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§1. Introduction

Let (X,ω) be an affine symplectic variety. By definition (cf. [2]), X
is an affine normal variety and ω is a holomorphic symplectic 2-form on
the regular locus Xreg of X such that it extends to a holomorphic (not

necessarily symplectic) 2-form on a resolution X̃ of X. In this article
we also assume that X has a C∗-action with positive weights and that
ω is homogeneous with respect to the C∗-action. More precisely, the
affine ring R of X is positively graded: R = ⊕i≥0Ri with R0 = C and
there is an integer l such that t∗ω = tl · ω for all t ∈ C∗. Since X
has canonical singularities, we have l > 0 ([8], Lemma (2.2)). Affine
symplectic varieties are constructed in various ways such as nilpotent
orbit closures of a semisimple complex Lie algebra (cf. [4]), Slodowy
slices to nilpotent orbits ([9]) or symplectic reductions of holomorphic
symplectic manifolds with Hamiltonian actions. These varieties come up
with C∗-actions and the above assumption of the C∗-action is satisfied
in all examples we know.

In the previous article [8] we posed a question:

Problem. Is the fundamental group π1(Xreg) finite ?

Such fundamental groups are explicitly calculated by a group-theoretic
method when X is a nilpotent orbit closure (cf. [4]). However no general
results are known.

In this short note we give a partial answer to this question. Namely
we have

Theorem 1.1. The algebraic fundamental group π̂1(Xreg) is a finite
group.

Received April 5, 2013.
Revised April 11, 2013.



322 Y. Namikawa

Notice that a symplectic variety X has canonical singularities. In
particular, the log pair (X, 0) has klt (Kawamata log terminal) singu-
larities. The theorem is, in fact, a corollary to the more general result:

Main Theorem. Let X := SpecR be an affine variety where R is
positively graded: R = ⊕i≥0Ri with R0 = C. Assume that the log pair
(X, 0) has klt singulatities. Then π̂1(Xreg) is a finite group.

Recently C. Xu [11] proved that, for a klt pair (X,Δ) and a point
p ∈ X, the algebraic fundamental group π̂1(U −{p}) is finite for a small
complex analytic neighborhood U of p. By using the Kollár component
he obtained it from the finiteness of the algebraic fundamental group of
the regular part of a log Fano variety. Since X has a C∗-action in our
case, π̂1(Xreg) ∼= π̂1(Ureg) for a small complex analytic neighborhood U
of the origin p ∈ X. The argument in [Xu] is also valid for π̂1(Ureg) and
one can prove Main Theorem.

In this article we introduce another approach to Main Theorem by
using the orbifold fundamental group.

To explain the basic idea of the proof we first assume that R is
generated by R1 as a C-algebra and X has only isolated singularity.
Put P(X) := ProjR. By the assumption P(X) is a projective manifold.
Since (X, 0) has klt singularities, we also see that P(X) is a Fano man-
ifold (cf. [5], Prposition 4.38). Let L be the tautological line bundle on
P(X) and denote by (L−1)× the C∗-bundle on P(X) obtained from L−1

by removing the 0-section. Then the projection map p : X−{0} → P(X)
can be identified with (L−1)× → P(X). There is a homotopy exact se-
quence

π1(C
∗) → π1(X − {0}) → π1(P(X)) → 1.

Here π1(P(X)) = 1 because P(X) is a Fano manifold. We want to
show that the first map π1(C

∗) → π1(X − {0}) has a nontrivial kernel.
Suppose to the contrary that it is an injection. Then π1(X − {0}) = Z
and one has a surjective map π1(X − {0}) → Z/lZ for any l > 1. This
determines an étale covering f : Y → X −{0}, which extends to a finite
surjective map f̄ : Ȳ → L−1, where Ȳ contains Y as a Zariski open
subset and f̄ is a cyclic covering branched along the 0-section Σ of L−1.
The direct image f̄∗OȲ can be written as OȲ ⊕M ⊕M⊗2 ⊕ ...⊕M⊗l−1

with a line bundle M on L−1. Here M⊗l ∼= OL−1(−Σ). Restrict this
isomorphism to Σ(∼= P(X)). Then we have (M |Σ)⊗l ∼= L. This shows
that L ∈ Pic(P(X)) is divisible by any l > 1. But this is absurd because
L is an ample line bundle. Therefore π1(X − {0}) is finite.
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In a general situation P(X) is no more smooth and the projection
map X − {0} → P(X) is not a C∗-bundle. We take a smooth open set
P(X)� of P(X) in such a way that X� := p−1(P(X)�) is smooth and
CodimP(X)(P(X)−P(X)�) ≥ 2. The mapX� → P(X)� is not still aC∗-
bundle, but if we introduce a suitable orbifold structure on P(X), then
it can be regarded as a C∗-bundle on the orbifold P(X)�,orb. Moreover
we have a homotopy exact sequence

π1(C
∗) → π1(X

�) → πorb
1 (P(X)�,orb) → 1.

The orbifold structure on P(X) determines an effectiveQ-divisor Δ with
standard coefficients. By the assumption that (X, 0) has klt singularities,
we see that (P(X),Δ) is a log Fano variety (§1, Lemma). C. Xu [Xu]
has proved that π̂1(P(X)reg) is finite for such a variety. It turns out
that his proof can be used to prove that π̂orb

1 (P(X)�,orb) is finite. We
take a finite étale covering Y orb → P(X)�,orb such that π̂orb

1 (Y orb) = 1
and define Z to be the normalization of X� ×P(X)� Y . Then we see that

Z → X� is an étale covering in the usual sense. Moreover, we have an
exact sequence

π1(C
∗) → π1(Z) → πorb

1 (Y orb) → 1

by replacing X� and P(X)�,orb by Z and Y orb. Assume that there exists
a surjection from π1(Z) to a finite group Γ. Since πorb

1 (Y orb) has no
nontrivial finite quotient, the composition map π1(C

∗) → π1(Z) → Γ
is surjective. The orbifold line bundle associated with the orbifold C∗-
bundle Z → Y orb is negative. We prove that the order of Γ cannot be
arbitrary large by using this fact; hence π̂1(Z) is finite. Since π̂1(Z) is
a finite index subgroup of π̂1(X

�), π̂1(X
�) is also finite. As there is a

surjection map π̂1(X
�) → π̂1(Xreg), we have Main Theorem.

The argument above also shows that π1(Xreg) is finite if and only
if πorb

1 (P(X)�,orb) is finite.

Acknowledgement: The author thanks Y. Kawamata and Y. Gongyo
for pointing out that the klt condition would be enough for proving
Theorem.

§2. Algebraic orbifolds

In the remainder of this article X := SpecR is an affine normal
variety with a positively graded ring R = ⊕i≥0Ri, R0 = C such that
(X, 0) is a klt pair. Take minimal homogeneous generators of R and
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consider the surjection

C[x0, ..., xn] → R

which sends each xi to the homogeneous generator. Correspondingly X
is embedded in Cn+1. To xi we give the same weight as the minimal
generator. Put ai := wt(xi). We may assume that GCD(a0, ..., an) = 1.
The quotient variety Cn+1 − {0}/C∗ by the C∗-action (x0, ..., xn) →
(ta0x0, ..., t

anxn) is the weighted projective space P(a0, ..., an). We put
P(X) := X − {0}/C∗. By definition P(X) is a closed subvariety of
P(a0, ..., an). Put Wi := {xi = 1} ⊂ Cn+1. Then the projection map
p : Cn+1 − {0} → P(a0, ..., an) induces a map pi : Wi → P(a0, ..., an),
which is a finite Galois covering of the image. The collection {pi} defines
a smooth orbifold structure on P(a0, ..., an) in the sense of [7], §2. More
exactly, the following are satisfied

(i) For each i, Wi is a smooth variety and pi : Wi → pi(Wi) is a
finite Galois covering1. ∪Im(pi) = P(a0, ..., an).

(ii) Let (Wi ×P(a0,...,an) Wj)
n denote the normalization of the fibre

product Wi×P(a0,...,an)Wj . Then the maps (Wi×P(a0,...,an)Wj)
n → Wi

and (Wi ×P(a0,...,an) Wj)
n → Wj are both étale maps.

The orbifoldP(a0, ..., an) admits an orbifold line bundleOP(a0,...,an)(1).
Put Di := {xi = 0} ⊂ P(a0, ..., an) and D := ∪Di. Since xi are minimal
generators, D̄ := P(X) ∩D is a divisor of P(X). Define

P(X)� := P(X)− Sing(D̄)− Sing(P(X)),

and
X� := p−1(P(X)�).

Let
D̄ = ∪D̄α

be the decomposition into irreducible components 2. By definition D̄� :=
D̄∩P(X)� is a smooth divisor of P(X)�. Put D̄�

α := D̄α∩P(X)�. Then
D̄� is the disjoint union of irreducible smooth divisors D̄�

α.
In general p−1(P(X)reg) is not smooth; but if we shrink P(X)reg to

P(X)�, then its inverse image X� is smooth.

1The precise definition of an orbifold only needs a slightly weaker condition:

pi : Wi → P(a0, ..., an) factorizes as Wi
qi→ Wi/Gi

ri→ P(a0, ..., an) where Gi is a
finite group and ri is an étale map.

2The index α is usually different from the original index i of Di because
Di1 ∩ ... ∩Dik ∩P(X) may possibly become an irreducible component of D̄ or

Di ∩P(X) may split into more than two irreducible components of D̄.
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Notice that every fibre of p�(:= p|X�) : X� → P(X)� is isomorphic
to C∗, but the fibre over a point of D̄�

α may possibly be a multiple fibre.
We denote by mα

3 the multiplicity of a fibre over a point of D̄�
α.

The map p� is a C∗-bundle if we restrict it to the open set P(X)� −
D̄�. Notice that P(X)−P(X)� has at least codimension 2 in P(X).

By putting Ui := X ∩Wi and πi := pi|Ui , the collection {πi : Ui →
P(X)} of covering maps induces a (not necessarily smooth) orbifold
structure on P(X). Namely, we have

(i) For each i, Ui is a normal variety and πi : Ui → πi(Ui) is a finite
Galois covering. ∪Im(πi) = P(X)

(ii) The maps (Ui ×P(X) Uj)
n → Ui and (Ui ×P(X) Uj)

n → Uj are
both étale maps.

We put L := OP(a0,...,an)(1)|P(X), which is an orbifold line bundle
on P(X). We call L the tautological line bundle. Then X−{0} → P(X)
can be regarded as an orbifold C∗-bundlle (L−1)×

Notice that, if we restrict this orbifold structure to P(X)�, then it
is a smooth orbifold structure.

Lemma 2.1. Assume that the log pair (X, 0) has klt singularities.
Put Δ :=

∑
(1 − 1/mα)D̄α. Then (P(X),Δ) is a log Fano variety,

that is, (P(X),Δ) has klt singularities and −(KP(X) +Δ) is an ample
Q-divisor.

Proof. Take a positive integer d in such a way that the subring
R(d) := ⊕i≥0Rid is generated by Rd as a C-algebra. We put V :=

SpecR(d). Then there is a finite surjective map μ : X → V . Notice
that Proj(R) = Proj(R(d)). Hence there is a natural projection map q :
V −{0} → P(X) and the composition map X−{0} → V −{0} → P(X)
coincides with the natural projection map p : X − {0} → P(X). Since
R(d) is generated by Rd as a C-algebra, the projection map q is a C∗-
bundle. We put V � := q−1(P(X)�) and put q� := q|V � : V � → P(X)�.
For a point t ∈ P(X)� − D̄�, the fibres (p�)−1(t) and (q�)−1(t) are both
isomorphic to C∗ and μ induces an etale covering between them of the
same degree as deg(μ). On the other hand, for a point t ∈ D̄�

α, the fibre
(p�)−1(t) is a multiple fibre with multiplicity mα and (p�)−1(t)red ∼= C∗.

In this case μ induces an etale covering (p�)−1(t)red → (q�)−1(t) of
degree deg(μ)/mα. In other words, X� → V � is a finite cover, which
is branched along (q�)−1(∪α;mα>1D̄

�
α). Let B be the Q-divisor of V

obtained as the closure of the Q-divisor q∗Δ of V − {0}. Here notice

3The multiplicity mα may possibly be one.
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that CodimX(X −X�) ≥ 2 and CodimV (V − V �) ≥ 2. Then we have

KX = μ∗(KV +B).

Since (X, 0) is a klt pair, (V,B) is a klt pair by [6], Proposition 5.20. By
[5], Proposition 4.38, we conclude that (P(X),Δ) is a log Fano variety.

Q.E.D.

Remark 2.2. The lemma is rephrased as: if (X, 0) has klt singular-
ities, then P(X)orb is a Fano orbifold. When X is an affine symplectic
variety, this can be proved directly by using the fact that P(X) has a
contact orbifold structure ([8], Theorem 4.4.1).

§3. Algebraic orbifold fundamental group of P(X)�

In the previous section we observed that P(X)� has a smooth orb-

ifold structure. Namely, if we put U �
i := π−1

i (P(X)�), and π�
i := πi|U�

i
,

then U := {π�
i : U �

i → P(X)�}i∈I give the orbifold charts of P(X)�.
Assume that P(X)� has another orbifold charts U ′ := {π′

j : U ′
j →

P(X)�}j∈J . Then U and U ′ are equivalent if, for each i ∈ I and j ∈ J ,

two maps U �
i → P(X)� and U ′

j → P(X)� are admissible to each other: in

other words, (U �
i ×P(X)� U

′
j)

n → U �
i and (U �

i ×P(X)� U
′
j)

n → U ′
j are both

étale maps. An orbifold structure on P(X)� is precisely an equivalence
class of orbifold charts of P(X)�. In the remainder we will denote by
P(X)�,orb the orbifold structure defined in the previous section. Let Y orb

be a smooth orbifold; namely it is a pair of a normal algebraic variety Y
and an equivalence class of orbifold charts V = {νk : Vk → Y }k∈K . Let
f : Y → P(X)� be a finite surjective morphism of algebraic varieties.
We say that f is an étale covering map from Y orb to P(X)�,orb if the
following property holds:

For any k ∈ K and i ∈ I, two maps f ◦ νk : Vk → P(X)� and

πi : U
�
i → P(X)� are admissible to each other.

Notice that f is not necessarily an étale covering map in the usual
sense even if f is an étale covering map of orbifolds. An étale covering
map is said to be Galois if the underlying morphism is Galois in the
usual sense.

Lemma 3.1. For any finite étale covering f : Y orb → P(X)�,orb,
there exists an étale Galois covering g : Zorb → P(X)�,orb such that g

factorizes as Zorb → Y orb f→ P(X)�,orb.

Proof. Let K and L be the function fields of P(X)� and Y . Let
M be the Galois closure of L/K and take the normalization Z of Y
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in M . We shall give an orbifold structure on Z in such a way that
Zorb → P(X)�,orb is an étale covering and it factorizes through Y orb. Let
V → Y be an orbifold chart of Y orb. By definition V is smooth and the
composition map V → Y → P(X)� is admissible for any orbifold chart
U → P(X)�. In other words, (V ×P(X)� U)n → V and (V ×P(X)� U)n →
U are both étale maps. Let L′ be the function field of V and let M ′ be
the Galois closure of L′/K. Let W be the normalization of V in M ′.
Then, since M ⊂ M ′, there is a natural map qV : W → Z. It is clear
that ∪Im(qV ) = Z when V runs through all orbifold charts of Y orb. We
prove that the map W → V is étale.

Here we recall an explicit construction of W . Assume that V →
P(X)� is not Galois. Then there is an element σ ∈ G := Gal(M ′/K)
such that (L′)σ �= L′, where (L′)σ := σ(L′). We take an irreducible
component V1 of (V ×P(X)� V

σ)n in such a way that the induced map
V1 → V is a finite covering with deg ≥ 2. Let L1 be the function field of
V1 and if L1/K is not still a Galois extension, we take the Galois closure
M1 of L1/K. There exists an element σ1 ∈ G1 := Gal(M1/K) such
that (L1)

σ1 �= L1. We take an irreducible component V2 of (V1 ×P(X)�

(V1)
σ1)n in such a way that the induced map V2 → V1 has degree ≥ 2.

When we repeat this process, we finally reach the W .
Thus, to prove that W is étale over V , we only have to show that

(V ×P(X)� V
σ)n → V and (V ×P(X)� V

σ)n → V σ are both étale maps.
In fact, if this is proved, then V1 → V is an étale map and hence V1 →
P(X)� and U → P(X)� are admissible to each other. We may then
replace V by V1 and continue.

Before starting the proof we notice that σ induces aP(X)�-isomorphism
U ∼= Uσ. Since V → P(X)� and U → P(X)� are admissible to each
other, (V ×P(X)� U)n → U and (V ×P(X)� U)n → V are both étale

maps. Since V σ → P(X)� and Uσ → P(X)� are also admissible to each
other, (V σ ×P(X)� U

σ)n → Uσ and (V σ ×P(X)� U
σ)n → V σ are étale

maps. Here, identifying Uσ with U by the above isomorphism, we get
two maps (V σ ×P(X)� U)n → U and (V σ ×P(X)� U)n → V σ. Now we
have a commutative diagram

(3.1)

(V ×P(X)� U ×P(X)� V
σ)n −−−−→ (V σ ×P(X)� U)n

⏐
⏐
�

⏐
⏐
�

(V ×P(X)� U)n −−−−→ U,

where all maps are étale. Let us consider the map (V ×P(X)� U ×P(X)�

V σ)n → V . Since this map factorizes through (V ×P(X)� U)n, it is an
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étale map. On the other hand, this map also factorizes as

(V ×P(X)� U ×P(X)� V
σ)n → (V ×P(X)� V

σ)n → V.

As the first map is étale, the second map (V ×P(X)� V
σ)n → V is an

étale map. By a similar reasoning we see that (V ×P(X)� V
σ)n → V σ is

an étale map.
We finally prove that {qV : W → Z} gives an orbifold structure

to Z. Since M ′ is a Galois extension of M , we see that qV (W ) is the
quotient variety of W by Gal(M ′/M). Moreover, W is a smooth variety
because it is an étale cover of a smooth variety V . In the remainder we
shall check that qV ′ : W ′ → Z and qV : W → Z are admissible to each
other. We have a commutative diagram

(3.2)

(W ×Y W ′)n −−−−→ W
⏐
⏐
�

⏐
⏐
�

(V ×Y V ′)n −−−−→ V.

Here two vertical maps are étale because W → V and W ′ → V ′ are
étale, and the second horizontal map is also étale because V → Y and
V ′ → Y are admissible to each other. Hence the first horizontal map
(W ×Y W ′)n → W is étale by the commutative diagram. The map
(W ×Z W ′)n → W is factorizes as

(W ×Z W ′)n → (W ×Y W ′)n → W.

Since first map is an open immersion, we see that (W ×Z W ′)n → W is
an étale map. Similarly, (W ×Z W ′)n → W ′ is an étale map. Q.E.D.

Take a point x ∈ P(X)� in such a way that x /∈ D̄�. Then f−1(x)
consists of exactly deg(f) points. Consider all pairs (Y orb, y) of étale
coverings Y orb of P(X)�,orb and y ∈ Y lying on x ∈ P(X)�. A morphism
h : (Zorb, z) → (Y orb, y) is a P(X)�-morphism h : Z → Y with h(z) =
y such that it is an étale covering map from Zorb to Y orb. When Z
and Y are both Galois coverings of P(X)�, h induces a surjective map
Aut(Z/P(X)�) → Aut(Y/P(X)�). As in the usual situation, we can
define the algebraic orbifold fundamental group π̂orb

1 (P(X)�,orb, x) as
the profinite group limAut(Y/P(X)�), where f runs through all finite
étale Galois coverings of P(X)�,orb.

Theorem 3.2. [11] π̂orb
1 (P(X)�,orb, x) is a finite group.

Proof. Write Δ� for Δ|P(X)� . Let Y orb be a finite étale covering

map of P(X)�,orb and let f : Y → P(X)� be the underlying map. We
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shall prove that KY +ΔY = f∗(KP(X)� +Δ�) for some effective divisor
ΔY on Y . Let V = {νk : Vk → Y }k∈K be orbifold covering charts. Let

Z be an irreducible component of the normalization (Vk ×P(X)� U
�
i )

n of
the fibre product of the diagram

Vk
f◦νk→ P(X)� ← U �

i .

Then we have a commutative diagram

(3.3)

Z
p2−−−−→ U �

i

p1

⏐
⏐
� πi

⏐
⏐
�

Vk
f◦νk−−−−→ P(X)�.

Here p1 and p2 are both étale maps. Since KU�
i
= π∗

i (KP(X)� +Δ�)

and KZ = p∗2KU�
i
, we have KZ = (πi ◦ p2)∗(KP(X)� +Δ�). On the other

hand, since KZ = p∗1KVk
, we see that KVk

= (f ◦ νk)
∗(KP(X)� + Δ�).

Then one can write KY + ΔY = f∗(KP(X)� + Δ�) with some divisor
ΔY ≥ 0.

The finite covering f : Y → P(X)� can be compactified to a finite
covering f̄ : Ȳ → P(X). Let ΔȲ be the closure of ΔY in Ȳ . Since
P(X) − P(X)� has codimension at least 2, one can write KȲ + ΔȲ =
f̄∗(KP(X) + Δ). Then, by [11], Proposition 1, the degree of such f̄ is
bounded by a constant only depending on (P(X),Δ). Thus deg(f) is
bounded above. Q.E.D.

§4. Complex analytic orbifolds

We can define a complex analytic orbifold structure just by replac-
ing the algebraic orbifold charts in §1 with the complex analytic orbifold
charts (cf. [10], Chapter 13). Let U be a sufficiently small open neighbor-
hood of 0 ∈ Cm where a finite group Γ acts on U fixing the origin. Then
a holomorphic map π : U → P(X)� is called an orbifold chart if it is fac-
torized as U → U/Γ ⊂ P(X)�. We say that two charts π : U → P(X)�

and π′ : U ′ → P(X)� are admissible if (U ×P(X)� U ′)n → U and
(U ×P(X)� U ′)n → U ′ are both étale maps. Orbifold covering charts

of P(X)� is a collection {π : U → P(X)�} of mutually admissible charts
such that ∪Im(π) = P(X)�. An orbifold structure on P(X)� is nothing
but an equivalence class of such collections.

It is easily checked that a smooth algebraic orbifold structure on
an algebraic variety Y naturally induces a complex analytic orbifold



330 Y. Namikawa

structure on Y . Conversely, if an algebraic variety Y has a smooth
complex analytic orbifold structure, then Y admits a smooth algebraic
orbifold structure. In fact, let ν : V → V/G ⊂ Y be a complex analytic
orbifold chart, where V is an open neighborhood of 0 ∈ Cm and G fixes
the origin. We put y := ν(0). By the local linearization of a finite group
action ([3], p.97) we may assume that G-action on V is induced from
linear transformations of Cm. By Artin’s approximation theorem ([1],
Corollary (2.6)) we may take a common étale neighborhood w ∈ W of
y ∈ Y and 0̄ ∈ Cm/G:

Y ← W → Cm/G.

Take the connected component W ′ of W×Cm/GCm containing the point
(w, 0). Then one can write W = W ′/G′ with a suitable subgroup G′ of
G and the composition map W ′ → W → Y gives a smooth algebraic
orbifold chart.

Let Y be a connected complex analytic space with an orbifold struc-
ture. Then a covering map f : Y orb → P(X)�,orb is a holomorphic map
f : Y → P(X)� of the underlying spaces such that

(i) for any point x ∈ P(X)�, there exists an admissible orbifold chart
π : U → P(X)� with x ∈ Im(π) and each connected component Vi of
f−1(π(U)) can be written as U/Γi where Γi is some subgroup of Γ,

(ii) the map U → U/Γi
∼= Vi ⊂ Y is an admissible orbifold chart of

Y orb.

Let f : Y orb → P(X)�,orb be an étale covering of algebraic orbifolds.
Then it induces a covering map of complex analytic orbifolds. In fact,
let y ∈ Y and x := f(y) ∈ P(X)�. Choose algebraic orbifold charts
μ : V → Y and π : U → P(X)� so that their images contain y and x
respectively. We choose points v ∈ V and u ∈ U so that ν(v) = y and
π(u) = x. We have a diagram of étale maps

V ← (V ×P(X)� U)n → U,

and it induces an isomorphism of complex analytic germs (V, v) → (U, u).
We have a commutative diagram

(4.1)

(V, v) −−−−→ (U, u)
⏐
⏐
�

⏐
⏐
�

(Y, y) −−−−→ (P(X)�, x).

By the assumption (P(X)�, x) ∼= (U/G, ū) with a finite group G. By
the commutative diagram (Y, y) can be also written as (U/G′, ū) with
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a subgroup G′ of G. This shows that f is a covering map of complex
analytic orbifolds.

Conversely, if Y orb → P(X)�,orb is a covering of complex analytic
orbifolds with finite degree, then Y is an algebraic variety with a smooth
algebraic orbifold structure and the map Y orb → P�,orb is an étale cov-
ering of algebraic orbifolds.

Notice however that covering maps of complex analytic orbifolds
generally have infinite degrees.

As in §2 take a point x ∈ P(X)�−D̄� and consider all pairs (Y orb, y)
of coverings Y orb → P(X)� and y ∈ Y lying over x. If (Y orb, y) and
(Y ′orb, y′) are among them, then we can take a unique irreducible com-
ponent Z of (Y ×P(X)orb Y ′)n passing through the point z := (y, y′).
Moreover there exists an orbifold structure on Z such that the induced
map Zorb → P(X)�,orb is a covering map of orbifolds. Such construc-
tions enable us to take the inverse limit (Y ∗,orb, y∗) of the inductive
system {(Y orb, y)}. Thurston ([10], 13.2.4) has defined the orbifold fun-
damental group πorb

1 (P(X)�,orb, x) as the deck transformation group of
Y ∗ → P(X)�.

§5. Proof of Main Theorem

We fix a point x ∈ P(X)� − D̄ and x� ∈ X� with p�(x�) = x.

Lemma 5.1. There exists an exact sequence

π1(C
∗, x�) → π1(X

�, x�) → πorb
1 (P(X)�,orb, x) → 1.

Proof. Define

P(X)�0 := P(X)� − ∪α;mα>1D̄
�
α

and
X�

0 := (p�)−1(P(X)�0).

Since X�
0 → P(X)�0 is a C∗-bundle, we have an exact sequence

π1(C
∗, x�) → π1(X

�
0, x

�) → π1(P(X)�0, x) → 1,

where C∗ is regarded as a fibre (p�)−1(x). Put

C := Coker[π1(C
∗, x�) → π1(X

�, x�)].

We want to prove that C = πorb
1 (P(X)�,orb, x). The kernel N of the

natural map π1(X
�
0, x

�) → π1(X
�, x�) is described as follows. Put Eα :=

(p�)−1(D̄α)
� for α with mα > 1. Let β′

α be a small circle in X�
0 around a
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point of Eα. Take a point qα ∈ β′
α and choose a path tα in X�

0 connecting
x� and qα. We define a loop βα starting from x� as βα := t−1

α ◦ β′
α ◦ tα.

Then N is the smallest normal subgroup of π1(X
�
0, x

�) containing the
elements [βα].

Summing up these facts, one gets an exact commutative diagram

(5.1)

1 1
⏐
⏐
�

⏐
⏐
�

N −−−−→ p�∗(N) −−−−→ 1
⏐
⏐
�

⏐
⏐
�

π1(C
∗, x�) −−−−→ π1(X

�
0, x

�)
p�
∗−−−−→ π1(P(X)�0, x) −−−−→ 1

id

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

π1(C
∗, x�) −−−−→ π1(X

�, x�) −−−−→ C −−−−→ 1
⏐
⏐
�

⏐
⏐
�

1 1

We next consider πorb
1 (P(X)�,orb, x). For each α with mα > 1, let γ′

α

be a small circle in P(X)�0 around a point of D̄�
α. Take a point pα ∈ γα

and choose a path sα in P(X)�0 connecting x and pα. We define a loop
γα starting from x as γα := s−1

α ◦γ′
α ◦ sα. Let M be the smallest normal

subgroup of π1(P(X)�0, x) containing the elements [γmα
α ]. Then we have

πorb
1 (P(X)�,orb, x) ∼= π1(P(X)�0, x)/M.

Since p�∗([βα]) = [γmα
α ], we see that M = p�∗(N). This implies that

C = πorb
1 (P(X)�,orb, x). Q.E.D.

By 3.2 and 3.1, there is a finite étale Galois covering (Y orb, y) →
(P(X)�, x) such that π̂orb

1 (Y orb, y) = {1}. Put Z := (X� ×P(X)� Y )n

and choose a point z ∈ Z lying over x� and y. Then we have an exact
sequence

π1(C
∗, z) → π1(Z, z) → πorb

1 (Y orb, y) → 1.

To prove that π̂1(X
�, x�) is finite, it is enough to show that π̂1(Z, z) is

finite because Z → X� is a finite étale covering in the usual sense.
Assume that for an arbitrary positive integer m, there is a finite

group Γ with |Γ| ≥ m such that there is a surjection π1(Z, z) → Γ. Put

K := Im[π1(C
∗, z) → π1(Z, z)].
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Let ΓK be the image of the composition map K → π1(Z, z) → Γ. Then
the surjection π1(Z, z) → Γ induces a surjection πorb

1 (Y orb, y) → Γ/ΓK .
But, since π̂orb

1 (Y orb, y) is trivial, Γ/ΓK = 1. Therefore the composition
map K → π1(Z, z) → Γ is a surjection. If K is a finite group, then
this contradicts the assumption that m can be arbitrary large. Hence
the map π1(C

∗, z) → π1(Z, z) is an injection and K = Z. Since Γ is a
quotient group of Z we have Γ = Z/lZ for some l ≥ m.

As explained in Introduction, this leads to a contradiction when Z
is a C∗-bundle over Y. In a general case Z is not a C∗-bundle over Y ,
but it is an orbifold C∗-bundle over Y orb. Thus we can apply a similar
argument to the orbifold C∗-bundle Z to get a contradiction:

Let us consider the finite étale covering Z ′ → Z determined by the
surjection π1(Z, z) → Z/lZ. By definition this covering induces a cyclic
covering C∗ → C∗ of degree l for each general fibre of Z → Y . Notice
that Z → Y orb is an orbifoldC∗ bundle. Let L be the associated orbifold
line bundle on Y orb. Then Z can be obtained from L by removing the
zero section. The finite étale covering map Z ′ → Z induces a cyclic
covering L′ → L of degree l from an orbifold line bundle L′ on Y orb

branched along the zero section and Z ′ is obtained from L′ by removing
the zero section. This fact, in particular, implies that [L] ∈ Pic(Y orb) is
divisible by l. Note that m can be arbitrary large; but this is impossible
because L−1 is an ample orbifold line bundle4. Therefore π̂1(Z, z) is finite
and so is π̂1(X

�, x�). Since the natural map π̂1(X
�, x�) → π̂1(Xreg, x

�)
is surjective, we conclude that π̂1(Xreg, x

�) is finite.

Remark 5.2. If πorb
1 (P(X)�) is finite, then the argument above

shows that π1(Xreg) is finite.
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