents, the rule (—1I) can be stated as

(»I) TU{A}F B implies T+A— B

(that is, if B is derivable from I' U {A} then A — B is derivable from I'), while the
rules (—E) and (start) can be stated respectively as follows.

(3E) TFA—>B and I'A implies '+ B,
(start) T A if Ael.

2.4 Other proof systems

In addition to natural deduction systems, Gentzen [15] introduced two other
proof systems LK and LJ which are defined only in the sequent style in a perfectly
symmetric way, and they are called the ‘sequent-style systems’. The system LK
is equivalent!® to NK and so it is a classical system, while LJ is equivalent to
NJ hence it is intuitionistic. The sequent-style systems have some advantages for
theoretical purposes: Indeed, the theorems for LK and LJ corresponding to the
normalization theorems for natural deduction systems are stated in a clear way
as the ‘cut-elimination theorems’ [15], and the latter inspired the former. On the
other hand, natural deduction systems have advantages in other aspects, such as
affinity with human deduction and affinity with many important type systems as
we will see in section 5. For the proof theory of sequent-style systems, see the
articles by H. Ono and M. Okada in this volume and their references. The article
by H. Yokouchi in this volume discusses among others some type systems relevant
to LK and LJ.

"Other important proof systems are so-called ‘Hilbert-style’ systems. Such a
system equivalent to NK (or NJ) can be obtained from NK (or NJ) by replacing

16 If two proof systems have the same derivability relation, the two systems are said to be
equivalent.
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the rules except (—E) and (VI) with appropriate axioms. Historically they are
forerunners among all proof systems, and indeed Godel proved his completeness
theorem for one of these (classical) systems. Hilbert-style systems have an advan-
tage that they are conceptually simple, because they are free from the ‘discharge’
mechanism. As standard textbooks on mathematical logic based on Hilbert-style
systems, [38] and [30] are recommended. The {— }-fragment of an intuitionistic
Hilbert-style system has a close relation with a certain type system based on com-
binatory logic (cf. 4.1.4). See for example [21] Ch.14 and [47] §2.4 for this subject.

3 Computable functions

In this section, we will see what the notion of ‘finite procedures’ can mathemat-
ically be. For this purpose, first let us define a class of functions of natural numbers
which are apparently computable in any meaning of the word. As we mentioned
before, by natural numbers we mean non-negative integers 0,1,2,..., and we write
N for their totality.

3.1 Recursive functions

3.1.1 Definition The following functions are called primitive recursive functions.

zero™(xy,T2,...,T,) =0 for each n,zy,z2,...,7, € N.
suc(z) =x +1 for each z € N.

p*(z1,...,x,) = x; for each n,i,z,...,r, € N such that 1 <7 <n.

- W N

The function f : N™ — N defined by composition as

f(@) =9(g1(Z),...,9m(F)) (Z€N")

where g : N™ — N and gi,...,9m : N* = N are primitive recursive func-
tions, and n,m € N.

5. The function f : N"*! — N defined by primitive recursion as

f(Z,0) = g(T),
f(Z,y+1) =h(Z,y, f(Z,y) (FeN", ye N)

where g : N® — N and h : N"*2 — N are primitive recursive functions, and
n € N.

Thus the primitive recursive functions are precisely the functions of natural num-
bers which are obtained by composition and primitive recursion starting from the
constant functions, the successor function, and the projections. We will write
go(gi,...,9m) for the function f in Definition 3.1.1.4, and h * g for the function
f in Definition 3.1.1.5.
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3.1.2 Example Addition add(z,y) = x + y is a primitive recursive function,
because add(z,0) = z, add(z,y + 1) = add(z,y) + 1, hence add= h x g where
h = suc o p3 and g = p}. The predecessor function pred : N — N defined by

pred(0) =0, pred(y+1) =y

is also primitive recursive, since pred = p? * zero®. Likewise, z x y, =¥, z!, the
function prime(z) to return the z-th prime number, the function sqrt(z, y) to return
the z-th digit of \/y, etc. are shown to be primitive recursive.

Next we extend the notion of primitive recursive functions to that of recursive
functions. While the domains of primitive recursive functions are of the form N"
for some n, the domains of recursive functions are in general subsets of N".

3.1.3 Definition The following functions are called recursive functions.!”

1. The function f defined by
f(&) =y < y=min{2|g(Z,2) = h(Z,2)} (TeN", yeN)

where g, h : N**! — N are primitive recursive functions.

2. The function f defined by

f(Z¥) =y <= there exist y;,...,Ym such that
G (&) =y1,- -, g (L) = Ym, 9(W15 - Ym) =Y

where ¢, g1, ..., 9m are recursive functions.

Note that for the function f in Definition 3.1.3.1 the value f(&) for a given ¥ € N™
is defined if and only if there is a z € N such that g(Z,z) = h(Z, 2),'® and if this
is the case f(Z) denotes the minimum value among all such z’s. We will write
g | h for the function f. The function f in Definition 3.1.3.2 will be denoted by go
(g1, -, 9m), as before. Note however that here for some & the value of the function
go(g1,...,9m) may be undefined; it is defined if and only if g1 (Z), ..., gm(Z) are
all defined and moreover g(g; (&), ..., gm(Z)) is defined.

Note also that every primitive recursive function g : N* — N is a (total) recur-
sive function, since g(¥) = min{z|g(Z) = z} for each Z.

3.2 Description of computation

Intuitively speaking, the definitions 3.1.1 and 3.1.3 themselves suggest how
to compute values of recursive functions. To make the intuition precise, let us

17 1n the literature, recursive functions are sometimes called partial recursive functions to em-
phasize the fact that their domains are not necessarily N™ but its subsets. In this respect, a
function whose domain is N” (for some n) may be called a total function.

18 Ag usual, we understand that nothing is the minimum element of the empty set.
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introduce a simple language to describe computation processes. In this language,
we will describe the processes by using assignment statements of the form

T:=c¢
and while statements of the form
while e # €' do [S;S";---;S"].

Here, z is a variable (in the sense of programming languages) which can keep a
single natural number at a time, and e and €’ are expressions to specify a nat-
ural number using the variables and certain functions (e.g., primitive recursive
functions). In the while statement, [S,S’,---,5"] stands for a finite sequence of
assignment statements and/or while statements.

The assignment statements are used to change the values of variables, and the
repetition of computation processes is specified by using the while statements. An:
execution of the assignment statement means to evaluate the expression e first by
using current values of variables, and then assign the value to the variable z. An
execution of the while statement is, as the wording itself suggests, to repeat the
following process; first, evaluate the expressions e and e’ and see whether the two
values are equal or not, and if not execute the block of statements S,5’,...,5"
(sequentially from left to right). On the other hand, if the values of e and e’ are
equal, the execution of the while statement terminates, and the flow of control
proceeds to the next statement.

A finite sequence of these statements enclosed by an input statement at the
beginning and an output statement at the end in the following form makes a program
in our language.

input(%); S;S’;...;S"; output(x)
Here 7 is a finite sequence of distinct variables, called the input variables, and x is
the output variable.

When input data m € N™ are given to the input variables Z = (z1, x>, ..., T,)
of the above program, say P, the program P executes statements S,S’,..., 5" one

by one in this order, and if the control eventually reaches the output statement it
outputs the current value, say m, of the output variable . (If not, there will be
no output.) The relation between the input m € N” and the output m € N so
obtained defines a function, which we call the function computed by P. Note that
input data for which the program does not terminate and so gives no output are
not included in the domain of the function; therefore in general the domain is a
subset of N".

Let us assume, for the moment, computability of the primitive recursive func-
tions, and use them in the expressions e and e’ in assignment/while statements.
Then the following is a program to compute the function f = g | h defined in
Definition 3.1.3.1.

y:=0;
while g(Z,y) # h(Z,y) do [y :=y + 1];
output(y)
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Likewise, one can easily write a program to compute the composition function f =
go(g1,--.,9m) defined in Definition 3.1.3.2, assuming that programs to compute
4,91, --,9m are provided. Therefore by inductive argument we know that for every
recursive function f one can write a program to compute f.

What is somewhat unexpected is the fact that the converse also holds; that is,
all functions computed by our programs are recursive functions. The outline of
the proof proceeds as follows. First, we verify that any function computed by a
program (with primitive recursive functions in assignment/while statements) can
be computed by a program of the form

input(X);

w := g1(Z);

while g»(w) # gs(w) do [w = g4(w)];
y = gs(w);

output(y)

where g, ~ g5 are primitive recursive functions. In order to prove this, one heavily
relies on the G6del numbering technique to encode finite sequences of natural num-
bers by natural numbers using primitive recursive functions.!® Next, the function
f computed by the five-line program above is shown to satisfy

f(Z) = hs(Z, (ha | h3)(F))

where h; (i = 2,3,5) are the primitive recursive functions defined by?°

hi =gio((gaopd) xp?)o(gio@itt,pit . ..,ppth), pht]

Thus f is shown to be a recursive function.

By the argument above, we know that a function is recursive if and only if it is
computed by a program (using primitive recursive functions in assignment/while
statements).

As for the computability of primitive recursive functions, one can verify the
following: Any primitive recursive function can be computed by a program which
contains only assignment statements of the form

y:=0 or z:=2z+1
and only while statements of the form
while y # 2 do [S;S";---; 5"

where y and z are arbitrary variables.

19 This technique was developed and extensively used by Godel in proving the incompleteness
theorems. In his proofs, the technique was used for encoding not only finite sequences of natural
numbers, but more general kinds of finitely representable objects such as logical formulas and
proof trees, in order to internalize proof-theoretic arguments in PA.

20 See 3.1.1 and 3.1.3 for the notations. Here n is the number of input variables in .
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Let us call a program consisting of assignment statements and while statements
of these restrictive forms a low-level program, and call a program using arbitrary
primitive recursive functions in assignment/while statements a high-level program.
Then we can summarize the previous arguments as follows.

3.2.1 Theorem For a function f from a subset of N™ to N, the following condi-
tions are equivalent. (i) f is a recursive function. (ii) f is computed by a high-level
program. (iii) f is computed by a low-level program.

The descriptive power of our language, when it is compared with practical
programming languages, appears extremely weak, because the only data structure
available in our language is natural numbers and no structured data such as vectors,
matrices, trees, graphs, functions, etc. are available. Also our language has only
the while statement to control the flow of the program, and even (recursive or non-
recursive) subprograms are not available. However it can be shown that various
useful concepts available in traditional or modern programming languages can be
‘implemented’ in our language by using the Godel numbering technique.

Based on this fact and other evidences that the notion of recursive functions
coincides with each of several other notions of ‘computable functions’ that have
been proposed, for example those by using Turing Machines [49], A-calculus (cf.
section 4), etc., we will call recursive functions simply computable functions, and by
finite procedures we will understand any of the mutually equivalent computational
models.

3.3 Non-computable functions and undecidable problems

Now a natural question arises; what functions are not computable? The mere
existence of non-computable functions is easy to see by a cardinality argument:
There are only countably many recursive functions while there are uncountably
many functions over natural numbers, hence there should be (uncountably many)
non-computable functions.

As a concrete example, we can exhibit a function f from a proper subset of N2
to N such that f itself is computable, but every total extension®! of f is not.

The idea of how to construct such a function f is the following. First note
that a low-level program in 3.2 is, from the syntactic viewpoint, described by a
finite sequence over a finite set of symbols,?? hence it can be encoded by means of
a natural number using the Godel numbering technique. Now let us concentrate
on low-level programs with a single input variable, and write f; for the function
computed by such a program with code k£ € N. The function f is then defined by

flk,e) =y <= fi(z)=yand k€K (k,z,y € N)

21 J.e., a total function g : N2 — N such that f(£) = g(Z) holds whenever f(Z) is defined.
22 The only trouble is the names of variables in programs, but for them we can use x, =’, z'/,
x'", etc (consisting of symbols z and ').
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where K stands for the set of all codes of low-level programs with one input variable.
Then this function f is shown to be computable; indeed, it can be computed by an
‘interpreter’ of low-level programs with a single input variable, which, given k € K
and m € N, outputs exactly when and what the program coded by k does for the
input m, and such an interpreter can indeed be programmed in our language. The
second property of f that every total extension of f is not recursive can be verified
by the following diagonalization argument: Suppose a total extension g : N 25N
of f were recursive. Then the function ¢’ : N — N defined by ¢'(z) = g(z,z) + 1
would be a unary (total) recursive function. Hence g’ = fi for some k € K, and
we have ¢'(k) = fr(k) = f(k,k) = g(k,k), while g'(k) = g(k,k) + 1, which is a
contradiction.

From the function f above, we can obtain another non-computable function.
Let h: N? — N be defined by

h(E) = 0 if f(&) is defined,
11 if f(Z) is undefined.

Then h is not computable, because otherwise one could easily write a program to
compute a total extension of f based on programs to compute f and h, respec-
tively. From the fact that h is not computable, we know that for some program P
(indeed, for the one to compute the function f) no program can predict whether
P terminates or not for given inputs. That is, the problem cannot be answered by
finite procedures.

In general, for a predicate p(#) of natural numbers (i.e., a function of natural
numbers whose values are either true or false), if its characteristic function

~_ |0 if p(¥) = true,
X (%) —{ 1 if p(7) = false.

is computable, we say that the decision problem of p is decidable and otherwise
undecidable. From the above argument, we know the undecidability of the problem
asking for the above function f whether f(Z) for a given & € N? is defined or not.

We can extend the domain of decision problems in a natural way from the set of
natural numbers to a certain set of objects which can be described by (finite) words
over a finite alphabet. For example, we can think of decision problems on (low-level
or high-level) programs, those on recursive functions, those on logical formulas with
a finite set of function/predicate symbols, and so forth. For example, immediately
from the above argument, we get the undecidability of the ‘halting problem’ of
programs which asks whether a given program eventually stops for a given input
data or not.

As for the decision problems concerning logical formulas, it follows from the first
incompleteness theorem by Gédel that the decision problem asking whether a given
PA-formula A is true or not (under the standard interpretation®® ) is undecidable.

23 By the standard interpretation of formulas of PA, we mean the interpretation over the set
N of natural numbers in which 0, suc, +, x and = are interpreted as the natural number 0, the
successor function, addition, multiplication, and equality (between natural numbers).
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It is also shown to be undecidable whether a given PA-formula is provable in PA or
not. A decision problem related to pure proof systems (without axioms), which is
also known to be undecidable, is the one asking whether a given logical formula A
holds true always (i.e., |= A, or equivalently, Fxk A). Note that the corresponding
problem for propositional logic (i.e., the {A,V, -, = }-fragment of NK) is decidable,
because one can easily give the answer by writing truth tables, and the process of
writing truth tables can be described in a program.
For more on the subject of this section, consult for example [12] and [32].

4  A-calculus

A mathematical framework to study the mechanism of functional abstraction
and application was introduced by Church [6] as a part of his logical system. Al-
though his system was found to be inconsistent (cf. [36]), the framework of func-
tional abstraction and application itself, which is called the A-calculus, was shown
to be one of the key notions to characterize computability (sec Theorem 4.2.3 be-
low). Besides, since the first functional programming language LISP was designed
incorporating the idea of the A-calculus and implemented in the late 1950’s, the
notion of A-calculus has become popular among the computer science community,
and its significance has gradually been recognized. In particular, the discovery by
D.Scott [41] of models of A-calculus initiated the domain theory; that is, mathe-
matical studies of semantics of programming languages based on the models. In
addition, more recently active studies on various type systems based on the A-
calculus has been going on (cf. section 5). These developments show that the
notion of A-calculus is much richer than one might have anticipated, and that it
actually bridges between theory of computation and proof theory in a different way
from what Church originally intended.

So far, there have been introduced a quite number of formal systems relating
to Church’s idea. As a basis for all such systems, in this section we take a look at
the core system with no typing discipline nor built-in constants, and we call it the
type-free pure A-calculus, or simply the A-calculus.

Before introducing the A-calculus, let us first look at a useful notation for func-
tions. Given a mathematical expression e and a variable x ranging over a set D,
the function which assigns the value of e to the value of z is denoted by Az € D.e,
or simply by Az.e if the domain D is well understood. For example, An € N.n + 1
denotes the successor function over N, while Ay € R.z¥ may denote the function
f : R — R such that f(y) = z¥. This notation, called the A-notation, is partic-
ularly useful in representing higher-order functions. For example, when we write
(D — D) for the set of unary functions over D, by A\f € (D — D).f o f we mean
the higher-order function (or functional) which assigns the composition f o f to
each f in (D — D), while f o f can be expressed as Az € D.f(f(x)).

Although the A-notation is primarily for unary functions, it can also express
functions of any positive arity. For example, given a binary function f : X xY — Z,
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let us define f' = Az € X.(\y € Y.f(z,y)) : X — (Y — X). Then for each
x € X and y € Y we have f'(z)(y) = f(z,y). In this way, any binary function
f can be expressed by the (higher-order) unary function f’, which we call the
Curried function of f (after H.B.Curry, one of the pioneers in this field). The
same argument applies to functions of the arity three or more. By convention, we
will write arguments of Curried functions without parentheses as f’'zy, instead of
f'(z)(y).

The A-notation is also useful in defining functions recursively, which is very
common in functional programming. For example, one can write a program to
compute the factorial function fact(z) = z! in functional programming languages
essentially as

fact = Az € N.(if z = 0 then 1 else fact(z — 1) x z).

What this means is that the function fact is defined as the unique fixed point of
the higher-order function :

F=XMf€e (N—->N).(Ax e N.(ifz=0then1lelse f(z—1) x x));

that is, as the function f satisfying f = F(f).
4.1 Definitions and examples

In the A-calculus, the most basic notions are those of A-terms and reduction
between them. All well-formed expressions in the system, including functions and
their arguments, are called A-terms. Note that when higher-order functions are
taken into account, functions may also be arguments of some functions.

4.1.1 Definition The set A of A-terms is defined recurswely, as follows

1. Varlables in Var = {uo, Uy, Ug, ...} are A-terms.
2. If M is a A-term and u € Var, then (Au.M) is a A-term.
3. If M and N are A-terms, then (M N) is a A-term.

We call a A-term of the form (Au.M) an abstraction (thinking of Al as being
abstracted to a function assigning M to u), and a A-term of the form (MN) an
application (thinking of M as being a function applied to V). In this section, unless
otherwise stated we assume L, M, N, ... stand for arbitrary A-terms, and u,v,...
for distinct variables. In order to avoid too many parentheses in A-terms, we
will write Aujus - --u,.M for the A-term ()\ul (Auz.(--- (Aun. M) --+))), and write
LN1N2 N for (( ((LN])Nz) )N )

An occurrence of variable u in a A-term is said to be bound if it is contained
in a subterm of the form Au.M, and otherwise it is free. When X-terms L and L'
differ only in the names of bound variables, we identify them and write L = L’.

Next we define the notion of B-reduction of A-terms, which represents compu-
tation steps of A-terms. :
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4.1.2 Definition First let us denote by AM[u := N] the result of substitution
of N for every free occurrence of u in M. When a A-term L contains a subterm
of the form (Au.M)N, and L' is obtained from L by replacing the subterm with
M|u := NJ], we say L is contracted to L' by one-step 3-reduction, and write L —5 L'.
Thus one-step 3-reduction can schematically be written as

- (Au.M)N ... E) ...M[u:=N]....

The A-term (Au.M)N is called a 3-redex (meaning a (3-reducible ezpression).

The intuition behind — 3 is the following: In B-redex (Au.M)N, the subterm
Au.M represents the function with u as the formal argument and M as the function
body, while N represents an actual argument supplied to the function. On the
other hand, M[u := N] denotes the result obtained by substituting the actual
argument NN for the formal argument u in the body M of the function. Thus —4
can be considered as a formulation of a primitive step of evaluation of functional
expressions.

Next, when we have a finite sequence of one-step (-reductions

Lo—»>Ly—>Ly—---—L,
B B B B

where n > 0, we say Ly is B-reducible to L,,, and write Ly —»3 L,,. In other words,
—»g is the reflexive and transitive closure of —3. The reflexive, symmetric and
transitive closure of — 4 (that is, the equivalence relation generated by —3) is de-
noted by =g3.

4.1.3 Examples (fixed point operator) Given a A-term M and a variable u
not free in M, let M' = Au.M (uu). Then M'M’' = (Au.M (uu))M' -5 M(M'M").
Thus for every A-term M there exists a A-term X satisfying X =3 MX. We will
call such a A-term X a fized point of M. Next, let Y = Av.((Au.v(uu))(Au.v(uu))).
Then

Y M =(Au.M(uw) (hu. M (uu)) = M'M' = M(M'M') = M(Y M),

which means that Y M is another fixed point of AM/. Thus Y plays the role of fixed
point operator (to yield for each M a fixed point of M).

4.1.4 Examples (combinatory logic) Let S = Auvw.uw(vw) and K = Auv.u.

Then we have :
SKK —ﬂ» w.Kw(Kw) _B» Aw.w.

More generally, we can prove that for any A-term M there exists a A-term L such
that L —»3 M and L is constructed by application from the A-terms S and K above
and variables in FV(M).?* This suggests a close relationship between the structure

24 Variables which have free occurrences in M are called free variables of M, and their totality
is denoted by FV(M).
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of the set A of A-terms and an algebraic structure associated with the combinatory
logic (cf. [3] §7.3, [21] Ch.9). First, let CL be the set of the first-order terms, called
CL-terms, constructed by binary operator - from two constants s, k and variables,
and =, be the congruence relation over CL generated by?® sabc = ac(bc) and
kab = a for every a,b,c € CL. Under this definition, it can be shown that the
quotient structure®® (A/—,,S, K,-) of A is a homomorphic image of the quotient
structure (CL/— ,s,k,-), called the free combinatory algebra. Moreover, when we
consider, instead of =g, the extensional congruence relation =g,, i.e., the weakest
congruence relation containing =3 and satisfying the extensionality condition

VN[MN = M'N] = M =M,
Bn Bn

and likewise replace the relation =,, between C L-terms to the weakest extensional
congruence =, the two quotient structures (A/—-, ,S,K,-) and (CL/-,,,s,k,")
are shown to be isomorphic. Roughly speaking, this means that the role played by
the A-abstraction in A-calculus can almost be confined to the two A-terms S and
K, and if the extensionality is assumed this is so in a strict sense. See for example
[42] and [21] for combinatory logic and its relation to A-calculus.

4.2 Fundamental properties of A-calculus

A X-term which contains no [-redex is said to be in B-normal form (3-nf, for
short), and when L —»3 M and M is in (-nf, we say L is normalizing and M is
a B-nf of L. Note that some A-terms are not normalizing; take for example the
Aterm LL where L = Au.uu or L = Au.uuu. The fixed point operator Y in
4.1.3 is another such example. But it is guaranteed by the next theorem that if
a A-term is normalizing then its 8-nf is unique (up to renaming of bound variables).

4.2.1 Church-Rosser theorem for A-calculus If L-—»5M; (i = .1,2)', then
there exists N such that M; »3 N (i =1,2).

The theorem can easily be éxtended, as follows: If M; = M, then there exists IV
such that M; »3s N (i = 1,2). As a consequence, we know that if M; =5 M, and
M, is in (B-nf, then M; —»3 M>.

It is possible for some A-terms M that, even though M is normalizing, there
exists an infinite B-reduction sequence starting from M. That is, a clever.choice of
B-reduction steps can lead M to a result (i.e., a A-term in g-nf), but a poor choice
may lead M to an infinite computation. For example, consider (Auv.v)(LL) where
L = \u.uu. The following theorem tells us what strategy we should take in order

25 As in the case of the application operator for A-terms, the binary operator - for CL-terms is
assumed to be associated to the left and usually suppressed.

26 By abuse of notation, here we indicate by S and K the equivalence classes containing the A-
terms S and K, respectively, and - stands for the operator on equivalence classes induced from the
application operator on A. We practise similar-abuses of notations for other quotient structures
in this subsection for the sake of simplicity.
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to avoid infinite computation if possible.

4.2.2 Normalization theorem for A-calculus If M is normalizing, then M is
led to its B-nf by the leftmost B-reduction. Here the leftmost A-reduction means
the sequence of 3-reduction steps in which always the outermost leftmost 3-redexes
are contracted.

‘The theorems 4.2.1 and 4.2.2 can be proved by induction based on the notion of
‘parallel B-reduction’, which is originally due to Tait and Martin-Lof (cf. [44]).

As mentioned before, the A-calculus can be considered as a computational
model. For this purpose, first we note that natural numbers can be represented by
the A-terms

n

T —
n = Au . v(v(---(vu)--+)) (n=0,1,2,...)

called numerals. The idea behind it is the following; in the pure A-calculus, which
has only functional abstraction and application as the basic constructors, it is
natural to represent a natural number n by n times application L(L(---(LM)---))
of a function L to an argument M, which we write L™ (M ). But, since there
is no reason to pick up particular A-terms L and M, we take the abstraction
n = Au.Av.v"(u), from which one can obtain L" (M) as nLAM —»5 L™ (M).

Once we fix the representation of natural numbers, next we define the represen-
tation of numerical functions in A-calculus. We say a function f from a subset of N"

to N is represented by a A-term L if the following holds for each m,, ..., m,,,m € N;
Lmimg -, »g mif f(mi,...,m,) =m,
L'mymy; - --m, has no g-nf if f(mq,...,m,) is undefined.

In this case, the A-term L is said to be a A-representation of f. Under this definition,
it can be proved that all recursive functions (defined in 3.1.3) are A-representable
(that is, represented by a A-term). In fact, given a recursive function f one can ef-
fectively construct a A-representation of f possibly by using a fixed point operator
to solve defining equations of recursive functions. We can also prove the converse;
one can write a program to compute a A-representable function, based on the left-
most [B-reduction strategy mentioned in theorem 4.2.2. Thus we have the following.

4.2.3 Theorem A numerical function f is computable if and only if it is A-
representable.

As a consequence, we get an undecidability result: It is undecidable whether a
A-term is normalizing or not, since otherwise the halting problem (cf. 3.3) would
become decidable. More generally, for any non-trivial subset of A which is closed
under =g, the question of its membership is shown to be undecidable.

In passing, we note that the extensional equivalence relation =g, discussed in
4.1.4 can be generated by the union —g3,, of the one-step S-reduction —3 and the
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one-step n-reduction —, which is schematically defined as

CAuMu... > .. M... (u & FV(M)).

n

We also note that the theorems 4.2.1 ~ 4.2.3 hold true when we replace the (-
reduction —» 4 in the theorems with the 8n-reduction —»g,, i.e., the reflexive tran-
sitive closure of — s,,, and replace the notion of 3-nf and that of leftmost 3-reduction
accordingly (cf. e.g. [44]).

A characteristic feature of A-calculus is that any A-term can be applied as a
function to any A-term, so that a function can even be applied to itself. Thus the
functions denoted by A-terms are ‘type-free’. In other words, the functions share
the set of all denotations of A-terms as their domains.

Then a natural question arises; what kind of mathematical structure does the set
of all denotations of A-terms have? The question had been open until D.Scott [41]
proved that the inverse limit of certain continuous lattices provides such a structure.
Since then a number of other ways have been discovered to provide such structures,
which are called A-models. Here we only mention that in algebraic terms, the notion
of A-models can be identified with the algebraic structure (D, s, k, e, -) where - is a
binary operator and s, k are constants satisfying the two axioms mentioned in 4.1.4
(i-e., sabc = ac(bc) and kab = a for each a,b,c € D) and e is a constant satisfying
for each a,b,c € D the axioms eab = ab and Ve € D(ac = bc) = ea = eb. In
categorical terms, the notion can be identified with that of well-pointed cartesian
closed categories endowed with a reflexive object. See the article by M. Dezani-
Ciancaglini et al. in this volume for an account of A-models. See also the standard
texts on the A-calculus (e.g., [3], [21], [43]).

5 Type systems

In this section, we look at three major type structures built upon the (type-free)
A-calculus, and see what one can do with types. Our emphasis is on proof theoretic
aspects of type systems.

5.1 Simple type system A_,

First, we consider the simple type system A_, introduced by Church [8]. What it
does is to restore the usual notion of domains and ranges of functions which are
ignored in the (type-free) A-calculus in the prevxous section. This system provides
a ba51s for all other type systems.

5.1.1 Definition The types of the system A_,, called simple types, are expressions
constructed from atomic types by functional type constructor —. More precisely,
simple types are defined recursively, as follows.

e Atomic types ap, i, s, ... are simple types.
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o If A and B are simple types, then so is (4 — B).

The terms dealt with in A_,, which are called simple terms, are either variables,
abstractions, or applications, as in the case of (type-free) A-terms. However the
difference is that simple terms are always associated with types. The formation
rules of simple terms are as follows.

e If u is a variable of type A, then u is a simple term of type A.

e If u is a variable of type A and M is a simple term of type B, then (\u : A.M)
is a simple term of type A — B.

e If M is a simple term of type A — B and N is a simple term of type A, then
(MN) is a simple term of type B.

Note that types of simple terms depend on types of their free variables,?” and in
the last case above the types of the free variables in M and N must be consistent.
In order to make the point explicit, we have to state the formation rules of simple
terms by specifying type declarations (or contexts) A C {ug : Ao, uj : Ay, ...}, as
follows.28
m (start) where (u : A) € A
Aju:AFM:B

AF w A AsB D

AFM:A—-B AFN:A
AF (MN):B (=F)

By applying these rules repeatedly, we can generate simple terms together with
their types, as illustrated in the following figure.??

AFu:(AsBo0) ™™ Areia oY AT, ass) oY areoa G
Al (uw) : (B>C) (=E) AtF (vw): B (>E) (=E)
AF (vw(vw)) : C
4 ASBoC,0: ASBFE Ow : Aww(ow))  (Asc) P o)

u:A=9>B—>CF (A : A- Baw: Auw(vw)) : ((A—>B)—> A C)

F(A:A3BoCav: Ao Bw : Aww(ow) - (A—B=CO) = (AsB) o AS0) )

Here we assume that A = {u: A>B—>C,v: A—»B,w: A}. In this figure,
AM:A—-3B—C.Av:A— B. \w: Auw(vw) is shown to be a simple term of type
(A-> B - C) - (A > B) > A — C under the empty type declaration; in

27 We naturally extend the notion of free variables of A-terms to that of simple terms.

28 In a type declaration A = {u: A, v : A,...}, variables u,u’,... (which are distinct from
each other) are declared to be of types A, A’,..., respectively. The type declaration A U {u : A}
is often abbreviated as A,u : A as in the rule (—I).

29 We abbreviate A; — (A2 = (- — (An—1 = A,)---)) as A; = Az — -+ — An.
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notation,®® Fy  (Au : A1 v Ay dw : Aww(vw)) : (A = Ay - A — C) where
Ay = A—-B—C and A, = A— B. The upper half of the figure shows vw(vw) is
a simple term of type C under the type declaration A.

It is interesting to note a similarity between the formation rules of simple terms
and the inference rules of natural deduction systems in section 2. In fact, when we
look at only the type part of the formation rules of simple terms, we find precisely
the sequent-style presentation of the rules (start), (—I) and (—E) of the natural
deduction systems NK and NJ (cf. 2.3). Based on this observation, we get the
following correspondence between formation of simple terms and derivability of
formulas in the {— }-fragment NJ_, of the intuitionistic system NJ.

For simple types A;, As,---, A, and B, the following two conditions
are equivalent.

1wyt Aj,ue : Ag, ... un : A, Fa_, M : B for some simple term M.
2. Ay, Ay,--- A, by, B3Y

We can replace NJ_, above with NJ, because NJ is a conservative extension of NJ_,
(cf. 2.3). However we cannot replace it with NK, because NK is not conservative
over NJ_, .32

What is even more interesting is the fact that the simple term M in the condition
1 above precisely describes the history of the derivation in NJ_, mentioned in the
condition 2; each occurrence of variables, abstraction, and application in the former
corresponds to an application instance of the rules (start), (—I), and (—=E) in the
latter, respectively. For example, the above example shows that in NJ_, the formula
(A= B —C)— (A— B)—> A— C is derivable, and a compact description of its
derivation is given by the A-term M = Au: A—-B—C. v : A— B w : Auw(vw).

This correspondence between NJ_, and A_, is the simplest case among vari-
ous correspondences between intuitionistic proof systems and type systems, and
they are known as the ‘formulas-as-types principle’ or the ‘Curry-Howard corre-
spondence’. It is first noticed by Curry (cf. [11] §9E) in the case of simply typed
combinatory logic, and extended to the case of first-order logic by Howard (cf.
[22]). Then the idea has been further extended to many other cases; we will see
some of them in the following subsections.

As in the case of A-terms, we define the notion of 3-reduction between simple
terms: One-step B-reduction — g is schematically defined as

ceo(Au AAMN ... E) ...M[u:=NJ]...

30 As in the case of proof systems, for a type system T" we use the notation A -7 M : A (or

u:B,u :B',...,u"” : B" -0 M : A) to mean that M is a legal term in T of the type A under
the type declaration A (or {u: B,u' : B’,...,u/ : B"}). The subscript T of 1 may be omitted.
31 Here Ay,..., An, B are considered as formulas of NJ_,.

32 Recall that Peirce’s law ((A — B) — A) — A is derivable in NK, but not derivable in NJ,
hence not in NJ_,.



28 M. TAKAHASHI

and it is extended to —»3 and =3 as in 4.1.2. Then the types of simple terms are
shown to be preserved by (-reduction (i.e., if A Fx_ Al : A and Al —»;3 N then
A Fx_, N : A), which is called the subject-reduction theorem.?3 The Church-
Rosser theorem

L—g)]\l,f (1=1,2) = ]\4,-;»N(i=1,2) for some IV

also holds for simple terms.

A typed or untyped A-term M is said to be strongly normalizing if there is
no infinite f-reduction sequence starting from M. As we have seen in section 4,
some A-terms are not normalizing; hence not strongly normalizing. Therefore the
following theorem reveals a big contrast between the type-free A-calculus and the

simple type system.

5.1.2 Strong normalization theorem for A_, All simple terms are strongly
normalizing.

There is a number of ways to prove the theorem. We will outline one of them,
which is extensible to higher-order type systems. The proof is originally due to
Tait and Girard (cf. [18] Ch.6 and [4] §4.3).

Let us write |A| for the (type-free) A-term obtained from a simple term M by
erasing all type information. Then clearly M is strongly normalizing if and only if
so is |M|. Therefore in order to prove the theorem it suffices to show

Al M:A = |M|eSN

where SN stands for the set of A-terms which are strongly normalizing. We can
prove the statement by introducing a set [A] of A-terms associated with the simple
type A, which is shown to intervene between |M| and SN as

(1) Akx, M:A = |M]|e€[A] CSN.
The set [A] (C A) is defined recursively on the structure of 4, as follows:
e [a] = SN, if a is an atomic type,
o [A—- B]={M € A|MN € [B] for each N € [A]}.

In order to prove (1), we define the notion of saturated sets. A subset X of SN
is said to be saturated if the following two conditions are satisfied.

e uN;N,---N, € X for each u € Var, n > 0, and Ny,---,N,, € SN.

e For each u € Var, M € A, n > 0, and N,Ny,---,N,, € SN, if we have
M(u:= N]N1N3---N, € X then Au.M)NN;N5---N, € X.

First by induction on the structure of 4 we prove3*

33 The name comes from the tradition that, in the expression M : A, M is called the ‘subject’,
and A is the ‘predicate’.
34 That is, we prove (2) assuming that it holds for all types properly contained in A.
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(2) [A] is saturated.

As a consequence, we obtain [A] C SN, which shows the second half of (1). Next,
in order to prove

3) AkFyx, M:A = |M] e [A4],
we verify a stronger statement
3) AFA, M:A = AEM:A
where A = M : A is a shorthand for the statement
(3)" V8:Var > A [V(u:B)e A (6(u)€e[B]) = |M|0e€[A]]

Here |M |0 stands for the result of simultaneously substituting 6(u) for free oc-
currences of variable u € Var in |M]|. One can prove (3)' by induction on the
structure of the derivation®® of A ,_ M : A, by using the fact (2). Once (3)' is
verified, we get immediately (3) and hence (1), because |M| € [A] is a special case
of A |= M : A where 0 in (3)" is the identity function 8(u) = u for each u € Var.
(Note that by definition all variables belong to saturated sets.) O

From the strong normalization theorem and the subject reduction theorem
above mentioned, we know that if A F_ M : A then there exists a simple term
N in B-nf such that A F5_ N : A. Then this implies through the Curry-Howard
correspondence that if I' Fnjy_, A then this fact can be derived by a normal deriva-
tion; that is, a derivation without detours (cf. 2.3). Thus as a corollary to theorem
5.1.2 we know that derivations in NJ_, are (strongly) normalizing.

Also from the strong normalization theorem, one can easily see that there is no
simple term M such that |M| being a fixed point operator.

As another corollary to the strong normalization theorem, we get a decidabil-
ity result for A_,. The decision problem of asking for arbitrary simple terms
M, N whether M =3 N or not is decidable, because by the Church-Rosser the-
orem M =g N holds if and only if g-nf(M) = S-nf(N) where S-nf(M) stands for
the g-nf of M, which indeed exists and can effectively be obtained by theorem
5.1.2. Compare this result with the undec1dab111ty of the corresponding problem
for A-terms (cf. 4.2).

The expressive power of the simple type system is very weak. To see this,
first we define the notion of A_,-representable functions as before (cf. 4.2) except
that the A-term is replaced with the simple term, the numeral with the simple
term m = Au : a.dv @ a = a.v™(u) where a is a fixed atomic type, and the
B-reduction —»z with the fn-reduction —»g, (cf. 4.2). Then the mapping n —
[71]=,, gives a bijection between the set of natural numbers and that of equivalence

35 That is, we prove (3)’ assuming that it holds for all derivations which are properly contained
in the derivation of Ay _, M : A.
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classes of closed®® simple terms of type a« =& (@ = a) = a modulo =g,. Under
this definition, it has been proved (cf. [39]) that A_,-representable functions are
precisely the ‘extended polynomials’, i.e., functions obtained by composition from
polynomials and the conditional function; if z = 0 then y else z.

A slight extension of A_, has an interesting application. Godel [19] gave a
consistency proof of the Peano arithmetic PA by introducing a type system T for
primitive recursive functionals of finite (i.e., simple) types.

5.1.4 Type system T Types of the system T are like simple types but con-
structed from an atomic type o (intended to be the type of natural numbers) by
the functional type constructor —. The T-terms, terms of the system T, are con-
structed by abstraction and application from (typed) variables and constants 0
(for the natural number 0), suc (for the successor function), and R4 (for recursion
operator) respectively of types 0,0 =+ o, and A - (0 + A - A) - o = A for
each T-type A. The constants 0 and SucC serve to represent natural numbers as
7 = suc™(0). The recursion operator R4 serves to construct T-terms representing
primitive recursive functions over natural numbers when A is a type of the form
0 — 0 — --- — 0, and in general their higher-order counterparts, with the help of
the reduction — g which is defined schematically by

o -RALMO--- —g ---L---,
- RALMn+1--- —g ---Ma(RsLM7)---

for each natural number n and T-terms L and M of types A and o -+ A — A,
respectively. We write — g, g for the union of —3,, and — g, and extend it to —%3,r
and =g,r as before.

Then the strong normalization theorem and other fundamental theorems (w.r.t.
—anr) can be proved by modifying the proofs for A_,. As a consequence, besides
the decidability of =g,r, we know that the type o indeed behaves like the set of
natural numbers; a closed T-term M is of the type o if and only if M —»g,r70
for a natural number n. When T-representable functions are defined as in 4.2, by
replacing A-terms with T-terms, numerals with m = suc™(0), and —»3 with —»g,r,
they are shown to be precisely the total recursive functions whose totality can be
proved in PA (cf. [18] §7.4).

The consistency proof of Peano arithmetic proceeds roughly as follows. First,
we note that the proof can be reduced to that of its intuitionistic counterpart, called
Heyting arithmetic (HA, for short).3” Indeed, when we define the transformation
A +— A9 where A9 is the formula obtained from A by replacing all atomic formulas
B in A with =—B and eliminating logical symbols V and 3 by means of de Morgan’s
laws, it satisfies

F'kngk A < {BgIBEF} Fng A9,

36 As in the (type-free) A-calculus, the notion of free variables of typed terms is defined, and a
(typed or untyped) term without free variables is said to be closed.

37 Heyting arithmetic is defined by replacing the classical proof system NK in Peano arithmetic
with NJ. Thus ' bya A <= TI'U Ax(PA) Ny A, while I'Fpp A <= I'U Ax(PA) Fnk A




A PRIMER ON PROOFS AND TYPES 31

and moreover s A9 holds for all axioms A of PA (cf. [48] §3.3). Thus we get
Fpa L <= Fqa _Lg(E _L)

The main part of the consistency proof is to define another transformation of
formulas B of HA to certain meta-statements B* on T, and verify the following:
if Fua B then B* holds. The statement B* is a 3V-closure of an equality (with
respect to =g, r) between T-terms, and the verification of the above property of
B* heavily relies on the strong normalizability of T-terms. For more details, see
[2], [21] Ch.18, [45] Ch.III, [46].

The consistency proof cannot be carried out in the system PA, because other-
wise it conflicts with the second incompleteness theorem by Godel. In fact, when
we write down the consistency proof, it requires a uniform proof of the strong nor-
malizability of all T-terms, and this cannot be carried out in the framework of PA.

5.2 Second-order type System A2

Another way to make the simple type system more powerful is to introduce
‘polymorphic’ functions which can take types A as their arguments and return ob-
jects depending on the types, say the identity function Au : A.u of type A — A.
Then, it is reasonable to introduce abstraction of terms by type variables, such as
Aa.(Au : a.u), and also introduce universal quantification over types, as Va.(a —
«). In this subsection, we discuss an extension of A_, in this direction, which is
called the second-order (or polymorphic) type system A2.

5.2.1 Definition The types of the system A2, called A2-types, are defined recur-
sively, as follows.

e Type variables ag, a;, as, ... are A2-types.
e If A and B are A2-types, then so is (A — B).
o If A isa A2-type and « is a type variable, then (Va.A) is a A2-type.

The terms of the system A2, called A2-terms, are constructed by the following
formation rules.38

m (start) where (u : A) c A

Au:A+-M:B
AF(Au:AM):A—> B

AFM:A—B AFN:A
E
AF (MN):B (=E)

(=D

AFM:A
h FV(A
AF Qal): (Yad) VD wherea @ FV(A)
AF M :Va.A
AF (MB): Ala := B (VE)

38 As before, A stands for contexts which assign types of this system to variables, and FV(A)
stands for the set of type variables in A which are free in the same sense as in logical formulas.
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Thus A2-terms are either variables ug, u1, us, ..., abstractions Au : A.Al, applica-
tions M N, type-abstractions Aa.M, or type-applications M A. For example, the
A2-term Aa.du : a.dv : (a = a).v(u) of the type Va.(a — (@ = a) — «) is

constructed by applying these rules, as follows.
AFv:(a— a) (start) Abu:a (start)

(—E)
AFv(u): «a
u:ak (Av:(a— a)v(u): ((a—> a) > a)

FAu:adv: (a—> a)v(u)): (a—> (a—a) > a)
F(adu:adv: (a— a)v(u)): Va(a = (a > a) > a))

(=1
(=1

(vI)

Here A stands for the context {u : a,v: a@ = a}.

Since we introduced type abstraction and type application to incorporate poly-
morphic functions into the system A2, it is natural to introduce a new reduction
relation between A2-terms besides the familiar notion of A-reduction. First we
extend the one-step 3-reduction —g to A2-terms as

. (Au: AM)N ... 73—) .. M[u:=N]...,

and define a new notion of one-step 3'-reduction between A2-terms by3®°

L (Gad)A. o Ma= 4]

We write M —32 N to mean M —3 N or M —3 N and extend it to —»32 and =g2
as before.

The Curry-Howard correspondence between A_, and NJ_, mentioned in 5.1 can
be extended to the correspondence between A2 and a certain second-order proof
system. In order to get it in perspective, let us first introduce the second-order
intuitionistic propositional calculus PROP2.

A PROP2-formula is either a propositional variable?® in {ag, a;,...}, or the
propositional constant 1, or a compound formula of the form AA B, AV B, A,
A = B,Va.A, or 3a.A, where A, B are PROP2-formulas, and a is a propositional
variable. The system is ‘propositional’ because atomic formulas are only proposi-
tional variables (i.e., O-ary predicate symbols), and it is ‘second-order’ because it
has quantification over the second-order objects, propositions. It is ‘intuitionistic’
because the intuitionistic absurdity rule (L)’ is used but not the classical one.

5.2.2 Rules of PROP2 The rules of PROP2 are the same as those of NJ in 2.3,
except that A, Ay, A5, B here stand for PROP2-formulas and quantification is over
propositional variables.

39 M[a := A] stands for the result of substituting the type A for the free occurrences of a in M.
40 We use the same symbols for propositional variables in PROP2 and type variables in A2, but
this is just for convenience; we could use other symbols as well.
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A 2w
| o) ()
A A, A; A Ay A, AiVA, B B
o e By vl GO vy AL = (VE)
[A] o [A]
1 A 4 B ASB A
== (D T B o ) SEES 0B
[A]
}1 Va:.A Ala := B] 301:.A B
VaAd ™ Aa=8" Gaa & B

Side conditions: (VI) is applicable only when « is not free in assump-
tions of the derivation of A, and (JE) is applicable only when « is free
neither in B nor in assumptions of the derivation of B except for A.

Let us write PROP2_, y for the {—, V}-fragment of PROP2, and write PROP2_,
for the {— }-fragment. Then the latter is equivalent to NJ_,, because both PROP2
and NJ are shown to be conservative over their own {— }-fragments; that is, a
formula of the {— }-fragment is derivable in PROP2_, (or in NJ_,) if and only if
it is derivable by means of the rules (start), (—I), and (—E).

It is clear that A2 corresponds to PROP2_, v in the same way as A_, corre-
sponds to NJ_,; that is, u; : Ay,...,un : A, Fx2 M : B holds for some M
if and onmly if 4,,...,A4, Fpror2_,, B holds, and the A2-term M in the for-
mer derivation in A2 gives a compact description of the proof tree of the latter
derivation in PROP2_, . Moreover the 32-reduction of A2-terms naturally induces
a proof reduction to remove ‘detours’ in proof trees: The one-step 3-reduction
(Au: A M)N — 3 M[u := N] for A2-terms induces the —-reduction

[A] ' N
M A .
: : = ; M[u := N]
ey il -
5 (E) B

of proof trees, while the one-step 3’-reduction (Aa.M)A —5 M[a := A] induces
the V-reduction
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: M
A .
Va.A " ! M[a = B]

Ala := B] V) = Ala := B]

of proof trees. This correspondence is called the Curry-Howard correspondence
between A2 and PROP2_, v. :

Second-order type system A2 Proof system PROP2_, v

A2-type formula
type variable propositional variable

functional type constructor implication
universal type constructor universal quantifier
A2-term derivation

term variable (start) rule
abstraction (=1I) rule
application (—E) rule
type-abstraction (VI) rule
type-application (VE) rule

normal derivation

proof reduction
—-reduction
V-reduction

A2-term in #2-nf

(2-reduction
B-reduction
B'-reduction

It is interesting to note that PROP2_, v is quite expressive, so that for any
PROP2-formula there exists an equivalent PROP2_, y-formula. Indeed,

1l ¢ Vaoa,
A & A- 1,
AANB & VYa((A—> B - a)— a),
AVB ¢ VYa((A—=a)— (B->a)—a),
da'.A & Va.(Vo'. (A - a) > a)

are derivable in PROP2 where a ¢ FV(A) U FV(B). Moreover, when we write
1,-A;AANB, AV B,3a.4 in PROP2_, y-formulas as abbreviations of their equiva-
lent PROP2_, y-formulas mentioned above, we can ‘simulate’ with the five rules
(start), (—=I), (»E), (VI) and (VE) of PROP2_, y the other inference rules of
PROP2 in the sense that

(L)Y T'+ L implies T'F A,
(N) THFA and THB implies T'HF AAB,

etc. where I stands for Fprop2_, - This means that in effect PROP2_, v has
precisely the same power as PROP2. Because of this, in A2-types we also write
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1,-A,ANB,AV B,da.A as abbreviations. For example, we write
Faz Au: Lud): (L —> A)

where 1 is the abbreviation of the A2-type Va.a.

As before, we can prove that (32-reduction between A2-terms is well-behaved;
the strong normalization theorem and other fundamental theorems can be proved
for A2, which imply that any derivation in PROP2_, ¢ is reducible to a unique
normal derivation. From this result follow the conservativity of PROP2_, v over its
fragments and the consistency of PROP2. The proof of the strong normalization
theorem outlined below is a slight modification of the one in [4] §4.3, which is based

n [18] Ch.14. :

5.2.3 Strong normalization theorem for A2 All A2-terms are strongly nor-
malizing (w.r.t. the $2-reduction).

In extending the proof for A_, in 5.1.2 to A2, the only difficulty is how to define the
set [A] for A2-types A with the universal type constructor V. A naive definition
might be [Va.A] = (g [Ala := B]] where B ranges over all A\2-types. But then
the definition would get circular; for example, [Va.a] is defined based on [B] for
all A2-types B. A way to avoid the circularity is to make the definition of [A]
parameterized by type variables which are free in A.

Let us call a mapping p : {ag,a1,...} — Sat a type environment where Sat
stands for the set of all saturated subsets (cf. 5.1.2) of A. As before, we write |M|
for the type-erasure of A2-term M, that is, the A-term obtained from M by erasing
all type information including the type-abstractors and type-arguments.*! Then,
we can verify that |M]| is strongly normalizing w.r.t. S-reduction if and only if so
is M w.r.t. 82-reduction. Now in order to prove the theorem for A2 by way of

(1) AFM:A = |M| € [A]C SN,
we first define the set [A]p (C A) for A2-types A and type environments p by
e [a]p = p(a) if a is a type variable,
e [A— B]jp={M € A|MN € [B]p for each N € [A]p},
e VoAl = Nyesar [Alp(a = X).

Here, p(a := X) stands for the type environment which is the same as p except
the value for a being X. Then we define [A] = [A]psn Where psy is the type
environment such that psy(a) = SN for each a. ‘

Under this definition, by extending the argument for A_,, we can verify

(2) [A]p is saturated,

41 More precisely, |M| is defined recursively as follows; |u| = u, |Au:A.M| = Au.|M|, |[MN| =
IM||N|, [Aa.M|=|M|,and |MA| = |M]|.




36 M. TAKAHASHI

hence [A] = [A]psn C SN for each A2-type A. Next we verify
3 AFM: A4 = AREM:A
where the notation A = M : A now stands for

(3)" Vp:{ao,a1,...} = Sat, VO:{ug,u1,...} = A,
[V(u: B) € A (6(u) € [Blp) = IM|6 € [4]p).

Then, as a special case of (3)"” with p = psy and 8 being the identity, we obtain
3) ArM:A = |M|e€[A],

hence (1) and the theorem. 0O

In the system A2, the closed A2-terms
n=AAu:al:a—av(u) (n=0,1,2,...)

of the type N/ = Va.(a = (a = a) — «a) play the role of natural numbers, and
N stands for their totality. The strong normalization theorem guarantees that a
closed A2-term M is of type N if and only if M —»g,2 7 for some n where —» g2
is the reflexive transitive closure of the union of —32 and —, (cf. 4.2). Moreover
there is a closed A2-term R of type Va.(a - (N - a » a) - N — «a) which
satisfies

RALMO —»p,5 L, and RALMn + 1 —»,, M7 (RALMP)

for any A2-type A, natural number n, and A2-terms L and M of types A and
N — A — A, respectively. Thus the A\2-term RA plays the role of the recursion
operator R4 in the system T (cf. 5.1.4), hence all T-representable functions are
A2-representable.*? It is proved by Girard [17] that A2-representable functions are
precisely total recursive functions whose totality is provable in the second-order

PA (cf. [18] Ch.15).
5.3 Higher-order type systems

The first-order proof systems discussed in section 2 are restrictive in the sense
that all variables range over a single domain, hence no higher-order variables (such
as function variables and predicate variables) are available. On the other hand, the
proof system PROP2 in 5.2 is restrictive in the sense that it does not take into ac-
count predicates, and quantification is only over the domain of propositions. In this
subsection, we first introduce a proof system called the higher-order intuitionistic
predicate calculus PREDw, which contains in effect both NJ and PROP2.

Since the system PREDw is a predicate logic, formulas may contain terms; and
since PREDw is a higher-order logic, terms may contain formulas. Therefore we

42 We extend the notion of A_,-representable functions to that of A2-representable functions in
an obvious way.
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have to define terms and formulas simultaneously.

5.3.1 Definition of PREDw*?  First, domains of PREDw are defined recur-
sively, as follows.

e Prop and Xy, X;,X5,... are domains.
e If D and D’ are domains, then so is (D — D').

We will call Xg, X, X5,... basic domains. Note that a domain is either of the
foom* D, - Dy - --- - D, - X or Dy - Dy — --- - D,, — Prop where
n >0, Dq,---, D, are arbitrary domains of PREDw, and X is a basic domain. We
will call domains in the first form functional domains and those in the second form
predicate domains.

Next, the PREDw-terms, which include both terms and formulas in the ordinary
sense, are defined together with their domains recursively, as follows.

1. For each domain D, variables z,zP,... are terms of the domain D.

2. If M and N are terms of the domains D — D' and D respectxvely, then
(MN) is a term of the domain D'.

3. If x is a variable of the domain D and M is a term of the domain D', then
(Az : D.M) is a term of the domain D — D’.

4. If A and B are terms of the domain Prop, then so is (A — B).

5. If z is a variable of the domain D and A is a term of the domain Prop, then
(Vz : D.A) is a term of the domain Prop.

PREDw-terms of the domain Prop are called PREDw-formulas. The clause 1
says that we have function variables (ranging over functional domains) and predi-
cate variables (ranging over predicate domains), among which individual variables
(ranging over basic domains) and propositional variables (ranging over Prop) are
included. The clause 3 says functions and predicates can be constructed within the
system by abstracting terms, which may be used as functions or predlcates as well
as their arguments.
The derivations in PREDw are constructed by using the following six rules.

(4]

B ASB A
A A8 Y B P
}1 Vz:D.A . g _
Ve DA v1) A= ™ 5 =

43 Our PREDuw is slightly dlfferent from PREDw in the llterature (e.g., [4]), but the type system
CC introduced later based on PREDw is the same as CC in the literature.

44 As before, we omit parentheses in Dy — (D2 — (D3 — ++-(Dn — Dp41)---)) and write
simply D1 — D2 — -+ — Dy,
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The first five rules are the same as before except that A;B and Vz : D.A are
PREDw-formulas and M in (VE) is a PREDw-term of the domain D. As before,
we impose the side condition on (VI) that x cannot be free in the assumptions.
The last rule (=g) is applicable only when A and B are formulas such that A=3 B
where =4 is defined as before.*®

By definition, PREDw-formulas contain as logical symbols only the implication
— and the universal quantifier V. But we can introduce other logical symbols and
the logical constant L as abbreviations as in the case of PROP2_, vy in 5.2; namely,
we write ’

1 for Va:Prop.a,
A for A-—> 1,
AANB for Va:Prop.((A— B —>a)—a),
AVvB for Va:Prop.((A— a)— (B —a)—a),
dz: D.A for Va:Prop.(Vz:D.(A— a)— a)

where a is a propositional variable which is free neither in A nor in B.

Then as in the case of PROP2_, v, appropriate rules for L, -, A, V, 3 are shown
to be derivable in PREDw. Moreover, when we define for each domain D the
‘Leibniz equality’ =p (of the domain D — D — Prop) by

M=N <4 VL: D — Prop.(LM — LN),

the equality axioms (E1) and (E2) in 2.2 are easily derivable in PREDw. Note
that we can obtain a classical counterpart of PREDw by adding the formula
Va : Prop.(aV—a) (or equivalently Va : Prop.(m—a — a)) to PREDw as an axiom.

Next we will extend the proof system PREDw to a type system APREDw. In
APREDw, derivations in PREDw are described by typed terms as in A_, and A2,
but moreover the language part of the system PREDw can also be described in the
typing mechanism, by writing

D:fd for “D is a functional domain”,
D:pd for “D is a predicate domain”,
M:D for “M is a term of the domain D”.

The rules of APREDw are classified into four groups. The first group consists
of the domain-formation rules, which are of the form A + D : s where s € {fd, pd},
meaning that D is a domain of the sort s under the context A. The second group
consists of the term-formation rules, which are of the form A + M : D where
A F D : s for some s, and this means M is a legal term of the domain D un-
der the context A. Third, the inference rules are of the form A - P : A where
A+ A : Prop, and this means A is a formula which is derivable in PREDw under

45 Namely, the one-step 8-reduction relation — g is extended to PREDw-terms in a natural way,
and =g is the equivalence relation generated by —g3. .
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the context A, and its derivation is described by P. The last group consists of
the weakening rules, which are necessary for bookkeeping, due to the fact that
the contexts of this system are not mere sets but sequences (of language defini-
tions and labelled assumptions). Throughout the rules, s and s’ range over the set
{pd,fd}, and FV(A) stands for the set of free variables of either terms or types in A.

5.3.2 Rules of APREDw

1. Domain-formation rules

A X fdr X fa (4D where X g FV(A)

A F Prop : pd (d2)

AFD:s AFD' :§
AF(D—-D"):s (d3)

2. Term-formation rules

AFD:s
Ax:DFz:D (tl) Wherer’FV(A)

APM: (Do D) AFN:D
AFMN: D'
Ax:DF-M:D' AR (D —->D'):s
A+ (A :D.M): (D — D")
AFA:Prop Al B:Prop (t4)
AF (A — B):Prop
AFD:s A,x:DF A:Prop
A+ (Vz: D.A) :Prop

(t3)

(t5)

3. Inference rules for derivations
AF A:Prop
Au:AFu: A
Aju:A+-P:B At (A— B):Prop

AF (Au:A.P):(A— B)
AFP:(A—>B) AFQ:A
(AI—PQ):B T2 o
Ajz:DFP:A AF (Vzx:D.A):Prop
A+ (\z:D.P): (Vz : D.A)
A+FP:(Vz:D.A) AFM:D
A+ PM: Alx := M]
ArFP:A AF B:Prop
AFP:B

(start) where u & FV(A)

(=D

(VD)

(VE)

(Zﬂ) where A:gB
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4. Weakening rules?®

AFU:V
A,X :fdl_ U:‘/ (Wl) Where X gFV(A)

AFD:s AFU:V
Az DFU.V (w2) where z & FV(A)

AFA:Prop ARU:V
Au:AFU:V

(w3) where u & FV(A)

There are a number of possible ways to improve the system APREDw. First,
in view of similarities between the rules, we can unify some of them. For example,
the three rules (d1), (t1) and (start) for introducing new variables are similar,
and they can be unified. Likewise, the three weakening rules may be unified, and
so forth. More significantly, when we rewrite implicational formulas A — B by
Vu : A.B where u € FV(B), the rules for implication can be merged to those for
the universal quantifier.

Another possibility is to increase the expressive power of the system. We can
introduce the direct product IIz : D.D’ of functional domains where D’ possibly
depends on . To do so, we have to introduce a new notion of ‘parameterized
functional domains’ of type D; — --- —- D, — fd in the same way as predicates
are considered as ‘parameterized propositions’ of type D; — --- = D,, — Prop.
But how can we do this without making the system too big?

There is a clever way to reconcile the two ideas; to simplify the system and
to increase the expressive power. The point is to take advantage of the similarity
between the notions of direct products IIz : D.D’ and universal formulas Vz : D.A.
We can introduce the notion of direct products of functional domains Iz : D.D’
in the same way as universal formulas Vz : D.A are introduced, so that the two
notions can share the same rules. In addition, once the product IIz : D.D' is
introduced, by rewriting the functional domain construct D — D’ as Ilx : D.D'
where z € FV(D'), we can still further economize the number of rules.

By combining all these ideas, we can obtain the type system called the Calculus
of Constructions (CC, for short). In CC, Prop and fd in APREDw are merged into
a constant *, while pd and another new sort necessary to incorporate the direct
product construct are merged into another constant 0.

5.3.3 Rules of CC In the rules below, s and s’ range over the set of constants
{*,0}, and U, V, V', W, W' range over legal expressions of CC. The symbol II stands
for both the universal quantifier and the direct product constructor.

— (axiom)

AFU:s
Az UFz. U (var) where z € FV(A)

46 A U : V stands for any legal sequent of the system.



A PRIMER ON PROOFS AND TYPES 41

ArFU:s Az:UFW:§
Ar(Ilz: UW): s

(1)

Az :UFV:W AFz:UW):s
AF Az :UV):(Ilz : UW)

(A)

ARV Mz :UW) ARV':U
AFVV: W[z :=V']

(app)

AFV: AFW':
VAIVYV . W’W 5 (=5) where W=gW'

AFU:s ARV . W
Az:UFV W (weak)

It is interesting to note that the simple type system A_, in 5.1 can be identified
with the subsystem of CC in which both s and s’ in the rule (II) are fixed to *.
Likewise the system A2 in 5.2 can be identified with the subsystem of CC in which
the s’ in (II) is fixed to x, while the s ranges over {*,0}. On the other hand, when
we fix the s in the rule (II) to be *, we obtain the type system corresponding to
the first-order predicate logic with product domains.

The type system CC was introduced by Th. Coquand [9], and he proved mathe-
matical properties of the system, including the strong normalization theorem. Since
APREDw is mapped to CC by a renaming of constants, the theorem immediately
implies the strong normalization theorem for APREDw and PREDw, which in turn
implies the strong normalization theorem for NJ because NJ can be embedded in
PREDw. Conservativity results among subsystems of CC have been studied in [16].
In particular, CC is conservative over A2, while A2 is conservative over A_,. How-
ever the system CC is not conservative over PREDw, in the sense that there exist
a PREDw-formula A and a context A of APREDw such that A is not derivable in
APREDw under A (that is, A Fxprepw A : Prop and A Vyprepo P : A for any
P) but the translation A’ of A is derivable in CC under the translation A’ of the
context A (that is, A’ F¢c P : A’ for some P). This means that the conversion of
APREDw to CC has some side effects. But it is not a destructive one; indeed, the
strong normalization theorem for CC guarantees the consistency of the system in
the sense that t/cc P : L for any P where L stands for Ila : .. Extensions of
CC with certain axioms such as Ila : x.(a V —a) are also shown to be consistent.

On the other hand, it is known (as Girard’s paradox) that a unifying process of
notions in a type system could be destructive; indeed, if we unify the two constants
* and O of CC, the resulting system becomes inconsistent (i.e., A + P : L for some
P). For more details on CC and related topics including Girard’s paradox, see [9],
[10], [4] §5, [16], among which [4] is the standard text of the subject area of this
section.

It is possible to extend CC further, for example, by adding the direct sum con-
struct Xz : D.D’'. The type system ECC, the Extended Calculus of Constructions,
by Z.Luo [27] is such an extension, which is very interesting mathematically and
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also from the viewpoint of computer science. In fact, an interactive proof develop-
ment system (proof checker), called Lego, has been implemented based on ECC by
R.Pollack [28]. The implementation enhanced the use and understanding of type
theory among people who are interested in logical aspects of computer science, and
it still does.

For more on the subject of this section, see other articles in this volume and
[4], [20], [23], [24], [31], [33], [34], [40]. Also good guides for relating subjects will
be found in [1], [5], [26].

I am very grateful to people who encouraged and helped me to write this article.
In particular, discussions with Roger Hindley were very useful. He also read a
preliminary version of the draft and made detailed comments to improve my English
exposition.
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