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On symplectic hypersurfaces
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§1. Introduction

A symplectic variety is a normal complex variety X with a holo-
morphic symplectic form ω on the regular part Xreg and with rational
Gorenstein singularities. Affine symplectic varieties arise in many dif-
ferent ways such as closures of nilpotent orbits of a complex simple Lie
algebra, as Slodowy slices to such nilpotent orbits or as symplectic re-
ductions of holomorphic symplectic manifolds with Hamiltonian actions.
Many examples of affine symplectic varieties tend to require large em-
bedding codimensions compared to their dimensions.

In this article we treat the rarest case, namely affine symplectic hy-
persurfaces. For technical reasons we also impose the condition that X
admit a good C

∗-action, i.e. that its affine coordinate ring A = C[X] be
positively graded, A = ⊕i≥0Ai with A0 = C, and that ω is also homoge-
neous of positive weight s. This condition is satisfied in all examples we
know. Finally, such a homogeneous symplectic hypersurface X is called
indecomposable if the unique fixed point of the C∗-action is a Poisson
subscheme of X. As the term indecomposable indicates, such singulari-
ties are essential factors of more general hypersurfaces in the sense that
every homogeneous hypersurface (X,ω) equivariantly decomposes into
a product W1 × ... × Wk × X ′, where X ′ is an indecomposable homo-
geneous hypersurface and each Wi is isomorphic to C

2 with a standard
symplectic form of the same weight s as ω (Lemma 2.5).

Indecomposable homogeneous hypersurfaces X = {f = 0} ⊂ C
2n+1

have the remarkable property that the Poisson structure {−,−} : A ×
A → A defined on the coordinate ring A by the symplectic structure
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extends to the ambient space (Lemma 2.7). Consequently, the deforma-
tion Xt = {f = t} is a Poisson deformation, from which it follows that
X admits a crepant resolution (Theorem 2.8).

Since homogeneous symplectic hypersurfaces have no local moduli
(cf. [9], Proposition (3.5)), they arise in a discrete way. As is well
known, an indecomposable homogeneous hypersurface of dimension 2 is
a Kleinian singularity of type A, D or E. In higher dimensions, the
classification is an open problem. At this moment we know of a series
Xn, n ≥ 2, of 4-dimensional examples and of a single 6-dimensional
example X̂. We found them originally as the transversal slices to certain
nilpotent orbits in complex simple Lie algebras [6]. In this article, we
give several different descriptions of the same hypersurfaces.

Given that these constructions all lead to the same examples it might
be natural to ask: Is every indecomposable homogeneous symplectic
hypersurface isomorphic to an ADE surface singularity, one of the 4-
dimensional hypersurfaces Xn, or the 6-dimensional hypersurface X̂?

In the final section we look at Xn from the view point of contact
geometry. Let Y ⊂ P(2n − 1, 2n − 1, 2, 2, 2) be the 3-dimensional pro-
jective variety defined by the same equation as Xn. The symplectic
structure on Xn induces a contact structure on the regular part Y 0 of
Y with the contact line bundle O(2) := OP(2)|Y 0 . We construct an ex-
plicit birational map between Y and the projectivised cotangent bundle
P(T ∗

P1×P1) so that this contact structure is transformed to the canoni-

cal contact structure on P(T ∗
P1×P1). More exactly, we take a resolution

μ : Ỹ → Y by blowing up the singular locus of Y and construct a bi-
rational contraction map ν : Ỹ → P(T ∗

P1×P1). The pull-back of both
contact structures by μ and ν then determine the same contact struc-
ture on Ỹ outside some divisor F with F ⊂ Exc(μ) ∩ Exc(ν). Now this
construction tells us that if we start from P(T ∗

P1×P1), then after a suitable
birational modification we can reach a singular contact Fano 3-fold Y .
It would be interesting to know if such phenomena occur more generally.

§2. The Poisson matrix

A symplectic variety in the sense of Beauville [1] is a normal complex
variety X with a symplectic form ω on the regular part Xreg and the
property that for some proper resolution of singularities π : X ′ → X
the form π∗ω extends to a regular form on X ′. One can show that the
same property then holds for any proper resolution. Equivalently, it is
sufficient to require that X have rational Gorenstein singularities [7].

A C∗-action on an affine variety X = Spec(A) is called good if the
homogeneous components of the corresponding grading of the coordinate
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ring A = C[X] satisfy A0 = C and Ad = 0 for d < 0. In this case we write
m :=

⊕
d>0 Ad for the maximal ideal corresponding to the unique fixed

point O ∈ X. Then m/m2 is a finite dimensional C∗-representation. We
may choose homogeneous elements x̄1, . . . , x̄m ∈ A whose residue classes
form a basis of eigenvectors for the action and which therefore generate
the ring A. This yields an equivariant embedding X → Cm of minimal
codimension, with C

∗ acting linearly and contracting on C
m.

Definition 2.1. — A 2n-dimensional homogeneous symplectic hy-
persurface is a symplectic variety (X,ω) with a good C

∗-action λ :
C

∗ ×X → X such that

(1) ω is homogeneous of degree s, i.e. λ(t)∗ω = tsω, and
(2) dimTOX = 2n + 1, where O ∈ X is the unique fixed point of

X.

Lemma 2.2. — Let (X,ω) be homogeneous symplectic hypersur-
face. Then the degree s of ω is positive.

Proof. Let π : X ′ → X be a C
∗-equivariant resolution of the sin-

gularities of X. The fixed point locus for the induced C∗-action on X ′

consists of a finite number of smooth projective varieties Fi lying above
the origin 0 ∈ X. We prove that there is a fixed point q such that the
action of C∗ on the cotangent space T ∗

q X
′ has only non-negative weights.

For each fixed point q, we define T ∗
q (X

′)≥0 to be the subspace of
T ∗
q X

′ spanned by eigenvectors with non-negative weights. By Theo-
rem 4.1 of [2], for each Fi there exists a locally closed, smooth and
C∗-invariant subvariety X ′

i of X ′ containing Fi such that T ∗
q (X

′
i) =

T ∗
q (X

′)≥0 for all q ∈ Fi. Let p ∈ X ′ be a point such that π(p) �= 0. Then
the closure of the C∗-orbit passing through p is contained in some X ′

i by
Theorem 4.2 of [2]. This means that there is a locally closed C∗-invariant
decomposition of X ′, X ′ = ∪X ′

i. In particular, dimX ′
i0

= dimX ′ for
some i0. Then T ∗

q (X
′)≥0 = T ∗

q X
′ for q ∈ Fi0 .

Let us take such a fixed point q. Then at least one weight must be
positive, as the action on X ′ is non-trivial. By assumption ωn extends
to a regular 2n-form ψ of degree ns on X ′. At q it can be expressed in
terms of local coordinates as ψ = g(z1, . . . , z2n)dz1 ∧ . . . ∧ dz2n, so that
ns = deg(ψ) ≥ ∑

i deg(zi) > 0. Q.E.D.

Every symplectic variety (X,ω) carries a canonical Poisson struc-
ture: On the open regular part Xreg there is an isomorphism ω−1 :
ΩX → TX , and the Poisson bracket is defined by {f, g} := df(ω−1(dg))
for f, g ∈ OX(U), U ⊂ Xreg. As X is normal, this bracket can be
uniquely extended for any two regular functions on X. If X is affine
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with coordinate ring A, the Poisson bracket is completely determined by
its values on a set x̄1, . . . , x̄m of generators of A. The matrix Θ̄ ∈ Am×m

with entries

(2.1) Θ̄ij := {x̄i, x̄j}
is skew-symmetric and satisfies the Jacobi identity

(2.2)
∑
m

(
Θ̄im

∂Θ̄jk

∂x̄m
+ Θ̄jm

∂Θ̄ki

∂x̄m
+ Θ̄km

∂Θ̄ij

∂x̄m

)
= 0.

In the following, we will refer to Θ̄ as the Poisson matrix of X. Assume
now that (X,ω) is a homogeneous symplectic hypersurface of dimension
2n with an equivariant embedding X → C

2n+1 such that the coordinates
x1,. . . ,x2n+1 of the ambient space have degree di := deg(xi) > 0 and X
is defined by a homogeneous polynomial f ∈ C[x1, . . . , x2n+1] of degree
d := deg(f) > 0. As ω is homogeneous of degree s > 0, the Poisson
structure is homogeneous of degree −s and

(2.3) deg(Θ̄ij) = deg(xi) + deg(xj)− s = di + dj − s.

There exists a direct explicit relation between the Poisson matrix of X
and its defining equation f , which we will explain next.

Recall that the pfaffian of a skew-symmetric 2n× 2n-matrix B is a
homogeneous polynomial pf(B) of the entries of B of degree n such that
pf(B)2 = det(B). Explicitly,

(2.4) pf(B) =
∑
π

sgn(π)Bπ(1)π(2) · · ·Bπ(2n−1)π(2n),

where π runs through a subset of permutations in S2n such that the
collections Tπ := {{π(1), π(2)}, . . . , {π(2n − 1), π(2n)}} represent every
decomposition of {1, . . . , 2n} into n unordered pairs exactly once.

If B is a skew-symmetric (2n+1)×(2n+1)-matrix, let pf(B) denote
the vector whose i-th entry is given as pf(B)i = (−1)i−1 pf(Bi), where
Bi is obtained from B by deleting the i-th row and column. It is well-
known that B pf(B) = 0.

Lemma 2.3. — Let X ⊂ C
2n+1 be a homogeneous symplectic hy-

persurface defined by a homogeneous polynomial f ∈ C[x1, . . . , x2n+1]
and let Θ̄ denote its Poisson matrix. Then there is a non-zero constant
c such that

(2.5) pf(Θ̄) = c grad(f)

as vectors with values in C[X].
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Proof. As f = 0 in C[X], it follows that

(2.6) 0 = {xi, f} =
∑
j

Θ̄ij
∂f

∂xj
∈ C[X],

or briefly: Θ̄ grad(f) = 0. On the other hand, Θ̄ pf(Θ̄) = 0. Now over
the regular part of X, the derivative grad(f) vanishes nowhere according
to the Jacobian criterion for smoothness. Moreover, Θ̄ has rank 2n since
X is symplectic so that the kernel of Θ̄ is one-dimensional and at least
one of the pfaffians pf(Θ̄i) is non-zero. So pf(Θ̄) also vanishes nowhere
on Xreg. As both grad(f) and pf(Θ̄) span the kernel of Θ̄, there is an
invertible regular function c on Xreg such that pf(Θ̄) = c grad(f) on
Xreg. Since X is normal, the function c extends to an invertible regular
function on X, and pf(Θ̄) = c grad(f) holds everywhere on X. As c is
homogeneous of some weight, it must be constant. Q.E.D.

Replacing f by some scalar multiple, we can and will assume from
now on that for every homogeneous symplectic hypersurface the follow-
ing fundamental relation between the defining equation and the Poisson
matrix holds:

(2.7) pf(Θ̄) = grad(f)

Definition 2.4. — A homogeneous symplectic hypersurface X is
indecomposable if its unique fixed point is a Poisson subscheme of X.

Using the previous notations this is equivalent to saying that the
homogeneous maximal ideal m satisfies {m, A} ⊂ m which in turn is
equivalent to the condition that Θ̄ij ∈ m for all i, j.

The following decomposition lemma is due to Weinstein [10] if the
underlying variety is smooth. For singular Poisson varieties an analo-
gous statement in the formal category has been proved by Kaledin. In
the weighted homogeneous situation the argument of Weinstein extends
easily. In fact, the proof is easier than both in Weinstein’s and Kaledin’s
situation as the choice of new coordinates can be carried out in finitely
many steps.

Lemma 2.5. — Let (X,ω) be a homogeneous symplectic hyper-
surface. Then there is an equivariant symplectic isomorphism X ∼=
W1 × . . .×Wk ×X ′, where X ′ is an indecomposable homogeneous sym-
plectic hypersurface and each Wi is isomorphic to C2 with symplectic
form dz1∧dz2 and homogeneous coordinates with deg(z1)+deg(z2) = s.

Proof. Let X → C2n+1 be a homogeneous embedding with linear
coordinates xi of degree di > 0, and let Θ̄ denote the corresponding
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Poisson matrix. If Θ̄ij ∈ m for all index pairs, X is indecomposable, and
we are done. Otherwise there are indices i, j such that Θ̄ij is a non-zero
constant, and after an appropriate linear coordinate change, we may
assume that Θ̄12 = 1.

For every i > 1 we may expand Θ̄1i =
∑

m xm
2 um as a polynomial

in x2 and put x̃i := xi −
∑

m xm
2 am with a0 = 0. Here the coefficients

am are polynomials in the coordinates x1, x3, . . . , x2n+1 that have to be
chosen in such a way so as to give

(2.8) 0
!
= {x1, x̃i} =

∑
m

xm
2 (um − {x1, am} − (m+ 1)am+1).

Thus we may set recursively am+1 = 1
m+1 (um − {x1, am}). As deg(am)

is strictly decreasing for m = 1, 2, . . ., all sums are in fact finite.
Hence, after renaming our variables we may assume that {x1, xi} =

0 for all i �= 2. In a similar way, we may now consider the expan-
sion {x2, xi} =

∑
m vmxm

1 and new coordinates x̃i = xi −
∑

m amxm
1

with recursively defined polynomials am. In order that the new coordi-
nate change should not destroy the just achieved orthogonality property
{x1, xi} = 0 for i > 2, it is important to note that the coefficients vm do
not contain positive powers of x2. Indeed this is a consequence of the
Jacobi identity:
(2.9)
{x1, {x2, xi}} = {{x1, x2}, xi}+ {x2, {x1, xi}} = {1, xi}+ {x2, 0} = 0,

so that

(2.10) 0 = {x1,
∑
m

vmxm
1 } =

∑
m

{x1, vm}xm
1 =

∑
m

∂vm
∂x2

xm
1 .

Hence repeating the argument of the first step and renaming the vari-
ables we arrive at a set of coordinates satisfying {x1, x2} = 1 and
{xi, xj} = 0 for i ≤ 2 < j.

Let Θ̄ij be the Poisson matrix with respect to this new set of homo-
geneous generators so that Θ̄ij = 0 if i ≤ 1 and j ≥ 2 and Θ̄12 = 1. It
follows from the Jacobi identity that

(2.11)
∂Θ̄ij

∂x̄1
= −{x2, Θ̄ij} = 0

and analogously that
∂Θ̄ij

∂x̄2
= 0. This implies that Θ̄ij ∈ C[x̄3, . . . , x̄2n+1].

Similarly, f̄ = 0 implies ∂f
∂x1

= −{x2, f} = 0 and so on, so that f ∈
C[x3, . . . , x2n+1]. This shows that there is a graded Poisson isomorphism
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A ∼= C[x1, x2]⊗A′ with A′ = C[x3, . . . , x2n+1]/(f) where the symplectic
form on the first factor is dx1 ∧ dx2 and where deg(x1) + deg(x2) = s.

The assertion follows by induction on the dimension of X. Q.E.D.

Lemma 2.6. — Let X ⊂ C2n+1 be an indecomposable homogeneous
symplectic hypersurface defined by a polynomial f ∈ C[x1, . . . , x2n+1].

(1) f ∈ nn+1 where n = (x1, . . . , x2n+1).
(2) All partial derivatives ∂f/∂xi are non-zero polynomials.

Proof. 1. As X is indecomposable, all entries of the Poisson matrix
are contained in the maximal ideal m = (x1, . . . , x2n+1) ⊂ C[X]. Hence
all coefficients of its pfaffian are contained in nm as each summand of
pf(Θ̄)i is the product of n entries of the Poisson matrix. The assertion
now follows from identity (2.7).

2. Consider the stratification X = X0 ⊃ X1 ⊃ X2 ⊃ . . ., where
Xm+1 is the singular part of Xm with its reduced subscheme structure.
Kaledin has shown that each Xm is a Poisson subscheme of X, and that
the canonically induced Poisson structure on its normalisation X̃m →
Xm turns X̃m into a symplectic variety. In particular, all Xm are even-
dimensional (possibly reducible) varieties. Let Xk denote the last non-
empty piece of the stratification. It is a smooth symplectic variety and
contains the origin as a Poisson subscheme. According to Kaledin [4],
Lemma 1.4 and Theorem 2.5, this is impossible unless Xk = {O}. Now if
∂f/∂xi were identically zero for some index i, i.e. if f were independent
of xi, every stratum Xm, including Xk would contain the line given by
xj = 0 for all j �= i, a contradiction. Q.E.D.

Lemma 2.7. — Let X ⊂ C2n+1 be an indecomposable homoge-
neous symplectic hypersurface. Then the Poisson structure on X can be
uniquely extended to a homogeneous Poisson structure on the ambient
space C2n+1. In particular, if Θ denotes the matrix Θij = {xi, xj}, where
x1, . . . , x2n+1 are linear homogeneous coordinates on C2n+1, then, pos-
sibly after rescaling it, the defining equation f of X satisfies grad(f) =
pf(Θ).

Proof. The natural epimorphism C[x1, . . . , x2n+1] → C[X] is an
isomorphism in all degrees less than d = deg(f). Thus the Poisson
matrix Θ̄ of X can be uniquely lifted to a skew-symmetric matrix Θ
with values in the polynomial ring if the degree condition deg(Θ̄ij) =
di + dj − s < d is satisfied. And the bracket defined by {g, h} :=∑

ij Θij
∂g
∂xi

∂h
∂xj

will automatically satisfy the Jacobi-identity provided

that all summands in equation (2.2) have degree < d. Hence it suffices
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to show that

(2.12) di + dj − s < d and di + dj + dk − 2s < d

for all pairwise distinct indices i, j, k.
For any finite subset I ⊂ K := {1, . . . , 2n+ 1} with an odd number

of elements, let Θ̄I denote the skew-symmetric matrix obtained from Θ̄
by elimination of the i-th row and column for all i ∈ I. Every monomial
that appears in the pfaffian pf(Θ̄I) is of the form ±Θ̄i1i2Θ̄i3i4 · · · Θ̄i�−1i�

where {i1, . . . , i�} = K \ I. Thus if pf(Θ̄I) �= 0, then

(2.13) deg(pf(Θ̄I)) =
∑
i �∈I

di − 1

2
(2n+ 1− |I|)s.

We apply this observation to submatrices of the form Θ̄i, Θ̄ijk and
Θ̄ijkpq. For brevity, let δ =

∑
i di. From the connection between the

derivatives of f and Θ̄ we conclude that

(2.14) d− di = deg

(
∂f

∂xi

)
= deg(pf(Θ̄i)) = δ − di − ns.

Hence δ = d+ ns.
If n = 1, one has d = d1+d2+d3−s, and hence di+dj−s = d−dk < d

and di + dj + dk − 2s = d− s < d for {i, j, k} = {1, 2, 3}. Assume n ≥ 2
for the rest of the proof.

Let i, j be distinct indices and assume that pf(Θ̄ijk) �= 0 for some
k ∈ K \ {i, j}. Then
0 ≤ deg(pf(Θ̄ijk)) = δ−di−dj −dk− (n−1)s = (d−dk)− (di+dj −s),

so that di+dj−s ≤ d−dk < d. If on the other hand we had pf(Θ̄ijk) = 0
for all k, then Θ̄ij would have rank ≤ 2n−4, and hence rk(Θ̄i) ≤ 2n−2,
so that pf(Θ̄i) = 0 contradicting the fact that ∂f/∂xi �= 0 by Lemma
2.6.

Let i, j, k be distinct indices. If n = 2 and {1, 2, 3, 4, 5} \ {i, j, k} =
{p, q}, then di+dj+dk−2s = d−dp−dq < d. Hence assume that n ≥ 3.
Suppose that pf(Θ̄ijkpq) �= 0 for some pair of indices p, q ∈ K \ {i, j, k}.
Then

0 ≤ deg(pf(Θ̄ijkpq)) = δ − di − dj − dk − dp − dq − (n− 2)s

= (d− dp − dq)− (di + dj + dk − 2s),

so that di + dj + dk − 2s ≤ d− dp − dq < d. If on the other hand we had
pf(Θ̄ijkpq) = 0 for all p, q, then Θ̄ijk would have rank ≤ 2n−6, and hence
rkΘi ≤ 2n− 2, leading to the same contradiction as before. Q.E.D.
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Theorem 2.8. — Let X ⊂ C2n+1 be an indecomposable homoge-
neous symplectic hypersurface. Then X admits a crepant resolution.

Proof. The equation of X defines a flat deformation f : C2n+1 →
C. By Lemma 2.7, the Poisson structure on X uniquely extends to
a homogeneous Poisson structure on the polynomial ring, and since
{xi, f} =

∑
j Θij∂f/∂xj = 0, the deformation is in fact a Poisson de-

formation. For any t �= 0, the fibre f−1(t) is smooth. Hence it follows
from Corollary 5.6 in [8] that X admits a crepant resolution. Q.E.D.

§3. Examples

The following indecomposable symplectic hypersurfaces are known
to us:

(1) ADE-surface singularities. These come in two series An and
Dn and three exceptional examples E6, E7 and E8.

(2) A series of four-dimensional hypersurfaces Xn, n ≥ 2, with
equations fn = a2x+ 2aby + b2z + (xz − y2)n ∈ C[a, b, x, y, z].

(3) A single six-dimensional example X̂.

If we search for higher-dimensional symplectic hypersurfaces, rela-
tion (2.7) suggests to start from a skew-symmetric (2n+ 1)× (2n+ 1)-
matrix Θ with values in the polynomial ring C[x1, . . . , x2n+1]. It is then
easy to reconstruct the polynomial f from the pfaffian minors of Θ. Of
course, this puts quite strong differential conditions on Θ: It must sat-
isfy the Jacobi identity (2.2), and its pfaffian minors must satisfy the
Schwarz integrability conditions

(3.1) (−1)i−1 ∂ pf(Θi)

∂xj
= (−1)j−1 ∂ pf(Θj)

∂xi
.

And finally one has to check that X = {f = 0} is indeed symplectic.
Conversely, if f ∈ A = C[x1, . . . , x2n+1] defines a symplectic hyper-

surface X = {f = 0} ⊂ C2n+1, the Poisson matrix is determined as
the middle part of a skew-symmetric minimal resolution of the Jacobian
ideal J :

(3.2) 0 −→ A
df−−→ A⊕2n+1 Θ−−→ A⊕2n+1 df−−→ J

3.1. Two-dimensional examples

Two-dimensional symplectic surface singularities are classical and
well studied mathematical objects ever since Klein discussed the invari-
ants of finite subgroups G ⊂ SL2(C) and computed the equation of the
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embedding C2/G ⊂ C3. For a two-dimensional symplectic hypersurface
X = {f = 0} ⊂ C

3, relation (2.7) is equivalent to saying that

(3.3) {xi, xj} =
∑
k

εijk
∂f

∂xk
.

Here εijk denotes the totally skew-symmetric tensor that equals the sign
of the permutation (1, 2, 3) �→ (i, j, k) if i, j and k are pairwise distinct
and 0 else. The corresponding symplectic form is obtained as the residue

(3.4) ω = resf
dx1 ∧ dx2 ∧ dx3

f
.

Note that any choice of a homogeneous polynomial f defines a Poisson
structure. But X will be symplectic if and only if it is isomorphic to one
of the quotient singularities C2/G in the following list:

group G type equation f
cyclic Cn An−1 x2 + y2 + zn

binary dihedral D∗
n Dn+2 x2 + y2z + zn+1

binary tetrahedral T∗ E6 x2 + y3 + z4

binary octahedral O∗ E7 x2 + y3 + yz3

binary icosahedral I∗ E8 x2 + y3 + z5

3.2. Four-dimensional examples

We know three constructions to obtain the hypersurfaces Xn:
The first construction establishes Xn as the transversal slice to the

orbit of certain nilpotent elements x in a simple Lie algebra g. We only
sketch the construction and refer to [6] for details. By the theorem
of Jacobson-Morosov, one may choose elements h, y such that the map
sl2 → g, ( 0 1

0 0 ) �→ x, ( 1 0
0 −1 ) �→ h, ( 0 0

1 0 ) �→ y, defines a Lie algebra
homomorphism. The so-called Slodowy slice S := x+ker(ad y) intersects
the orbit of x for the adjoint action transversely. Let N ⊂ g denote the
cone of nilpotent elements. Then S0 := S ∩N is a symplectic variety. If
g = sp2n is the Lie algebra of type Cn and x is a nilpotent element of
Jordan type [2n− 2, 1, 1], then S0 is isomorphic to the hypersurface Xn

defined by the vanishing of fn := a2x+ 2aby + b2z + (xz − y2)n.
The second construction is based on the following ansatz: Let V

denote an even-dimensional representation of the Lie algebra sl2. A
Poisson bracket on the symmetric algebra A = S∗(sl2 ⊕V ) is determined
by its value on pairs of vectors in sl2 ⊕V : it then extends uniquely to A
by its biderivative properties. We put {x, x′} := [x, x′] and {x, v} := x.v
for x, x′ ∈ sl2 and v ∈ V using the Lie bracket on sl2 and the action of
sl2 on V . It remains to choose a skew-symmetric map ϕ := {−,−}|Λ2V :
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Λ2V → A which we assume to take values in the subring S∗(sl2). The
Jacobi relation can be thought of as a homomorphism J : Λ3(sl2 ⊕V ) →
A. Its restriction to Λ3(sl2)⊕ Λ2(sl2)⊗ V vanishes since [−,−] is a Lie
bracket and V is a representation. The vanishing of J |sl2 ⊗Λ2V forces ϕ
to be equivariant. So it remains to verify that J |Λ3V vanishes.

Assume now that V = C
2 is the two-dimensional standard repre-

sentation. As Λ3V = 0, the Jacobi condition is automatically satisfied
for any equivariant homomorphism ϕ : Λ2V = C → S∗(sl2). So ϕ has
to be a homogeneous element in the invariant subring S∗(sl2)sl2 . As is
well-known, this subring is freely generated by the Casismir element Δ.
Explicitly, one obtains in terms of a standard basis x, h, y of sl2 and a
basis e0, e1 of C2 the following Poisson matrices

(3.5) Θn =

⎛
⎜⎜⎜⎜⎝

0 −2x h 0 e0
2x 0 −2y e0 −e1
−h 2y 0 e1 0
0 −e0 −e1 0 2nΔn−1

−e0 e1 0 −2nΔn−1 0

⎞
⎟⎟⎟⎟⎠ ,

where Δ = h2 + 4xy. Integrating the pfaffian vector dfn = cn pf(Θn)
yields the expression

(3.6) fn = −ye20 + he0e1 + xe21 +Δn.

Up to a rescaling of the coordinates this is the same equation as in
the first construction. The weights of the coordinates in this case are
deg(x) = deg(h) = deg(y) = 2 and deg(e0) = deg(e1) = 2n− 1.

The third construction is due to Hanany and Mekareeya [3]. Let
Γ denote a unitrivalent graph. This means that Γ is an undirected
graph, possibly with loops, such that each vertex is the end point of
exactly one or three edges. Here loops are counted twice. Attaching
to each edge e a two-dimensional symplectic vector space Ve and to
each inner vertex i the 8-dimensional Wi =

⊗
e→i Ve, where the tensor

product is taken over the three edges that end in i, we may form the
symplectic vector space W (Γ) :=

⊕
i Wi, where i runs through the set

of inner vertices. The group G(Γ) :=
∏

e SL(Ve), where e runs through
the set of inner edges, acts on W (Γ) preserving the symplectic form.
Let X(Γ) := W (Γ) ///G(Γ) denote the symplectic reduction. Based on
physical considerations Hanany and Mekareeya argue that X(Γ) is a
symplectic variety that up to symplectic isomorphism depends only on
the number e(Γ) of exterior edges of Γ and its first Betti number g(Γ).
If Γ is read as the dual graph of a stable curve, g(Γ) is the genus of that
curve. Hanany and Mekareeya give the formula dim(X(Γ)) = 2(1+e(Γ)),
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deduce from a calculation of the equivariant Hilbert series that X(Γ)
is a four-dimensional hypersurface if e(Γ) = 1, and state its defining
equation.

For completeness sake and in order to see that graphs with e(Γ) = 1
and g(Γ) = n lead to our hypersurfaces Xn, we carry out the necessary
invariant theoretic calculations in detail for the following graphs:

(3.7) • • • • • · · · •
For each loop of the form

(3.8) •A
B

C

• D

we need to consider the vector space ABC ⊕ BCD, where we have
dropped the tensor sign. We may consider BC = C2 ⊗ C2 = C4 as the
fundamental representation of SL(B) × SL(C)/(−I,−I) = SO4. This
allows to simplify the diagram above to • • where
the double line indicates the fundamental representation of SO4. Simi-
larly, a loop

(3.9) •A
B

leads to the vector space ABB. Again we consider BB = C
2 ⊗ C

2 ∼=
C ⊕ C3 as the sum of the trivial and the fundamental representation
for the group SL(B)/(−I) = SO3. We indicate this by a wriggled line

• ������ • . Thus we may replace the graph (3.7) by

(3.10) • • • • • · · · • ������ •
It follows from this reasoning that W (Γ) is the space of representations
for the following quiver:

(3.11) • x1 �� ◦ y1 �� • x2 �� ◦ y2 �� · · · yn−1 �� • xn �� � ,

where • correspond to copies of the fundamental representation C
2 of

SL2, ◦ correspond to copies of the fundamental representation C4 of
SO4, and � corresponds to the representation C⊕C

3 of SO3. Using the
symplectic and orthogonal forms on these representations we reinterpret
tensor products as Hom spaces associated to the arrows. Then W (Γ) =
{(x1, y1, . . . , yn−1, xn)}, where xi ∈ Hom(C2,C4) for i = 1, . . . , n and
yi ∈ Hom(C4,C2) for i = 1, . . . , n− 1. Let x∗

i = J−1xt
iQ ∈ Hom(C4,C2)

and y∗i = Q−1ytiJ ∈ Hom(C2,C4) denote the associated adjoint homo-
morphisms. Here J and Q denote the symplectic and quadratic form on
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C2 and C4, respectively. Then the ideal I defined by momentum maps
for the action of G(Γ) is generated by the components of the elements
xix

∗
i + y∗i yi and yiy

∗
i +x∗

i+1xi+1 for i = 1, . . . , n− 1 and π(xnx
∗
n), where

π : so4 → so3 denotes the projection dual to the inclusion so3 → so4
associated to the representation of SO3 on the vector space C ⊕ C3 at
the end of the quiver. We calculate the symplectic reduction in three
steps, taking invariants for the the groups SO4 first, then for the groups
SL2, and finally for SO3.

The invariant ring for the groups SO4 is generated by xn and the
elements

ai := x∗
i xi, bi := yixi, ci := yiy

∗
i , di := det(xi|y∗i ), for i = 1, . . . , n− 1.

The intersection with the momentum ideal is generated by

π(xnx
∗
n), ci+ai+1, a

2
i +b∗i bi, biai+cibi, bib

∗
i +c2i , di, for i = 1, . . . , n−1,

where we have put an := x∗
nxn to simplify notations. This allows us

to ignore the invariants di and ci. We are left with the following set of
generators

ai ∈ sl2, bi ∈ Hom(C2,C2), for i = 1, . . . , n−1, and xn ∈ Hom(C2,C4),

with relations

π(xnx
∗
n), biai − ai+1bi, a2i + b∗i bi, bib

∗
i + a2i+1.

Since a2i , bib
∗
i , b

∗
i bi are multiples of the identity, the corresponding re-

lations can be rephrased as a21 = a2i = −bib
∗
i = −b∗i bi. The generators

ai, bi, xn define a representation of the shortened quiver

(3.12) • b1 ��

a1

�� • b2 ��

a2

�� · · · bn−1 �� • xn ��

an

�� �
The invariant ring for the action of the groups SL2 is generated by the
components of all maps that are compositions of arrows forming a path
from one end of the quiver to another or traces of compositions of arrows
forming a closed loop. We can use the relations to move aside any of
the loops a2i , bib

∗
i or b∗i bi. This reduces the number of generators to a1,

u := xnbn−1 · · · b1 and v := xnx
∗
n,

(3.13) • u ��a1 �� � v��

satisfying the relations

ua1− vu, uu∗−det(a1)
n−1v, u∗u−det(a1)

n−1a1, tr(a
2
1)− tr(v2), π(v).
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It remains to take invariants for the action of SO3. The decomposition
C

4 = C⊕ C
3 yields corresponding decompositions

(3.14) u =

(
u1

u2

)
, v =

(
0 −w∗

w z

)
.

As z = π(v) is a relation, we may ignore z and continue to calculate with
the SO3-invariant generators a1 and u1 and the vector valued genera-
tors u2 ∈ Hom(C2,C3) and w ∈ Hom(C,C3). The remaining relations
translate into

(3.15) u1a1 + w∗u2, u2a1 − wu1, u2u
∗
2, det(a1)− w∗w.

(3.16) u2u
∗
1 − det(a1)

n−1w, u∗
1u

∗
1 + u∗

2u2 − det(a1)
n−1a1.

The invariants for the SO3 action are generated by a1, u1: the further
invariants

(3.17) w∗w, w∗u2, u∗
2u2, det(w|u2),

can be expressed in terms of a1 and u1 due to the given relations. So we
end up with five generators x, y, z, a and b that are the components of

(3.18) a1 =

(
y x
−z −y

)
∈ sl2 and u1 =

(
a
b

)
∈ Hom(C2,C)

and satisfy the single equation

(3.19) 0 = det(a1)
n + u1a1u

∗
1 = a2x− 2aby + b2z + (xz − y2)n.

3.3. The six-dimensional example

At present we know only one six-dimensional indecomposable hyper-
surface, denoted X̂. It looks rather special, and the following discussion
might indicate that it is an exceptional example that is not contained
in a series. We first encountered X̂ as the slice to the six-dimensional
nilpotent orbit in the nilpotent cone of the simple Lie algebra g2 [6]. Its

defining equation f̂ is rather complicated, and it is easier to obtain it
indirectly. X̂ has the interesting property that it is completely deter-
mined by its singular locus Σ ⊂ C7, and we will explain how to recover
X̂ starting from Σ.

Let V denote the irreducible two-dimensional representation of the
symmetric group S3, realised as the kernel of the linear form x1+x2+x3

in C3. The invariant ring C[V ⊕ V ∗]S3 is generated by 3 polynomials
a1, a2, a3 of degree 2 that are obtained by the process of polarisation
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from the second elementary symmetric polynomial x1x2 + x2x3 + x3x1

and by 4 polynomials b1, . . . , b4 of degree 3 that are obtained by similarly
polarising the third elementary symmetric polynomial x1x2x3. This is a
classical result treated for example by Weyl in [11, p. 36 ff.]. These in-
variants are explicitly given as follows: a1 =

∑
i<j xixj , a2 =

∑
i,j xiyj ,

a3 =
∑

i<j yiyj and b1 = x1x2x3, b2 = x1x2y3 + x1y2x3 + y1x2x3,
b3 = x1y2y3 + y1x2y3 + y1y2x3, b4 = y1y2y3 for the dual coordinates
y1, y2, y3 on V ∗.

These polynomials define an embedding Σ := (V ⊕ V ∗)/S3 → C7.
The relations among the invariants are generated by the following 2
polynomials of weighted degree 5 and 3 polynomials of degree 6:

(3.20)

t1 = a3b2 − a2b3 + 3a1b4,
t2 = 3a3b1 − a2b2 + a1b3,
t3 = a3(a

2
2 − 4a1a3)− 3b23 + 9b2b4,

t4 = a2(a
2
2 − 4a1a3)− 3b2b3 + 27b1b4,

t5 = a1(a
2
2 − 4a1a3)− 3b22 + 9b1b3;

We note in passing that the same quotient variety Σ can also be obtained
as symplectic reduction for the action of SL2 on S4C2 ⊕ (S4C2)∗ or as
the symplectic reduction for the action of SL3 on sl3 ⊕ sl∗3.

As a subring of C[V ⊕V ∗] the graded coordinate ring C[Σ] inherits a
canonical Poisson structure. The Poisson brackets {ai, aj}, {ai, bj} and
{bi, bj} will have degrees 2, 3 and 4 respectively. But since the smallest
degree of a relation among the ai’s and bi’s has degree 5, it follows that
the Poisson structure uniquely extends to a homogeneous Poisson struc-
ture on the ambient space C

7. Calculation gives the following Poisson
matrix:
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −2 a1 −a2 0 −3 b1 −2 b2 −b3
2 a1 0 −2 a3 3 b1 b2 −b3 −3 b4
a2 2 a3 0 b2 2 b3 3 b4 0
0 −3 b1 −b2 0 2

3a
2
1

2
3a1a2

1
3a

2
2 − 2

3a1a3

3 b1 −b2 −2 b3 − 2
3a

2
1 0 10

3 a1a3 − 1
3a

2
2

2
3a2a3

2 b2 b3 −3 b4 − 2
3a1a2

1
3a

2
2 − 10

3 a1a3 0 2
3a

2
3

b3 3 b4 0 2
3a1a3 − 1

3a
2
2 − 2

3a2a3 − 2
3a

2
3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

If we denote this matrix by Θ̂, its pfaffian pf(Θ̂) allows to determine

the hypersurface equation f̂ via df̂ = c pf(Θ̂), up to some normalising
constant c. The equation is rather complicated. One can express it using
the relations between the invariants, i.e. the equations of Σ, as follows:

(3.21) f̂ = a1t
2
1 − a2t1t2 + a3t

2
2 +

1

12
(t24 − 4t3t5).

Since f̂ ∈ (t1, . . . , t5)
2, the singular locus of X̂ = {f̂ = 0} contains Σ,

and an explicit calculation shows that Σ actually equals the reduced
singular locus of X̂.
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One can also describe the Poisson matrix Θ̂ by the Poisson alge-
bra approach described in the four-dimensional case: consider the four-
dimensional irreducible representation V = S3C2 of sl2. The choice of
an equivariant map ϕ : Λ2V → S∗(sl2) gives rise to a Poisson structure
on A = S∗(sl2 ⊕V ) if certain conditions imposed by the Jacobi identity
are satisfied: As there are equivariant decompositions Λ2V = C⊕ S4

C
2

and S∗(sl2) = C[Δ] ⊗⊕
m≥0 S

2m(C2), the space of homogeneous equi-

variant maps ϕ : Λ2V → S∗(sl2)N is two-dimensional for each even
N ≥ 2, generated by maps C → C ·ΔN/2 and S4

C
2 → S4

C
2 ·ΔN/2−1.

However, and in contrast to the four-dimensional case, only for the de-
gree N = 2 there is a map ϕ leading to a non-degenerate hypersurface:
the one described above.

§4. Contact Fano 3-folds

Consider the 3-dimensional projective varieties Y ⊂ P := P(2n −
1, 2n−1, 2, 2, 2) defined by the weighted homogeneous polynomial a2x+
2aby + b2z + (xz − y2)n = 0 for each n ≥ 2 . Here the coordinates are
given the degrees |a| = |b| = 2n − 1 and |x| = |y| = |z| = 2. As before,
let Xn denote the symplectic hypersurface in C

5 defined by the same
equation. In this section we introduce a contact structure on Y and
relate it with the projectivised cotangent bundle P(T ∗

P1×P1) by explicit
birational maps.

The singular locus of Y has two components: Y has quotient sin-
gularities of type 1

2n−1 (1, 1) along the smooth rational curve C = {x =

y = z = 0} and Du Val singularities of type D2n along the smooth
rational curve D = {a = b = 0, xz − y2 = 0}. The projection map
p : C5 \ {0} → P(2n − 1, 2n − 1, 13) is a C

∗-bundle outside C and D.
Define Y 0 := Y \ (C ∪D) and X0

n := p−1(Y 0).
Recall that a contact structure on a complex manifold M of dimen-

sion 2d+ 1 is an exact sequence of vector bundles

0 −→ D −→ TM
θ−→ L −→ 0,

with rk(D) = 2d and rk(L) = 1 so that dθ|D induces a non-degenerate
pairing on D. By using the formula for exterior derivation

dθ(x, y) = x(θ(y))− y(θ(x))− θ([x, y])

one can check that this is equivalent to saying that [−,−] : D × D →
L = TM/D is non-degenerate. We call L the contact line bundle.

We shall introduce a contact structure on Y 0 with the contact line
bundle O(2) := OP(2)|Y 0 . Let ω be a symplectic 2-form on X0

n of weight
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2. By construction, the projection p : X0
n → Y 0 is a C∗-bundle, and X0

n

is in fact isomorphic to the complement of the zero section of the line
bundle O(−1) on Y 0. There is a canonical trivialisation p∗O(1) ∼= OX0

n
,

and hence a trivialisation p∗O(i) ∼= OX0
n
for any i ∈ Z. Let ζ be the

vector field which generates the C
∗-action. Since ω has weight 2, one

can write ω(ζ, ·) = p∗θ for some appropriate element θ ∈ H0(Y 0,Ω1
Y 0 ⊗

O(2)). This θ gives a contact structure on Y 0 with the contact line
bundle O(2).

The rational map

P((2n− 1)2, 23) ��� P
2 = P(23), (a : b : x : y : z) → (x : y : z)

induces a rational map Y ��� P2. To eliminate the indeterminancy of
the rational map, we take the blow-up Y1 of Y along C. Let F1 ⊂ Y1

be the exceptional divisor of the blowing-up. Notice that F1 is a P1-
bundle over C. Then the rational map actually becomes a morphism
f1 : Y1 → P2. Let us consider the fibres of f1. For (1 : μ : λ) ∈ P2, the
fibre f−1

1 (1 : μ : λ) is isomorphic to the quasi-homogeneous hypersurface
of P(2n− 1, 2n− 1, 2) defined by

a2 + 2abμ+ b2λ+ (λ− μ2)nx2n−1 = 0.

If (1 : μ : λ) ∈ {xz−y2 = 0}, then it is a multiple fibre with multiplicity
2. If (1 : μ : λ) /∈ {xz − y2 = 0}, then the fibre is a smooth rational
curve. In other words, f1 is a conic bundle whose discriminant locus D′

is {xz − y2 = 0} and all singular fibres are non-reduced.
Set S1 := f−1

1 (D′)red. Then S1 is a P1-bundle over D′. Since the
blowing-up Y1 → Y does not change an open neighborhood of D ⊂ Y ,
its inverse image D1 by the blowing-up is isomorphic to D. Moreover,
D1 is a section of the P

1-bundle S1 → D′. The singular locus of Y1

coincides with D1. As Y1 has Du Val singularities of type D2n along D1,
one can take its minimal resolution Ỹ → Y1. The exceptional locus of
the minimal resolution consists of 2n divisors E(1),. . . , E(2n) intersecting
each other according to the following D2n-configuration:

�

E(1)

�

E(2n−2)��

��

�

�E(2n−1)

E(2n)

Here the vertices correspond to the exceptional surfaces and the edges
correspond to the intersection curves. Each surface E(i) is a P1-bundle
over D and each intersection curve is a section of the P

1-bundle map.
Let S and F be respectively the proper transforms of S1 and F1

by the map Ỹ → Y1. Then S intersects with F along a section of the
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P1-bundle structure. There are no intersetion of F with E(i)’s. On the
other hand, S intersects with only E(1). Notice that E(1)∩S is a section
of the ruled surface E(1), which is disjoint from E(1) ∩ E(2):

� � �

E(1)

�

E(2n−2)��

��

�

�E(2n−1)

E(2n)F S

One can blow down successively these divisors along their rulings in
the following order: S, E(1), . . . , E(2n−3), and finally F . We call the
resulting variety Z. The existence of such birational contraction maps
are justified in the following way. Let us consider Y1 and S1. Let 
1
be a fibre of S1 → D′. We prove that (KY1 , 
1) = −1. Let 
 ⊂ Y be
the image of 
1 by the map π1 : Y1 → Y . By an explicit calculation we
see that (O(1), 
) = 1

2 · 1
2n−1 . Since KY = OY (−4), one has (KY , 
) =

− 2
2n−1 . Since KX1 = (π1)

∗KY − 2n−3
2n−1 · F1 and (F1, 
1) = 1, we see

that (KY1 , 
1) = −1. Denote by π2 the minimal resolution Ỹ → Y1.
The proper transform S of S1 by π2 is isomorphic to S1; hence there is
a P1-bundle map S → D′. Let 
̃ be a fibre of this map. Then, since
KỸ = (π2)

∗KY1 , we see that

(KỸ , 
̃) = −1.

Let mi be a fibre of the P
1-bundle structure of E(i). Then we have

(KỸ ,mi) = 0.

By Nakano-Fujiki criterion one has a bimeromorphic map ν1 : Ỹ → Z1

to a Moishezon manifold Z1, where ν1 contracts all rulings of S to points.
As S intersects with E(1) along a section, we have

(KZ1 , ν1(m1)) = (KỸ ,m1)− 1 = −1.

Then we get a bimeromorphic map ν2 : Z1 → Z2, where ν2 contracts all
rulings of ν1(E

(1)) to points. We can further continue the same proce-
dures in the order of E(2),. . . , E(2n−3) and finally F . As a consequence
we have a sequence of birational contraction maps

Ỹ → Z1 → Z2 → . . . → Z.

In the remainder we denote by ν the map Ỹ → Z and by μ the map
Ỹ → Y .
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Lemma 4.1. — Z has a contact structure.

Proof. The birational map π : Ỹ → Y is a crepant resolution of Y
around D. As remarked above, Y 0 has a contact form η ∈ Γ(Y 0,Ω1

Y 0 ⊗
O(2)) with the contact line bundle O(2). Take a point x ∈ D. Since
O(2) is a line bundle around D, one can trivialise O(2) on an open
neighbourhood x ∈ U ⊂ Y . Then η is regarded as a 1-form on Ureg such
that η ∧ dη is a nowhere-vanishing 3-form on Ureg. This 3-form extends

to a generator of the invertible dualising sheaf ωU . Set Ũ := π−1(U)

and πU := π|Ũ . Then (πU )
∗(η ∧ dη) is a nowhere-vanishing 3-form on Ũ

because πU gives a crepant resolution of U . This shows that (πU )
∗η is

a contact 1-form on Ũ with the contact line bundle (πU )
∗(O(2)|U ). As

a consequence, Ỹ has a contact structure outside F = π−1(C).

Let β ⊂ Z be the image of F by the birational morphism ν : Ỹ → Z.
Note that dimβ = 1. Let us consider the birational morphism

Ỹ − ν−1(β) → Z − β.

There is an open subset Z0 of Z − β such that ν−1(Z0) ∼= Z0 and
such that the complement of Z0 in Z − β has at least codimension
2. The restriction of the contact structure on Ỹ − F to ν−1(Z0) gives
a contact structure of Z0. Since the complement of Z0 in Z has at
least codimension 2, the contact structure uniquely extends to a contact
structure on Z. Q.E.D.

Lemma 4.2. — Z is isomorphic to P(T ∗
P1×P1).

Proof. We cover D by three orbifold charts Wx → Y , Wy → Y
and Wz → Y , where Wx := {x = 1} ⊂ C

5, Wy := {y = 1} and
Wz := {z = 1}. Note that each map is a Z2-cover onto its image. Let
V be the union of these images. The blowing up of each chart along the
singular locus is Z2-equivariant, and three pieces W̃x/Z2, W̃y/Z2 and

W̃z/Z2 are glued together to give a partial resolution V ′ → V . Since it
does not change anything outsideD, it gives a partial resolution Y ′ → Y .
The exceptional locus E′ of the partial resolution is a P1-bundle over D
and Y ′ has A2n−1-singularities along a section of this P

1-bundle. Note
that the partial resolution Y ′ → Y eliminate the indeterminancy of the
rational map

Y −− → P
1, (a : b : x : y : z) → (a : b)

and gives a morphism Y ′ → P
1. Each fibre of E′ is isomorphically

mapped onto P1 by the morphism. This, in particular, shows that E′

has two P
1-bundle structures. Hence we see that E′ ∼= P

1 × P
1. By
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the definition, Ỹ → Y factors through Y ′ : Ỹ → Y ′ → Y . The proper
transform of E′ by the birational map Ỹ → Y is nothing but E(2n−1).
By the argument above, E(2n−1) ∼= P1 × P1.

Next look at E(2n−2) . It has a P
1-bundle structure whose fibres

correspond to exceptional curves of the map Ỹ → Y . Since it has
three disjoint sections (corresponding to the intersections with E(2n−3),
E(2n−1) and E(2n)), we also see that E(2n−2) ∼= P1 × P1. Define σ :=
E(2n−2) ∩ E(2n−3).

We write E(2n−2), E(2n−1) and E(2n) for their images in Z by the
map Ỹ → Z.

Pick a fibre α of E(2n−2) ⊂ Z. Since (E(2n−2), α)Z = 0, the curve α
can move aside E(2n−2) in a parameter space of dimension 2. We prove
that there is a morphism Z → P1 × P1 whose fibres are all deforma-
tion equivalent to α. The linear system which gives the morphism is
|OZ(E

(2n−2))|. To prove that this linear system is free from base points,
it suffices to show that |OE(2n−2)(E(2n−2))| is free from base points by
the exact sequence

0 → H0(Z,OZ) → H0(Z,OZ(E
(2n−2))) → H0(E(2n−2),OE(2n−2)(E(2n−2))) → 0.

Note that

KỸ = μ∗KY − 2n− 3

2n− 1
F.

We can also write KỸ by a linear combination of ν∗KZ , S, F and E(1),

. . . , E(2n−3). By using the two expression of KỸ , one can write

ν∗KZ = μ∗KY − 2E(2n−3) + other terms.

Restricting this to E(2n−2) we getKZ |E(2n−2) = −4α−2σ since (KY , D) =
−4, which easily follows from the fact thatKY = O(−4) and (O(1), D) =
1.

Now, by the adjunction formula KE(2n−2) = KZ + E(2n−2)|E(2n−2)

we see that E(2n−2)|E(2n−2) ∼ 2α. The corresponding linear system is
free from base points.

Since h0(Z,OZ(E
(2n−2))) = 4, we have a morphism Z → P

3. Since
(E(2n−2))3 = 0 and (E(2n−2))2 ∼ 2α, the image has 2 dimension. More-
over, since (E(2n−1), α) = 1 and E(2n−1) ∼= P1 × P1, the morphism is
a P1-bundle over P1 × P1 with a section E(2n−1). As we have seen in
Lemma 4.1, Z has a contact structure. Moreover the morphism de-
fined here is a Legendre P1-bundle. By [5], it then follows that Z is a
projectivised cotangent bundle P(T ∗

P1×P1). Q.E.D.
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Remark 4.3. — Let X ′
n be a Slodowy slice to a niloptent orbit

O[4n−3,13] of so4n with n ≥ 2. Then one can check that X ′
n is iso-

morphic to the complete intersection of C6(α, β, γ, x, y, z) defined by two
equations f = g = 0 with

f = αx+2βy+γz = 0 and g = αγ−β2+1/4(xz−y2)2n−1 = 0.

With the new coordinates A = α − 1
2z(xz − y2)n−1, B = β + 1

2y(xz −
y2)n−1 and C = γ − 1

2x(xz − y2)n−1 the equations f = 0 and g = 0
respectively become

Ax+ 2By + Cz + (xz − y2)n = 0 and AC −B2 = 0.

It follows from this description that τ(a, b, x, y, z) := (a2, ab, b2, x, y, z)
defines a double covering τ : Xn → X ′

n. Note that τ is ramified pre-
cisely over the singular locus of X ′

n. Moreover, X ′
n is equipped with the

Kostant-Kirillov 2-form ω′ on the regular locus. Then τ∗ω′ is equivalent
to the Kostant-Kirillov 2-form ω on Xn by Theorem (3.1) in [9].

Let Y ′ be the 3-dimensional projective variety in P(2n − 1, 2n −
1, 2n − 1, 1, 1, 1) defined by f = g = 0. The degrees of the coordinates
are |α| = |β| = |γ| = 2n − 1 and |x| = |y| = |z| = 1. Then Y ′ admits
a contact structure on its regular part. Moreover, by the observation
above, we immediately see that Y ∼= Y ′ as contact varieties.
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