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On suspensions, and conjugacy of a few more
automorphisms of free groups

François Dahmani

Abstract.

In a previous work, we remarked that the conjugacy problem for
pairs of atoroidal automorphisms of a free group was solvable by mean
of the isomorphism problem for hyperbolic groups and an orbit problem
for the automorphism group of their suspensions (i.e. their semidirect
product with Z for the relevant structural automorphism).

We consider the same problem a few more automorphisms of free
groups, those that produce relatively hyperbolic suspensions that do
not split over a parabolic subgroup.

§ Introduction

Let F be a finitely presented group (we will soon assume that
it is free), Aut(F ) be its automorphism group, and Out(F ) =
Aut(F )/Inn(F ) be its outer automorphism group.

Given two semi-direct products, F �α 〈t〉 and F �β 〈t′〉, their struc-
tural automorphisms α and β are conjugated in Out(F ) if and only if
there is an isomorphism F �β 〈t〉 → F �α 〈t′〉 that preserves the fiber
(which is F ) and the orientation (i.e. sends tF on t′F ).

This suggests a way of analysing the conjugacy problem in a class
of elements of Out(F ) through an isomorphism problem in a class of
semidirect products of F .

A motivating case is that of a free group. Though a solution to the
conjugacy problem of automorphisms of free groups was announced by
Lustig [Lu-00, Lu-01], it might still be desirable to find short complete
solutions for specific classes of elements in Out(Fn).

In [D] we considered the case of atoroidal automorphisms. In that
case, the semi-direct product F �α 〈t〉 is a hyperbolic group [B], and
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since the isomorphism problem for hyperbolic groups is solvable [Se,
DGr, DG-11], the conjugacy problem for atoroidal automorphisms of free
groups was reduced to an orbit problem for Out(F �α 〈t〉) in H1(F �α

〈t〉,Z) (this orbit problem was an interpretation of the condition that
there is an isomorphism F �β 〈t〉 → F �α 〈t′〉 that preserves the fiber
and the orientation, once is given an abstract isomorphism F �β 〈t〉 →
F �α 〈t′〉). We solved this orbit problem by showing that Out(F �α 〈t〉)
is a virtually abelian group, and by interpreting the orbit problem as a
system of linear Diophantine equations.

In view of [DGr], [DG-15], it is natural to ask whether one can
approach the conjugacy problem of larger classes of automorphisms,
namely those producing proper relatively hyperbolic suspensions.

Definition 0.1. Let φ ∈ Aut(F ), and F1, . . . , Fk finitely generated
proper subgroups of F . We say that the automorphism φ is hyperbolic
relative to {F1, . . . , Fk} if there exists integers m1, . . . ,mk > 0 and ele-
ments f1, . . . , fk ∈ F such that, for all i, tmifi normalises Fi, and such
that the group (F �φ 〈t〉) is hyperbolic relative to {(Fi � 〈tmifi〉), i =
1, . . . , k}.

The case of automorphism of free groups is once again particularly
interesting, since according to [GLu], all non-polynomial automorphisms
of free groups should produce interesting relatively hyperbolic suspen-
sions (of course it could be interesting to consider also a free product of
nice groups).

Thus from now on F is a free group.
One says that a subgroup F0 of F is polynomial for a given automor-

phism φ if every conjugacy class of elements in F0 has polynomial growth
under iterates of φ (more explicitly, that means that for all γ ∈ F0, the
length of a cyclically reduced representative of φn(γ) is bounded above
by a polynomial in n). We say that an automorphism is polynomial if
F itself is polynomial. For an outer automorphism Φ of F , we say that
a subgroup F0 of F is polynomial for Φ if there is an automorphism φ
in the class of Φ for which F0 is polynomial.

In [L, Prop 1.4] Levitt proves that for any outer automorphism Φ
of a free group F , there is a finite family of finitely generated subgroups
of F , polynomial for Φ, such that all polynomial subgroups of Φ are
conjugated into one of them (see also [GLu, Prop. 3.2]).

The aim of this note is thus to explore to what extend the method
used in [D] can be extended to larger classes of automorphisms of free
groups, and in particular to (some) non-polynomial automorphisms.

However, I ultimately had to restrict the study to those automor-
phisms whose suspension does not split over a parabolic subgroup. I
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also have to concede that this attempt uses three results unpublished at
the time of writing (this issue will be made clear in a few lines).

The main result of this attempt is the following.

Theorem 0.2. There is an (explicit) algorithm that, given two au-
tomorphisms φ1, φ2 of a finitely generated free group F , terminates if
both produce proper relatively hyperbolic suspensions, relative to suspen-
sions of polynomial subgroups, without parabolic splitting, and it indi-
cates whether φ1 and φ2 are conjugated in Out(F ).

The arguments presented below involve other tools than in [D], in
particular Dehn fillings, and growth of conjugacy classes under itera-
tions of automorphisms. They rely on a certain number of currently
unpublished results, so I would like to make this reliance clear. First,
there is the main result of Gautero and Lustig paper [GLu]. This is
used twice; to produce examples to which the results might apply (so,
in some sense, as a motivation), and to compute explicitly the polyno-
mial subgroups (actually, this is to certify that an exponentially growing
automorphism is indeed exponentially growing). Then there is the split-
ting computation of Touikan [T]. And finally, there is the solution ot
the isomorphism problem of some rigid relatively hyperbolic groups, by
Guirardel and myself, [DG-15].

The authors wants to say merci to the referee, for useful comments
and corrections.

§1. Preliminary

1.1. General

Since this note is a sequel to [D], we assume that the reader has
access to that previous paper, and we will freely use its content. For
readability, though, we briefly introduce now a few items that we need
from that paper. First is a variation on some classical fact.

As in [D] we will call a semidirect product with Z, F �φZ a suspen-
sion of F by φ, whose fiber is F and whose orientation is defined by Ft
(this is to distinguish it from the suspension by φ−1 which is the same
group, but with reverse orientation).

Lemma 1.1. (see for instance [D, Lemma 2.3]) Let φ1 and φ2 be
two automorphisms of F . The following assertions are equivalent.

(1) φ1 and φ2 are conjugate in Out(F );
(2) there is an isomorphism between their suspensions (F �φ1 〈t〉)

and (F �φ2 〈t′〉) that preserves the fiber F (in both directions)
and the orientation (i.e sends t in Ft′);
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(3) there is an isomorphism between their suspensions that pre-
serves the orientation and sends the fiber inside the fiber;

(4) there is an isomorphism between their suspensions whose fac-
torization through the abelianisations preserves the orientation,
and sends the image of the fiber inside the image of the fiber.

When talking about a splitting of a group, we mean a graph-of-
group decomposition (often noted X) as defined in Bass-Serre theory.
This is presented in many places, beginning with Serre’s famous book.
We recall very briefly our conventions for defining a splitting, and its
automorphisms. One is given an underlying graph (unoriented, with
possible double edges, and loops) X whose set of vertices and set and
oriented edges we denote respectively by V and E, and whose involution
on the oriented edges (reversion of orientation) we denote by : e �→ e,
and terminaison map t : E → V . One is given groups for each vertices,
denoted Γv, v ∈ V , and for each edge e ∈ E, another group Γe, with
Γe = Γē, and an injective morphism ie : Γe ↪→ Γt(e). The Bass group is
the group generated by all vertex groups and all edges with the relations
that ē = e−1 and that ēiē(g)e = ie(g) everywhere it is defined. The
fundamental group of the graph of group at a vertex v0 is the subgroup of
the Bass group of all elements of the form e1γ1e2γ2 . . . erγr where ei ∈ E,
γi ∈ Γt(ei) for all i, and such that consecutive ei define a loop at v0 in
the graph X (that is, for all i, t(ei+1) = t(ei), and t(er) = t(e1) = v0).

If this fundamental group (of the graph of group X) is isomorphic to
a certain group G we say that X is a splitting of G. We call a splitting
non-trivial if the action of its fundamental group on the Bass-Serre tree
has no global fixed point.

An automorphism of the graph of groups X is a tuple
(ΦX , (φv), (φe), (γe)) where ΦX is a automorphism of the underlying
graph X, for all vertices v, φv : Γv → ΓΦX(v) is an isomorphism, for all
edges e, φe : Γe → ΓΦX(e) is also an isomorphism, and γe ∈ ΓΦX(t(e))

satisfies

(1) Bass Diagram: φt(e) ◦ ie = adγe ◦ iΦX(e) ◦ φe,

for adγe : x �→ γ−1
e xγe. One might like to read the condition as: “each

attaching map ie, e ∈ E commute with the isomorphisms φv, φe, v ∈
V, e ∈ E up to conjugation in the target vertex group”.

The small modular group of a splitting was used in [D]. We suggest
reading [D, §1] and more precisely §1.2 loc. cit. for a slightly broader
discussion about it. The small modular group of a splitting X of a group
G, denoted by ModX is a subgroup of the automorphism group of X
consisting of those for which ΦX = IdX , φv ∈ Inn(Γv) and φe = IdΓe for
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all v, e. It is generated by the union of two families of automorphisms,
the oriented Dehn twists (for which the φv are all the identity, and only
one element γe ∈ ZΓt(e)

(ie(Γe)) is non trivial), and the inert twists (for

which φv = adγv and γe is the same γv if t(e) = v). The image of the
small modular group in the outer automorphism group of G consists of
the group generated by Dehn twists over edges of the splitting X. Its
image in the automorphism group of the abelianisation of G is generated
by Dehn twists over non separating edges of X.

Given a suspension F � 〈t〉, we define the map δ : F � 〈t〉 → Z to be
the quotient by F . Of course, it factorises through the abelianisation of
F � 〈t〉. We insist in seeing the targer of δ as Z to be able to interpret
δ(γ) as an integer.

Given a splitting X of F�〈t〉, and a choice of base point in X, we can
realise each element γ of F � 〈t〉 as its expression in the Bass group, and
for each (oriented) edge e of X we may define n(γ, e) as the number of
occurences of e in the reduced form of this expression, minus the number
of occurences of e.

We obtained the following result.

Proposition 1.2. (See [D, 2.3]) Let G be a finitely generated group
that can be expressed as a semi-direct product F � 〈t〉.

Given a splitting X of G, and for each e ∈ E, a generating set
Se ⊂ Γt(e) for ZΓt(e)

(ie(Γe)) and a family (γj)0≤j≤j0 of elements of G,
one can decide whether there is an element η ∈ ModX whose image η̄ in
Aut(H1(G)) sends γ̄j in F̄ for all j < j0 and γ̄j0 inside t̄F̄ .

More precisely, there is such an element η if and only if the explicit
Diophantine linear system of equations

(2) ∀j,
∑

e∈E+se∈Se

rsen(γj , e)δ(se) = −δ(γj) + diracj=j0

(with unknowns rse) has a solution.

1.2. On polynomial growth

The following preliminary result is useful. It follows from the recent
algorithmic construction of relative train tracks, by Feighn and Handel
[FH, Theorem 2.1]. We give a different proof below (certainly not of the
same scope as the mentioned reference) for the curiosity of the reader.

Proposition 1.3. There is an algorithm that, provided with a free
group F and an automorphism φ, terminates and indicates whether F
is polynomial for φ.
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Proof. First, we will give a procedure certifying that an automor-
phism is polynomial, and then a procedure certifying that an automor-
phism is of exponential growth on some conjugacy class.

By [BFH-00, Coro 5.7.6], if φ is a polynomially growing automor-
phism, then there is n such that φn is unipotent in GL(H1(F )). It
is then sufficient to devise a procedure certifying whether a unipo-
tent automorphism is polynomially growing. Then we use (a weak as-
pect of) Theorem [BFH-05, 3.11]: if the automorphism is polynomi-
ally growing, there exists a topological representative τ : G → G of
φ on a graph G, and a filtration of G, {v} = G0 ⊂ · · · ⊂ Gn = G
such that any edge e in Gi \ Gi−1 is sent on a path ec where c is
a path in Gi−1. Also, if such a representative exists, then, for every
edge e ∈ Gi, the length of φn(e) can be bounded by a polynomial
in n depending only on i (this can be seen by induction; it is obvi-
ous for i = 0 or 1 since G0 contains no edge, and if it is true for
i − 1, let P(i−1) the corresponding polynomial, and for e ∈ Gi, with

φ(e) = ec, we can write φn(e) = eφ(c)φ(c)2 . . . φ(c)n−1, and the total
length is bounded by

∑
k≤n−1 P(i−1)(k)

|c|, hence by
∑

k≤n−1 P(i−1)(k)
M

for M = max{|φ(e)|, e ∈ Gi}, which is polynomial in n). Thus, φ is
polynomial if and only if there is such a topological representative. This
can be certified by enumeration of topological representatives, since the
condition used is easily algorithmically checked.

We now need a procedure that produces a certificate that φ is not
polynomialy growing when it is the case.

For that, we’ll use that φ is not polynomially growing if and only if
the suspension has a proper relative hyperbolic structure. One direction
of this equivalence ( =⇒ ) is the content of [GLu] (actually [GLu] de-
scribes the relative hyperbolic structure). We present now an argument
for the other direction. If the suspension is a proper relatively hyperbolic
group (with at least one hyperbolic element), then there are hyperbolic
elements in each coset of the fiber: this follows from [O-06b, Lemma 4.4]
(I also find rather pleasant the following proof: a simple random walk
on the relatively hyperbolic group F � Z will a.s. walk on only finitely
many non-hyperbolic elements (apply Borel-Cantelli Lemma, with the
exponentially decreasing probability to walk on a parabolic element, e.g.
[Si]), and, by recurrence on Z, it will walk infinitely many times on the
preimage of any chosen coset). Thus, there is a hyperbolic element fh
in the fiber F , and another t′ = tf0 in the coset tF .

The relative distance of F and t′kF grows therefore linarly in k,
and by exponential divergence (in the hyperbolic coned-off graph), the
shortest path, in t′kF , from t′k to fht

′k has exponential relative length
in k, hence exponential absolute length. This makes fh an exponentially
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growing element for the automorphism φ ◦ adf0 . This means that this
automorphism cannot be polynomialy growing (as it is visible on the
topological representative τ of a polynomially growing automorphism
that no element can be exponentially growing). Therefore φ has an
exponentially growing conjugacy class in F .

By [DG-13], and enumeration of the proper subgroups of F , if there
exists a proper relative hyperbolic structure, one can eventually find it
and thus a certificate that the automorphism is not polynomially growing
(here a certificate is the data of an exponentially growing conjugacy class,
with a proof that it is exponentially growing).

Q.E.D.

Proposition 1.4. Let F be a free group. There is an explicit al-
gorithm that, given φ ∈ Aut(F ) expressed on a basis of F , terminates
and produces a basis for each group of a collection F1, . . . , Fk of maximal
polynomial subgroups of F for Φ the class of φ in Out(F ), and computes
minimal exponents mi > 0 and elements fi so that tmifi normalises Fi

(see definition 0.1).

Proof. Note that there is a unique relative hyperbolic structure
for F �φ 〈t〉 whose parabolic groups are suspensions of polynomial sub-
groups. Indeed, the polynomial subgroups must be parabolic, by the
observation made in the proof of 1.3. Moreover, by [GLu], F �φ 〈t〉 is
indeed relatively hyperbolic to the subgroups that we need to compute.

We enumerate the tuples (S,m, f), where S is a finite subset of F ,
m is an integer, and f ∈ F . For each of them, by the usual Stallings’
folding process, we may find a basis of 〈S〉, and we may check whether
〈S〉 is stable by conjugation by tmf and f−1t−m. If so, 〈S〉 is normalized
by tmf ; in that case, using Proposition 1.3, we may certify whether, the
product 〈S〉 � 〈tmf〉 is a suspension of a polynomial automorphism on
〈S〉. For any collection of such subgroups, we may use [DG-13] in order
to certify that F �φ 〈t〉 is relatively hyperbolic. When this happens, the
algorithm is done. Q.E.D.

Recall that a splitting of a relatively hyperbolic group is peripheral
if, in the Bass-Serre tree, all parabolic subgroups are elliptic. Let us
say that φ ∈ Aut(F ) is relatively hyperbolic with no parabolic splitting
(RH-noPS for short) if it is properly hyperbolic relative to a collection
of polynomial subgroups of F , and the suspension F �φ 〈t〉 has no non-
trivial peripheral splitting over a subgroup of a parabolic subgroup.

Let us say that φ ∈ Aut(F ) is relatively hyperbolic with no elemen-
tary splitting (RH-noES for short) if it is properly hyperbolic relative to
a collection of polynomial subgroups of F , and the suspension F �φ 〈t〉
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has no peripheral splitting over a cyclic or parabolic subgroup, except
the trivial one.

An unsatisfying aspect of this work is that I am unable to provide
an algorithm certifying whether an element of Aut(F ) is RH-noPS. But
if it is, then we can do something.

§2. Conjugacy problems

2.1. Conjugacy of two relatively hyperbolic automor-
phisms without elementary splitting

Proposition 2.1. Let F be a free group. There is an (explicit)
algorithm that, given two automorphisms, φ1, φ2, terminates if both φi

are RH-noPS, and provides

• either an isomorphism F �φ1 〈t〉 → F �φ2 〈t〉 preserving fiber,
and orientation;

• or a certificate that F �φ1 〈t〉 and F �φ2 〈t〉 are not isomorphic
by an isomorphism preserving fiber, orientation;

• or a non-trivial peripheral splitting of either F �φi 〈t〉 over a
cyclic subgroup, which is either maximal cyclic or parabolic.

The algorithm in question may terminate even if one of the φi is not
RH-noPS. It never lies though.

The following application is immediate, given Lemma 1.1.

Corollary 2.2. The conjugacy problem for RH-noES elements of
Out(F ) is solvable: there is an algorithm that given two automorphisms
that are RH-noES, decides whether or not they are conjugated.

Let us now prove Proposition 2.1

Proof. First, by Proposition 1.4, we may assume that we know
explicitly both relative hyperbolic structures of Gi = F �φi 〈t〉 with pre-
sentations, as suspensions of subgroups of F , of the parabolic subgroups
(that are non-virtually cyclic). Let us write P1,j = F1,j � 〈rj〉, j =
1, . . . , k conjugacy representatives of maximal parabolic subgroups of
G1, with P1,j ∩ F = F1,j (recall that we have explicit presentations
of the groups P1,j as such suspensions). Similarily, we have P2,j =
F2,j � 〈r′j〉, j = 1, . . . , k′ conjugacy representatives of maximal parabolic
subgroups of G2. If k �= k′, G1 and G2 cannot be isomorphic, hence we
can assume that k = k′.

In parallel, we then perform the three following searchs (so-called
procedures, below).
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The first procedure is the enumeration of morphisms G1 → G2 →
G1. It stops when mutually inverse isomorphisms preserving orientation
and sending the fiber into the fiber are found.

The second procedure is as follows. For incrementing integers m,

we compute N
(m)
1,j the intersection of all subgroups of F1,j of index ≤ m.

Note that for each j, N
(m)
1,j is a sequence of normal subgroups of P1,j ,

with trivial intersection (as m goes to infinity). Denote by 〈〈∪jN
(m)
1,j 〉〉

the normal closure in G1 of their union (over j for a fixed m). Then we

try to certify, using [P], that Ḡ
(m)
1 = G1/〈〈∪jN

(m)
1,j 〉〉 is hyperbolic.

We will denote by K
(m)
1 the kernel 〈〈∪jN

(m)
1,j 〉〉 in G1 of the previous

quotient.

Similarily, we compute Ḡ
(m)
2 and check that it is hyperbolic. Since

P1,j/N
(m)
1,j is virtually cyclic, by virtue of the Dehn Filling theorem

[O-07, Thm. 1.1], for m large enough these groups are indeed hyper-
bolic. So this step of the second procedure will eventually provide groups

Ḡ
(m)
i , (i = 1, 2, m sufficiently large), that are certified hyperbolic. For

all m, ∪jN
(m)
1,j is contained in F which is normal in G1. Hence the

whole group K
(m)
1 is contained in F , and Ḡ

(m)
1 is naturally a suspension

Ḡ
(m)
1 = (F/K

(m)
1 )� 〈t̄〉. The second procedure then calls the algorithm

of Theorem [D, 3.2] in order to decide whether Ḡ
(m)
1 and Ḡ

(m)
2 are iso-

morphic by a fiber and orientation preserving isomorphism. This is done
in parallel for all incrementing m for which the groups are certified hy-
perbolic. The second procedure stops if an integer m is found so that

Ḡ
(m)
1 and Ḡ

(m)
2 are not isomorphic by a fiber and orientation preserving

isomorphism.
The third procedure is as follows. For both i = 1, 2, one enumer-

ates presentations of Gi = F �φi 〈t〉 by Tietze transformations, and,
for each one exhibiting a splitting of Gi over a cyclic subgroup as an
amalgamation, we check whether the splitting is non-trivial (it suffices
to check that both factors have a generator that does not commute with
the cyclic subgroup) and, for each one of the form of an HNN exten-
sion, 〈H, t | tct−1 = c′,RH〉 we check whether the stable letter t is non
trivial (so the presentation is genuinely that of an HNN-extension over
a cyclic group). If we discover a non-trivial cyclic splitting, we may
check whether its cyclic edge subgroup is maximal cyclic or parabolic,
using [O-06a, Thms 5.6 and 5.17]. We then enumerate the conjugates
of the parabolic subgroups, and if we find that each parabolic subgroup
has a conjugate contained in a vertex group, this third procedure stops,
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and outputs the splitting, with the relevant conjugations of parabolic
subgroups.

Now that we described the three procedures, we discuss the impli-
cation of their termination.

If the first procedure terminates, then by Lemma 1.1, there exists
a fiber-and-orientation preserving isomorphism, and the two given au-
tomorphisms of F are conjugated in Out(F ). If the second procedure
terminates, there cannot exist any isomorphism G1 → G2 preserving
fiber and orientation (it would preserve the class of parabolic subgroups,
characterised by being polynomial, and hence pass to the characteristic
quotients). If the third procedure terminates, we have found a non-
trivial splitting of either F �φi 〈t〉 over a cyclic subgroup.

Now we need to show that there is always at least one procedure
that terminates, i.e. the following lemma.

Lemma 2.3. Assume that G1 and G2 are RH-noPS. If the third
procedure and the second procedure never terminate, then the first pro-
cedure terminates.

This Lemma is actually a consequence of a result obtained in a
collaboration of Vincent Guirardel and the author.

Proof. We assume that for all m large enough, φm : Ḡ
(m)
1 → Ḡ

(m)
2

is a fiber and orientation preserving isomorphism.

Observe that eventually, P1,j/N
(m)
1,j contains a large finite subgroup

and an infinite order element normalizing it. In G
(m)
2 (for large m),

all finite subgroups lie in conjugates of P2,�/N
(m)
2,� (by [DG-15, Lemma

4.3]), and since G
(m)
2 is eventually hyperbolic relative to this collection of

subgroups, any infinite order element normalizing a finite subgroup is in

the same conjugate of P2,�/N
(m)
2,� . Thus, eventually each φm must send,

for each j, the group P1,j/N
(m)
1,j on some conjugate of some P2,�/N

(m)
2,� ,

(
 ≤ k). Then, Theorem [DG-15, Thm. 5.2] states that either G1 or G2

has a peripheral splitting over a maximal cyclic, or a parabolic subgroup
(which must be parabolic if we assume that the third procedure does not
terminate, hence in contradiction with the assumption of the lemma),
or there is an isomorphism φ : G1 → G2 that commutes with infinitely

many φm, up to composition with a conjugation in Ḡ
(m)
2 (in other words,

it makes a diagram

G1
φ∞−−−−−−→ G2

↓ ↓
Ḡ

(m)
1

adḡ◦φm−−−−−−→ Ḡ
(m)
2
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commute, where adḡ is a conjugation). In this second circumstance,
φ has to preserve the fiber and orientation, since the φm do, and the
kernels are co-final. Q.E.D.

Q.E.D.

There is a slightly stronger version of Proposition 2.1 that we will
need for the next part.

Given a suspension F � 〈t〉, a transverse cyclic peripheral structure
is a tuple of elements of the form (tkjfj)j=1,...r, for kj �= 0 and fj ∈ F .

A fiber-and-orientation preserving isomorphism between suspen-
sions equipped with such structures is said to preserve the structure
if it sends the conjugacy classes of the first exactly on the conjugacy
classes of the second.

Let us amend our definition of RH-noPS, and say that a suspension
with a transverse cyclic peripheral structure is RH-noPS relative to the
transverse peripheral structure if it is properly hyperbolic relative to a
collection of polynomial subgroups of F , and the suspension F �φ 〈t〉
has no non-trivial peripheral splitting over a subgroup of a parabolic
subgroup, in which each element of the transverse peripheral structure
(which is a group) is conjugated to a factor.

The following Proposition is, as we said, similar to Proposition 2.1.
The difference is in the presence of the transverse cyclic peripheral struc-
ture (a minor difference) but also in the fact that we had ambitionned to
get the full list of fiber-and-orientation preserving isomorphisms. This
ambition is not realized unfortunately, but enough is granted for the
application in the next part.

We keep the notation K
(m)
1 ,K

(m)
2 for the normal subgroups intro-

duced in the proof of Proposition 2.1.

Proposition 2.4. Let F be a free group. There is an (explicit)
algorithm that, given two automorphisms, φ1, φ2, and two transverse
cyclic peripheral structures P1,P2 of F�φ1 〈t〉 and F�φ2 〈t〉 respectively,
terminates if both φi are RH-noPS relative to their transverse peripheral
structures, and provides

(1) either a list of isomorphisms F �φ1 〈t〉 → F �φ2 〈t〉 preserving
fiber, orientation, and transverse cyclic peripheral structure,
and an integer m such that for each p ∈ P2, the centralizer of

p̄ in G2
(m)

= G2/K
(m)
2 is the image of the centralizer of p in

G2 and such that, for any other such isomorphism ψ, there is
one, φ, in the list, an element g ∈ G2, such that for all h ∈ G1,
there is zh ∈ Km for which ψ(h)g = φ(h)zh.
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(2) or a certificate that F �φ1 〈t〉 and F �φ2 〈t〉 are not isomorphic
by an isomorphism preserving fiber, orientation, and transverse
cyclic peripheral structure;

(3) or a non-trivial peripheral splitting of either F �φi 〈t〉 over a
cyclic subgroup, in which each element of the transverse pe-
ripheral structure is elliptic.

The first point means that the list contains all isomorphisms up to
conjugacy in G2 and multiplication by a large element of F .

Proof. As in the proof of Proposition 2.1, we use three procedures.
The first procedure is the enumeration of morphisms G1 → G2 →

G1. This procedure has an incrementing list L, which is empty at the
beginning. Every time mutually inverse isomorphisms preserving the
transverse peripheral structure, the orientation and sending the fiber
into the fiber are found, such that the isomorphism G1 → G2 is not
conjugated to any item of the list L, the procedure stores G1 → G2 into
L. We precise below when this first procedure is set to stop.

The second one slightly differs from Proposition 2.1. We still com-

pute Ḡ
(m)
1 and Ḡ

(m)
2 (and the images of the transversal peripheral struc-

ture in them), and try to certify that they are hyperbolic and that the
assumption of point 1, on the centralizers, is satisfied (which happens if
m is large enough, by Lemma 2.12). Let us call this “certification α for
m”. When this is the case, using [DG-11, Coro. 3.4], we check whether
these groups are rigid (in the sense that they have no peripheral splitting
over a virually cyclic group with infinite center, in which each element of
the transverse peripheral structure is conjugated in a vertex group) and
if they are we proceed and compute by [DG-11, Coro. 3.5] the complete

list of isomorphisms Ḡ
(m)
1 → Ḡ

(m)
2 up to conjugacy in Ḡ

(m)
2 . Once this is

done, we check which one of them are fiber-and-orientation preserving,
and preserve the transverse peripheral structure, and we record them in
a list Lm.

The second procedure is set to stop if an m is found so that there

is no fiber-and-orientation preserving isomorphisms Ḡ
(m)
1 → Ḡ

(m)
2 that

preserves the transversal peripheral structure.
The first procedure (which was run in parallel with the second) is

set to stop if a list L is found and an integer m is found so that the
following three conditions are satisfied. First, “certification α” for m
is done. Second, Lm is completely computed, and third, the currently
computed list L surjects on Lm, by the natural quotient map.

The third procedure looks for a non-trivial peripheral splitting over
a cyclic subgroup which is maximal cyclic or parabolic, in which each
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element of the transverse peripheral structure is conjugated to a vertex
group (it is similar to that of Proposition 2.1).

Observe that, if the first procedure stops, we have in L a list of
isomorphisms F �φ1 〈t〉 → F �φ2 〈t〉 preserving fiber (by Lemma 1.1
(3 =⇒ 2)), orientation, and transverse cyclic peripheral structure,
such that any other such isomorphism differs from one in the list by a
conjugation, and the multiplication by elements in the fiber (in the sense
of 2.4-(1)). Observe also that if the second procedure stops, we have (as
in 2.1) a certificate that F �φ1 〈t〉 and F �φ2 〈t〉 are not isomorphic
by an isomorphism preserving fiber, orientation, and transverse cyclic
peripheral structure.

Again, we can conclude by the following lemma.

Lemma 2.5. Assume that G1 and G2 are RH-noPS relative to their
transverse cyclic peripheral structures. If the third procedure and the
second procedure never terminate, then the first procedure terminates (i.e
there is a finite list of isomorphisms (preserving the transverse peripheral
structure, the orientation and sending the fiber into the fiber) from G1

to G2, and an integer m as in (2.4-(1)) such that any isomorphism

preserving fiber, orientation, and peripheral structure Ḡ
(m)
1 → Ḡ

(m)
2 is

the image of an isomorphism G1 → G2 in the list).

Proof. We endow G1 and G2 with the relatively hyperbolic struc-
ture consisting of their parabolic subgroups, and for each hyperbolic
element in the transverse peripheral structure, the conjugates of the
maximal cyclic subgroup containing it. This still makes a relatively
hyperbolic group (see [O-06b, 1.7] for instance). In this context, the as-
sumption that the third procedure does not stops says that the groups
G1 and G2 have no splitting which is peripheral (for this extended pe-
ripheral structure), over an elementary subgroup.

Observe that, eventually, the groups Ḡ
(m)
1 and Ḡ

(m)
2 are rigid (in

the sense of the second procedure). Indeed, if it is not the case for the

sequence (Ḡ
(m)
1 ) for instance, then after passing to a subsequence, for

each m in the subsequence, there are infinitely many automorphisms of

Ḡ
(m)
1 preserving the transverse peripheral structure, the orientation and

the fiber (namely the iterates of a Dehn twist over an edge group of a
splitting falsifying rigidity). From there, by [DG-15, Corolary 5.10], one
gets that G1 must have a splitting of a type contradicting the previous
paragraph.
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Therefore, for sufficiently large m, the second procedure can com-
pute the list Lm of isomorphisms preserving fiber orientation, and pe-

ripheral structure between Ḡ
(m)
1 and Ḡ

(m)
2 . Since the second procedure

does not stop, for all sufficiently large m, this list is not empty.
Assume that the first procedure does not stop. Then, for all fi-

nite list L of isomorphisms G1 → G2 (preserving transverse peripheral
structure, fiber and orientation), and all n there exists m > n and

ψm : Ḡ
(m)
1 → Ḡ

(m)
2 , an isomorphism preserving fiber orientation, and

peripheral structure, that does not commute with any element of the

list L, even after conjugation by an element of Ḡ
(m)
2 . Choosing a se-

quence of lists L exhausting the set of isomorphisms G1 → G2 (with the
prescribed preservation property), and a increasing sequence of integers
n, one gets a sequence of ψm as above, for a sequence of integers m going
to infinity.

We may use Theorem [DG-15, 5.2] to extract a subsequence of the
isomorphisms ψm, and to find an isomorphism ψ∞ : G1 → G2 commut-
ing with the composition of ψm with a conjugation (for all m in the
extracted sequence), as our previous use of it in Lemma 2.3. By cofi-
nality, such a ψ∞ has to preserve the fiber and the orientation. Since
the transverse peripheral structure consists exactly of the cyclic groups
among the parabolic groups of the relatively hyperbolic structures un-
der consideration, we deduce that ψ∞ globally preserves the transverse
cyclic structure. By [DG-15, Lemma 3.13], we know that, for sufficiently
large m, non conjugate parabolic subgroups in G2 map on non conjugate

subgroups in Ḡ
(m)
2 . Since each ψm preserves the transverse peripheral

structure, and (after extraction of subsequence) commute with ψ∞, it
follows that ψ∞ sends the transverse peripheral structures of G1 to that
of G2. Therefore ψ∞ is eligible for being recorded in the list of the first
procedure, and thus eventually appears in the sequence of our lists that
served to define the ψm. But that is a contradiction, by definition of the
ψm.

Q.E.D.

Q.E.D.

2.2. Conjugacy of two relatively hyperbolic automor-
phisms without parabolic splitting

The class of RH-noPS automorphisms, is larger than that of RH-
noES. We can treat it as well, but it requires a little care.

Recall that if F�φ1 〈t〉 splits as a graph of groups, then vertex groups
and edge groups are suspension of subgroups of F that are vertex groups
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and edge groups (respectively) of a graph of group decomposition of F
(see [D, Lemma 2.6]).

Proposition 2.6. Let X1,X2 be graph-of-groups decompositions of
F �φ1 〈t〉 and F �φ2 〈t〉 respectively, over cyclic subgroups.

Assume that ΦX : X1 → X2 is an isomorphism of the underlying
graphs of the decompositions, and that m is an integer, and, for all vertex

v ∈ X
(0)
1 , Lv is a list of isomorphisms from Γ1,v the vertex group of v

in X1 to Γ2,ΦX(v) the group of ΦX(v) in X2, that are all as in (2.4-(1))
(for Gi = Γi,v) for the transverse peripheral structure consisting of the
adjacent edge subgroups, and the fiber and orientation defined by [D,
Lemma 2.6].

The following are equivalent.

(1) There is an isomorphism Φ : π1(X1, τ) → π1(X2,ΦX(τ)) that is
fiber and orientation preserving, that induces a graph-of-groups
isomorphism, and that induces ΦX at the level of graphs.

(2) There is Φ0 = (ΦX , (φv), (φe), (γe)) an isomorphism of graphs
of groups, such that φv is fiber-and-orientation preserving, and
such that the linear diophantine equation (2) for the γi being
the images of a fixed basis of F , and of t, by Φ0, has a solution.

(3) There is Φ′
0 = (ΦX , (φ′

v), (φe), (γ
′
e)) an isomorphism of graphs

of groups, such that φ′
v ∈ Lv, and such that the linear

diophantine equation (2) for the γi being the images of a fixed
basis of F , and of t, by Φ′

0, has a solution.

Proof. The first point implies the second: by Lemma [D, 2.6], all
vertex groups are suspensions of their intersections with F , therefore if
Φ preserves the fiber and orientation, so do all φv, and the equation (2)
admits an obvious solution (the null solution).

The second point implies the first, because, by Proposition 1.2, the
system (2) has a solution if and only if there is a modular graph-of-
group automorphism of π1(X2,ΦX(τ)) that sends Φ0(F ) exactly on F ,
and preserves orientation.

The third point obviously implies the second one.
We need to show that the second point implies the third one. This

is a more subtle part. It basically says that if there is an isomorphism of
graph of groups whose orbit under the small modular group intersects the
set of fiber-preserving isomorphisms, then there is one that is accessible
to us, which might not quite be in the same orbit for the action of the
small modular group, but that share the property that its orbit intersects
the set of fiber-preserving isomorphisms. The key is in the assertions, in
Lemma 2.7 that the different products are in F , and this is ensured by
the (a priori non immediate) assumption (2.4-(1)).
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So, we have Φ0 = (ΦX , (φv), (φe), (γe)) an isomorphism of graphs of
groups, as in the second point.

By assumption on Lv, the given isomorphisms φv differ from iso-
morphisms in Lv by conjugation (in the target), and multiplication by
elements of F that are also in the vertex group Gv. By composing with
inert twists (vanishing in Out(F �φ2 〈t〉)), we can assume that each
φv has same image as an element of Lv in the Dehn Filling reduction

Γv
(m) → ΓφX(v)

(m)
.

Lemma 2.7. There is an isomorphism of graphs of groups

Φ′
0 = (ΦX , (φ′

v), (φe), (γ
′
e))

such that φ′
v ∈ Lv has same image as φv in the Dehn Filling reduction

Γv
(m) → ΓφX(v)

(m)
, and such that for all edge e, (γ′

e)
−1γe ∈ F , and also

γe(γ
′
e)

−1 ∈ F , and (γ′
e)γ

−1
e ∈ F .

Proof. We thus construct Φ′
0 using these elements φ′

v ∈ Lv. The
morphisms φe are given by the marking of the cyclic edge groups. We
need that there exists elements γ′

e completing the collection into an
isomorphism of graph-of-groups, but this is actually the condition that,
for v = o(e), φ′

v preserve the peripheral structure of the adjacent cyclic
edge groups. Note that one can choose the γ′

e up to a multiplication on
the left by an element of Γo(e) centralising ie(Γe).

Once such elements γ′
e are chosen, Φ′

0 is defined. Recall that on
a Bass generator e ∈ X(1) \ τ , Φ′

0(e) = (γ′
ē)

−1ΦX(e)(γ′
e). We need to

compute how Φ′
0 differs from Φ0 on Bass generators.

Let us call ce the marked generator of the edge group Γe. To make
notations readable, we will still write ce for ie(ce).

One has cΦX(e) = φv(ce)
γe by Bass diagram 1. By virtue of

φ′
v preserving the peripheral structure (for v = o(e)) this is also

= (φ′
v(ce))

he)γe , for some he ∈ ΓφX(v) which can be chosen up to left
multiplication by an element centralising φ′

v(ce). By Bass diagram 1 (for

φ′
v) this is = ((cΦX(e))

(γ′
e)

−1

)he)γe . It follows that (γ′
e)

−1heγe centralises
cΦX(e), and lies in ΓφX(v), for v = o(e).

Recall that γ′
e can be chosen up to a multiplication on the left by an

element of Γo(e) centralising ie(Γe). By a right choice of the collection
of γ′

e (or, in different words, by the right application of Dehn twists), we
may assume that (γ′

e)
−1heγe = 1.

By virtue of φ′
v coinciding with φv in the Dehn filling Γv

(m)
, the

image h̄e of he actually centralises φ′
v(ce). By assumption on m (see

2.4 -(1)), the centralizers of the transverse peripheral structure in Ḡ2
m

are the images of the centralizers in G2, so this makes he = zefe for
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ze centralising φ′
v(ce) and fe in F . Thus, we may choose it so that

ze = 1, hence he ∈ F . Finally, since F is normal, and (γ′
e)

−1heγe = 1,
it follows that (γ′

e)
−1γe ∈ F . The two other relations are obtained

respectively by conjugating by γ−1
e (F is normal) and taking the inverse

of the later. Q.E.D.

We can resume the proof of the Proposition (second point implies
the third one). Finally, we need to check that the automorphism Φ′

0

provided by the Lemma is suitable. We can compare the images of the
Bass generator e, namely Φ0(e) to Φ′

0(e).

Lemma 2.8. For all edge e, Φ′
0(e)

−1Φ0(e) ∈ F , and for all edge e′,
the number n(Φ′

0(e)
−1Φ0(e), e

′) that counts the number of occurences of
e′ in the normal form of Φ′

0(e)
−1Φ0(e), minus the number of occurences

of e′ (see §1.1), is 0.

Proof. Recall that

Φ0(e) = γ−1
ē φX(e)γe and Φ′

0(e) = (γ′
ē)

−1φX(e)γ′
e.

The difference is therefore

Φ′
0(e)

−1Φ0(e) = (γ′
e)

−1φX(e)−1(γ′
ēγ

−1
ē )φX(e)γe

which can also be written Φ′
0(e)

−1Φ0(e) = (γ′
e)

−1(γ′
ēγ

−1
ē )φX(e)γe and

slightly less naturally,

Φ′
0(e)

−1Φ0(e) = (γe(γ
′
e)

−1(γ′
ēγ

−1
ē )φX(e))γe .

Since we established that γe(γ
′
e)

−1 ∈ F , γ′
ēγ

−1
ē ∈ F and F is normal,

Φ′
0(e)

−1Φ0(e) ∈ F .
Moreover, since all factors in the product

(γe(γ
′
e)

−1(γ′
ēγ

−1
ē )φX(e))γe

are in vertex groups, except φX(e) and φX(e)−1 (which both appear
once). Therefore, for all edge e′, the quantity n(γ′

ēγ
−1
ē , e′) is 0. Q.E.D.

We may now finish the argument and show that the system of equa-
tions (2) for the γi being the images by Φ′

0 of a basis of F , and of t, has
a solution.

Consider an element f of the given basis of F . Write the normal
form in π1(X1, τ) as f = g0e1g1e2 . . . engn+1. The normal form of its
image by Φ0 in π1(X2,ΦX(τ)) is thus

Φ0(f) = φv0(g0)Φ0(e0) . . . Φ0(en)φvn+1(gn+1).
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By assumption (2.4-(1)), each φvi(gi) differs from φ′
vi

by a conjuga-
tion (say by ξi), and the multiplication on the right by an element (say
fi,�) of F , that lies in a vertex group (hence n(fi,�, e

′) = 0 for all e′).
We also established in the lemma that Φ′

0(ei)
−1Φ0(ei) ∈ F (call it fi,r),

and that n(fi,r, e
′) = 0 for all e′).

We thus get

Φ0(f) = (φ′
v0
(g0))

ξ0 f0,� Φ
′
0(e0)f0,r . . .

. . . (φ′
vn
(gn))

ξn fn,� Φ
′
0(en) fn,r (φ

′
vn+1

(gn+1))
ξn+1 fn+1,�.

We first observe that for all e, n(Φ0(f), e) = n(Φ′
0(f), e) since all

n(fi,�, e) = 0 and all n(fi,r, e) = 0.
In H1(F �φ2 〈t〉) this normal form turns into

Φ0(f) =

(
n+1∏
i=0

φ′
vi
(gi)

)
×
(

n∏
i=0

Φ′
0(ei)

)
× (ftot),

where ftot is the image of
∏

i fi,�fi,r in H1, hence is in the image of F .
Of course,

Φ′
0(f) =

(
n+1∏
i=0

φ′
vi
(gi)

)
×
(

n∏
i=0

Φ′
0(ei)

)
.

In the notations of equation (2), δ(Φ′
0(f)) = δ(Φ0(f)) because

δ(ftot) = 0 as ftot is in F . Moreover, we noticed that for all edge e,
n(Φ′

0(f), e) = n(Φ0(f), e). Therefore the two systems of Diophantine
equations (2) for the γi being the images of a fixed basis of F by Φ0 and
for the γi being the images of a fixed basis of F by Φ′

0, are syntaxically
the same system of equations. Tautologically, if one has a solution, the
other aslo.

Q.E.D.

For the last (and main) result, we’ll need the theory of JSJ decom-
positions for relatively hyperbolic groups. The theory initiated by Rips
and Sela is developed by Guirardel and Levitt in a very stable and use-
ful formulation. We refer to [GL-10, GL-11], from which we recall the
following existence and characteristic result.

Proposition 2.9. [GL-10, Thm. 13.1, Coro. 13.2] Let (G,P) be a
torsion free relatively freely indecomposable, relatively hyperbolic group.
The canonical JSJ splitting of (G,P) is a finite graph-of-groups decom-
position of (G,P) with edge groups elementary (cyclic or parabolic), bi-
partite, such that the groups of a vertex of one color (black) are elemen-
tary, and those of the other color (white) are either fundamental groups
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of surfaces with boundary, the adjacent edge groups being associated to
the boundary components, or groups that inherit a relatively hyperbolic
structure for which there is no non-trivial elementary splitting in which
the adjacent edge groups are conjugated into factors (the later are called
rigid).

The canonical JSJ splitting is such that any automorphism of (G,P)
induces an automorphism of the splitting, and is also such that any other
elementary splitting of (G,P) has a common refinement with it.

Here, a refinement is an equivariant blow-up of vertices in the Bass-
Serre tree.

Recall that in the case of a suspension of a finitely generated group,
no vertex group can be a surface group (see [D, 2.11]). Moreover, in the
case of a suspension of a free group by an automorphism that is RH-
noPS, then all black vertex groups are cyclic, non-parabolic, by definition
of RH-noPS.

Proposition 2.10. Given a finitely generated free group and an
automorphism φ of F that is RH-noPS, one can compute the canonical
JSJ splitting of F �φ Z.

Proof. Let (G,P) be the relatively hyperbolic structure for F�φZ.
The computation of the relative hyperbolicity structure was done in
1.4. We can thus enumerate the non-trivial bipartite peripheral cyclic
splitting of (G,P). Assume that we are proposed such a bipartite cyclic
splitting of (G,P). We need to decide whether or not this proposed
splitting is the JSJ splitting. Recall that vertex groups are suspensions
of finitely generated subgroups of F , and we may find a presentation of
the semidirect product for each of them, by enumeration. We use a result
of Touikan here, specifically, [T, Thm C.] that allows to check whether
or not, the white vertex groups are rigid (in the sense of Proposition
2.9). Note that since we assume the absence of parabolic splitting, we
do not need to satisfy the assumption of [T] on algorithmic tractabiliy of
parabolic subgroups. One can also easily check whether the black vertex
groups are cyclic, and edge groups are maximal cyclic in their white
adjacent vertex group. If all these conditions are verified for a splitting
X, the splitting has, by the previous proposition, a common refinement
with the JSJ splitting X0. However, because of lack of surface groups in
X and X0, for all vertex group Gv in either of them, equipped with the
peripheral structure of its adjacent edge groups, all splittings of Gv over
cyclic groups in which the peripheral structure is elliptic, are trivial.

Thus considering T the Bass-Serre tree of a common refinement of
X and X0, it is apparant that the edges to be collaped to obtain the tree
of X and the tree of X0 are exactly those with an end of valence 1, and
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after them, those with an end of valence 2 with same stabilizer (i.e. the
redundant vertices; note that there is a choice, but either choice lead to
the same tree). Since the two collapses toward X and X0 can be made by
the same choices od edges to collapse, it follows that X and X0 coincide.

Q.E.D.

Proposition 2.11. Let F be a finitely generated free group. There
is an (explicit) algorithm that given two automorphisms φ1, φ2 of F ter-
minates if both are RH-noPS, and indicates whether they are conjugated
in Out(F ).

Proof. One can compute the JSJ decomposition of both suspen-
sions, by the previous proposition. The situation reduces to the case
where an isomorphism of underlying graphs of the JSJ splittings is cho-
sen, and we need to decide whether there is an isomorphism of graph of
groups (inducing that isomorphism of underlying graphs) that preserve
the fiber, and the orientation. We also choose a maximal subtree τ of
the underlying graph X so that all edges outside this subtree correspond
to Bass generators in the fundamental group of the graph of group.

Let us write X1,X2 the JSJ splittings of G1 = F �φ1 〈t〉 and
G2 = F �φ2 〈t〉, and we identify the underlying graphs, according to
the choice of isomorphism above (the algorithm has to treat all possible
such isomorphisms of graphs in parallel). We write Γv,i for the vertex
group of v in Xi.

We remark that any elementary vertex group (or edge group) is
cyclic, and transveral to the fiber (Lemma [D, 2.7]), hence the orientation
of the suspension provides a canonical marking of each edge group. For
each non-elementary vertex group, Lemma [D, 2.6] indicates that it is
a suspension, and it is equiped with the thus marked cyclic transverse
peripheral structure of its adjacent edge groups. Since, by [D, 2.11], it
is not a surface nor a free group, by property of the JSJ decomposition,
it is RH-noPS relative to the peripheral structure, and it is possible,
thanks to Proposition 2.4 to decide whether there is an isomorphism
Γv,1 → Γv,2 , preserving fiber, orientation, and the (cyclic, transverse)
peripheral structure of its adjacent edge groups, thus marked.

If for some vertex there is no such isomorphism, then there cannot be
any fiber-and-orientation preserving isomorphism between G1 and G2,
inducing this graph isomorphism (hence φ1 and φ2 are not conjugated, in
view of Lemma 1.1). If, on the contrary, for all such vertices, there exists
such an isomorphism, then Proposition 2.4 actually provides a list Lv of
such isomorphisms, that satisfies (2.4-(1)), for all vertex v ∈ X(0). Then,
for any choice (Φv, v ∈ X(0)) in

∏
v Lv, one can extend this collection

into an isomorphism of graph-of-groups Φ, by chosing appropriately the
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images of the Bass generators to be be, e ∈ X \ τ (so that they conjugate
the edge group in their origin vertex to the edge dgroup in their target
vertex). Let us write (Φs, s ∈

∏
v Lv) the collection thus obtained.

Using 1.2 we can decide whether, given Φs for some s ∈ ∏
v Lv,

there is an automorphism of graph-of-groups, in the orbit of Φs under
the small modular group of G2, that is fiber-and-orientation preserving.
If there is one, then we may stop and declare, in view of Lemma 1.1 that
φ1 and φ2 are conjugated.

Assume then that there is none such fiber-and-orientation preserving
automorphism in the orbits of all Φs, s ∈ ∏

v Lv. By Proposition 2.6
(“2 =⇒ 3”), there is no isomorphism of graph-of-groups preserving fiber
and orientation. We are done. Q.E.D.

2.3. A lemma on Dehn fillings

In this paragraph we prove a Lemma that we used above. We refer
the reader to the setting of [DGO, §7.].

In particular we will use the parabolic cone-off construction, which
is a specific way to cone off horosheres of a system of horoballs of a space
associated to a relatively hyperbolic group. Using this specific way allows
to get quantitative hyperbolicity estimates, and rotating families, while
preserving, almost without distortion, most of what occurs (locally) in
a thick part of that space.

Lemma 2.12. Let (G,P) be a relatively hyperbolic group, and γ ∈
G, a hyperbolic element.

There exists m0 such that for all m > m0, if h is such that h̄ cen-
tralises γ̄ in Ḡ(m), then, there is z ∈ Km, and h′ centralizing γ such that
h = h′z.

The bound on m will be explicit (but we do not need this particular
aspect), though probably not optimal.

Proof. Consider a hyperbolic space X associated to (G,P), upon
which G acts as a geometrically finite group, and for convenience, let us
choose it to be a cusped-space as defined by Groves and Manning (see
[GM, §3]). Let δ be a hyperbolicity constant for X.

After rescaling, we may assume that the hyperbolicity constant is
actually less than a specific constant δc furnished by [C, 3.5.2], (that
will allow, as we did in [DGO, §7] to satisfy [DGO, 5.38], to ensure
quantitatively that the parabolic cone-off construction over a separated
system of horoballs is hyperbolic).

By assumption γ is hyperbolic in X, so let ρ0 be a quasi-axis, and
‖γ‖ the translation lenght of γ on this axis. We choose m0 such that
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Nj,m0 \ {1} does not intersect the ball of Pj of radius 10 sinh(rU ) ×
2100δ+‖γ‖, for rU fixed as in [DGO, §5.3], namely rU = 5× 1012.

We choose L0 such that in a δ-hyperbolic space, all L0-local geodesic
is a quasigeodesic (for some constants). And we choose L1 so that any
quasigeodesic with these constants is at distance ≤ L1 from a geodesic
with same end points. The constant L3 is set to be ≥ 50× 16× 900.

Consider H0 the 2-separated invariant system of horoballs of X (as-
sociated to P), and in this system, consider the system of horoballs at
depth (50δ + 20‖γ‖ + L0 + L1 + L3), which we call H. This way, ρ0,
which has a fundamental domain for γ of length ‖γ‖, and which in-
tersects X \ H0, does not get (L0 + L1 + L3)-close to an horoball of
H.

We then consider the parabolic cone-off C(X,H), as defined in
[DGO, §7, Def. 7.2], for this pair, and for a radius of cone rU = 5×1012.

By [DGO, Lem. 7.4], this parabolic cone-off is δp-hyperbolic, (for a
value of δp estimated to be 16 × 900 in [DGO, §5.3]) and moreover the
image of ρ0 is a L0-local geodesic. By our choices of constants it follows
that a quasi-axis ρ of γ in the parabolic cone-off does not approach any
of the cones by a distance 50δp.

We now work only in the parabolic cone-off.
Observe also that, for the chosen m, any (non-trivial) element of

Nj,m translate on the corresponding horosphere of H by a distance of
at least 10 sinh(rU ) (measured in the graph distance of the horosphere).
Therefore, for the chosen m, Km is the group of a very rotating family
at the apices of the parabolic cone-off, in the sense of [DGO, §5.1].

Let x0 ∈ ρ. The segment [x0, γx0] is contained in ρ, and thus does
not get 50δp close to an apex.

Consider the segment [x0, hx0] and for all apex a on it, define the
two points a− and a+ on [x0, a] and [a, hx0] (subsegments of [x0, hx0])
at distance 27δp from a (they exist since the cones have much larger
radius than 27δp, and x0 is not in a cone).

By multiplying h by elements of Km, we may assume that
d(a−, a+) = d(a−, (Fix(a) ∩ Km)a+), for every apex a in the segment
[x0, hx0].

By assumption, hγh−1γ−1 ∈ Km, and we can assume that it is non
trivial (otherwise there is nothing to prove). By [DGO, Lemma 5.10
(pointed Greendlinger lemma)], the segment [hγx0, γhx0] contains an
apex a0 and a 5δp-shortening pair: a pair of points at distance 27δp
from the same apex, such that the image of one by an element fixing the
apex and in the rotating group is at distance ≤ 5δp from the other.

Hyperbolicity in the pentagon (x0, hx0, hγx0, γhx0, γx0), together
with the absence of apices in [x0, γx0], and in its image after translation
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by h, [hx0, hγx0], shows that at least one segment among [x0, hx0] and
[γx0, γhx0] must get at distance δp from a0 and 5δp-follows two arcs
of [a0, γhx0] and [a0, hγx0] (both subsegments of [hγx0, γhx0]) for at
least 50δp. By properties of rotating families, we see that one of the
two segments [x0, hx0], [γx0, γhx0] must contain the apex a0. Assume
that only one of them contains a0, and let us say that it is [x0, hx0]
(if it is the other, the argument is identical). Hyperbolicity forces the
5δp-shortening pair of [hγx0, γhx0] at a0 to be 5δp-close to a− and a+.
Therefore some element ofKm∩Fix(a0) takes a+ to a point at distance at
most 20δp from a−, thus contradicting the above minimality condition.

It follows that both [x0, hx0] and [γx0, γhx0] (which is its image by
γ) must contain a0.

But then, the image of a0 by γ is at distance at most ‖γ‖ from
a0. By separation of apices, it must then be a0, and γ fixes an apex,
contrarily to our assumption.

Q.E.D.
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