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Abstract.

We give a new proof of the finiteness of B-representations. As a
consequence of the finiteness of B-representations and Kollár’s gluing
theory on lc centers, we prove that the (relative) abundance conjecture
for slc pairs is implied by the abundance conjecture for log canonical
pairs.

§1. Introduction

Throughout this note, the ground field will be the field C of com-
plex numbers. It is well known that even though the log minimal
model program is focused on the study of log pairs (X,Δ) where X
is a normal variety, for technical reasons it is often necessary to deal
with log pairs (X,Δ) where X is a semi-normal variety. This natu-
rally occurs in proofs by induction on the dimension where, for ex-
ample, we restrict to the reduced part of the boundary of a dlt pair
(X,Δ) (cf. e.g. [Kolláretal92, KMM94, Birkar12, HX13, FG11]) or
when we study moduli of pairs, as normal varieties can degenerate to
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non-normal ones (cf. [Kollár13, HX13]). In [Fujino00], O. Fujino first
used the B-representation to study the semi-log canonical abundance
conjecture and proved the conjecture in the 3 dimensional case. Re-
cently, J. Kollár has developed a useful technique for gluing log canon-
ical centers (cf. [Kollár13, Kollár11]) that reduces many questions on
semi-normal pairs to questions on their normalizations. An important
result used in Kollár’s theory and in Fujino’s work (cf. [Fujino00]), is
the finiteness of B-representations, which was first proved by Deligne-
Nakamura-Ueno in the klt case, and then generalized to the log canonical
case by Fujino-Gongyo (cf. [FG11]). Recall the following.

Definition 1.1. Let (X,Δ) be a projective dlt pair. We define the
birational automorphism group Bir(X,Δ) of (X,Δ) to be the group of
all birational maps g of X such that if we take a common resolution

Y

X
g �

�

p

X

q

�

then p∗(KX +Δ) = q∗(KX +Δ). We call the induced homomorphism

ρm : Bir(X,Δ) → Aut(H0(X,OX(m(KX +Δ))))

the B-representation of the pair (X,Δ). As far as we know, B-
birational maps and B-representations for general log pairs were first
explicitly introduced in [Fujino00].

In this note we first aim to give a new proof of the following result.

Theorem 1. Given a projective dlt pair (X,Δ) such that KX +Δ
is a semi-ample Q-divisor. There exists m ∈ N, such that the image of
the B-representation

ρM : Bir(X,Δ) → Aut(H0(X,OX(M(KX +Δ))))

is finite for any positive integer M divisible by m.

Remark 1.2. Theorem 1 was proven by different methods in [FG11,
1.1]. The argument in the current note was originally contained in
[HMX14]. During the preparation of [HMX14] we were informed of
[FG11] and we decided to include Theorem 1 in a separated paper. Our
proof uses the case when the Kodaira dimension is 0, which was proved
by Gongyo (cf. [Gongyo13]) using ideas from [Fujino00].
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The second part of our paper is focused on the study of semi-log
canonical abundance. One of the main applications of the finiteness ofB-
representations is to prove that abundance for semi-log canonical pairs,
follows from abundance for log canonical pairs (cf. [Fujino00, FG11]).
Using Kollár’s gluing theory, as a consequence of Theorem 1, we prove
the following.

Theorem 2. Let (X,Δ) be a semi-log canonical pair, f : X → S a
projective morphism, n : X̄ → X the normalization and write n∗(KX +
Δ) = KX̄ + Δ̄ + D̄, where D̄ is the double locus. If KX̄ + Δ̄ + D̄ is
semi-ample over S, then KX +Δ is semi-ample over S.

As a corollary we recover the following result conjectured by C.
Birkar (cf. [Birkar12, 1.2]), which is known to be a natural step of the
log canonical minimal model program in the relative case (cf. [KMM94,
Section 7]).

Corollary 1.3. Let (X,Δ) be a Q-factorial dlt pair which is pro-
jective over a variety S, and T := �Δ� where Δ is a Q-divisor. Suppose
that

(1) KX +Δ is nef over S,
(2) (KX +Δ)|Ti is semi-ample over S for each component Ti of T ,
(3) KX + Δ − εP is semi-ample over S for some Q-divisor P ≥

0 with Supp(P ) = T and for any sufficiently small rational
number ε > 0.

Then, KX +Δ is semi-ample over S.

Another corollary is the following result, which answers a question
raised by J. Kollár in the problem session in MSRI in March 2009.

Corollary 1.4. Let (X,Δ) be a semi-log canonical pair and f : X →
S a projective morphism, such that KX +Δ ≡Q,S 0. Then KX +Δ ∼Q,S

0.

Remark 1.5. A result due to O. Fujino and Y. Gongyo (cf. [FG11,
4.13]), implies Theorem 2 when the base S is projective. Recent work
of J. Kollár on gluing lc centers provides us with a technique to prove
the general case.

The absolute case of Corollary 1.4 or the case when S is projective
is also known (cf. [Gongyo13]). However, the general relative case does
not seem to be available anywhere in the literature (see the remark in
[FG11, 4.16]).
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§2. Hodge theoretic construction

Construction 2.1 (cf. [Kollár07a, 8.4.6]). Let (X,Δ) be a log
canonical pair, and f : X → Y a proper surjective morphism of normal
varieties with connected fibers such that n = dimX − dimY and KX +
Δ ∼Q,Y 0.

Let p : W → X be a log resolution of (X,Δ). Write

p∗(KX +Δ) = KW + E + F −G,

where E and G are integral effective divisors with no common compo-
nents and F = {F}. Let a be an integer such that aF is an integral
divisor. Denote by φ = f ◦ p : W → Y .

Let Y 0 ⊂ Y be a smooth open subset such that φ is smooth over
Y 0. We denote by •0 the base change over Y 0. Replacing Y 0 by an
open subset, we may assume that (KX + Δ)|X0 ∼Q 0. We define the

line bundle V 0 = ω−1
W 0(G0 − E0) so that V 0⊗a ∼= OW 0(aF 0). This data

defines a local system V0 on W 0 \Supp(E0 ∪F 0) (cf. [Kollár07a, 8.4.6],
[EV92, 3.2] and its proof).

Consider the normalization of the corresponding μa-cover π : W ′ →
W 0, and denote by E′ the reduced divisor supported on π∗E0. The
push-forward π∗(C|W ′\E′) has a μa-action. If we decompose

π∗(C|W ′\E′) =
⊕
i

π∗(C|W ′\E′)(i)

into the corresponding eigenspaces, then V0 is isomorphic to the restric-
tion of π∗(C|W ′\E′)(1) to W 0 \ (E0 ∪ F 0). We denote π∗(C|W ′\E′)(1)

by V. So V is determined up to the choice of a unit in OY 0 . However,
(Rnφ∗V)⊗a (we will sloppily denote φ|W 0\E0 by φ) is a well defined local

system on Y 0 (cf. [Kollár07a, 8.4.7]).
Denote by φ′ : W ′ → Y 0 the composite morphism φ ◦ π (and

its restriction to open subsets). Then Rnφ′
∗V is a direct summand of

Rnφ′
∗C|W ′\E′ which carries a variation of mixed Hodge structure. We

remark that even though W ′ has quotient singularities, locally (W ′, E′)
is a finite quotient of a log smooth pair and hence Hodge theoretically
it behaves as a smooth variety with a simple normal crossing divisor, at
least for Q-coefficients (cf. [Steenbrink77, Section 1]).

The local system Rnφ∗V gives a variation of mixed Hodge structure
on Y 0 (see [FF12, FFS14] and the references therein). It follows from
[Steenbrink77, 1.18] that the bottom piece of the Hodge filtration gives
an isomorphism

FnRnφ′
∗(C|W ′\E′) ∼= φ′

∗ωW ′/Y (E
′).
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By taking the corresponding eigenspaces, we conclude that
FnRnφ∗(V|W 0\E0) ∼= φ∗OW 0(G0) is a line bundle over Y 0 (cf. [Kollár07a,
8.4.5(7’)]).

Denote this line bundle by L. Since L is of rank 1, there exists an
integer i such that, L ⊂ Wn+i(R

nφ∗V) but L �⊂ Wn+i−1(R
nφ∗V). Let

H be the smallest pure sub-Q-VHS of GrWn+i(R
nφ∗V) which contains L.

Lemma 2.2. H does not depend on the choice of the resolution of
W .

Remark 2.3. Let H1 and H2 be two local systems defined over
Zariski dense open subsets U1, U2 ⊂ Y such that H1|U1∩U2

∼= H2|U2∩U2 .
Since Y is normal, then there is a unique local system H (up to a unique
isomorphism) defined over U1 ∪ U2, such that its restriction to Ui is
isomorphic to Hi.

Proof of Lemma 2.2. From the above remark, it suffices to verify
the lemma for any nonempty open set Y 0 ⊂ Y . For two resolutions
W1,W2, we can assume that there exists a morphism ψ : W2 → W1. By
shrinking Y 0, we can also assume that W1 and W2 are both smooth over
Y 0 (cf. Remark 2.3). If p∗1(KX +Δ) = KW1 + E1 + F1 − G1, and aF1

is integral, then

p∗2(KX +Δ) = ψ∗(KW1 + E1 + F1 −G1) = KW2 + E2 + F2 −G2,

and aF2 is easily seen to be integral. Applying the construction 2.1 for
both Wi (here we choose the same unit in OY 0 for Wi), we have that W

′
2

is the normalization of W 0
2 ×W 0

1
W ′

1 and we denote by ψ′ : W ′
2 → W ′

1.

Let E∗ = Supp(ψ′−1E′
1), then we know that E′

2 ⊂ E∗.

E′
2 ⊂ E∗ ⊂ W ′

2
� E2 ⊂ W2

E′
1 ⊂ W ′

1

ψ′

�
� E1 ⊂ W1

ψ

�

Therefore, there exist morphisms between mixed Hodge structures
on Y 0

i : Rnφ′
2∗(C|W ′

2\E′
2
) → Rnφ′

2∗(C|W ′
2\E∗) and

j : Rnφ′
1∗(C|W ′

1\E′
1
) → Rnφ′

2∗(C|W ′
2\E∗).

Applying the Hodge filtration Fn(·), it follows from [Steenbrink77, 1.18]
that

FnRnφ′
2∗(C|W ′

2\E′
2
) ∼= φ′

2∗ωW ′
2/Y

(E′
2),
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and similarly for the other pairs. Thus we have morphisms

Fni : φ′
2∗ωW ′

2/Y
(E′

2) → φ′
2∗ωW ′

2/Y
(E∗) and

Fnj : φ′
1∗ωW ′

1/Y
(E′

1) → φ′
2∗ωW ′

2/Y
(E∗).

which are isomorphisms by Lemma 2.4.
Replacing Y 0 by a smaller open set, by the discussion in 2.1, there

are morphisms between mixed Hodge structures,

Rnφ1∗V1 → Rnφ2∗(C|W ′
2\E∗) ← Rnφ2∗V2.

We conclude that if we take Fn(·) of each term above, then we obtain an
induced isomorphism Fn(Rnφ1∗V1) → Fn(Rnφ2∗V2). Since polarized-

VHSs form a semi-simple category, considering GrWn+iR
nφj∗Vj , we see

that the images of H1 and H2 are mapped to the same pure Hodge
substructure of GrWn+iR

nφ2∗(C|W ′
2\E∗). Q.E.D.

Lemma 2.4. Let f : Y2 → Y1 be a birational morphism between
normal projective varieties. Let Δ1 be reduced divisor on Y1, such that
(Y1,Δ1) is log canonical. Let f−1

∗ (Δ1) ≤ Δ2 ≤ f−1
∗ (Δ1) + Ex(f) be

an effective Weil divisor on Y2 whose support contains all divisors of
discrepancy −1 with respect to the pair (Y1,Δ1). Then there is a natural
morphism f∗OY2(KY2+Δ2) → OY1(KY1+Δ1) inducing an isomorphism

H0(Y2,OY2(KY2 +Δ2)) ∼= H0(Y1,OY1(KY1 +Δ1)).

Proof. By assumption, we can write

F + f∗(KY1 +Δ1) = KY2 +Δ2 + E,

where F,E ≥ 0, F is exceptional and �E� = 0. Therefore,

H0(Y1,OY1(KY1 +Δ1)) ∼= H0(Y2,OY2(�F + f∗(KY1 +Δ1)�))
∼= H0(Y2,OY2(KY2 +Δ2 + �E�)) ∼= H0(Y2,OY2(KY2 +Δ2)).

Q.E.D.

§3. Finiteness of B-representations

In this section we prove Theorem 1. By assumption, there exists
a positive integer m, such that |m(KX + Δ)| is base point free and it
induces an algebraic fibration structure f : X → Y , so that

Y = Proj
⊕
d≥0

H0(X,OX(dm(KX +Δ))).
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It follows from Kawamata’s canonical bundle formula (cf. [Kawamata98,
Ambro99]) that we can write

KX +Δ ∼Q f∗(KY +B + J),

where B is the boundary part and J is the moduli part. Let P ∈ Y be
a codimension 1 point, then the coefficient of P in B is defined by

1− lct(X,Δ; f−1(P ))

where the log canonical threshold is computed over a neighborhood of
the generic point of P . In particular, B is an effective Q-divisor. The
moduli part J = J(X,Δ) is defined as an equivalence class of Q-divisors,
coming from Hodge theory.

Remark 3.1. Note that [Kawamata98] defines J only in the case
when the restriction KF +ΔF = (KX +Δ)|F to a general fiber F is klt.
If KF +ΔF is only dlt, then consider S a minimal stratum of �Δ� that
dominates Y . Let (π ◦ fS) : S → YS → Y be the Stein factorization.
Restricting to this stratum we obtain a pair KS + ΔS = (KX + Δ)|S
which is klt when restricted to a general fiber FS of S → YS . We
may then define the boundary and moduli parts BS = B(S,ΔS) and
JS = J(S,ΔS) on ZS by applying [Kawamata98] to (S,ΔS). We claim
that BS is the pullback of the divisor B := B(X,Δ) on Y . To see this,
note that replacing Y by a big open subset and X by an appropriate
birational model, we may assume that for any codimension 1 point P ∈
Y , (X,Supp(Δ + f−1(P ))) is log smooth. Let bP be the coefficient of
B(X,Δ) at P , then (X,Δ+ bP f

∗(P )) is dlt and there is a divisor E on
X dominating P of coefficient 1 in Δ + bP f

∗(P ). By [Kollár13, 4.42],
every irreducible component of π−1(P ) is dominated by a divisor F on
S of coefficient 1 in ΔS + f∗(P )|S = ΔS + f∗

Sπ
∗(P ). The claim now

follows easily.
Alternatively, one can define J(X,Δ) directly by using VMHS as in

[Kawamata11], [FF12] and [FFS14]. By what we have observed above,
these two definitions coincide, that is J(X,Δ) = 1

deg ππ∗J(S,ΔS).

For any g ∈ Bir(X,Δ) and any d ≥ 0 we have homomorphisms
ρdm : Bir(X,Δ) → AutCH

0(X,OX(dm(KX +Δ))) where

ρdm(g) = g∗ : H0(X,OX(dm(KX +Δ))) → H0(X,OX(dm(KX +Δ))).

Consider the induced homomorphism

χ : Bir(X,Δ) → Aut(Y ).
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For any element g ∈ Bir(X,Δ), there is a commutative diagram
Let F be the geometric generic fiber of f and n = dimF = dimX −

dimY be the relative dimension. Then for any d, we have a short exact
sequence

1 → G → ρdm(Bir(X,Δ)) → χ(Bir(X,Δ)) → 1,

where G ⊂ H0(Y,O∗
Y ) = C∗. We know that G is finite (cf. [Gongyo13,

4.9]), so it suffices to show the following result.

Theorem 3. The image χ(Bir(X,Δ)) ⊂ Aut(Y ) is finite.

First it is easy to see the following result.

Lemma 3.2. The image of χ(Bir(X,Δ)) is contained in Aut(Y,B).

Proof. Let P ∈ Y be a codimension 1 point, as we noted, the
coefficient of P in B is defined by 1 − lct(X,Δ; f−1(P )). This number
is unchanged if we replace (X,Δ) by any log resolution. Let W be a log
resolution such that the following diagram is commutative

W

X
g �

�

p

X.

q

�

Since g ∈ Bir(X,Δ), we know that we can write KW +ΔW = p∗(KX +
Δ) = q∗(KX + Δ). The coefficient of P in χ(g)∗B is the same as the
coefficient of χ(g)∗P in B, which is

1− lct(X,Δ; f−1(χ(g)∗P )) = 1− lct(W,ΔW ; (f ◦ q)−1(χ(g)∗P ))

= 1− lct(W,ΔW ; (χ(g) ◦ f ◦ p)−1(χ(g)∗P )).

Since χ(g) ∈ Aut(Y ), the right hand side is the same as 1−lct(W,ΔW ; (f◦
p)−1(P )), which is the coefficient of P in B. Thus χ(g) ∈ Aut(Y,B).

Q.E.D.

By the following result, we see that the birational maps also preserve
H, where H is the local system defined in 2.1,

Proposition 3.3. (1) Let g ∈ Bir(X,Δ). If we assume H is defined
over an open set Y 0 ⊂ Y , then over Y 0 ∩ χ(g)−1(Y 0), there exists an
isomorphism ig : χ(g)∗H ∼= H.
(2) Let g1, g2 ∈ Bir(X,Δ), then over Y 0 ∩ χ(g1)

−1(Y 0) ∩ χ(g2)
−1(Y 0)

we have ig1 ◦ ig2 = ig1◦g2 .
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Proof. (1) Let W be a common log resolution,

W

X
g �

�

p1

X

p
2

�

Y

f

�
χ(g) � Y

f

�

Since p∗1(KX +Δ) = p∗2(KX +Δ), we obtain the same local system
on some open subset W 0 ⊂ W , whose image is an open subset Y 0 ⊂ Y .
We can shrink Y 0, so that Rnφ1∗(V) (resp. Rnφ2∗(V)) is defined over
χ(g)−1(Y 0) (resp. Y 0), where we denote f ◦ pi by φi.

Since p∗1(KX+Δ) = p∗2(KX+Δ), we conclude χ(g)∗(L) ∼= L. There-
fore, because of the semi-simplicity of VHS, the isomorphism

χ(g)∗ : Rnφ1∗(V) → Rnφ2∗(V)

which sends L to L, will send H to H.
(2) This also follows by a similar argument since (χ(g1 ◦ g2))

∗L =
L. Q.E.D.

Since χ(Bir(X,Δ)) preserves the polarization on Y , it is a subgroup
of PGL(N) for some N . Let G be the Zariski closure of χ(Bir(X,Δ))
in PGL(N), in particular G is an algebraic group. Thus, to show that
χ(Bir(X,Δ)) is finite, we only need to verify that G does not contain
Ga or Gm. We will show that G does not contain Gm. (The argument
for Ga is similar and we leave it to the reader.)

Choose Y0 ⊂ Y \B to be an open set which the Hodge structure H

does not degenerate, and define an open set

Ỹ =
⋃

g∈χ(Bir(X,Δ))

g(Y0).

Therefore, Ỹ is invariant under the action of G as it is invariant under
the Zariski dense subgroup χ(Bir(X,Δ)) of G. By Proposition 3.3 and

Remark 2.3, H is non-degenerate over Ỹ .

Then for a general point z ∈ Ỹ , we consider the closure of the

orbit o : P1 → Y of Gm · z. Since Ỹ is G-invariant, we know that
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the pull back o∗H is well defined over Gm ⊂ P1. Let π : Y ′ → Y

be a G-equivariant resolution of (Y, Y \ Ỹ ), thus H′ = π∗H is defined
outside a simple normal crossing divisor (see [Kollár07b]). We can write
π∗(KY +B+J) = KY ′+B′+J ′ where (Y ′, B′+J ′) is the decomposition
which the Kawamata subadjunction formula yields on Y ′. In particular,
(Y ′, B′) is sub log canonical.

Let φ : Z → Y ′ be a branched covering such that φ∗H′ has unipo-
tent monodromies and hence admits a canonical extension over Z (see
[Kollár07a, 8.10.10]). Let φC : C → P1 be the normalization of P1×Y Z.
As o(P1) is the compactification of a general orbit, we know that φC

is of degree d. Then we know that φ∗
C(o

∗H) has a canonical extension

from the preimage of φ−1
C (Gm) to C which coincides with the restriction

of the canonical extension of φ∗H′ over C (see [Deligne70], [Kollár07a,
8.10.8]). Therefore, if JZ = Ēn+i,0(φ∗H′), then

JC = Ēn+i,0(φ∗H′|C) = Ēn+i,0(φ∗H′)|C = JZ |C .
As Gm

∼= A1 \ {0} ⊂ P1. There exists a ramified cover d : P1 →
P1, such that if we denote by od = o ◦ d, then o∗d(H) is defined over
A1 \ {0}, and it has unipotent monodromies near 0 and ∞. As o∗d(H) is
non-degenerate on P1 \ {0,∞}, o∗dH is trivial by Rigidity Theorem (see
[Deligne71, 4.1.2], [Schmid73, 7.24]). Since Ēn+i,0(o∗d(H)) = OP1(Jd),
we have

1

d
d∗Jd ∼Q

1

deg φC
φC∗JC ∼Q J ′|P1 = 0,

where the first equality follows from the fact that the moduli part is
well defined for any choice of base change such that the monodromy
is unipotent, and since φ is finite the second equality follows from re-
stricting both sides of 1

degφ (φ∗JZ) ∼Q J ′ under the lifting P1 → Y ′ of
o.

On the other hand, by Lemma 3.4, we have

deg(o∗(KY +B + J)) = deg((KY ′ +B′)|P1) + deg(J ′|P1) ≤ 0.

Since KY +B+J is ample, this is a contradiction and so this completes
the proof of Theorem 3.

Lemma 3.4. Let (Y,B) be a sub log canonical pair and ψ : Gm ×
(Y,B) → (Y,B) a faithful action. For general t ∈ Y , if we denote by
ψt : P

1 × {t} → Y the closure of the orbit, then degψ∗
t (KY +B) ≤ 0.

The following lemma is due to Iitaka (cf. [Iitaka81]). Since we
could not find an explicit reference, we include a short argument for the
reader’s convenience.
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Proof. Let π : Y ′ → Y be a Gm-equivariant log resolution of (Y,B)
and B′ = Supp(π−1

∗ (B) + Ex(π)). Thus, for a general point t ∈ Y , we
have that

Gm · t ∩ (Supp(B) ∪ π(Ex(π))) = ∅.
We then have the lifting φs : P

1 → Y ′ of ψt. Since (Y,B) is log canonical,
π∗(KY +B) ≤ KY ′+B′. We may assume that there is a quasi-projective
smooth variety T with a point s ∈ T and a generically finite dominating
morphism, φT : P1 × T → Y ′ such that φ−1

T (B′) ⊂ {0,∞} × T , and
φT |P1×{s} = φs. Then by the log pull back formula,we conclude that

φ∗
T (KY ′ +B′) ≤ KP1×T + {0} × T + {∞} × T.

Therefore, we conclude that

degψ∗
t (KY +B) ≤ deg φ∗

s(KY ′ +B′) ≤ P1 ·(KP1×T +{0}×T+{∞}×T ),

which is computed by deg(KP1 + {0}+ {∞}) = 0. Q.E.D.

§4. Abundance for slc pairs

In this section, we will study semi-log canonical abundance. By
[Fujino00], it is known that if S is a point, then Theorem 1 implies
Theorem 2. By [FG11], Theorem 2 is also known when S is projective.
The gluing theory for log canonical centers, developed by J. Kollár (cf.
[Kollár12, Kollár13]), provides a very powerful tool to study semi-log
canonical varieties and allows us to prove Theorem 2 in full generality.

More specifically, Kollár’s recent theory of giving any lc center a
source and a spring provides a useful tool for checking that the pro-
finite equivalence relation is finite (cf. [Kollár11]). We note that this is
not true for general pro-finite equivalence relations. The fact that we
are gluing lc centers for relatively projective pairs plays an essential role
here.

First, the main theorem for abstract gluing theory is the following.

Theorem 4 ([Kollár13, 9.21]). Let (X,S∗) be an excellent scheme
or algebraic space over a field of characteristic 0 with a stratification.
Assume that (X,S∗) satisfies the conditions (HN) and (HSN). Let R ⇒
X be a finite, set theoretic, stratified equivalence relation. Then

(1) the geometric quotient X/R exists,
(2) π : X → X/R is stratifiable and
(3) (X/R, π∗S∗) also satisfies the conditions (HN) and (HSN).
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We now recall the following notation in [Kollár13, 4.28], which was
built on the earlier work of F. Ambro (cf. [Ambro03]) and O. Fujino (cf.
[Fujino99]).

Definition 4.1. We call f : (X,Δ) → Y a crepant log structure if

(1) (X,Δ) is log canonical,
(2) f is projective, surjective, with connected fibers,
(3) KX +Δ ∼Q,f 0.

We note that, by taking a dlt modification of (X,Δ) (cf. [KK10, 3.1]),
we can assume that (X,Δ) is dlt.

The proof of Theorem 2 needs the stratification we develop in [HX13,
Section 3]. More precisely, we let ḡ : X̄ → Ȳ be the morphism over S
induced by the relatively semiample Q-divisor KX̄ + Δ̄ + D̄ and we
consider the pro-finite equivalence relation

(σ1, σ2) : T̄ ⇒ Ȳ

given by the image of the pro-finite relation Dn ⇒ X̄. Recall that Dn

denotes the normalization of D̄ on X̄. Note that T̄ and Ȳ are normal. We
may assume that ḡ is induced by |m(KX̄ +Δ̄+ D̄)| for some sufficiently
divisible positive integer m. If we write KDn +Θ = (KX̄ + Δ̄ + D̄)|Dn ,
then (Dn,Θ) is also log canonical.

As in [HX13, Section 3], we consider the minimal qlc stratifications
S∗T̄ and S∗Ȳ given by the crepant log structures (Dn,Θ) → T̄ and
(X̄, Δ̄ + D̄) → Ȳ . We note that if (Xd,Δd) is a dlt modification of
(X̄, Δ̄ + D̄) (cf. [KK10, 3.1]), then

(Xd,Δd) → (X̄, Δ̄ + D̄) → Ȳ

gives the same minimal qlc stratification on Ȳ .

Proposition 4.1. We have the following facts.

(1) The stratifications S∗T̄ and S∗Ȳ satisfy conditions (HN) and
(HSN).

(2) The pro-finite relation (σ1, σ2) : T̄ ⇒ Ȳ is stratified.

Proof. The first statement follows from [KK10, 5.7] and the second
one follows from [HX13, 3.11] which is a consequence of [KK10, 1.7].

Q.E.D.

By Theorem 4, to prove that the quotient Ȳ /T̄ exists, we only need
to verify that T̄ ⇒ Ȳ generates a finite relation R → Ȳ . By [Kollár13,
9.55], it suffices to check this over the generic point of each stratum V 0
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of SiȲ . We work over the generic point of f̄(V 0), where f̄ : Ȳ → S is
the induced morphism. Let η ∈ S be one such point and η̄ its algebraic
closure. We must verify that the equivalence relation R×S η̄ ⊂ Ȳ ×Ȳ ×S η̄
is finite over V 0 × η̄.

Let Z be one of the minimal lc centers of (Xd,Δd) which dominates
the closure V of V 0. (Z,Diff∗

ZΔ
d) is dlt and its restriction over V 0 is

klt. We take the Stein factorization Z → Ṽ → V . We will need the
following results from [Kollár11].

Proposition 4.2 ([Kollár11, 1]). For different choices of the mini-
mal non-klt centers Z and Z ′, we have

(1) (Z,Diff∗
ZΔ

d) is B-birational to (Z ′,Diff∗
Z′Δd) over V , and

(2) Ṽ is isomorphic to Ṽ ′ over V .

Definition 4.2 ([Kollár11, 18]). We denote by Src(V,Xd,Δd) :=

(Z,Diff∗
ZΔ

d) a source of the lc center V and Spr(V,Xd,Δd) := Ṽ its
spring. As in Proposition 4.2, Src(V,Xd,Δd) is determined up to B-
equivalence.

Let V 0
ij be an i-dimensional stratum, and Ṽ 0

ij the pre-image of V 0
ij

under the morphism Ṽij → Vij . We define Spri(Ȳ ,Xd,Δd) = �j Ṽ
0
ij ,

where the disjoint union runs over all i-dimensional strata V 0
ij . Then

the main structural result is the following.

Theorem 4.3 ([Kollár11, 28]). Let R ⊂ Ȳ × Ȳ be the relation
generated by T̄ ⇒ Ȳ as above. Let pi : Spri(Ȳ ,Xd,Δd) → SiȲ be the
induced finite morphisms. Let η̄ij be the algebraic closure of the generic
point of f̄(Vij). Then

((pi × pi)
−1(R ∩ (SiȲ × SiȲ ))×S η̄ij) ∩ (Ṽ 0

ij × Ṽ 0
ij ×S η̄ij)

is a subset of the graph ∪gΓ(χ(g)) for all g ∈ Bir(Zη̄ij ,Diff∗
Zη̄ij

Δd).

Proof of Theorem 2. By Theorem 3, we have that ∪gΓ(χ(g)) is fi-

nite over Ṽ 0
ij × η̄ij , and so the hypotheses of Theorem 4 are satisfied.

Thus there exists a quotient Y of T̄ ⇒ Ȳ . Following the proof of [HX13,
3.1], we see that there exists a line bundle L on Y whose pull back to
X is isomorphic to OX(m(KX +Δ)) for some integer m > 0. Then it is
easy to see that L is relatively ample over S, which means that KX +Δ
is relatively semi-ample over S. Q.E.D.

Proof of Corollary 1.3. The argument is the same as in [KMM94,
7.4]. We include it here for the reader’s convenience. It follows from
Theorem 2 that m(KT +ΔT ) := m(KX + Δ)|T is base point free over
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S for any sufficiently divisible integer m > 0. By assumption (3), the
relative base locus of m(KX +Δ) is contained in the support of T . We
write

m(KX +Δ)−T = (m− 1)(KX +Δ− εP )+KX +Δ− (T − (m− 1)εP ).

Since KX +Δ− εP is semi-ample over S, and (X,Δ− (T − (m− 1)εP ))
is klt for 0 < ε � 1, by Kollár’s injectivity theorem (cf. [Kollár86]), we
have that

R1f∗OX(m(KX +Δ)− T )
T� R1f∗OX(m(KX +Δ))

is an injection and hence f∗OX(m(KX +Δ)) → f∗OT (m(KT +ΔT )) is
surjective. We have a commutative diagram.

f∗f∗OX(m(KX +Δ)) � f∗f∗OT (m(KT +ΔT ))

OX(m(KX +Δ))
�

� OT (m(KT +ΔT ))
�

Since the upper arrow and the right arrow are surjective, m(KX + Δ)
is relatively globally generated along T over S and so m(KX + Δ) is
relatively globally generated over S. Q.E.D.

Proof of Corollary 1.4. By Theorem 2, we may assume that X is
irreducible, i.e., we only need to treat the case that (X,Δ) is log canon-
ical. We may assume that S is normal and dominated by X. By induc-
tion, we may assume that Corollary1.4 is known for lower dimensions.
Replacing (X,Δ) by a dlt modification, we may assume that (X,Δ) is
Q-factorial and dlt. Let T = �Δ�. If we write (KX +Δ)|T = KT +ΔT ,
then (T,ΔT ) is a dslt pair.

We run a (KX +Δ− εT )-MMP with scaling by an ample divisor H
for a small positive integer ε. If T has a component which dominates S,
then the MMP ends with a Fano contraction, and we can apply the same
argument as in [Gongyo13]. Otherwise, all components of T are vertical
over S. Since over the generic point of S, we have that KX +Δ is klt,
then we know that it is Q-linearly equivalent to 0 (cf. [Nakayama04, V,
4.9]).

Therefore, (X,Δ− εT ) is a klt pair, whose generic fiber has a good
model. By, [HX13, 1.1 and 2.9], we conclude that the MMP with scaling
terminates with a good model X ′ of (X,Δ − εT ) over S. Since X ′ is
indeed a minimal model for all (X,Δ − ε′T ) with 0 < ε′ < ε, which is
good again by [HX13, 1.1].
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The MMP sequence is (KX + Δ)-trivial, so (X ′,Δ′) is a lc pair.
We let μ : (Xd,Δd) → (X ′,Δ′) be a dlt model. Let T ′ be the strict
transform of T on X ′, then (X ′,Δ′ − εT ′) is klt and the non-klt locus
of (X ′,Δ′) is contained in Supp(T ′). Since each μ-exceptional divisor
has coefficient 1 in Δd, it follows that �Δd� = Supp(μ∗T ′). Thus if
T d = μ∗T ′, then KXd +Δd − εT d = μ∗(KX′ +Δ′ − εT ′) is semiample
over S. By induction on the dimension, KΣ +ΔΣ is semiample over S
for all components Σ of �Δd� = Supp(T d). By Corollary 1.3, KXd +Δd

is semi-ample over S and hence so is KX′ +Δ′. Since each step of the
MMP is (KX +Δ)-trivial, this implies that KX +Δ is semi-ample over
S, i.e., KX +Δ ∼Q,S 0. Q.E.D.
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No. 211 (1992). Société Mathématique de France, Paris, 1992.

[Nakayama04] N. Nakayama; Zariski-decomposition and abundance. MSJ Mem-
oirs, 14. Mathematical Society of Japan, Tokyo, 2004.

[Schmid73] W. Schmid, Variation of Hodge structure: the singularities of the
period mapping. Invent. Math. 22 (1973), 211-319.

[Steenbrink77] J. Steenbrink; Mixed Hodge structure on the vanishing co-
homology. Real and complex singularities (Proc. Ninth Nordic Sum-
mer School/NAVF Sympos. Math., Oslo, 1976), 525–563. Sijthoff and
Noordhoff, Alphen aan den Rijn, 1977.



B-representations and abundance 377

Department of Mathematics
University of Utah
155 South 1400 East
JWB 233
Salt Lake City, UT 84112, USA
E-mail address : hacon@math.utah.edu

Beijing International Center of Mathematics Research,
5 Yiheyuan Road,
Haidian District,
Beijing 100871,
China
E-mail address : cyxu@math.pku.edu.cn


