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Abstract.

We establish an algorithm for resolution of singularities of an ide-
alistic filtration in dimension 3 (a local version) in positive characteris-
tic, incorporating the method recently developed by Benito-Villamayor
into our framework. Although (a global version of) our algorithm only
implies embedded resolution of surfaces in a smooth ambient space of
dimension 3, a classical result known before, we introduce some new
invariant which effectively measures how much the singularities are im-
proved in the process of our algorithm and which strictly decreases after
each blow up. This is in contrast to the well-known Abhyankar-Moh
pathology of the increase of the residual order under blow up and the
phenomenon of the “Kangaroo” points observed by Hauser.
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§1. Outline of the paper

The goals of this paper are two-fold. The first goal is to present
the general mechanism of resolution of singularities (a local version) in
the framework of the Idealistic Filtration Program in positive character-
istic. The classical algorithm in characteristic zero works by induction
on dimension based upon the notion of a hypersurface of maximal con-
tact. Our algorithm in positive characteristic works by induction on the
invariant “σ” based upon the notion of a leading generator system (cf.
[18]). Roughly speaking, the general mechanism splits into two parts;
the first part is to reduce the problem in the general case to the one
in the so-called “monomial case”, and the second part is to solve the
problem in the monomial case. The first part of the general mechanism
works in arbitrary dimension. The second part is quite subtle and dif-
ficult in positive characteristic (while it is easy in the classical setting
in characteristic zero). The second goal is to establish the algorithm
in dimension 3, by actually solving the problem of resolution of sin-
gularities in the monomial case. We incorporate the method recently
developed by Benito-Villamayor [5] into our framework. We introduce
some new invariant, which effectively measures how much the singular-
ities are improved in the process of our algorithm and which strictly
decreases after each blow up. This is in clear contrast to the well-known
Abhyankar-Moh pathology of the increase of the residual order (cf. [21])
and the phenomenon of the “Kangaroo” points observed by Hauser (cf.
[16]) and others. We note that the algorithm by Benito-Villamayor (cf.
[3][4][5]), which works by induction on dimension based upon the notion
of a generic projection, is different from our algorithm, and that even
the setting of the monomial case is different from ours by definition. It
is something of a surprise that we can share the “same” method when
our and their approaches are different. Establishing the algorithm in
dimension 4 or above remains as an open problem.
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We remark that (a global version, which will be published elsewhere,
of) our algorithm in dimension 3 only yields embedded resolution of sur-
faces in a nonsingular ambient 3-fold over an algebraically closed field of
any characteristic. This is a classical result known for more than 50 years
since the time of Abhyankar, Hironaka and others (cf. [1][12][15][17]).
The front line of research, thanks to the works of Abhyankar, Cossart-
Piltant, and Cutkosky (cf. [1][9][10][11][12]), goes way beyond, estab-
lishing resolution of singularities of a 3-fold over an algebraically closed
field of positive characteristic. We believe, however, that the method of
our paper should provide a first step toward the open problem of embed-
ded resolution of singularities of 3-folds in a nonsingular ambient 4-fold
in positive characteristic, and also in higher dimensional cases.

The outline of the paper goes as follows.
After §1, which describes the outline of the paper, we give a brief

overview of the contents of the paper in §2. In §3, we present a quick
review on the algorithm in characteristic zero. Our algorithm in positive
characteristic is modeled upon the classical algorithm in characteristic
zero. The review is given in such a way that the reader can see the
similarities and differences between our algorithm and the classical al-
gorithm through an easy and accessible comparison. In §4, we present
the general mechanism of our algorithm for resolution of singularities
in positive characteristic. In §5, we present a solution to the problem
of resolution of singularities in the monomial case in dimension 3, thus
completing our algorithm as a whole in dimension 3.

We assume, throughout the entire paper, that the base field is an
algebraically closed field k = k of characteristic zero char(k) = 0 or
positive characteristic char(k) = p > 0. Therefore, there is no danger
in not distinguishing the two notions “smooth over k” and “regular”
(meaning that every local ring of a variety is a regular local ring), and in
using the word “nonsingular” as a synonym. In the case where the base
field k is perfect, our algorithm over its algebraic closure k is invariant
under the action of the Galois group Gal(k/k) and hence descends to
the algorithm over the original base field k. The case where the base
field is not perfect will be investigated elsewhere.
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§2. Overview

The problem of resolution of singularities in its simplest form is
stated as follows:

Problem 1 (Resolution of singularities). Given an algebraic variety

X over k, find a proper birational map X
π← X̃ from a nonsingular

variety X̃.

The above problem is reduced to the following problem of embedded
resolution of singularities, if our solution to the latter is functorial in the
sense that it is stable under the pull-back by smooth morphisms.

Problem 2 (Embedded resolution of singularities). Given an al-
gebraic variety X, embedded as a closed subvariety in a smooth am-
bient variety W over k, i.e., X ⊂ W , find a sequence starting from
(X0 ⊂ W0) = (X ⊂ W )

(X0 ⊂ W0) ←· · · ← (Xi ⊂ Wi)
πi+1← (Xi+1 ⊂ Wi+1) ←· · · ← (Xl ⊂ Wl),

where Wi ← Wi+1 is a blow up with smooth center Ci ⊂ Wi which does
not contain the strict transform Xi of X0 in year i , i.e., Ci �⊃ Xi, and
which is transversal to the exceptional divisor Di, i.e., Ci � Di (maybe
contained in Di), such that the last strict transform Xl is nonsingular
and transversal to Dl.
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Note that in the above formulation we do not require that the center
is contained in the singular locus of the strict transform Ci ⊂ Sing(Xi)
or even that the center is contained in the strict transform Ci ⊂ Xi.

Note also that we say Ci is transversal to Di, denoted by Ci �
Di, if at any closed point P ∈ Wi there exist a regular system of
parameters (x1, . . . , xd) at P , taken from mP ⊂ OW,P , and subsets
A,B ⊂ {1, . . . , d = dimWi} such that Ci =

⋂
α∈A{xα = 0} and

Di =
⋃

β∈B{xβ = 0} in a neighborhood of P .

The implication “Solution to Problem 2 (in a functorial way) ⇒ So-
lution to Problem 1” can be seen as follows: Given an algebraic variety
X, decompose it into the union of affine open subvarieties X =

⋃
λ∈Λ Xλ

with embeddings Xλ ⊂ Wλ = Anλ . Take embedded resolutions of sin-

gularities (Xλ ⊂ Wλ) ← (X̃λ ⊂ W̃λ). We have only to see that the X̃λ’s
patch together by the functoriality to obtain resolution of singularities

X =
⋃

λ∈Λ Xλ ← X̃ =
⋃

λ∈Λ X̃λ. For the detail of the proof, we refer
the reader to [23].

How can we solve Problem 2 (in a functorial way so that we can
solve Problem 1 also) ? We would like to use “induction” on dimension.
However, the inductive scheme to approach Problem 2 is not clear as
stated, at least not obvious. We will present in §3 the reformulation by
Hironaka where in characteristic zero the inductive scheme on dimension
is more transparent and used classically, and in §4 another reformulation
in our framework where in positive characteristic the inductive scheme
on the invariant “σ” emerges.

We give an overview of the contents of our paper in the following.
§3 is devoted to a quick review on the algorithm in characteristic

zero.
In §3.1, we give the precise statement of the reformulation by

Hironaka (following the language used by Villamayor). In short, the
reformulation turns the problem of embedded resolution of singular-
ities into a game of reducing the order of an ideal on a nonsingu-
lar ambient variety. We start from a triplet of data (W, (I, a), E),
where W is a nonsingular variety over k, (I, a) is a pair consisting
of a nonzero coherent ideal sheaf I on W and a fixed positive inte-
ger a ∈ Z>0, and where E is a simple normal crossing divisor on
W , called a boundary (divisor). We define its singular locus to be
Sing(I, a) := {P ∈ W | ordP (I) ≥ a}. Then we are required to find
a sequence of transformations (see §3.1 for the precise definition of a
transformation) starting from (W0, (I0, a), E0) = (W, (I, a), E)
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(W0, (I0, a), E0) ←· · ·← (Wi, (Ii, a), Ei)
πi+1← (Wi+1, (Ii+1, a), Ei+1)

←· · ·← (Wl, (Il, a), El)

such that Sing(Il, a) = ∅. That is to say, the order of the last ideal Il is
everywhere below a. We call such a sequence “resolution of singularities
for (W, (I, a), E)”.

In this reformulation, the inductive scheme of the problem can be
stated, though naive, simply as follows: Given a triplet of data (W, (I, a),
E), find another triplet of data (H, (J , b), F ) with H ⊂

closed
W and

dimH = dimW − 1 such that constructing resolution of singularities
for (W, (I, a), E) is equivalent to constructing one for (H, (J , b), F ), a
property symbolically denoted by

(W, (I, a), E) ∼
equivalent

(H, (J , b), F ).

In §3.2, we discuss the inductive scheme on dimension of the al-
gorithm in characteristic zero. It starts with the following key induc-
tive lemma: Given (W, (I, a), E) assumed to be under a certain con-
dition (�), the lemma constructs (H, (J , b), F ) with H ⊂

closed
W and

dimH = dimW − 1 (locally around a fixed point P ∈ W ) which satis-
fies one of the following two.

(i) The ideal J is a zero sheaf, i.e., J ≡ 0: In this case, we take
the transformation with center H = Sing(I, a)

(W, (I, a), E) ← (W̃ , (Ĩ, a), Ẽ).

After the transformation, we have Sing(Ĩ, a) = ∅ and hence resolution
of singularities is achieved.

(ii) The ideal J is not a zero sheaf, i.e., J �≡ 0: In this case, we
have

(W, (I, a), E) ∼
equivalent

(H, (J , b), F ).

Therefore, by constructing resolution of singularities for (H, (J , b), F )
by induction on dimension, we achieve resolution of singularities for
(W, (I, a), E).

The hypersurface “H” in the key inductive lemma is called a hyper-
surface of maximal contact.

There are three shortcomings of the above key inductive lemma
when we look at the goal of establishing the algorithm in characteristic
zero:
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1© we have to impose condition (�) on (W, (I, a), E),
2© the construction of (H, (J , b), F ) is only local, and
3© the invariant “ord” may increase after a transformation, even

though our ultimate goal is to reduce its value to be below the fixed level
a.

In order to overcome these shortcomings, we adopt the following
mechanism.

(1) We introduce a pair of invariants (w-ord, s) and its associ-
ated triplet of data (W, (K, κ), G), called the modification of the original
triplet (W, (I, a), E), having the following properties. (We remark that,
when we want to emphasize the dimension of the ambient variety, we
add “dim” to the pair of invariants as the first factor, making the pair
into a triplet (dim,w-ord, s).)

• The maximum locus of the pair of invariants coincides with the
singular locus of the modification, i.e.,

MaxLocus(w-ord, s) = Sing(K, κ).

Moreover, after each transformation, the value of the pair (w-ord, s)
never increases, and the locus where the value of the pair takes the same
maximum value as the original one coincides with the singular locus of
the transformation of the modification. (Note that the transformations
of (W, (K, κ), G) induce those of (W, (I, a), E).) This means that reso-
lution of singularities for (W, (K, κ), G) implies the strict decrease of the
(maximum) value of the pair (w-ord, s).

• Even though the original triplet (W, (I, a), E) may not satisfy
condition (�), the modification (W, (K, κ), G) does.

(2) We apply the key inductive lemma to (W, (K, κ), G). We find a
triplet (H, (J , b), F ) with H ⊂

closed
W and dimH = dimW − 1 such that

we are either in Case (i), or in Case (ii) where resolution of singularities
for (H, (J , b), F ) implies the one for (W, (K, κ), G).

(3) In Case (i), by a single blow up with center H, we achieve
resolution of singularities for (W, (K, κ), G). In Case (ii), by induction
on dimension, we achieve resolution of singularities for (H, (J , b), F ),
hence for (W, (K, κ), G). In both cases, we have the strict decrease of
the (maximum) value of the pair (w-ord, s).

(4) Repeatedly decreasing the value of the pair (w-ord, s) this way,
we reach the case where w-ord = 0. The condition w-ord = 0 is equiv-
alent to saying that the ideal is generated by some monomial of the
defining equations of the components in the boundary divisor E. Thus
we call the case where w-ord = 0 the monomial case.
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(5) Finally, we have only to construct resolution of singularities in
the monomial case, which can be done easily in characteristic zero.

The description of the inductive scheme above is only local, and
hence we have overcome shortcomings 1© and 3© only so far. The way we
overcome shortcoming 2© is discussed in §3.5 via the strand of invariants
woven in §3.3.

In §3.3, we present the inductive scheme explained in §3.2 in terms
of weaving the strand of invariants “invclassic”. The strand “invclassic”
consists of the units of the form (dimHj ,w-ordj , sj), the dimension of
the hypersurface of maximal contactHj followed by the pair as described
in §3.1 computed from the triplet (Hj , (J j , bj), F j) at the j-th stage,
and ends either with (dimHm,∞) or with (dimHm, 0,Γ) depending
on whether the last triplet (Hm, (Jm, bm), Fm) is in Case (i) of the key
inductive lemma or it is in the monomial case. That is to say, “invclassic”
takes the following form

“invclassic” = (dimH0 = dimW,w-ord0, s0) · · · (dimHj ,w-ordj , sj)

· · · (dimHm−1,w-ordm−1, sm−1)

{
(dimHm,∞), or

(dimHm, 0,Γ).

Note that we do not include the invariant s in the last unit.
We choose the center of blow up to be Hm when w-ordm = ∞ ac-

cording to Case (i) of the key inductive lemma, or the maximum locus
of the invariant Γ on Hm when w-ordm = 0 according to the procedure
in the monomial case (which is discussed in §3.4). This is equivalent to
choosing the center of blow up to be the maximum locus of “invclassic”.
This leads to the decrease of the (maximum) value of “invclassic”. Show-
ing that the (maximum) value of “invclassic” cannot decrease infinitely
many times, we achieve resolution of singularities for (W, (I, a), E).

In §3.4, we discuss the procedure of constructing resolution of sin-
gularities in the monomial case, the only remaining task to complete the
classical algorithm. In characteristic zero, this can be done easily and
purely from the combinatorial data obtained by looking at the monomial
in consideration, manifested as the invariant Γ.

The strand “invclassic” a priori depends on the choice of the hyper-
surfaces of maximal contact we take in the process of weaving, and it is
a priori only locally defined. However, the strand “invclassic” is actually
independent of the choice, and hence it is globally well-defined. This can
be shown classically by the so-called Hironaka’s trick, or more recently
by inserting W�lodarczyk’s “homogenization” or the first author’s “differ-
ential saturation” into the construction of the modification. Therefore,
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the process of resolution of singularities, where we take the center of
blow up to be the maximum locus of “invclassic”, is also globally well-
defined. This is how we overcome shortcoming 2© of the key inductive
lemma, accomplishing the globalization of the algorithm in §3.5.

This completes the overview of §3.
§4 is devoted to describing the general mechanism of our algorithm

in positive characteristic, which is closely modeled upon the algorithm
in characteristic zero explained in §3. (We remark that our algorithm is
also valid in characteristic zero.)

In §4.1, we give the statement of a further reformulation (of Prob-
lem 2), which allows us to present the inductive structure on the in-
variant “σ”. We start from a triplet of data (W,R, E), where we re-
place the pair (I, a) in the classical triplet (W, (I, a), E) with R. Here
R =

⊕
a∈Z≥0

(Ia, a) represents an idealistic filtration of i.f.g. type (short

for “integrally and finitely generated type”), i.e., a finitely generated
and graded (by the nonnegative integer a ∈ Z≥0 called the level of
the ideal Ia in the first factor) OW -algebra satisfying the condition
OW = I0 ⊃ I1 ⊃ I2 ⊃ · · · ⊃ Ia ⊃ · · · . We define its singular locus
to be Sing(R) := {P ∈ W | ordP (Ia) ≥ a ∀a ∈ Z≥0}. Then we are
required to find a sequence of transformations (see §4.1 for the precise
definition of a transformation) starting from (W0,R0, E0) = (W,R, E)

(W0,R0, E0) ← · · · ← (Wi,Ri, Ei)
πi+1← (Wi+1,Ri+1, Ei+1)

← · · · ← (Wl,Rl, El)

such that Sing(Rl, a) = ∅. We call such a sequence “resolution of sin-
gularities for (W,R, E)”. So far it is perfectly parallel to the story
in characteristic zero, and there is nothing unique to the case in posi-
tive characteristic. In fact, resolution of singularities for (W, (I, a), E) is
equivalent to resolution of singularities for (W,R, E) where the idealistic
filtration of i.f.g. type is given by the formula R =

⊕
n∈Z≥0

(I�n/a�, n).
However, the reformulation allows us to introduce the invariant σ, which
plays the key role in our inductive scheme.

In §4.2, we discuss the inductive scheme of our algorithm on the
invariant σ in positive characteristic. Here, unlike in characteristic zero,
we have no key inductive lemma. In fact, the statement of the key
inductive lemma fails to hold in positive characteristic as is demonstrated
by an example due to R. Narasimhan. That is to say, there is no smooth
Hypersurface of Maximal Contact (HMC for short) in general. However,
we can still introduce the notion of a Leading Generator System (LGS for
short), which should be considered as a collective substitute in positive
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characteristic for the notion of an HMC in characteristic zero. Our basic
strategy is to follow the construction of the algorithm in characteristic
zero, replacing an HMC (leading to the induction on dimension) with
an LGS (leading to the induction on the invariant σ). The description
of the new inductive scheme goes as follows.

(1) We introduce a triplet of invariants (σ, μ̃, s).
If (σ, μ̃, s) = (σ,∞, 0) or (σ, 0, 0), then we do not construct the

modification (W ′,R′, E′).
• In case (σ, μ̃, s) = (σ,∞, 0), we blow up with center C = Sing(R).

The nonsingularity of C is guaranteed by the Nonsingularity Principle
(cf. [18] [19]), while the transversality of C to the boundary E is guar-
anteed by the invariant s = 0. After the blow up, the singular locus
becomes empty, and resolution of singularities for (W,R, E) is achieved.

• In case (σ, μ̃, s) = (σ, 0, 0), we are in the monomial case by defi-
nition, and we go to Step (5).

If (σ, μ̃, s) �= (σ,∞, 0) or (σ, 0, 0), then we construct its associated
triplet of data (W ′,R′, E′), called the modification of the original triplet
(W,R, E), having the following properties. (Actually the ambient space
for the modification stays the same, i.e., W ′ = W .)

• Resolution of singularities for (W ′,R′, E′) implies the strict de-
crease of the (maximum) value of the triplet (σ, μ̃, s). Note that the
value of the triplet never increases after transformations.

• Either the value of σ strictly decreases, or the value of σ stays
the same but the number of the components in the boundary strictly
drops. In either case, we have (σ,#E) > (σ′,#E′).

(2) There is no key inductive lemma in our new setting.
(3) When (σ, μ̃, s) �= (σ,∞, 0) or (σ, 0, 0) in (1), we achieve reso-

lution of singularities for (W ′,R′, E′) by induction on (σ,#E), which
implies the strict decrease of the (maximum) value of the triplet (σ, μ̃, s).

(4) Repeatedly decreasing the value of the triplet (σ, μ̃, s), we reach
the case where (σ, μ̃, s) = (σ,∞, 0) or (σ, 0, 0), the monomial case.

(5) Finally we have only to construct resolution of singularities in
the monomial case in order to achieve resolution of singularities of the
original triplet (W,R, E). However, the problem of resolution of sin-
gularities in the monomial case in positive characteristic is quite subtle
and very difficult. We only provide a solution in dimension 3 in §5.

In §4.3, we present the inductive scheme explained in §4.2 in terms
of weaving the strand of invariants “invnew”. The strand “invnew” con-
sists of the units of the form (σj , μ̃j , sj) computed from the triplet
(W j ,Rj , Ej) at the j-th stage, and ends either with (σm,∞, 0) or with
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(σm, 0, 0). That is to say, “invnew” takes the following form

“invnew” = (σ0, μ̃0, s0) · · · (σj , μ̃j , sj)

· · · (σm−1, μ̃m−1, sm−1)

{
(σm,∞, 0), or

(σm, 0, 0).

Note that we do compute and include the invariant s in the last unit, in
contrast to the weaving of “invclassic”.

Resolution of singularities of the last m-th triplet (Wm,Rm, Em)
can be achieved by taking the transformation with center Sing(Rm)
when (σm, μ̃m, sm) = (σm,∞, 0) or by resolution of singularities in the
monomial case when (σm, μ̃m, sm) = (σm, 0, 0). This leads to the de-
crease of the value of “invnew”. Showing that the value of “invnew”
cannot decrease infinitely many times, we (should) achieve resolution of
singularities for (W,R, E) (assuming that the problem of resolution of
singularities in the monomial case is solved).

There is one important remark to make. In §4.2 we do not claim
that the maximum locus of the triplet (σ, μ̃, s) coincides with the singu-
lar locus Sing(R′) of the modified idealistic filtration, and in §4.3 we do
not claim that the strand “invnew” is a global invariant whose maximum
locus gives the globally well-defined center of blow up for the algorithm.
The discussion of our new inductive scheme and the weaving of the new
strand of invariants are, therefore, only local. (See Remark 3 for the
precise meaning of “local”.) In fact, “invnew” as presented is indepen-
dent of the choice of the LGS’s we take in the process of weaving, just
like “invclassic” is independent of the choice of the HMC’s we take in the
process of weaving in characteristic zero. Nevertheless, the gap between
MaxLocus(σ, μ̃, s) and Sing(R′) may occur when μ̃ = 1, and hence that
the maximum locus of “invnew” does not provide the global center of
blow up as it is. This calamity is unique to our setting, and never ex-
isted in the classical setting. We can fix this calamity by making certain
adjustments to the strand, the description of which is rather technical
and will be published elsewhere. Therefore, in this paper, we restrict
ourselves to the local description, which, we believe, still captures the
essence of the inductive scheme on the invariant σ.

In §4.4, we mention briefly the reason why resolution of singularities
in the monomial case is difficult in positive characteristic, while it is easy
in characteristic zero.

This completes the overview of §4.
§5 is devoted to the detailed discussion of resolution of singularities

in the monomial case in dimension 3, incorporating the method recently
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developed by Benito-Villamayor into our framework with some improve-
ments. In fact, we introduce a new invariant, which strictly drops after
each blow up and hence effectively shows the termination of the proce-
dure. This is the most subtle and difficult part of this paper.

The invariant τ represents the number of the elements in the LGS,
which takes the value 0, 1, 2, 3 in dimension 3 and which never decreases
under transformations. When τ = 0, 2, 3, resolution of singularities in
the monomial case is rather easy. Therefore, we focus our attention to
the case where τ = 1 in §5.

We are thus in the situation where (analytically) we have a unique
element (h, pe) in the LGS and where h is of the following form via
Weierstrass Preparation Theorem with respect to a regular system of

parameters (x, y, z) at P ∈ W , taken from m̂P ⊂ ÔW,P ,

h = zp
e

+ a1z
pe

+ · · ·+ ape with ai ∈ k[[x, y]]

satisfying ordP (ai) > i for i = 1, . . . , pe. We also have a monomial

(xαyβ , a) ∈ R
of the defining equations x and y of the components of the boundary
divisor E (actually Eyoung) such that every element (f, λ) ∈ R is divisible

by (xαyβ)λ/a modulo h, a consequence of the condition μ̃ = 0.
A naive idea for resolution of singularities in the monomial case

may be stated as follows: Carry out the algorithm for resolution of
singularities of (xαyβ , a) on the hypersurface {z = 0}.

A bad news is that the above naive idea does not work for the reason
that (z, 1) �∈ R in general, which has the following bad implications:

(1) Even though we see that the coefficients ai for i = 1, . . . , pe−1
are under control (in the sense that ai is divisible by (xαyβ)i/a), the
constant term ape is not well controlled. (The idealistic filtration R in
the monomial case is not differentially saturated but only saturated for
{∂n/∂zn | n ∈ Z≥0} in general. However, this is good enough to control
the coefficients ai for i = 1, . . . , pe − 1.) This leads to the calamity that
a candidate for the center determined by the naive idea may not even
be contained in the singular locus.

(2) The hypersurface {z = 0} may not be of maximal contact.
That is to say, after a blow up, its strict transform may no longer “con-
tact” (contain) the singular locus at all.

In §5.1, we introduce the process of “cleaning” in order to eliminate
the “mess” described in the bad news above. The idea of “cleaning”
can be seen already in the work of Abhyankar and Hironaka, in the
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definition of the “residual order”. Here we follow the process refined by
Benito-Villamayor. After cleaning, the invariant

H(P ) := min

{
1

pe
ordP (ape), μ(P ) =

α+ β

a

}
is independent of the choice of h or a regular system of parameters
(x, y, z). The invariant H is well-defined not only at a closed point
P ∈ W but also at the generic point ξ{x=0} (resp. ξ{y=0}) of a component
{x = 0} (resp. {y = 0}) of the boundary divisor E.

In §5.2, we give the description of the procedure of resolution of
singularities, depending on the description of the singular locus. Since
we are in the monomial case, we have Sing(R) ⊂ {x = 0}∪{y = 0}. The
description of the singular locus restricted to {x = 0}, locally around P ,
is given as follows according to the value of the invariant H:

Sing(R) ∩ {x = 0} =

{
{z = x = 0} if H(ξ{x=0}) ≥ 1

P if H(ξ{x=0}) < 1.

That is to say, by looking at the invariant H, we can tell if the singular
locus has dimension 1, where it is a nonsingular curve, or has dimension
zero, where it is an isolated point. We have a similar description of the
singular locus restricted to {y = 0}.

The procedure goes as follows:

Step 1. Check if dimSing(R) = 1. If yes, then blow up the 1-
dimensional components one by one. Since the invariant H strictly de-
creases for the component of the boundary divisor involved in the blow
up, this step comes to an end after finitely many times with the dimen-
sion of the singular locus dropping to 0.

Step 2. Once dimSing(R) = 0, blow up the isolated points in the
singular locus.

Step 3. Go back to Step 1.
Repeat these steps.

§5.3 is devoted to showing termination of the procedure described in
§5.2. We closely follow the beautiful and delicate argument recently de-
veloped by Benito-Villamayor, which analyzes the behavior of the mono-
mial, the invariant H, and the newton polygon of the constant term ape

under blow ups. Their argument is an extension of the classical ideas
of Abhyankar and Hironaka, but highly refined taking into considera-
tion the condition that we are in the monomial case. Benito-Villamayor
also uses “a proof by contradiction” in some part of their argument for
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termination of the procedure. That is to say, they derive a contradic-
tion, assuming the existence of an infinite sequence of the procedure.
Therefore, their argument is not effective. They also use some “strati-
fication” of the configuration of the boundary divisors. We introduce a
new and explicit invariant, which makes the termination argument ef-
fective and which allows us to eliminate the use of “stratification” from
our argument.

This completes the overview of §5, and hence the overview of the
entire paper.

§3. A quick review on the algorithm in characteristic zero

The goal of this section is to give a quick review on the algorithm in
characteristic zero, upon which our algorithm in positive characteristic
is closely modeled. For the overview of this section, we refer the reader
to §2.

3.1. Reformulation of the problem by Hironaka

First, we present the reformulation of the problem by Hironaka. The
form of the presentation we use here is due to Villamayor.

Problem 3 (Hironaka’s reformulation). Suppose we are given the
triplet of data (W, (I, a), E), where W is a nonsingular variety over k,
(I, a) is a pair consisting of a coherent ideal sheaf I on W and a positive
integer a ∈ Z>0, and E is a simple normal crossing divisor on W .

We define its singular locus to be

Sing(I, a) := {P ∈ W | ordP (I) ≥ a}.
We only consider a nonzero ideal sheaf I for the resolution problem.

Then construct a sequence of transformations starting from (W0,
(I0, a), E0) = (W, (I, a), E)

(W0, (I0, a), E0) ←· · ·← (Wi, (Ii, a), Ei)
πi+1← (Wi+1, (Ii+1, a), Ei+1)

←· · ·← (Wl, (Il, a), El)

such that Sing(Il, a) = ∅. We call such a sequence “resolution of singu-
larities for (W, (I, a), E)”.

We note that the transformation

(Wi, (Ii, a), Ei)
πi+1← (Wi+1, (Ii+1, a), Ei+1)

is required to satisfy the following conditions:
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(1) Wi
πi+1← Wi+1 is a blow up with smooth center Ci ⊂ Wi,

(2) Ci ⊂ Sing(Ii, a), and Ci is transversal to Ei (maybe contained
in Ei), i.e., Ci � Ei,

(3) Ii+1 = I(π−1
i+1(Ci))

−a · π−1
i+1(Ii)OWi+1 ,

(4) Ei+1 = Ei ∪ π−1
i+1(Ci).

Lemma 1. A solution to Hironaka’s reformulation provides a solu-
tion to the problem of embedded resolution of singularities.

Proof. Given X ⊂ W , set (W, (I, a), E) = (W, (IX , 1), ∅). Then
Sing(I0, a) = Sing(IX , 1) = X = X0. Take resolution of singularities for
(W, (I, a), E). Observe that, if Xi, the strict transform of X in year i,
is an irreducible component of Sing(Ii, a) and if Xi is not an irreducible
component of the center Ci in year i (and Xj has not been an irreducible
component of Cj in year j for 0 ≤ j < i), then Xi+1 is an irreducible
component of Sing(Ii+1, a) in year (i + 1). Since Sing(Il, a) = ∅, we
conclude that Xm must be an irreducible component of Cm for some
m < l. Since the center Cm is nonsingular by requirement, so is Xm.
Therefore, the truncation of the sequence up to year m provides a se-
quence for embedded resolution. (The other requirements for embedded
resolution as stated in Problem 2 follow automatically from the con-
struction.) Q.E.D.

The inductive scheme for solving Hironaka’s reformulation can be simply
stated in the following naive form.

Naive Inductive Scheme: Given a triplet (W, (I, a), E), find
another triplet (H, (J , b), F ) with H ⊂

closed
W and dimH = dimW −

1 such that the problem of constructing resolution of singularities for
(W, (I, a), E) is equivalent to constructing one for (H, (J , b), F ), i.e.,

(W, (I, a), E) ∼
equivalent

(H, (J , b), F ).

As it is, the above inductive scheme is too naive to hold in general.
In §3.2, we first state the key inductive lemma, which realizes the naive
inductive scheme under a certain extra condition called (�), and then
discuss how to turn it into the real inductive scheme, which works in
general without the extra condition.

3.2. Inductive scheme on dimension

Lemma 2 (Key Inductive Lemma). Given (W, (I, a), E) and a
closed point P ∈ Sing(I, a), suppose that the following condition (�)
is satisfied:

(�)

{
ordP (I) = a

E = ∅.
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Then there exists (H, (J , b), F ) with H ⊂
closed

W and dimH = dimW−1,

in a neighborhood of P , which satisfies one of the following two.

(i) The ideal J is a zero sheaf, i.e., J ≡ 0: In this case, we take
the transformation with center H = Sing(I, a)

(W, (I, a), E) ← (W̃ , (Ĩ, a), Ẽ).

After the transformation, we have Sing(Ĩ, a) = ∅ and hence we achieve
resolution of singularities for (W, (I, a), E) (in a neighborhood of P ).

(ii) The ideal J is not a zero sheaf, i.e., J �≡ 0: In this case, we
have

(W, (I, a), E) ∼
equivalent

(H, (J , b), F ).

Therefore, constructing resolution of singularities for (H, (J , b), F ) by
induction on dimension, we achieve resolution of singularities for (W,
(I, a), E) (in a neighborhood of P ).

Proof. Take f ∈ IP such that ordP (f) = a. Then there exists a
differential operator δ of deg δ = a − 1 such that ordP (δf) = 1. We
note that this is exactly the place where we use the “characteristic zero”
condition.

We have only to set⎧⎨⎩ H = {h = 0} where h = δf,
(J , b) = (Coeff(I)|H , a!),
F = E|H = ∅,

where the “coefficient ideal”, denoted by Coeff(I), is defined by the
formula

Coeff(I) :=
a−1∑
j=0

{Diff j(I)}a!/(a−j)

with Diff j(I) being the sheaf characterized at the stalk for a point
Q ∈ W by

Diff j(I)Q = {θ(g) | g ∈ IQ, θ : a differential operator of deg(θ) ≤ j}.
We note that the condition E = ∅ is only used to guarantee that H
intersects E transversally. The condition on the boundary divisor can
be weakened (and E can be non-empty) to the following: we can find
such H = {h = 0}, with h ∈ Diffa−1(I)P and ordP (h) = 1, that is
transversal to E. We then call the condition (�)weakened. Q.E.D.
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Remark 1. We remark that the statement of the key inductive
lemma fails to hold in positive characteristic, as the following example
by R. Narasimhan shows:

Consider (W, (I, a), E) defined by⎧⎨⎩ W = A4 = Spec k[x, y, z, w] with char(k) = 2,
(I, a) = ((f), 2) with f = w2 + x3y + y3z + z7x,
E = ∅.

Note that the triplet (W, (I, a), E) satisfies the condition (�) at the origin
O.

Then we have a curve C, parametrized by t, sitting inside of the
singular locus

C = {x = t15, y = t19, z = t7, w = t32} ⊂ Sing(I, a).
Observe that the curve C has full embedding dimension at the origin O,
i.e.,

embedding- dimO C = 4 = dimW.

Therefore, there exists no smooth hypersurface H which contains the
singular locus Sing(I, a), and hence there exists no smooth hypersurface
of maximal contact.

We list the shortcomings of the key inductive lemma toward estab-
lishing the algorithm for resolution of singularities for (W, (I, a), E) in
general.

List of shortcomings of the key inductive lemma

1© We have to impose condition (�) on (W, (I, a), E).
2© We construct (H, (J , b), F ) only locally, and hence the resolu-

tion process is only locally constructed by induction.
3© The invariant “ord” may strictly increase under transforma-

tions, even though our ultimate goal is to reduce the invariant “ord” to
be below the fixed level a.

Now we describe the mechanism which overcomes all of the short-
comings above in one stroke, turning the key inductive lemma into the
real inductive structure in characteristic zero.

Mechanism to overcome the shortcomings in the list

Outline of the mechanism

(1) Given (W, (I, a), E) (Precisely speaking, the triplet sits in the
middle of the sequence, say in year “i”, for resolution of singularities.
However, we omit the subscript “( )i” indicating the year for simplicity
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of the notation.), we introduce a pair of invariants (w-ord, s) and its
associated triplet of data (W, (K, κ), G), called the modification of the
original triplet, having the following properties.

• The maximum locus of the pair (w-ord, s), which is an upper
semi-continuous function, coincides with the singular locus Sing(K, κ)
of the modification, i.e.,

MaxLocus(w-ord, s) = Sing(K, κ).

Moreover, after each transformation, the value of the pair (w-ord, s)
never increases, and the locus where the value of the pair takes the same
maximum value as the original one coincides with the singular locus of
the transformation of the modification. (Note that the transformations
of (W, (K, κ), G) induce those of (W, (I, a), E).) This means that reso-
lution of singularities for (W, (K, κ), G) implies the strict decrease of the
(maximum) value of the pair (w-ord, s).

• Even though the original triplet (W, (I, a), E) may not satisfy
condition (�) (or condition (�)weakened), the modification (W, (K, κ), G)
satisfies (�)weakened.

(2) We apply the key inductive lemma to (W, (K, κ), G). We find a
triplet (H, (J , b), F ) with H ⊂

closed
W and dimH = dimW − 1 such that

we are either in Case (i), or in Case (ii) where resolution of singularities
for (H, (J , b), F ) implies the one for (W, (K, κ), G). (We note that G =
Enew may not be empty. However, we can still find a hypersurface of
maximal contact H which is transversal to G = Enew. Therefore, the
triplet (H, (J , b), F ) with F = G|H works.)

(3) In Case (i), by a simple blow up with center H, we accomplish
resolution of singularities for (W, (K, κ), G). In Case (ii), by induction
on dimension, we achieve resolution of singularities for (H, (J , b), F ),
hence for (W, (K, κ), G). In both cases, we have the strict decrease of
the (maximum) value of the pair (w-ord, s).

(4) By repeating the above procedures (1), (2), (3) and decreasing
the value of the pair (w-ord, s), we reach the stage where w-ord = 0,
i.e., I = OW . This means that we are in the monomial case, where the
ideal I is generated by some monomial of the defining equations of the
components in Eyoung ⊂ E.

(5) Finally, we have only to construct resolution of singularities for
the triplet in the monomial case, which can be done easily in character-
istic zero.

We give the detailed and explicit description of the pair (w-ord, s),
the triplets (W, (K, κ), G) and (H, (J , b), F ) in the following:
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Description of the pair (w-ord, s)

◦ w-ord: It is the so-called (normalized) weak order. It is the order
of I (divided by the level a), where I is obtained from I by dividing
it as much as possible by the defining equations of the components in
Eyoung. The symbol Eyoung refers to the union of the exceptional divisors
created after the process of resolution of singularities began. By abuse
of notation, the symbol Eyoung (or E) sometimes refers to the set having
its components as its elements.

◦ s: It is the number of the components in Eold = E \ Enew. The
symbol Enew refers to the union of the exceptional divisors created after
the time when the current value of w-ord first started.

Description of the triplet (W, (K, κ), G)

W = W, (K, κ) = Bdry (Comp(I, a)) , and G = E \ Eold = Enew,

where
• Comp(I, a) is either the transformation of the one in the previous

year if w-ord stays the same, or

(IM + Ia
,M · a) with M = w-ord · a

if w-ord strictly decreases, and where
• Bdry (Comp(I, a)) is either the transformation of the one in the

previous year if (w-ord, s) stays the same, or

(C + (
∑

D∈Eold

I(D))c, c) where (C, c) = Comp(I, a),

if (w-ord, s) strictly decreases.

We note that we have Enew ⊂ Eyoung and that they may not be equal
in general. We also note that, if the value of the pair (w-ord, s) stays
the same as in the previous year, then (K, κ) is the transformation of
the one in the previous year. We remark that the symbols “Comp” and
“Bdry” represent the “Companion” modification and the “Boundary”
modification, respectively.

Description of the triplet (H, (J , b), F )

Case : The value of the pair (w-ord, s) stays the same as in the previous
year.

In this case, we simply take (H, (J , b), F ) to be the transformation
of the one in the previous year under blow up.

Case : The value of the pair (w-ord, s) strictly decreases.
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In this case, we construct (H, (J , b), F ) as follows.⎧⎨⎩ H = the strict transform of Hiold ,
(J , b) = (Coeff(K)|H , κ!),
F = G|H ,

whereHiold is taken in the following way: We go back to the year ι := iold
when the current value of w-ord first started. Let (Cι, cι) = Comp(Iι, a)
be the companion modification constructed in year ι. We take fι ∈ (Cι)Pι

and a differential operator δι of deg δι = cι − 1 such that ordPι(fι) = cι
and ordPι(διfι) = 1. We set Hiold = Hι = {διfι = 0}.

This completes the discussion of the mechanism to achieve resolution
of singularities for (W, (I, a), E) in general. We note, however, that we
only overcome shortcomings 1© and 3© on the list, since the description
so far is only local. We discuss in §3.5 how to overcome shortcoming 2©
and how to globalize the procedure via the strand of invariants woven
in the next section.

3.3. Weaving of the classical strand of invariants “invclassic”

In §3.3, we interpret the inductive scheme explained in §3.2 in terms
of weaving the strand of invariants “invclassic”, whose maximum locus
(with respect to the lexicographical order) determines the center of blow
up for the algorithm for resolution of singularities in characteristic zero.

We weave the strand of invariants “invclassic” consisting of the units
of the form (dimHj ,w-ordj , sj), computed from the modifications (Hj ,
(J j , bj), F j) constructed simultaneously along the weaving process. We
note that we are adding “dimH” to the pair (w-ord, s) as the first fac-
tor of the unit, in order to emphasize the role of the dimension in the
inductive scheme.

Weaving Process

We describe the weaving process inductively.
Note that constructing a sequence for resolution of singularities by

blowing up is referred to as “proceeding in the vertical direction” passing
from one year to the next, indicated by the subscript “i”, while weaving
the strand and constructing the modifications passing from one stage to
the next, indicated by the superscript “j”, is referred to as “proceeding
in the horizontal direction” staying in a fixed year.

Suppose we have already woven the strands and constructed the
modifications up to year (i− 1).

Now we are in year i (looking at the neighborhood of a closed point
Pi ∈ Wi).
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We start with (Wi, (Ii, a), Ei) = (H0
i , (J 0

i , b
0
i ), F

0
i ), just renaming

the transformation (Wi, (Ii, a), Ei) in year i of the resolution sequence
as the 0-th stage modification (H0

i , (J 0
i , b

0
i ), F

0
i ) in year i.

Suppose that we have already woven the strand up to the (j− 1)-th
unit

(invclassic)
≤j−1
i = (dimH0

i ,w-ord
0
i , s

0
i )(dimH1

i ,w-ord
1
i , s

1
i )

· · · (dimHj−1
i ,w-ordj−1

i , sj−1
i )

and that we have also constructed the modifications up to the j-th one

(H0
i , (J 0

i , b
0
i ), F

0
i ), · · · , (Hj−1

i , (J j−1
i , bj−1

i ), F j−1
i ), (Hj

i , (J j
i , b

j
i ), F

j
i ).

Our task is to compute the j-th unit (dimHj
i ,w-ord

j
i , s

j
i ) and con-

struct the (j+1)-th modification (Hj+1
i , (J j+1

i , bj+1
i ), F j+1

i ) (unless the
weaving process is over at the j-th stage).

Computation of the j-th unit (dimHj
i ,w-ord

j
i , s

j
i )

◦ dimHj
i : We just remark that we insert this first factor in char-

acteristic zero only to emphasize the role of the dimension, which corre-
sponds to the role of the invariant σ in our algorithm in positive char-
acteristic.

◦ w-ordji : We compute the second factor as follows.

w-ordji =

{
∞ if J j

i ≡ 0,

ord(J j
i )/b

j
i if J j

i �≡ 0,

where the ideal J j
i is obtained from J j

i by dividing the latter as much

as possible by the defining ideals of the components in (F j
i )young, i.e.,

J j
i =

⎛⎝ ∏
D∈(F j

i )young

I(D)−ordη(D)(J j
i )

⎞⎠ · J j
i

where η(D) is the generic point of D and where (F j
i )young(⊂ F j

i ) is the
union of the exceptional divisors created after the year when the value

(invclassic)
≤j−1
i (dimHj

i ) first started.

We note that, if w-ordji = ∞ or 0, we declare that the (j = m)-th
unit is the last one, and we stop the weaving process at the m-th stage
in year i. When w-ordji = ∞, the third factor is not included. When

w-ordji = 0, we are in the monomial case and we insert the invariant Γ
as the third factor instead of the invariant s.
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◦ sji : It is the number of the components in (F j
i )old = F j

i \(F j
i )new,

where (F j
i )new(⊂ F j

i ) is the union of the exceptional divisors created af-

ter the year when the value (invclassic)
≤j−1
i (dimHj

i ,w-ord
j
i ) first started.

We note that the third factor s is only included if w-ordji �= ∞ or 0.

At the end, the weaving process of the strand comes to an end in a
fixed year i, with (invclassic)i taking the following form

(invclassic)i = (dimH0
i ,w-ord

0
i , s

0
i ) · · · (dimHj

i ,w-ord
j
i , s

j
i )

· · · (dimHm−1
i ,w-ordm−1

i , sm−1
i )

{
(dimHm

i ,w-ordmi = ∞), or

(dimHm
i ,w-ordmi = 0,Γ).

Termination in the horizontal direction

We note that termination of the weaving process in the horizontal
direction is a consequence of the fact that going from the j-th unit to
the (j +1)-th unit we have dimHj

i > dimHj+1
i and that the dimension

obviously satisfies the descending chain condition.

Construction of the (j+1)-th modification (Hj+1
i , (J j+1

i , bj+1
i ), F j+1

i )

We note that we construct the (j + 1)-th modification only when

w-ordji �= ∞ or 0.

Case : (invclassic)
≤j
i = (invclassic)

j
i−1.

In this case, we simply take (Hj+1
i , (J j+1

i , bj+1
i ), F j+1

i ) to be the

transformation of (Hj+1
i−1 , (J j+1

i−1 , b
j+1
i−1 ), F

j+1
i−1 ) under the blow up.

Case : (invclassic)
≤j
i < (invclassic)

j
i−1.

In this case, we follow the construction described in the mechanism
discussed in §3.2.

Starting from (Hj
i , (J j

i , b
j
i ), F

j
i ), we firstly construct (Hj

i , (Kj
i , κ

j
i ),

Gj
i ), whose description is given below.

Hj
i = Hj

i , (Kj
i , κ

j
i ) = Bdry(Cj

i , c
j
i ), and Gj

i = F j
i \ (F j

i )old = (F j
i )new,

where

(Cj
i , c

j
i ) = Comp(J j

i , b
j
i ), Bdry(Cj

i , c
j
i ) = (Cj

i + (
∑

D⊂(F j
i )old

I(D))c
j
i , cji ),

and, denoting (invclassic)
≤j−1
i (dimHj

i ,w-ord
j
i ) by αj

i , we set Comp(J j
i ,

bji ) to be either the transformation of Comp(J j
i−1, b

j
i−1) if α

j
i = αj

i−1, or

(J j
i

Mj
i + J j

i

bji
,M j

i · bji ) with M j
i = w-ordji · bji
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if αj
i < αj

i−1.

Then we secondly construct (Hj+1
i , (J j+1

i , bj+1
i ), F j+1

i ) as follows.⎧⎪⎨⎪⎩
Hj+1

i = the strict transform of Hj+1

ijold
,

(J j+1
i , bj+1

i ) = (Coeff(Kj
i )|Hj+1

i
, (κj

i )!)

F j+1
i = Gj

i |Hj+1
i

= (F j
i )new|Hj+1

i
,

where Hj+1

ijold
is taken in the following way: We go back to the year

ι := ijold when the current value of inv≤j
i (dimHj

i ,w-ord
j
i ) first started.

Let (Cj
ι , c

j
ι ) = Comp(Ij

ι , b
j
ι ) be the companion modification constructed

in year ι. We take f j
ι ∈ (Cj

ι

)
Pι

and a differential operator δjι of deg δjι =

cjι − 1 such that ordPι(f
j
ι ) = cjι and ordPι(δ

j
ι f

j
ι ) = 1. We set Hj+1

ijold
=

Hj+1
ι = {δjι f j

ι = 0}.
Summary of the algorithm in char(k)=0 in terms of “invclassic”

We start with (W, (I, a), E) = (W0, (I0, a), E0).
Suppose we have already constructed the resolution sequence up to

year i

(W, (I, a), E) = (W0, (I0, a), E0) ← · · · ← (Wi, (Ii, a), Ei).

We weave the strand of invariants in year i described as above

(invclassic)i = (dimH0
i ,w-ord

0
i , s

0
i ) · · · (dimHj

i ,w-ord
j
i , s

j
i )

· · · (dimHm−1
i ,w-ordm−1

i , sm−1
i )

{
(dimHm

i ,w-ordmi = ∞), or

(dimHm
i ,w-ordmi = 0,Γ).

There are two cases according to the form of the last unit:

Case : w-ordmi = ∞.
In this case, we take the center of blow up in year i for the trans-

formation to be the last hypersurface of maximal contact Hm
i .

Case : w-ordmi = 0.
In this case, we follow the procedure specified for resolution of sin-

gularities in the monomial case in §3.4, and take the center of blow up in
year i for the transformation to be the maximum locus of the invariant
Γ on Hm

i .

In both cases, the center of blow up coincides with the maximum
locus of the strand (invclassic)i.
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Termination in the vertical direction

The value of the strand “invclassic” never increases after the blow
up described as above. By construction, the maximum locus of
(invclassic)

≤j coincides with the singular locus of (Hj+1, (J j+1, bj+1),
F j+1). Therefore, resolution of singularities for (Hj+1, (J j+1, bj+1),
F j+1) implies the strict decrease of (invclassic)

≤j . In particular, in the
first case, (invclassic)

≤m−1 strictly decreases. In the second case, either
(invclassic)

≤m−1 strictly decreases, or while (invclassic)
≤m−1 may remain

the same (and hence so does (invclassic)
≤m−1(dimHm

i ,w-ordmi = 0)), the
invariant Γ strictly decreases. After all, we conclude that the value of the
strand strictly decreases after each blow up, i.e., we have (invclassic)i >
(invclassic)i+1. Now we claim that the value of the strand “invclassic”
cannot decrease infinitely many times. In fact, suppose by induction we

have shown that the value of (invclassic)
≤t−1

cannot decrease infinitely

many times. Then after some year, the value of (invclassic)
≤t−1

stabi-
lizes. This in turn implies that the value bt, the second factor of the pair
in the t-th modification, stays the same, say b. Now the value of w-ordt,
having the fixed denominator b, cannot decrease infinitely many times,
and neither can the value st being the nonnegative integer. Therefore,

we conclude that the value of (invclassic)
≤t

cannot decrease infinitely
many times. As the value of t increases, the value of the dimension
decreases by one. Since obviously the value of the dimension satisfies
the descending chain condition, the increase of the value of t stops after
finitely many times. Finally, therefore, we conclude that the value of
the strand “invclassic” cannot decrease infinitely many times.

Therefore, the algorithm terminates after finitely many years,
achieving resolution of singularities for (W, (I, a), E).

3.4. The monomial case in characteristic zero

The purpose of §3.4 is to discuss how to construct resolution of
singularities for (W, (I, a), E) which is in the monomial case. (Precisely
speaking, the triplet sits in the middle of the sequence, say in year “i”,
for resolution of singularities. However, we omit the subscript “( )i”
indicating the year for simplicity of the notation.)

Recall that, in the monomial case, I is a monomial of the ideals
defining the components of Eyoung =

⋃e
t=1 Dt ⊂ E (See §3.3 for the

definition of Eyoung.), i.e.,

I =
e∏

t=1

I(Dt)
ct with ct ∈ Z≥0.
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Invariant “Γ”

Definition 1 (Invariant “Γ”). Let the situation be as above. We
define the invariant Γ = (Γ1,Γ2,Γ3) at P ∈ Sing(I, a) in the following
way:

Γ1 = −min{n | ∃ t1, . . ., tn s.t. ct1 + · · ·+ ctn ≥ a, P ∈Dt1∩· · · ∩Dtn},
Γ2 = max{(ct1 + · · ·+ ctn)/a | n = −Γ1, P ∈ Dt1 ∩ · · · ∩Dtn},

Γ3 = max

{
(t1, . . . , tn) | n = −Γ1, (ct1 + · · ·+ ctn)/a = Γ2,

P ∈ Dt1 ∩ · · · ∩Dtn , t1 < · · · < tn

}
.

It is immediate to see the following properties of the invariant “Γ”.

(1) The invariant Γ is an upper semi-continuous function.
(2) The maximum locus MaxLocus(Γ) is nonsingular, since it is

the intersection of some components in Eyoung ⊂ E, a simple normal
crossing divisor.

Procedure and its termination

Now take the transformation with center C = MaxLocus(Γ)

(W, (I, a), E)
π← (W ′, (I ′, a), E′)

where E′ = E ∪ π−1(C) and E′
young = Eyoung ∪ π−1(C) =

⋃e+1
t=1 Dt with

De+1 = π−1(C). Then it is easy to see that (W ′, (I ′, a), E′) is again in
the monomial case and that the invariant Γ strictly decreases, i.e.,

Γ > Γ′.

Since the value of Γ cannot decrease infinitely many times, this proce-
dure must terminate after finitely many years, achieving resolution of
singularities for (W, (I, a), E) in the monomial case.

This completes the discussion on how to construct resolution of sin-
gularities for (W, (I, a), E) in the monomial case.

3.5. Globalization

The strand “invclassic” a priori depends on the choice of the hyper-
surfaces of maximal contact we take in the process of weaving, and it is
a priori only locally defined. However, the strand “invclassic” is actually
independent of the choice, and hence it is globally well-defined. This
can be shown classically by the so-called Hironaka’s trick, or more re-
cently by incorporating W�lodarczyk’s “homogenization” (cf.[23]) or the
first author’s “differential saturation” (cf.[18]) in the construction of the
modification. Therefore, the process of resolution of singularities, where
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we take the center of blow up to be the maximum locus of “invclassic”,
is also globally well-defined. This is how we overcome shortcoming (2)
of the key inductive lemma.

This finishes the quick review on the classical algorithm in charac-
teristic zero.

§4. Our algorithm in positive characteristic

The goal of this section is to discuss the general mechanism of our
algorithm in positive characteristic, which is modeled closely upon the
classical algorithm in characteristic zero reviewed in §3.

4.1. Reformulation of the problem in our setting

First, we present the reformulation of the problem in our setting.

Problem 4 (Reformulation in terms of an idealistic filtration (cf.
[18] [19])). Suppose we are given the triplet of data (W,R, E) such that
W is a nonsingular variety over k, R =

⊕
a∈Z≥0

(Ia, a) is an idealistic

filtration of i.f.g. type (resp. of i.g. type), i.e., a finitely generated
graded OW -algebra (resp. a graded OW -algebra) satisfying the condition
OW = I0 ⊃ I1 ⊃ I2 · · · ⊃ Ia ⊃ · · · , where “a” in the second factor
specifies the “level” of the ideal Ia in the first factor, and E is a simple
normal crossing divisor on W .

We define its singular locus to be

Sing(R) := {P ∈ W | ordP (Ia) ≥ a ∀a ∈ Z≥0}.
(We note that we only consider R with I1 �= 0 for the resolution prob-
lem.)

Then construct a sequence of transformations starting from (W0,R0,
E0) = (W,R, E)

(W0,R0, E0) ←· · ·← (Wi,Ri, Ei)
πi+1← (Wi+1,Ri+1, Ei+1)

←· · ·← (Wl,Rl, El)

such that Sing(Rl) = ∅.
We call such a sequence “resolution of singularities for (W,R, E)”.
We note that the transformation

(Wi,Ri, Ei)
πi+1← (Wi+1,Ri+1, Ei+1)

is required to satisfy the following conditions:

(1) Wi
πi+1← Wi+1 is a blow up with smooth center Ci ⊂ Wi,
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(2) Ci ⊂ Sing(Ri), and Ci is transversal to Ei (maybe contained
in Ei), i.e., C � Ei,

(3) Ri+1 = G(⋃a∈Z>0
(Ja,i+1, a)), where

Ja,i+1 = I(π−1
i+1(Ci))

−a · π−1
i+1(Ia,i)OWi+1 for a ∈ Z≥0,

i.e., Ri+1 is the smallest idealistic filtration of i.f.g. type containing
(Ja,i+1, a) for all a ∈ Z≥0 (We note that Ia,i+1 ⊃ Ja,i+1 but they may
not be equal in general.),

(4) Ei+1 = Ei ∪ π−1
i+1(Ci).

Remark 2 (Local version). Problem 4 is the“global” version of the
problem of resolution of singularities for the triplet of data (W,R, E).
In the following, we formulate its local version: Starting from a closed
point P ∈ Sing(R) ⊂ W and its neighborhood, we have a sequence of
closed points and their neighborhoods

P0 ∈ Sing(R0)⊂W0 ← P1 ∈ Sing(R1)⊂W1 ←· · ·← Pi ∈ Sing(Ri)⊂Wi

in the resolution sequence, where W = W0, R = R0 and P = P0.
After we choose the center Pi ∈ Ci ⊂ Sing(Ri) ⊂ Wi and take the

transformation Wi
πi+1← Wi+1 to extend the resolution sequence, the

“devil” tries to choose a closed point Pi+1 ∈ π−1
i (Pi)∩Sing(Ri+1) ⊂ Wi.

If π−1
i (Pi)∩Sing(Ri+1) = ∅, then the devil loses. Our task is to provide a

prescription on how to choose the center so that, no matter how the devil
makes his choice, he will end up losing. That is to say, the prescription
should guarantee that we ultimately reach year i = l−1 so that, with the
choice of center Cl−1, after the blow up we have π−1

l (Pl−1)∩Sing(Rl) =
∅.

Our algorithm discussed in this paper is exclusively for this
local version of the problem of resolution of singularities for the triplet
of data (W,R, E). The adjustments we have to make to our algorithm
in order to solve the global version of the problem will be published
elsewhere.

The notion of “the differential saturation” DR (of an idealistic fil-
tration R of i.f.g. type) plays an important role in our algorithm.

Definition 2. Let R be an idealistic filtration of i.f.g. type. We
define its differential saturation DR (at the level of the stalk for a point
P ∈ W ) as follows:

DRP := G ({(δf,max{a− deg δ, 0}) | (f, a) ∈ RP , δ : a diff. op.}) ,
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where the symbol G(S) denotes “an idealistic filtration of i.g. type gen-
erated by the set S”, i.e., the smallest idealistic filtration of i.g. type
containing S.

Remark 3.
(1) It follows immediately from the generalized product rule (cf.

[18]) that DR is again an idealistic filtration of i.f.g. type, R ⊂ DR, and
that it is differentially saturated, i.e., D(DR) = DR.

(2) The problem of constructing resolution of singularities for (W,
R, E) is equivalent to the one for (W,DR, E), i.e.,

(W,R, E) ∼
equivalent to

(W,DR, E).

4.2. Inductive scheme on the invariant “σ”

The classical algorithm in characteristic zero works by induction on
dimension, based upon the notion of a smooth hypersurface of maximal
contact, as reviewed in §3. Narasimhan’s example (cf. Remark 1 in §3)
tells us, however, that there is no hope of finding a smooth hypersurface
of maximal contact in positive characteristic. The following proposition
gives rise to the notion of “a leading generator system” (called an LGS
for short), which we consider as a collective substitute in positive char-
acteristic for the notion of a hypersurface of maximal contact (called
an HMC for short) in characteristic zero. Our algorithm in positive
characteristic works by induction on the invariant “σ”, based upon the
notion of an LGS. Roughly speaking, introducing the notion of an LGS
corresponds to considering singular hypersurfaces of maximal contact.

Definition of the invariant “σ”

Proposition 1 (cf. [18]). Let R =
⊕

a∈Z≥0
(Ia, a) be an idealistic

filtration of i.f.g. type. Assume that R is differentially saturated, i.e.,
R = DR. Fix a closed point P ∈ Sing(R) ⊂ W .

Consider the leading algebra LP (R)

LP (R) :=
⊕

a∈Z≥0

{f mod ma+1
P | (f, a) ∈ RP , f ∈ ma

P }⊂
⊕

a∈Z≥0

ma
P /m

a+1
P .

Then there exists a regular system of parameters (x1, . . ., xt, xt+1, . . ., xd)
at P such that the leading algebra takes the following form:

Case : char(k) = 0

LP (R) = k[x1, . . . , xt] ⊂ k[x1, . . . , xt, xt+1, . . . , xd] =
⊕

a∈Z≥0

ma
P /m

a+1
P .
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Moreover, we observe the following: if we take an element (hi, 1) ∈ RP

with hi ≡ xi mod m2
P (i = 1, . . . , t), then the hypersurface {hi = 0} is a

hypersurface of maximal contact in the classical sense.

Case : char(k) = p > 0

LP (R) = k[xpe1

1 , . . . , xpet

t ] ⊂ k[x1, . . . , xt, xt+1, . . . , xd] =
⊕

a∈Z≥0

ma
P /m

a+1
P

for some 0 ≤ e1 ≤ · · · ≤ et.

Remark 4. The former Case : char(k) = 0 in the above proposition
can be regarded as a special case of the latter Case : char(k) = p > 0,
by formally setting p = ∞, 0 = e1 = · · · = et and ∞0 = 1, where all the
xpe

-terms with e > 0 become “invisible” as p goes to ∞.

Definition 3 (Leading Generator System (cf. [18] [19])). Let the
situation be as in the proposition above. Take a subset H = {(hα,
peα)}tα=1 ⊂ RP with

hα ≡ xpeα

α mod mpeα+1
P for α = 1, . . . , t.

We say that H is a leading generator system for RP (called an LGS for

short). A leading generator system for R̂P is defined similarly.

Definition 4 (Invariant “σ” and “τ” (cf. [18] [19])). Let the situ-
ation be as in the proposition above. Then the invariants σ and τ are
defined by the following formulas

σ(P ) := (an)n∈Z≥0
where an = d−#{eα | eα ≤ n}

where the value set of the invariant σ is given the lexicographical order,
and

τ(P ) := # of the elements in an LGS = #H = t.

(We note that the invariants σ and τ are independent of the choice of
a regular system of parameters or an LGS, and that it does not matter
whether we compute them at the algebraic level or at the analytic level.)
The moral here is that the more eα’s we have at the lower level, the
smaller the value of the invariant σ is and hence we consider the better
the LGS H is.

Basic strategy to establish our algorithm in positive char-
acteristic: Follow the construction of the algorithm in char(k) = 0,
replacing the notion of an HMC to use the induction on dimension by
the notion of an LGS to use the induction on the invariant σ.
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Mechanism of the inductive scheme on the invariant σ
Given (W,R, E) (Precisely speaking, the triplet sits in the middle

of the sequence, say in year “i”, for resolution of singularities. However,
we omit the subscript “( )i” indicating the year for simplicity of the
notation), we introduce a triplet of invariants (σ, μ̃, s) and its associated
triplet of data (W ′,R′, E′). Together they form the following mechanism
to realize the inductive scheme on the invariant σ (We note that there
is no Key Inductive Lemma in our setting):

Outline of the mechanism

(1) We introduce a triplet of invariants (σ, μ̃, s).
If (σ, μ̃, s) = (σ,∞, 0) or (σ, 0, 0), then we do not construct the modifi-
cation (W ′,R′, E′).

• In case (σ, μ̃, s) = (σ,∞, 0), we blow up with center C = Sing(R).
The nonsingularity of C is guaranteed by the Nonsingularity Principle
(cf. [18] [19]), while the transversality of C to the boundary E is guar-
anteed by the invariant s = 0. After the blow up, the singular locus
becomes empty, and resolution of singularities for (W,R, E) is achieved.

• In case (σ, μ̃, s) = (σ, 0, 0), we are in the monomial case by defi-
nition, and we go to Step (5).
If (σ, μ̃, s) �= (σ,∞, 0) or (σ, 0, 0), then we construct its associated triplet
of data (W ′,R′, E′), called the modification of the original triplet (W,R,
E), having the following properties. (Actually the ambient space for the
modification stays the same, i.e., W ′ = W .)

• Resolution of singularities for (W ′,R′, E′) implies the strict de-
crease of the (maximum) value of the triplet (σ, μ̃, s). Note that the
value of the triplet never increases after transformations.

• Either the value of σ strictly decrease, or the value of σ stays the
same but the number of the components in the boundary strictly drops.
In either case, we have (σ,#E) > (σ′,#E′).

(2) There is no key inductive lemma in our new setting.
(3) When (σ, μ̃, s) �= (σ,∞, 0) or (σ, 0, 0) in (1), we achieve reso-

lution of singularities for (W ′,R′, E′) by induction on (σ,#E), which
implies the strict decrease of the (maximum) value of the triplet (σ, μ̃, s).

(4) Repeatedly decreasing the value of the triplet (σ, μ̃, s), we reach
the case where (σ, μ̃, s) = (σ,∞, 0) or (σ, 0, 0), the monomial case.

(5) Finally we have only to construct resolution of singularities in
the monomial case in order to achieve resolution of singularities of the
original triplet (W,R, E). However, the problem of resolution of sin-
gularities in the monomial case in positive characteristic is quite subtle
and very difficult. We only provide a solution in dimension 3 in §5.
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Warning: Even though the invariant σ never increases after blow
ups chosen in our algorithm, the number of exceptional divisors #E and
hence the pair (σ,#E) may increase. Therefore, the description of “by
induction on (σ,#E)” in (3) above is slightly imprecise. The precise
mechanism of the induction is manifested as the weaving of the new
strand of invariants “invnew”. See §4.3 for details.

Description of the triplet of invariants (σ, μ̃, s)

◦ σ: It is the invariant σ associated to the differential saturation
DR of the idealistic filtration of i.f.g. type R (cf. Definitions 2, 3, and
4).

◦ μ̃: It is the (normalized) weak order modulo an LGS of the ide-
alistic filtration R, with respect to Eyoung.

◦ s: It is the number of the components in Eaged = E \ Eyoung.

We explain how to compute the invariant μ̃ more in detail: Let H be

the LGS chosen. Given f ∈ ÔW,P , let f =
∑

cf,BH
B be its power series

expansion with respect to the LGS (and its associated regular system of
parameters) (cf. [19]). Then we define

μP (R) = inf

{
1

a
ordP (cf,O) | (f, a) ∈ RP , a > 0

}
= inf

{
1

a
ordP (cf,O) | (f, a) ∈ R̂P , a > 0

}
,

μP,D(R) = inf

{
1

a
ordξD (cf,O) | (f, a) ∈ RP , a > 0

}
= inf

{
1

a
ordξD (cf,O) | (f, a) ∈ R̂P , a > 0

}
,

where ξD is the generic point of a component D in Eyoung. (For the
definition of Eyoung, see (iii) of the remark below.) Now we define the
invariant μ̃ by the following formula

μ̃ = μP (R)−
∑

D∈Eyoung

μP,D(R).

It is straightforward to see via the formal coefficient lemma that μ̃ is
independent of the choice of the LGS (and its associated regular system
of parameters) and that μ̃ is a nonnegative rational number, since our
idealistic filtration is of i.f.g. type (cf. [18][19]).
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We make the following remarks on the technical but important
points about the LGS (and its associated regular system of parame-
ters), the idealistic filtration of i.f.g. type R, and Eyoung ⊂ E used in
the computation above:

(i) The idealistic filtration of i.f.g.type R used in the computation
depends on the history of the behavior of the invariant σ.

Case : The value of σ remains the same as the one in the previous year.
In this case, we keep R as it is, which is the transformation of the

one in the previous year, even though we compute the invariant σ using
the differential saturation DR. We take our LGS (a priori only in DR)
to be the transformation of the one in the previous year, which hence
sits inside of R.
Case : The value of σ is strictly less than the one in the previous year.

In this case, we replace the originalR with its differential saturation.
We take our LGS from this replaced R = DR, which is differentially
saturated, and compute μ̃ accordingly. We remark that, in this case,
Eyoung = ∅ and hence that μ̃ = μP (R).

We note that, in year 0, we also replace the original R with its
differential saturation (cf. Remark 3 (2)).

(ii) The LGS H = {(hα, p
eα)}tα=1 ⊂ R̂P and its associated regular

system of parameters X = (x1, . . . , xt, xt+1, . . . , xd) ⊂ ÔW,P are taken
in such a way that they satisfy the condition (♥) consisting of the three
requirements described below:

Condition (♥)

• hα ≡ xpeα

α mod m̂peα+1 for α = 1, . . . , t,

• the idealistic filtration of i.f.g. type R̂P is saturated for {∂n/∂xα
n|

n ∈ Z≥0, α = 1, . . . , t}, and
• the defining equations for the components of Eyoung, which are

transversal to the LGS, form a part of the regular system of parameters,
i.e., {xD | D ∈ Eyoung} ⊂ {xt+1, . . . , xd}.
(We remark that it is easy to find such H ⊂ R and X ⊂ OW,P that
satisfy all the requirements but the second one in Condition (♥).)

We recall the following formal coefficient lemma (cf. [19]), where
the assumption is slightly weaker than the original one in the sense that
it does not require the idealistic filtration is D-saturated. However, the
same conclusion is valid with the same proof.

Formal Coefficient Lemma

Let R be an idealistic filtration of i.f.g. type. Take a subset H =

{(hα, p
eα)}tα=1 ⊂ R̂P (not necessarily an LGS) and a regular system of
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parameters X = (x1, . . . , xt, xt+1, . . . , xd) ⊂ ÔW,P , satisfying the first

two requirements in condition (♥). Then, for (f, a) ∈ R̂P , we have

(cf,B,max{a− |[B]|, 0}) ∈ R̂P

for any B, and in particular,

(cf,O, a) ∈ R̂P ,

where f =
∑

cf,BH
B is the power series expansion of f with respect to

H and X (cf. [19]).

(iii) The symbol Eyoung refers to the union of the exceptional di-
visors created after the time when the current value of σ first started.
Therefore, by construction, Eyoung is transversal to the LGS. We only
use Eyoung in our algorithm, in contrast to the classical algorithm where
we have to use both Eyoung and Enew (cf. §3).
Description of the triplet (W ′,R′, E′)

W ′ = W, R′ = Bdry (Comp(R)) , and E′ = E \Eaged = Eyoung,

where
• Comp(R) is either the transformation of the one in the previous

year if (σ, μ̃) stays the same, or the one constructed below if (σ, μ̃) strictly
decreases, and

• Bdry (Comp(R)) is either the transformation of the one in the
previous year if (σ, μ̃, s) stays the same, or

G(Comp(R) ∪ {(xD, 1) | D ∈ Eaged})
if (σ, μ̃, s) strictly decreases, where G(S) is the idealistic filtration of
i.g. type generated by the set S, i.e., the smallest idealistic filtration of
i.g. type containing S, and xD is the defining equation of a component
D ∈ Eaged.

We note that, if the value of the triplet (σ, μ̃, s) stays the same
as in the previous year, then (W ′,R′, E′) is the transformation of the
one in the previous year. We remark that the symbols “Comp” and
“Bdry” represent the “Companion” modification and the “Boundary”
modification, respectively.

Construction of Comp(R)

We describe the construction of the companion modification Comp
(R), first at the analytic level, following closely the construction in the
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classical setting, and then at the algebraic level, showing that the com-
panion modification at the analytic level “descends” to the one at the
algebraic level via the argument of “étale descent”.

Construction at the analytic level

First, we take an LGS H ⊂ R̂P and its associated regular system of

parameters X ⊂ ÔW,P satisfying the condition (♥).
We set

MX =
∏

D∈Eyoung

x
μP,D(R)
D .

Recall that {xD | D ∈ Eyoung} ⊂ X.
Fix a common multiple L ∈ Z>0 of the denominators of μ̃, μP (R),

and {μP,D | D ∈ Eyoung}. Set

Ξ = ÔW,P ⊗k k[x
± 1

L
t+1, . . . , x

± 1
L

d ].

We consider the following notion of an idealistic filtration Q in the
generalized sense:

Q =
⊕

n∈Z≥0

(
Q n

L
,
n

L

)
⊂

⊕
n∈Z≥0

(
Ξ,

n

L

)
is a graded ÔW,P -algebra, where

• the grading is given by {n/L | n ∈ Z≥0}, and it is specified as
the level in the second factor,

• Qn/L ⊂ Ξ is an ÔW,P -submodule with the ÔW,P -module struc-
ture induced by the left multiplication on Ξ (We emphasize that the ten-
sor “⊗” is over k.) satisfying the condition Q0/L ⊃ Q1/L ⊃ Q2/L ⊃ · · · ,

• the algebra structure is given by the addition and multiplication

on Ξ, while the ÔW,P -algebra structure is given by the left multiplication
on the first factor of Ξ,

• the differential operators act on the first factor, i.e., for a differ-
ential operator δ of deg δ and

q =
(∑

f ⊗ g, n/L
)
∈ (Ξ, n/L)

with f ∈ ÔW,P and g ∈ k[x
± 1

L
t+1, . . . , x

± 1
L

d ], we set

δq =
(∑

δf ⊗ g,max {n/L− deg δ, 0}
)
.

We construct ̂Comp(R)
H,X in the following manner:
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Step 1. We take the idealistic filtration Q1 in the generalized sense
generated by {(f ⊗ 1, a) | (f, a) ∈ RP } and {(cf,O ⊗ (M−1

X )a, μ̃ · a) |
(f, a) ∈ RP }, i.e.,

Q1 = G ({(f ⊗ 1, a),
(
cf,O ⊗ (M−1

X )a, μ̃ · a) | (f, a) ∈ RP

})
,

where cf,O is the constant term of the power series expansion f =∑
cf,BH

B with respect to H and X.
Step 2. We take the idealistic filtration Q2 in the generalized sense

to be the DEyoung -saturation of the idealistic filtration Q1 in the gener-
alized sense, i.e.,

Q2 = DEyoung (Q1) ,

where DEyoung represents the logarithmic differentials with respect to the
simple normal crossing divisor Eyoung (cf. [18]).

Step 3. We take the integral level part P = ILP (Q2) of the ide-
alistic filtration Q2 in the generalized sense. That is to say, P =⊕

a∈Z≥0
(Pa, a) is a graded ÔW,P -algebra where, for a ∈ Z≥0, we set

Pa = (Q2)n/L with a = n/L.
Step 4. By taking the “round up” and contraction of P, we obtain

the usual idealistic filtration of i.f.g. type C =
⊕

a∈Z≥0
(Ca, a) where we

set
Ca = RUC(Pa) for a ∈ Z≥0.

Note that the “round up” and contraction map RUC : Pa → ÔW,P is

given by RUC
(∑

f ⊗ (M−1
X )l

)
=
∑

f · �(M−1
X )l� for l ∈ Z≥0, where

�(M−1
X )l� =

∏
D∈Eyoung

x
�−μP,D(R)·l�
D .

Since we have ordξD (cf,O) ≥ μP,D(R) ·a for (f, a) ∈ RP and D ∈ Eyoung

by definition, and since a logarithmic differential operator with respect
to Eyoung does not decrease the power of xD for D ∈ Eyoung, we conclude

that, though the image of the RUC map is only in ÔW,P [x
±1
t+1, . . . , x

±1
d ]

a priori, it actually lies within ÔW,P [xt+1, . . . , xd] = ÔW,P , i.e.,

Ca = RUC(Pa) ⊂ ÔW,P for a ∈ Z≥0.

Step 5. We set C = ̂Comp(R)
H,X .
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Remark 5.
(1) We remark that C is finitely generated. In fact, if {(fλ, aλ) |

λ ∈ Λ} with #Λ < ∞ is a set of (local) generators for R, then by setting

Q1,Λ = G ({(fλ ⊗ 1, aλ) | (fλ, aλ) ∈ RP , λ ∈ Λ}
∪{(cfλ,O ⊗ (M−1

X )aλ , μ̃ · aλ
) | (f, aλ) ∈ RP , λ ∈ Λ

})
,

we see by the formal coefficient lemma applied to the case of an idealistic
filtration in the generalized sense (the same proof works as in the usual
case (cf. [19])) that Q1 ⊂ DEyoung (Q1,Λ) while obviously we have Q1,Λ ⊂
Q1, and hence that

DEyoung (Q1) = DEyoung (Q1,Λ) .

It follows easily from this that C is finitely generated.

(2) In Step 1, we take the set {(cf,O ⊗ (M−1
X )a, μ̃ · a) | (f, a) ∈ RP }

as a part of the generators, where the elements (f, a) belong to the
idealistic filtration of i.f.g. type RP at the algebraic level. Even if

we replace this with {(cf,O ⊗ (M−1
X )a, μ̃ · a) | (f, a) ∈ R̂P }, where the

elements (f, a) belong to the idealistic filtration of i.f.g. type R̂P at the
analytic (completion) level, the resulting C will not change.

In fact, this can be seen as follows: Let Can be the one obtained by
using the analytic one. (Note that Q1,an and Q2,an = DEyoung (Q1,an)
are defined similarly, to be used in the proof of Lemma 3.) Since

{(cf,O ⊗ (M−1
X )a, μ̃ · a) | (f, a) ∈ RP }

⊂ {(cf,O ⊗ (M−1
X )a, μ̃ · a) | (f, a) ∈ R̂P },

it is obvious that we have C ⊂ Can. On the other hand, take (f, a) ∈ R̂P

with the power series expansion f =
∑

cf,BH
B with respect to H and

X, and cf,O its constant term. Then by the formal coefficient lemma,

we conclude (cf,O, a) ∈ R̂P = RP ⊗OW,P ÔW,P . This means that there
exits a finite set {(fλ, a) ∈ RP | λ ∈ Λ} such that cf,O =

∑
rλfλ for

some rλ ∈ ÔW,P .
Set g =

∑
rλcfλ,O and h =

∑
rλ(fλ − cfλ,O) with cf,O = g + h.

Then since ch,O = 0, we conclude cf,O = cg,O + ch,O = cg,O. Now

since {(cfλ,O ⊗ (M−1
X )a, μ̃ · a)} ⊂ Q1 and hence

(
g ⊗ (M−1

X )a, μ̃ · a) ∈
Q1, we conclude, by the formal coefficient lemma applied to the case of
an idealistic filtration in the generalized sense, that(

cf,O ⊗ (M−1
X )a, μ̃ · a) = (

cg,O ⊗ (M−1
X )a, μ̃ · a) ∈ DEyoung (Q1) = Q2,
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which implies Can ⊂ C.
Therefore, we conclude C = Can.
Lemma 3. The companion modification ̂Comp(R)

H,X constructed
at the analytic level as above is independent of the choice of an LGS H
and its associated regular system of parameters X satisfying the condi-
tion (♥). That is to say, if H′ and X ′ are another LGS and its associated
regular system of parameters satisfying the condition (♥), then we have

̂Comp(R)
H,X = ̂Comp(R)

H′,X′ .

We write, therefore,

̂Comp(R) = ̂Comp(R)
H,X

omitting the reference to the LGS and its associated regular system of
parameters used in the construction.

We call ̂Comp(R) the companion modification at the analytic level.

Proof. We consider the following two cases.

Case : For any e ∈ Z≥0 and (hα, p
eα) ∈ H with eα = e, the element hα

is a linear combination of

{(h′
β)

p
e−e′β | e′β ≤ e}.

There is no condition on X or X ′ other than their being associated to
H and H′, respectively.

In this case, we claim ̂Comp(R)
H′,X′ ⊂ ̂Comp(R)

H,X .

Take (f, a) ∈ RP . Let f =
∑

cf,BH be the power series expansion
of f with respect to H and X, with its constant term cf,O. We have(
cf,O ⊗ (M−1

X )a, μ̃ · a) ∈ Q1. Set g = cf,O and h = f − cf,O. Let g =∑
c′g,BH

′B and h =
∑

c′h,BH
′B be the power series expansions of g and

h, respectively, with respect to H′ and X ′. Now we conclude, by the
formal coefficient lemma applied to the case of an idealistic filtration in
the generalized sense, that(

c′g,O ⊗ (M−1
X )a, μ̃ · a) ∈ DEyoung (Q1,an) = Q2,an.

On the other hand, the assumption of this case implies that c′h,O = 0
and hence that

c′g,O = c′g,O + c′h,O = c′g+h,O = c′f,O,
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the constant term of the power series expansion f =
∑

c′f,BH
′B with

respect to H′ and X ′. Thus, we have(
c′f,O ⊗ (M−1

X )a, μ̃ · a) ∈ DEyoung (Q1,an) = Q2,an.

This implies by Remark 5 (2)

̂Comp(R)
H′,X′ ⊂ Can = ̂Comp(R)

H,X .

(We note that the generators we choose in Step 1 of the construction

for ̂Comp(R)
H′,X′ are of the form (c′f,O ⊗ (M−1

X′ )a, μ̃ · a) (not ⊗(M−1
X )a),

which are sitting inside of

ÔW,P ⊗k k[x
′
t+1

± 1
L , . . . , x′

d
± 1

L ] (not of Ξ = ÔW,P ⊗k k[x
± 1

L
t+1, . . . , x

± 1
L

d ]).

However, these differences only contribute to the multiplication of units
after Step 3 and Step 4, and hence do not matter for us to conclude the
inclusion above.)

Case : X = X ′.
In this case, we also claim ̂Comp(R)

H′,X′ ⊂ ̂Comp(R)
H,X .

Take (f, a) ∈ RP . Let f =
∑

c′f,BH
′ be the power series expansion

of f with respect to H′ and X ′, with its constant term c′f,O. By the

formal coefficient lemma, we have (c′f,O, a) ∈ R̂P . Set g
′ = c′f,O ∈ ÔW,P .

Let g′ =
∑

cg′,BH
B be the power series expansion of g′ with respect to

H and X with its constant term cg′,O. Then the assumption of X = X ′

implies g′ = cg′,O. Therefore, we conclude that(
c′f,O ⊗ (M−1

X )a, μ̃ · a) ∈ {(ch,O ⊗ (M−1
X )a, μ̃ · a) | (h, a) ∈ R̂P

}
and hence by Remark 5 (2) (cf. the note at the end of the previous case)
that

̂Comp(R)
H′,X′ ⊂ Can = C = ̂Comp(R)

H,X .

Observe that, given an LGS H and its associated regular system of
parameters X satisfying the condition (♥), we can reach another LGS
H′ and its associated regular system of parameters X ′ satisfying the
condition (♥) by a transformation described in the former case followed
by another transformation described in the latter case. Therefore, by the

above analysis, we have ̂Comp(R)
H′,X′ ⊂ ̂Comp(R)

H,X . Reversing the

role of H and X with that of H′ and X ′, we then have ̂Comp(R)
H,X ⊂

̂Comp(R)
H′,X′ .

Finally we conclude ̂Comp(R)
H,X = ̂Comp(R)

H′,X′ . Q.E.D.
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Construction at the algebraic level

Proposition 2. There exists an idealistic filtration of i.f.g. type
Comp(R) at the algebraic level (i.e., over OW,P ) such that its comple-

tion coincides with the companion modification ̂Comp(R) at the analytic
level, i.e.,

{Comp(R)}̂ := Comp(R)⊗OW,P ÔW,P = ̂Comp(R).

We call Comp(R) the companion modification at the algebraic level.

Proof. Step 1. Descent to the Henselization level.
We first note that the ingredients that we used to construct the

companion modification at the analytic level;

(i) the LGS H and its associated regular system of parameters X
satisfying the condition (♥),

(ii) the constant term cf,O of the power series expansion f =∑
cf,BH

B for (f, a) ∈ RP with respect to H and X (which shows up in

the form of
(
cf,O ⊗ (M−1

X )a, μ̃ · a) in the construction of the companion
modification),

actually can be taken at the Henselization level (i.e., they can be
taken from the Henselization (OW,P )

h of OW,P ).
In fact, (i) at the Henselization level is a consequence of the classical

Weierstrass Preparation Theorem and Weierstrass Division Theorem (cf.
the proof of Proposition 4 (1)). (Alternatively, (i) at the Henselization
level can be seen using the same argument as the one used to see (ii) at
the Henselization level.)

We see (ii) at the Henselization level as follows: Set R = OW,P , R
h

its Henselization, and R̂ its completion. By replacing R with some local
ring of an étale cover of Spec R, we may assume that the LGS H and the
regular system of parameters X satisfying the condition (♥) are taken

from R. Set A = k[xt+1, . . . , xd](xt+1,...,xd), A
h its Henselization, and Â

its completion. By looking at the power series expansion with respect to
H and its associated regular system of parameters X (cf. [19]), we have

φ : R̂/(h1, . . . , ht)
∼−→

∑
K

ÂXK

where on the right hand side the subscript K = (k1, . . . , kt, kt+1, . . . , kd)
∈ Zd

≥0 for the summation varies in the finite range{
0 ≤ kα ≤ peα − 1 for α = 1, . . . , t

kα = 0 for α = t+ 1, . . . , d.
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Take an element f ∈ R ⊂ R̂. What we want to show is cf,O ∈ Rh.
It suffices to show

(�) φ (f mod (h1, . . . , ht)) = cf,O ∈
∑
K

AhXK .

We take the coordinate ring S of an affine open neighborhood P ∈
Spec S ⊂ W such that f ∈ S and {hα}tα=1,X ⊂ S. We denote by mS,P

the maximal ideal of S corresponding to the point P . Note that the ideal
(h1, . . . , ht, xt+1, . . . , xd)R is mS,PR = mP = (x1, . . . , xt, xt+1, . . . , xd)-
primary (in R). By shrinking Spec S if necessary, we may assume
that the only prime ideal containing the ideal (h1, . . . , ht, xt+1, . . . , xd)
is mS,P .

We regard R,Rh, S,A,Ah as subrings of R̂, i.e., R,Rh, S,A,Ah ⊂
R̂, and we consider the subring SAh ⊂ R̂ generated by S,Ah ⊂ R̂.
By abuse of notation, we denote the image of the natural projection

SAh ⊂ R̂ → R̂/(h1, . . . , ht) by SAh/(h1, . . . , ht).
We claim

(��) φ(SAh/(h1, . . . , ht)) =
∑
K

AhXK ,

which clearly implies the assertion (�).
In the following, we omit the isomorphism φ from the left hand side

in order to ease the notation. Therefore, the claim (��) is expressed as
an equality

SAh/(h1, . . . , ht) =
∑
K

AhXK .

Obviously, we have

SAh/(h1, . . . , ht) ⊃
∑
K

AhXK .

Our goal is to show the equality after taking ⊗AhÂ, i.e.,

L.H.S. = SAh/(h1, . . . , ht)⊗Ah Â =
∑
K

AhXK ⊗Ah Â = R.H.S.,

which, since Â is faithfully flat over Ah, implies the original equality

above before taking ⊗AhÂ, i.e., (��).

• Analysis of R.H.S.

We have

R.H.S. =
∑
K

AhXK ⊗Ah Â =
∑
K

ÂXK .
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• Analysis of L.H.S.

In order to analyze L.H.S., we look at the morphism θ : Spec(SAh/
(h1, . . . , ht)) → Spec(Ah). Observe that θ is quasi-finite, i.e.,

(a) it is of finite type, and
(b) it has finite fibers.

The assertion (a) is immediate, since S is finitely generated over k.
In order to see the assertion (b), first look at the morphism Spec(SA/
(h1, . . . , ht)) → Spec(A). The fiber of this morphism over the origin
downstairs is the origin upstairs, since the ideal (h1, . . . , ht, xt+1, . . . , xd)
is (x1, . . . , xt, xt+1, . . . , xd)-primary. Now by what is called “Zariski’s
Main Theorem by Grothendieck” (cf. [22]), we conclude that the mor-
phism has finite fibers. From this it follows easily that the morphism
θ : Spec(SAh/(h1, . . . , ht)) → Spec(Ah) has finite fibers.

Therefore, since Ah is Henselian, we conclude that the morphism θ
is finite, i.e., SAh/(h1, . . . , ht) is a finite Ah-module. This implies that

SAh/(h1, . . . , ht)⊗Ah Â is the (xt+1, . . . , xd)-adic completion of the Ah-
module SAh/(h1, . . . , ht). The latter coincides with the (h1, . . . , ht, xt+1,
. . . , xd)-adic completion of SAh/(h1, . . . , ht) viewed as an SAh-module.
Since the ideal (h1, . . . , ht, xt+1, . . . , xd) is (x1, . . . , xt, xt+1, . . . , xd)-pri-
mary, the (h1, . . . , ht, xt+1, . . . , xd)-adic completion coincides with the
(x1, . . . , xt, xt+1, . . . , xd)-adic completion. Observing that the (x1, . . . ,

xt, xt+1, . . . , xd)-adic completion of SAh is R̂, we see that the (x1, . . . ,

xt, xt+1, . . . , xd)-adic completion of SAh/(h1, . . . , ht) is R̂/(h1, . . . , ht).
Summarizing and remembering the convention of expressing the isomor-
phism φ as an equality, we conclude

L.H.S. = SAh/(h1, . . . , ht)⊗Ah Â = R̂/(h1, . . . , ht) =
∑
K

ÂXK .

Therefore, we have

L.H.S. =
∑
K

ÂXK = R.H.S..

This completes the argument for Step 1.

Therefore, we conclude that, for each LGS H and its associated
regular system of parameters X satisfying the condition (♥), taken at
the Henselization level, we have an idealistic filtration of i.f.g. type
Comp(R)H,X at the Henselization level (i.e., all the ideals are those of

(OW,P )
h) such that ̂Comp(R) = ̂Comp(R)

H,X = {Comp(R)H,X }̂.
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Step 2. Descent to the algebraic level.
Let U = Spec OW,P . Noting that the Henselization is the direct

limit of the local rings at the closed points over P on the étale covers of
U , we can take a collection of étale covers πλ : Uλ → U and idealistic
filtrations of i.f.g. type Comp(R)λ over Uλ such that, for Q ∈ π−1

λ (P ),

we have {Comp(R)λ,Q}h = Comp(R)H,X for some H and X described
as in Step 1. This implies

{Comp(R)λ,Q}̂ = {{Comp(R)λ,Q}h}̂ = {Comp(R)H,X }̂
= ̂Comp(R)

H,X = ̂Comp(R).

That is to say, the completion of Comp(R)λ,Q canonically coincides with

the companion modification at the analytic level ̂Comp(R). This in turn
implies that, over Uλ ∩ Uμ = Uλ ×U Uμ, we have

Comp(R)λ|Uλ∩Uμ

φλμ
= Comp(R)μ|Uλ∩Uμ ,

and this identification φλμ is canonical (and hence the collection of these
identifications automatically satisfies the cocycle condition φλμ ◦ φμν =
φλν). Now it is a consequence of the general étale descent argument (cf.
[14][20]) that there exists an idealistic filtration of i.f.g. type Comp(R)
such that π∗

λ (Comp(R)) = Comp(R)λ, and hence that {Comp(R)}̂ =
̂Comp(R).
This completes the proof of Proposition 2. Q.E.D.

Detailed discussion of the mechanism

Note that constructing the resolution sequence by blowing up is
referred to as “proceeding in the vertical direction”, where the process
is numbered by “year”, while constructing the triplet of invariants and
its associated modification in a fixed year, is referred to as “proceeding
in the horizontal direction”, where the process is numbered by “stage”.
See §4.3 for more details.

Proceeding in the horizontal direction

Proposition 3. The value of the pair (σ,#E) strictly decreases as
we proceed in the horizontal direction from (W,R, E) to (W ′,R′, E′),
i.e., we have

(σ,#E) > (σ′,#E′).

Proof. We analyze the assertion in the following two cases. Note
that, since R ⊂ R′, we have σ ≥ σ′ in both cases.
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Case : μ̃ �= 0 or ∞.
In this case, we claim σ > σ′. We take the LGS H = {(hα, p

eα)}tα=1

and its associated regular system of parameters X = (x1, . . . , xt, xt+1,
. . . , xd) satisfying the condition (♥) as given in “Description of the triplet
of invariants (σ, μ̃, s)”. Since R is an idealistic filtration of i.f.g. type,
there exists (f, a) ∈ RP such that μP (R) = ordP (cf,O)/a, where f =∑

cf,BH
B is the power series expansion of f with respect to H and X.

Set
M =

∏
D∈Eyoung

x
μP,D(R)
D .

Subcase : μP,D(R) · a ∈ Z≥0 ∀D ∈ Eyoung.

In this subcase, we have Ma ∈ ÔW,P and cf,O · (M−1)a = cf,O ·
(Ma)−1 ∈ ÔW,P by definition. Moreover, by construction of the com-

panion modification, we have
(
cf,O · (Ma)−1, μ̃ · a) ∈ ̂Comp(R) ⊂ R̂′.

Note that

μ̃ · a =

⎛⎝μP (R)−
∑

D⊂Eyoung

μP,D(R)

⎞⎠ · a = ordP
(
cf,O · (M−1)a

)
.

Note also that, by the characterization of the power series expansion
with respect to H and X, we have

cf,O =
∑

K∈(Z≥0)d

bf,O,KXK

with bf,O,K ∈ k[[xt+1, . . . , xd]] and with K = (k1, . . . , kt, kt+1, . . . , kd)
varying in the range satisfying the condition{

0 ≤ kα ≤ peα − 1 for α = 1, . . . , t
kα = 0 for α = t+ 1, . . . , d.

Therefore, we conclude

In
(
cf,O · (M−1)a

)
= cf,O · (M−1)a mod m̂μ̃·a+1 =

∑
K∈(Z≥0)d

af,O,KXK

with af,O,K ∈ k[xt+1, . . . , xd]. Since LP (R) = k[xpe1

1 , . . . , xpet

t ], we con-
clude

In
(
cf,O · (M−1)a

) �∈ LP (R),

while by definition

In
(
cf,O · (M−1)a

) ∈ LP (R̂′) = LP (R′).
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Therefore, we conclude LP (R) � LP (R̂′) and hence σ > σ′.
Subcase : μP,D(R) · a �∈ Z≥0 for some D ∈ Eyoung.
In this case, take l ∈ Z>0 such that

l · μP,D(R) · a ∈ Z≥0 ∀D ∈ Eyoung.

Then we have (Ma)l ∈ OW,P and
{
cf,O · (M−1)a)

}l ∈ ÔW,P by defini-
tion. Moreover, by construction of the companion modification, we have

(
{
cf,O · (M−1)a

}l
, l · μ̃ · a) ∈ ̂Comp(R) ⊂ R̂′. Note that

l · μ̃ · a = l · (μP (R)−
∑

D⊂Eyoung

μP,D(R)) · a = ordP

({
cf,O · (M−1)a

}l)
.

Note also that, since ordξD (cf,O) ≥ μP,D(R) · a by definition, since
ordξD (cf,O) ∈ Z≥0 and since μP,D(R) · a �∈ Z≥0 by the subcase as-
sumption, we conclude

ordξD (cf,O) > μP,D(R) · a.

This implies,
{
cf,O · (M−1)a

}l
is divisible by xD, and hence so is

In
({

cf,O · (M−1)a
}l)

=
{
cf,O · (M−1)a

}l
mod m̂l·μ̃·a+1.

Since LP (R) = k[xpe1

1 , . . . , xpet

t ] and since xD ∈ {xt+1, . . . , xd}, we con-
clude

In
({

cf,O · (M−1)a
}l) �∈ LP (R),

while by definition

In
({

cf,O · (M−1)a
}l) ∈ LP (R̂′) = LP (R′).

Therefore, we conclude LP (R) � LP (R̂′) and hence σ > σ′.
Case : μ̃ = 0 or ∞.

In this case, we claim (σ,#E) > (σ′,#E′). Observe s �= 0. (If s = 0,
then (σ, μ̃, s) = (σ, 0, 0) or (σ,∞, 0), and hence we do not construct
the modification (W ′,R′, E′).) Therefore, by definition, there exists a
divisor D ∈ Eaged containing P . Thus, we have #E > #(E \ Eaged) =
#E′. (Note that “#” represents the number of the components passing
through P .) Q.E.D.
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Proceeding in the vertical direction

Proposition 4. Let (W,R, E)
π← (W̃ , R̃, Ẽ) be a transformation

in the resolution sequence (i.e., (Wi,Ri, Ei)
πi+1← (Wi+1,Ri+1, Ei+1) in

the sequence described in Problem 4 (cf. Remark 2)). Take a point

P̃ ∈ π−1(P ) ∩ Sing(R̃). Then the value of the triplet (σ, μ̃, s) does not
increase as we proceed in the vertical direction, i.e., we have

(σ, μ̃, s) ≥ (σ̃, ˜̃μ , s̃) (i.e., (σi, μ̃i, si) ≥ (σi+1, μ̃i+1, si+1)) .

More precisely, we have the following:

(1) The invariant σ does not increase, i.e., σ ≥ σ̃. When σ = σ̃,

the transformation of the LGS for R̂P is an LGS for
̂̃RP̃ . Moreover, the

following property is preserved going from (W,R, E) to (W̃ , R̃, Ẽ): We

can choose an LGS H = {(hα, p
eα)}tα=1 ⊂ R̂P and a regular system of

parameters X = (x1, . . . , xt, xt+1, . . . , xd), taken from ÔW,P , satisfying
the condition (♥) below;

• hα ≡ xpeα

α mod m̂peα+1 for α = 1, . . . , t,

• the idealistic filtration of i.f.g. type R̂P is saturated for {∂n/∂xα
n|

n ∈ Z≥0, α = 1, . . . , t}, and
• the defining equations for the components of Eyoung, which are

transversal to the LGS, form a part of the regular system of parameters,
i.e., {xD | D ∈ Eyoung} ⊂ {xt+1, . . . , xd}.

(2) When σ = σ̃, the value of the invariant μ̃ does not increase,

i.e., (σ, μ̃) ≥ (σ, ˜̃μ ) = (σ̃, ˜̃μ ).
(3) When σ = σ̃, the value of the invariant s does not increase,

i.e., s ≥ s̃, and hence combined with (2) we have

(σ, μ̃, s) ≥ (σ, ˜̃μ , s̃) = (σ̃, ˜̃μ , s̃).

Proof. (1) Since C ⊂ Sing(R) and since C is nonsingular, we con-
clude that there exists a regular system of parameters (y1, . . . , yr, yr+1,
. . . , yd) ⊂ OW,P such that

• C = {y1 = · · · = yr = 0}, and
• we have for α = 1, . . . , t{

hα ≡ xpeα

α mod m̂P
peα+1

, and

xα ≡ ∑r
β=1 cα,βyβ mod m̂P

2
for some cα,β ∈ k.
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By replacing (y1, . . . , yr, yr+1, . . . , yd) with some linear transforma-
tion and then by replacing (x1, . . . , xt, xt+1, . . . , xd) with (y1, . . . , yr,
yr+1, . . . , yd), we may assume that we have a regular system of parame-

ters (x1, . . . , xt, xt+1, . . . , xd) ⊂ ÔW,P such that

• C = {x1 = · · · = xr = 0} (t ≤ r), and

• hα ≡ xpeα

α mod m̂P
peα+1

for α = 1, . . . , t.

Observe that, if t = r, then after the blow up, for any point P̃

over each xα-chart (α = 1, . . . , t) we have ordP̃ (h̃α) = 0 < peα where

h̃α = hα/x
peα

α , and hence π−1(P ) ∩ Sing(R) = ∅. Therefore, we may

assume t < r and that our point P̃ ∈ π−1(P ) ∩ Sing(R̃) is in the xβ-
chart for some (t < β ≤ r) with the regular system of parameters
(x̃1, . . . , x̃t, x̃t+1, . . . , x̃r, x̃r+1, . . . , x̃d) where

x̃α =

⎧⎪⎨⎪⎩
xα/xβ for 1 ≤ α ≤ r, α �= β

xβ for α = β,

xα for r + 1 ≤ α ≤ d.

(For the indices t + 1 ≤ α ≤ r, α �= β, we may have to replace xα with
xα − cαxβ for some cα ∈ k if necessary.)

Now we look at the transformation h̃α = hα/x
peα

β of

hα =
∑

K=(k1,...,kd)∈(Z≥0)d

cα,KXK with cα,K ∈ k

for α = 1, . . . , t. We compute

h̃α =
hα

xpeα

β

=
∑

K=(k1,...,kd)∈(Z≥0)d

cα,K
XK

xpeα

β

=
∑

K̃=(k̃1,...,k̃d)∈(Z≥0)d

cα,KX̃K̃

where k̃u = ku for u �= β and k̃β =
∑r

u=1 ku − peα . Therefore, we have∑
1≤u≤r,u �=β

ku ≥ peα ⇒ deg
X̃
(X̃K̃) ≥ degX(XK).

Therefore, the only terms X̃K̃ with deg
X̃
(X̃K̃) = peα < degX(XK) that

can possibly appear in h̃α have to contain one of x̃β , x̃r+1, . . . , x̃d.

Looking at h̃1, h̃2, . . . , h̃t in the ascending order, we conclude that
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• either σ > σ̃,
• or σ = σ̃, and we have

h̃α ≡ x̃peα

α + cα,β x̃
peα

β +
d∑

u=r+1

cα,ux̃
peα

u mod m̂P
peα+1

with {cα,β , cα,r+1, . . . , cα,d} ⊂ k for α = 1, . . . , t, and hence H̃ = {(h̃α,

peα)}tα=1 is an LGS for R̃.

This completes the proof of the first part of (1).

Next we look at the “Moreover” part of (1).
We show the existence of such an LGS H = {(hα, p

eα)}tα=1 and its
associated regular system of parameters X = (x1, . . . , xt, xt+1, . . . , xd)
that satisfy the condition (♥) by induction on the year .

When we are in the year when the value of σ first started (i.e.,
the value of σ is strictly less than the one in the previous year), we
replace the original R with its differential saturation (cf. the techni-
cal but important points in the description of the triplet of invariants
(σ, μ̃, s) (i)). Thus we may assume R is D-saturated. Moreover, we have
Eyoung = ∅. Therefore, we have only to take an LGS H and X such that

hα ≡ xpeα

α mod m̂P
peα+1

for α = 1, . . . , t. The remaining requirements
in the condition (♥) are then automatically satisfied.

Now we assume that in the current year we have such an LGS H and
its associated regular system of parameters X satisfying the condition
(♥). We show that, assuming σ = σ̃, even after the transformation we

have such an LGS H̃ and X̃ that satisfy the condition (♥).

Step 1. We modify our X so that the LGS H and X are still as-
sociated, satisfy the condition (♥) as before, and now satisfy the extra
condition that the center is defined by C = {x1 = · · · = xr = 0} (t ≤ r).

(a) We take another regular system of parameters Y = (y1, . . . , yr,
yr+1, . . . , yd) such that the center is defined by C = {y1 = · · · = yr = 0}.
Note that, if C ⊂ D for any component D ∈ Eyoung, then we include xD

in Y . Note that such xD is included in X.
Then since C ⊂ Sing(R), we conclude that

xα ≡
r∑

β=1

cα,βyβ mod m̂P
2

for some cα,β ∈ k

for α = 1, . . . , t. Therefore, by taking a suitable linear transformation
among {y1, . . . , yr}, we may assume

xα ≡ yα mod m̂P
2

for α = 1, . . . , t.
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It is straightforward to see that, since H and X = (x1, . . . , xt, xt+1, . . . ,
xd) satisfy the condition (♥), so does H and (y1, . . . , yt, xt+1, . . . , xd). By
replacing X with (y1, . . . , yt, xt+1, . . . , xd), we may assume that H and
X satisfy the condition (♥), and (x1, . . . , xt, yt+1, . . . , yr, yr+1, . . . , yd) is
a regular system of parameters with C = {x1 = · · · = xt = yt+1 = · · · =
yr = 0}.

(b) We look at {yβ | t+ 1 ≤ β ≤ r}. By applying the Weierstrass
Division Theorem consecutively (and replacing the original yβ after mul-
tiplying some unit if necessary) or by simply looking at the power series
expansion with respect to X, we write

yβ =
t∑

α=1

qβ,αxα + g(xt+1, . . . , xd) for β = t+ 1, . . . , r

with qβ,α ∈ ÔW,P and g(xt+1, . . . , xd) ∈ k[[xt+1, . . . , xd]]. Set

y′β = yβ −
t∑

α=1

qβ,αxα for β = t+ 1, . . . , r.

Choose {xr+1, . . . , xd} ⊂ {xt+1, . . . , xd} (after renumbering of xt+1,
. . . , xd if necessary and keeping the condition {xD | D ∈ Eyoung} ⊂
{xt+1, . . . , xd}) such that (x1, . . . , xt, y

′
t+1, . . . , y

′
r, xr+1, . . . , xd) is a reg-

ular system of parameters. Now replace X with (x1, . . . , xt, y
′
t+1, . . . , y

′
r,

xr+1, . . . , xd). Then it is straightforward to see that, since H and the
previous X satisfy the condition (♥), so do H and the new X. Now by
construction, the center C is defined by C = {x1 = · · · = xr = 0} (t ≤ r).

Step 2. Analysis after blow up.

As in the proof of the first part, we may assume t < r and that our

point P̃ ∈ π−1(P )∩Sing(R̃) is in the xβ-chart for some (t < β ≤ r) with

the regular system of coordinates X̃ = (x̃1, . . . , x̃t, x̃t+1, . . . , x̃r, x̃r+1,
. . . , x̃d) where

x̃α =

⎧⎪⎨⎪⎩
xα/xβ for 1 ≤ α ≤ r, α �= β,

xβ for α = β,

xα for r + 1 ≤ α ≤ d.

(For the indices t + 1 ≤ α ≤ r, α �= β, we may have to replace xα with
xα − cαxβ for some cα ∈ k if necessary.)

It is straightforward to see that the above X̃ satisfies the following
two conditions;
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• the idealistic filtration of i.f.g. type
̂̃RP̃ , which is (the completion

of) the transformation of R̂P , is saturated for {∂n/∂x̃n
α | n ∈ Z≥0, α =

1, . . . , t}, and
• the defining equations for the Ẽyoung form a part of the regular

system of parameters, i.e., {x̃D̃ | D̃ ∈ Ẽyoung} ⊂ {x̃t+1, . . . , x̃d}.
We have only to replace X̃ with (x̃′

1, . . . , x̃
′
t, x̃t+1, . . . , x̃d) in order

to satisfy the remaining condition

• h̃α ≡ x̃pei

α mod m̂P̃

peα+1
for α = 1, . . . , t,

while keeping the other two requirements as above, where

x̃′
α = x̃α + c

1/peα

α,β x̃β +
d∑

u=r+1

c1/p
eα

α,u x̃u for α = 1, . . . , t

(using the same notation as in the proof of the first part).

Then the LGS H̃ and X̃ satisfy the condition (♥).
This finishes the proof of “Moreover” part of (1).

(2) We use the same notation used in the proof of (1). We take
an LGS H and its associated regular system of parameters X, satisfying
the condition (♥) and the extra condition that the center is defined by
C = {x1 = · · · = xr = 0} (see Step 1 in the proof of “Moreover” part of
(1)). When σ = σ̃, we make the following two observations.

• The transformation H̃ is an LGS of R̃.
• For (f, a) ∈ R̂P , let

∑
cf,BH

B be the power series expansion
of f with respect to H and its associated regular system of parameters
(x1, . . . , xt, xt+1, . . . , xd), with the “constant term” being cf,O. Look

at its transformation (f̃ , a) with f̃ = f/xa
β . The constant term cf̃ ,O

of the transformation f̃ with respect to H̃ and its associated regu-
lar system of parameters (x̃′

1, . . . , x̃
′
t, x̃t+1, . . . , x̃d) is the transformation

c̃f,O = cf,O/x
a
β , where

x̃′
α = x̃α + c

1/peα

α,β x̃β +

d∑
u=r+1

c1/p
eα

α,u x̃u for α = 1, . . . , t.

Now the inequality μ̃ ≥ ˜̃μ follows from these two observations
and the condition C ⊂ Sing (Comp(R)) in our new setting by the same
argument as the one used to show that the invariant w-ord does not
increase under transformation in the classical setting.

(3) This follows immediately from the fact that the center C of
blow up for the transformation π is nonsingular and transversal to the
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boundary E (hence to Eaged), and from the fact that, since σ = σ̃,

the aged part Ẽaged of Ẽ is the strict transform of Eaged by definition.
Q.E.D.

4.3. Weaving of the new strand of invariants “invnew”

In §4.3, we interpret the inductive scheme explained in §4.2 in terms
of weaving the new strand of invariants “invnew”.

We weave the strand of invariants “invnew” consisting of the units
of the form (σj , μ̃j , sj), computed from the modifications (W j ,Rj , Ej)
constructed simultaneously along the weaving process.

Weaving Process

We describe the weaving process inductively.
Note that constructing a sequence for resolution of singularities by

blowing up is referred to as “proceeding in the vertical direction” passing
from one year to the next, indicated by the subscript “i”, while weaving
the strand and constructing the modifications passing from one stage to
the next, indicated by the superscript “j”, is referred to as “proceeding
in the horizontal direction” staying in a fixed year.

Suppose we have already woven the strands and constructed the
modifications up to year (i− 1).

Now we are in year i (looking at the neighborhood of a point Pi ∈
Sing(Ri) ⊂ Wi (cf. Remark 2)).

We start with (Wi,Ri, Ei) = (W 0
i ,R0

i , E
0
i ), just renaming the trans-

formation (Wi,Ri, Ei) in year i of the resolution sequence as the 0-th
stage modification (W 0

i ,R0
i , E

0
i ) in year i.

Suppose that we have already woven the strand up to the (j− 1)-th
unit

(invnew)
≤j−1
i = (σ0

i , μ̃
0
i , s

0
i )(σ

1
i , μ̃

1
i , s

1
i ) · · · (σj−1

i , μ̃j−1
i , sj−1

i )

and that we have also constructed the modifications up to the j-th one

(W 0
i ,R0

i , E
0
i ), (W

1
i ,R1

i , E
1
i ), . . . , (W

j−1
i ,Rj−1

i , Ej−1
i ), (W j

i ,Rj
i , E

j
i ).

Our task is to compute the j-th unit (σj
i , μ̃

j
i , s

j
i ) and construct the

(j +1)-th modification (W j+1
i ,Rj+1

i , Ej+1
i ) (unless the weaving process

is over at the j-th stage).

Computation of the j-th unit (σj
i , μ̃

j
i , s

j
i )

◦ σj
i : It is the invariant σ associated to the differential saturation

DRj
i of the idealistic filtration of i.f.g. type Rj

i (cf. Proposition 1).
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◦ μ̃j
i : It is the (normalized) weak order modulo LGS of the idealistic

filtration of i.f.g. type Rj
i with respect to (Ej

i )young. (For the definition

of (Ej
i )young(⊂ Ej

i ), see the description of the invariant sji below.

We note that, in order to compute μ̃j
i ,⎧⎨⎩• we keep Rj

i as it is, which is the transformation of Rj
i−1,

• we take the LGS to be the transformation of the one in the
previous year

if (invnew)
≤j−1
i (σj

i ) = (invnew)
≤j−1
i−1 (σj

i−1),{• we replace the original Rj
i with its differential saturation DRj

i ,

• we take the LGS from the replaced Rj
i = DRj

i

if (invnew)
≤j−1
i (σj

i ) < (invnew)
≤j−1
i−1 (σj

i−1).

◦ sji : It is the number of the components in (Ej
i )aged = Ej

i \
(Ej

i )young, where (Ej
i )young(⊂ Ej

i ) is the union of the exceptional divi-

sors created after the year when the value (invnew)
≤j−1
i (σj

i ) first started.

We note that this third factor is included even if μ̃j
i = ∞ or 0.

We note that, if (σj
i , μ̃

j
i , s

j
i ) = (σj

i ,∞, 0) or (σj
i , 0, 0), then we declare

that the (j = m)-th unit is the last one, and we stop the weaving process
at the m-th stage in year i.

Thus the weaving process of the strand comes to an end in a fixed
year i, with the strand (invnew)i taking the following form

(invnew)i = (σ0
i , μ̃

0
i , s

0
i )(σ

1
i , μ̃

1
i , s

1
i ) · · · (σj

i , μ̃
j
i , s

j
i ) · · · (σm

i , μ̃m
i , smi ),

where (σm
i , μ̃m

i , smi ) = (σm
i ,∞, 0) or (σm

i , 0, 0).

Termination in the horizontal direction

We note that termination of the weaving process in the horizontal
direction is a consequence of the fact that going from the j-th unit to the
(j + 1)-th unit we have (σj

i ,#Ej
i ) > (σj+1

i ,#Ej+1
i ) (cf. Proposition 3)

and that the value set of (σ,#E) satisfies the descending chain condition.

Construction of the (j + 1)-th modification (W j+1
i ,Rj+1

i , Ej+1
i )

We note that we construct the (j + 1)-th modification only when

(σj
i , μ̃

j
i , s

j
i ) �= (σj

i ,∞, 0) or (σj
i , 0, 0).

We follow the construction described in the mechanism discussed in
§4.2. Starting from (W j

i ,Rj
i , E

j
i ), we construct (W j+1

i ,Rj+1
i , Ej+1

i ) as
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below:

W j+1
i = W j

i , Rj+1
i = Bdry

(
Comp(Rj

i )
)
, and

Ej+1
i = Ej

i \ (Ej
i )aged = (Ej

i )young,

where
• denoting (invnew)

≤j−1
i (σj

i , μ̃
j
i ) by βj

i , we set Comp(Rj
i ) to be ei-

ther the transformation of Comp(Rj
i−1) if βi = βi−1, or the one obtained

by applying the construction in §4.2 if βj
i < βj

i−1, and

• denoting (invnew)
≤j
i by γj

i , we set Bdry(Comp(Rj
i )) to be either

the transformation of Bdry(Comp(Rj
i−1)) if γ

j
i = γj

i−1, or

G(Comp(Rj
i ) ∪ {(xD, 1) | D ⊂ (Ej

i )aged})

if γj
i < γj

i−1.

We note that, if γj
i = γj

i−1, then (W j+1
i ,Rj+1

i , Ej+1
i ) is the trans-

formation of (W j+1
i−1 ,Rj+1

i−1 , E
j+1
i−1 ).

We also observe the following.

∗ The ambient space remains the same throughout a fixed year i, i.e.,

Wi = W 0
i = W 1

i = · · · = W j
i = W j+1

i = · · · = Wm−1
i = Wm

i .

This is in clear contrast to the classical setting, where we take a consec-
utive sequence of the hypersurfaces of maximal contact (cf. §3.3)

Wi = H0
i ⊃ H1

i ⊃ · · · ⊃ Hj
i ⊃ Hj+1

i ⊃ · · · ⊃ Hm−1
i ⊃ Hm

i .

∗ The idealistic filtration of i.f.g. type gets enlarged (not necessarily
strictly) under modification, i.e.,

Ri = R0
i ⊂ R1

i ⊂ · · · ⊂ Rj
i ⊂ Rj+1

i · · · ⊂ Rm−1
i ⊂ Rm

i .

∗ The boundary divisor decreases (not necessarily strictly) under mod-
ification, i.e.,

Ei = E0
i ⊃ E1

i ⊃ · · · ⊃ Ej
i ⊃ Ej+1

i ⊃ · · · ⊃ Em−1
i ⊃ Em

i .

Summary of our algorithm in char(k) = p > 0 in terms of
“invnew”

We start with (W,R, E) = (W0,R0, E0).
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Suppose we have already constructed the resolution sequence up to
year i

(W,R, E) = (W0,R0, E0) ← · · · ← (Wi,Ri, Ei).

We weave the strand of invariants in year i described as above

(invnew)i = (σ0
i , μ̃

0
i , s

0
i )(σ

1
i , μ̃

1
i , s

1
i ) · · · (σj

i , μ̃
j
i , s

j
i ) · · · (σm

i , μ̃m
i , smi ),

where (σm
i , μ̃m

i , smi ) = (σm
i ,∞, 0) or (σm

i , 0, 0).

Case : (σm
i , μ̃m

i , smi ) = (σm
i ,∞, 0).

In this case, we take the center of blow up in year i for the transfor-
mation to be the singular locus of the last modification (Wm

i ,Rm
i , Em

i ),
i.e., Sing(Rm

i ), which is easily seen to be nonsingular as follows. We go

back to the year ι := imaged when the value of (invnew)
≤m−1
i (σm

i ) first
started. Observe that μ̃m

i = ∞ implies μ̃m
ι = ∞. The Nonsingular-

ity Principle (cf. [18] and [19]) applied to Rm
ι = DRm

ι tells us that
there exists a regular system of parameters (x1, . . . , xt, xt+1, . . . , xd) at

Pι such that Rm
ι = G((xpe1

1 , pe1), . . . , (xpet

t , pet)). Note that the cen-
ter Cι of blow up in year ι is contained in Sing(Rm

ι ). From this it
follows inductively that there exists a regular system of parameters
(x1,i′ , . . . , xt,i′ , xt+1,i′ , . . . , xd,i′) at Pi′ ∈ Sing(Rm

i′ ) ⊂ Wi′ such that

Sing(Rj
i′) = G((xpe1

1,i′ , p
e1), . . . , (xpet

t,i′ , p
et)) for ι ≤ i′ ≤ i. In particular,

Sing(Rm
i ) is nonsingular. We note that Sing(Rm

i ) ⊂ ⋂
D∈Ei\(Em

i )young
D

by construction of the boundary modifications, and that Sing(Rm
i ) is

transversal to (Em
i )young. This implies that the center Sing(Rm

i ) is
transversal to Ei. After blow up, the singular locus of (Wm

i ,Rm
i , Em

i )
disappears. Since resolution of singularities for (Wm

i ,Rm
i , Em

i ) implies

the strict decrease of the value of (invnew)
≤m−1

, we have (invnew)
≤m−1
i >

(invnew)
≤m−1
i+1 .

Case : (σm
i , μ̃m

i , smi ) = (σm
i , 0, 0).

In this case, by following the procedure specified for resolution of
singularities in the monomial case, we achieve resolution of singularities
of the m-th modification, which implies the strict decrease of the value

of (invnew)
≤m−1

. (It is possible that in the middle of the procedure the

value of the (invnew)
≤m−1

(or (invnew)
≤m−1

(σm)) strictly decreases).

Note: In both cases above, we are using the fact that the value of
“invnew” never increases after each transformation in the resolution
sequence, in order to derive the strict decrease of (invnew)

≤m−1
(or

(invnew)
≤m−1

(σm)).
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Termination in the vertical direction

By looking at the conclusions of the two cases above at the end
of the weaving process in the horizontal direction, we conclude that in
some year i′, the value of the strand strictly decreases, i.e., (invnew)i >
(invnew)i′ .

Now we claim that the value of the strand “invnew” cannot decrease
infinitely many times. In fact, suppose by induction we have shown that

the value of (invnew)
≤t−1

cannot decrease infinitely many times. Then

after some year the value of (invnew)
≤t−1

stabilizes. Since the value of
the invariant σ satisfies the descending chain condition, after some year

(say after year i′t−1), the value of (invnew)
≤t−1

(σt) stabilizes. Therefore,
after year i′t−1, we use the transformation of Rt

i′t−1
in order to compute

the invariant μ̃. (See (i) in the technical but important points in the
computation of the triplet (σ, μ̃, s).) This implies that the denominator
of the invariant μ̃ is bounded, and hence that the invariant μ̃ cannot
decrease infinitely many times. Since the invariant s, being a nonneg-
ative integer, cannot decrease infinitely many times, we conclude that

(invnew)
≤t−1

(σt, μ̃t, st) = (invnew)
≤t

cannot decrease infinitely many
times.

For each t, let year it be the time when the stabilization of (invnew)
≤t

first starts, i.e.,

(invnew)
≤t
it−1 > (invnew)

≤t
it

= (invnew)
≤t
i for i ≥ it.

Note that {it} is a (not necessarily strictly) increasing sequence, i.e.,
it ≤ it′ if t ≤ t′. Let σt = σt

it
be the first factor of the t-th unit

of (invnew)
≤t
it
. Note that {σt} is a (not necessarily strictly) decreasing

sequence. That is to say, we have σt ≥ σt+1, which follows easily if we
look at year it+1 and see σt = σt

it
= σt

it+1
≥ σt+1

it+1
= σt+1.

We claim that we have either σt > σt+1 or σt = σt+1 > σt+2. This
can be seen by the following reasoning.

• First look at the t-th unit in year it, and observe (σt
it
, μ̃t

it
, stit) �=

(σt
it
,∞, 0) or (σit , 0, 0). In fact, if (σt

it
, μ̃t

it
, stit) = (σt

it
,∞, 0) or (σit , 0, 0),

then the weaving process is over at the t-th stage in year it. When
(σt

it
, μ̃t

it
, stit) = (σt

it
,∞, 0), by the single blow up with center Sing(Rt

i),

we accomplish resolution of singularities for (W t
it
,Rt

it
, Et

it
). This, how-

ever, implies the strict decrease of (invnew)
≤t−1

, contradicting its stabil-
ity after year it−1(≤ it). If (σ

t
it
, μ̃t

it
, stit) = (σit , 0, 0), then by the proce-

dure of resolution of singularities in the monomial case, we accomplish
resolution of singularities for (W t

it
,Rt

it
, Et

it
), which implies the strict de-

crease of the value of (invnew)
≤t−1

. This also contradicts the stability
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of (invnew)
≤t−1

after year it−1(≤ it). (It is possible that in the mid-

dle of the procedure the value of the (invnew)
≤t−1

(or (invnew)
≤t−1

(σt))
strictly decreases. In the former case, it would contradict the stability of

(invnew)
≤t−1

after year it−1(≤ it). In the latter case, it would contradict

the stability of (invnew)
≤t

after year it.)

• If μ̃t
it

�= 0 or ∞, then σt
it

> σt+1
it

(cf. the proof of Proposition

3). Since σt+1
it

≥ σt+1
it+1

, we conclude σt = σt
it
> σt+1

it
≥ σt+1

it+1
= σt+1.

• We consider the case where μ̃t
it
= 0. By the first observation, we

have stit �= 0 and the weaving process continues onto the (t+ 1)-th unit

in year it. We have σt
it
≥ σt+1

it
.

Case : σt
it
> σt+1

it
.

We have σt = σt
it
> σt+1

it
≥ σt+1

it+1
= σt+1.

Case : σt
it
= σt+1

it
.

Since year it is the time when the value of (invnew)
≤t
it

first started, we

have
(
Et+1

it

)
young

= ∅. The idealistic filtration of i.f.g. type Rt+1
it

⊃ Rt
it

contains a monomial of the defining equations of (Et
it
)young. This implies

μ̃t+1
it

�= 0 or ∞. We have σt+1
it

≥ σt+1
it+1

.

Subcase : σt+1
it

> σt+1
it+1

.

We have σt = σt
it
= σt+1

it
> σt+1

it+1
= σt+1.

Subcase : σt+1
it

= σt+1
it+1

.

Since μ̃t+1
it

�= ∞, we have μ̃t+1
it+1

�= ∞.

Subsubcase : μ̃t+1
it+1

�= 0.

We have σt+1
it+1

> σt+2
it+1

. This implies σt = σt
it

= σt+1
it

= σt+1
it+1

>

σt+2
it+1

≥ σt+2
it+2

= σt+2.

Subsubcase : μ̃t+1
it+1

= 0.

By the first observation, we have st+1
it+1

�= 0. That is to say, there is a

component D of (Et+1
it+1

)aged ⊂ Et+1
it+1

= Et
it+1

\ (Et
it+1

)aged = (Et
it+1

)young
passing through that point. (Et

it+1
)young is the union of the exceptional

divisors created after the year when the value of (invnew)
≤t−1
it+1

(σt
it+1

) =

(invnew)
≤t−1
it

(σt
it
) first started. Therefore, D is transversal to the LGS of

Rt+1
it+1

, which is the transformation of the LGS of Rt
it
since σt

it
= σt+1

it
=

σt+1
it+1

. Since Rt+2
it+1

contains (xD, 1), where xD is the defining equation

of D, we conclude σt+1
it+1

> σt+2
it+1

. Therefore, we have σt = σt
it
= σt+1

it
=

σt+1
it+1

> σt+2
it+1

≥ σt+2
it+2

= σt+2.
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• We consider the case where μ̃t
it

= ∞. By the first observation,

we have stit �= 0 and the weaving process continues onto the (t + 1)-th

unit in year it. We have σt
it
≥ σt+1

it
.

Case : σt
it
> σt+1

it
.

We have σt = σt
it
> σt+1

it
≥ σt+1

it+1
= σt+1.

Case : σt
it
= σt+1

it
.

Since year it is the time when the value of (invnew)
≤t
it

first started,

we have
(
Et+1

it

)
young

= ∅. This implies μ̃t+1
it

�= 0. If μ̃t+1
it

�= ∞, then we

can carry the same argument as above (μ̃t
it
= 0 and Case : σt

it
= σt+1

it
)

to conclude that either σt > σt+1 or σt = σt+1 > σt+2. Therefore, we
have only to consider the case where μ̃t+1

it
= ∞. We have σt+1

it
≥ σt+1

it+1
.

Subcase : σt+1
it

> σt+1
it+1

.

We have σt = σt
it
= σt+1

it
> σt+1

it+1
= σt+1.

Subcase : σt+1
it

= σt+1
it+1

.

Since μ̃t+1
it

= ∞, we have μ̃t+1
it+1

= ∞. By the first observation, we

have st+1
it+1

�= 0. That is to say, there is a component D of (Et+1
it+1

)aged ⊂
Et+1

it+1
= Et

it+1
\ (Et

it+1
)aged = (Et

it+1
)young passing through that point.

(Et
it+1

)young is the union of the exceptional divisors created after the

year when the value of (invnew)
≤t−1
it+1

(σt
it+1

) = (invnew)
≤t−1
it

(σt
it
) first

started. Therefore, D is transversal to the LGS of Rt+1
it+1

, which is the

transformation of the LGS of Rt
it

since σt
it
= σt+1

it
= σt+1

it+1
. Since Rt+2

it+1

contains (xD, 1), where xD is the defining equation of D, we conclude
σt+1
it+1

> σt+2
it+1

. Therefore, we have σt = σt
it

= σt+1
it

= σt+1
it+1

> σt+2
it+1

≥
σt+2
it+2

= σt+2.

This completes the reasoning for the claim that we have either σt >
σt+1 or σt = σt+1 > σt+2.

Now we finish the argument for termination in the vertical direction
as follows.

Since the value of the invariant σ satisfies the descending chain con-
dition, the increase of the value of t stops after finitely many times.
Finally, therefore, we conclude that the value of the strand “invnew”
cannot decrease infinitely many times.

Therefore, the algorithm terminates after finitely many years,
achieving resolution of singularities for (W,R, E).
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4.4. Brief discussion on the monomial case in positive
characteristic

Here in §4.4, we briefly discuss why the problem of resolution of
singularities in the monomial case in positive characteristic is much more
subtle and difficult than the one in characteristic zero.

Recall we say that the triplet (W,R, E) is in the monomial case
(at P ∈ Sing(R) ⊂ W ) in our setting if (and only if) the triplet of
invariants takes the value (σ, μ̃, s) = (σ, 0, 0). (Precisely speaking, the
triplet (W,R, E) sits in the middle of constructing the sequence, say in
year “i” and at stage “j”, for resolution of singularities. However, we
omit the subscript and superscript “( )ji”, indicating the year and the
stage, for simplicity of the notation.)

The description of the monomial case at the analytic level is given
below.

SITUATION

◦ The condition μ̃ = 0 is interpreted as follows:

We can choose a regular system of parameters (x1, . . . , xt, xt+1, . . . ,

xd), taken from ÔW,P , such that

(1) the elements in the LGS H = {(hα, p
eα)}tα=1 are of the form

hα = xpeα

α + higher terms for α = 1, . . . , t,

(We sometimes call the higher terms in the above expression “the tail
part”.)

(2) there is a monomial M =
∏

D∈Eyoung
xrD
D of the defining equa-

tions xD of the components D in Eyoung with

(M, a) ∈ R̂P for some a ∈ Z>0,

where {xD | D ∈ Eyoung} ⊂ {xα | α = t+ 1, . . . , d} and
∑

rD > a,

(3) the idealistic filtration of i.f.g. type R̂P is saturated for
{∂n/∂xα

n | n ∈ Z≥0, α = 1, . . . , t},
satisfying the following condition: for an arbitrary (f, λ) ∈ R̂P with f =∑

cf,BH
B being the power series expansion with respect to the LGS H

and the associated to the regular system of parameters (x1, . . . , xt, xt+1,
. . . , xd), we have Mλ/a dividing the constant term cf,O, i.e., Mλ/a|cf,O.
Note that, using the formal coefficient lemma, we see (cf,O, λ) ∈ R̂P .

◦ The condition s = 0 is of course equivalent to saying that there
is no component of Eaged passing through P .
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char(k) = 0

In fact, the above description SITUATION of the monomial case
is also valid when char(k) = 0, with all the elements of the LGS concen-
trated at level 1, i.e., peα = 1 for α = 1, . . . , t. Moreover, we can replace
xα with hα so that we have hα = xα for α = 1, . . . , t. Then there is no
tail part. In order to construct resolution of singularities for (W,R, E),
we have only to carry out the resolution process for (V, ((M), a)|V , E|V ),
which is the triplet in the monomial case in the classical setting, where
V = {x1 = · · · = xt = 0} is a nonsingular subvariety inside of W . Note
that, since Eaged = ∅ (in a neighborhood of P , because s = 0), the third
factor E|V is a simple normal crossing divisor on V .

char(k) = p > 0

In contrast to the case in char(k) = 0, the elements in the LGS may
not be concentrated at level 1 in general. Therefore, we usually have
the tail parts for those hα’s at higher levels in char(k) = p > 0. The
hypersurfaces defined by {hα = 0} by those elements are singular hyper-
surfaces. Therefore, one is forced to analyze the monomial restricted to
a singular subvariety (defined as the intersection of the singular hyper-
surfaces), or alternatively to analyze the combination of the monomial
and the elements of the LGS with the tail parts included, while sticking
to the original nonsingular ambient space. The latter is what we do in
§5 of this paper in dimension 3.

In the simplest terms, NO or YES tail part is what makes the
difference between the monomial case in char(k) = 0 and the one in
char(k) = p > 0.

§5. Detailed discussion on the monomial case in dimension 3

The purpose of §5 is to discuss how to construct resolution of sin-
gularities (at the local level (cf. Remark 2)) in the monomial case. We

refer the reader to §4.4 SITUATION for the precise description of the
monomial case.

5.1. Case analysis according to the invariant “τ”

In §5.1, we analyze the situation according to the value of the in-
variant τ .

Recall that the invariant τ is just the number of the elements in an
LGS, and hence that, in dimension 3, it takes the value τ = 0, 1, 2, 3.
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It turns out that the analysis of the case τ = 0, 2 or 3 is rather easy.
We devote §5.2, §5.3, §5.4 to the analysis of the most subtle and difficult
case τ = 1.

Case : τ = 0

In this case, there is no element in an LGS. We conclude that for an

arbitrary (f, λ) ∈ R̂P the monomial Mλ/a divides cf,O = f . Therefore,
we can carry out the same algorithm for resolution of singularities of
the triplet (W, (I, a), E) = (W, ((M), a), E) in the monomial case in the
classical setting in characteristic zero, using the invariant Γ discussed
in §3.4. (Note that in the middle of the procedure the invariant σ may
drop. If that happens, then we are no longer in the monomial case.
In that case, we go through the mechanism described in §4.2 with the
reduced new value of σ to reach the new monomial case.)

Case : τ = 1

This case will be thoroughly discussed in §5.2, §5.3, §5.4.
Case : τ = 2

In this case, we can choose a regular system of parameters (x, y, z),

taken from ÔW,P , such that

(1) the two elements in the LGS H = {(h1, p
e1), (h2, p

e2)} are of
the form {

h1 = zp
e1

+ higher terms
h2 = yp

e2
+ higher terms,

(2) there is a monomial M = xr of the defining equation x of the
component {x = 0} ∈ Eyoung with

(M, a) = (xr, a) ∈ R̂P for some a ∈ Z>0,

(3) the idealistic filtration R̂P is saturated for {∂n/∂zn, ∂m/∂ym |
n,m ∈ Z≥0}.

Then it is easy to see that Sing(R) = P (in a neighborhood of P ) and
hence that the only possible transformation is the blow up with center P .
After blow up, we see that the (possibly) non-empty singular locus lies
only over the x-chart. We also see that the singular locus, if non-empty,

consists of a single point P̃ ∈ W̃ (in a neighborhood of the inverse image
of P ) with a regular system of parameters (x̃, ỹ, z̃) = (x, y/x, z/x). The
new LGS

H̃ = {(h̃1, p
e1), (h̃2, p

e2)} = {(h1/x
pe1

, pe1), (h2/x
pe2

, pe2)}
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are of the form {
h̃1 = (z̃′)p

e1
+ higher terms

h̃2 = (ỹ′)p
e2

+ higher terms

where (cf. the proof of Proposition 4){
z̃′ = z̃ + (cz)

1/pe1
x̃

ỹ′ = ỹ + (cy)
1/pe2

x̃
for some cz, cy ∈ k

(in case the invariant σ does not decrease). We calculate the new mono-
mial to be

(x̃r−a, a).

Since the power of x in the above monomial cannot decrease infinitely
many times, we achieve resolution of singularities after finitely many
repetitions of this procedure. (Note that in the middle of the procedure
the invariant σ may drop. If that happens, then we are no longer in the
monomial case. In that case, we go through the mechanism described in
§4.2 with the reduced new value of σ to reach the new monomial case.)

Case : τ = 3

This case does not happen. In fact, suppose this case did happen.
Then go back to the year ι := iaged when the current value of σ first
started. Since the current value of τ is equal to 3, so is the value of τ
back in year ι. Take the blow up with center Pι, which is the image of P
in year ι. Then it is immediate to see that there is no singular locus (in
a neighborhood of the inverse image of Pι) after blow up. This implies
in turn that Sing(Rι) = Pι (in a neighborhood of Pι). The only possible
transformation in the resolution sequence, therefore, is the blow up with
center Pι. After blow up, however, we already saw Sing(Rι+1) = ∅ over
Pι. This is a contradiction, since Pι+1, which is the image of P in year
ι+1, should be included in Sing(Rι+1). (Note that we have ι < i, since
the value of μ̃ is never zero when the new value of σ starts in year ι and
since the current value of μ̃ is zero being in the monomial case in year
i.)

Focus on the case τ = 1

In the following §5.2, §5.3, §5.4, we focus on, and restrict ourselves
to, the case τ = 1. We carry out the computation of the invariants
at the analytic (completion) level, even though the centers of blow ups
are chosen at the algebraic level, and hence all the procedures in the
algorithm are carried out at the algebraic level.
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We restate the SITUATION described in §4.4 in a slightly refined
form in our particular case τ = 1, for the sole purpose of fixing the
notation for §5.2, §5.3, §5.4.
SITUATION

We can choose a regular system of parameters (x, y, z), taken from

ÔW,P , such that

(1) via the Weierstrass Preparation Theorem the unique element
in the LGS H = {(h, pe)} is of the form

h = zp
e

+ a1z
pe−1 + a2z

pe−2 + · · ·+ ape−1z + ape

with
ai ∈ k[[x, y]] and ordP (ai) > i for i = 1, . . . , pe,

(2) there is a monomial M = xαyβ of the defining equation(s) of
the component(s) Hx = {x = 0} (and possibly Hy = {y = 0}) in Eyoung

with
(M, a) = (xαyβ , a) ∈ RP and α+ β > a,

(We write Mu := xα/ayβ/a and call Mu the usual monomial.)

(3) the idealistic filtration R̂P is saturated for {∂n/∂zn | n ∈ Z≥0},
satisfying the following condition: for an arbitrary (f, λ) ∈ R̂P with
f =

∑
cf,BH

B =
∑

cf,bh
b being the power series expansion with re-

spect to the LGS H = {(h, pe)} and its associated regular system of pa-
rameters (x, y, z), we have Mλ/a dividing the constant term cf,O = cf,0,

i.e., Mλ/a | cf,O = cf,0.

In particular, by looking at ∂nh/∂zn for n = 1, . . . , pe − 1, we see
that the coefficient ai is divisible by (Mu)

i for i = 1, . . . , pe − 1 (but
maybe not for i = pe). That is to say,

(Mu)
i | ai, i.e., x�iα/a�y�iβ/a� | ai for i = 1, . . . , pe − 1.

Throughout §5.2, §5.3, §5.4, we are under SITUATION described
as above.

5.2. “Cleaning” and the invariant “H” (in the case τ = 1)

The purpose of this section is to introduce the invariant “H” through
the process of “cleaning”. We follow closely the argument developed by
Benito-Villamayor [5], making some modifications to fit it into our own
setting in the framework of the Idealistic Filtration Program.



176 H. Kawanoue and K. Matsuki

Definition 5. We define the slope of h at P with respect to (x, y, z)
by the formula

Slopeh,(x,y,z)(P ) = min

{
1

pe
ordP (ape), μ(P )

}
.

Remark 6.
(i) Since we are in the monomial case and hence μ̃ = 0 and since

the monomial is (M, a) = (xαyβ, a), we compute

μ(P ) =
1

a
ordP (x

αyβ) =
α+ β

a
= ordP (Mu),

while

μ(ξHx) =
α

a
and μ(ξHy ) =

β

a
.

(ii) We have a “very good” control over the coefficients ai except
for the constant term ape , in the sense that

(Mu)
i =

(
xα/ayβ/a

)i
| ai for i = 1, . . . , pe − 1,

which implies

1

i
ordP (ai) ≥ μ(P ) for i = 1, . . . , pe − 1.

Therefore, this control leads to the following observation

Slopeh,(x,y,z)(P ) = min

{
μ(P ),

1

pe
ordP (ape)

}
= min

{
μ(P ),

1

i
ordP (ai) ; i = 1, . . . , pe

}
.

Definition 6 (Well-adaptedness (cf. [5])). We say h is well-adapted
at P with respect to (x, y, z) if one of the following two conditions holds:

A. Slopeh,(x,y,z)(P ) = μ(P ).

B. Slopeh,(x,y,z)(P ) = ordP (ape)/pe < μ(P ) and the initial form

InP (ape) is not a pe-th power.

Similarly, we say h is well-adapted at ξHx , where ξHx is the generic point
of the hypersurface Hx = {x = 0} in Eyoung, if one of the following two
conditions holds:

A. Slopeh,(x,y,z)(ξHx) = μ(ξHx) = α/a.

B. Slopeh,(x,y,z)(ξHx) = ordξHx
(ape)/pe < μ(ξHx) and the initial

form InξHx
(ape) is not a pe-th power.
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The notion of h being well-adapted at ξHy , where ξHy is the generic
point of the hypersurface Hy = {y = 0} in Eyoung, is defined in an
identical manner.

Note that if

ape =
∑

k+l≥d

cklx
kyl = xr {g(y) + x · ω(x, y)}

where ckl ∈ k, 0 �= g(y) ∈ k[[y]], ω(x, y) ∈ k[[x, y]], d = ordP (ape) and
r = ordξHx

(ape), then

InP (ape) =
∑

k+l=d

cklx
kyl and InξHx

(ape) = xrg(y).

Proposition 5.
(1) There exist an LGS H = {(h, pe)} and a regular system of pa-

rameters (x, y, z), as described in SITUATION in §5.1, such that h is
well-adapted at P , ξHx and ξHy simultaneously with respect to (x, y, z).
Note that we require the property that the idealistic filtration RP is{

∂n

∂zn | n ∈ Z≥0

}
-saturated with respect to the regular system of parame-

ters (x, y, z) (cf. SITUATION (3)).
(2) If h is well-adapted at ∗ = P, ξHx or ξHy with respect to (x, y, z),

then Slopeh,(x,y,z)(∗) is independent of the choice of h and (x, y, z).

Proof.

(1) We start with h and (x, y, z) as given in SITUATION in §5.1.
Step 1. Modify h and (x, y, z) to be well-adapted at P .
Suppose we are in Case A or Case B as described in Definition 6.

Then h is already well-adapted at P with respect to (x, y, z) and there
is no modification needed.

Therefore, we may assume that we are not in either Case A or Case
B. That is to say, we have

Slopeh,(x,y,z)(P ) =
1

pe
ordP (ape) < μ(P ),

and

InP (ape) =
∑

k+l=d

cklx
kyl, with d = ordP (ape), is a pe-th power.

Take
{InP (ape)}1/pe ∈ k[x, y],
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and set

z′ = z + {InP (ape)}1/pe

, i.e., z = z′ − {InP (ape)}1/pe

.

Plug this into

h = zp
e

+ a1z
pe−1 + a2z

pe−2 + · · ·+ ape−1z + ape

to obtain

h = z′p
e

+ a′1z
′pe−1 + a′2z

′pe−2 + · · ·+ a′pe−1z
′ + a′pe

with
a′i ∈ k[[x, y]] for i = 1, . . . , pe − 1, pe.

Since for i = 1, . . . , pe − 1, we have (cf. Remark 6 (ii))

1

i
ordP (ai) ≥ μ(P ) >

1

pe
ordP (ape) = ordP

(
{InP (ape)}1/pe

)
,

we conclude that a′pe is of the form

a′pe = ape − InP (ape) + higher terms

and hence that
1

pe
ordP (a

′
pe) >

1

pe
ordP (ape).

We go back to the starting point, replacing the original h and (x, y, z)
by h′ and (x′, y′, z′) = (x, y, z′), with strictly increased ordP (a

′
pe)/pe.

Since μ(P ) < ∞, we conclude that, after finitely many repetitions of
this process, we have to come to the situation where we are in Case A
or Case B, i.e., where h is well-adapted at P with respect to (x, y, z).

Step 2. Modify h and (x, y, z) further to be well-adapted at ξHx

without destroying the well-adaptedness at P .
Take h which is well-adapted at P with respect to (x, y, z), as ob-

tained through Step 1.
Suppose we are in Case A or Case B as described in the second half

of Definition 6. Then h is already well-adapted at ξHx with respect to
(x, y, z) and there is no modification needed.

Therefore, we may assume that we are not in either Case A or Case
B. That is to say, we have

Slopeh,(x,y,z)(ξHx) =
1

pe
ordξHx

(ape) < μ(ξHx),
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and
InξHx

(ape) = xrg(y) is a pe-th power,

where ape = xr {g(y) + x · ω(x, y)} and r = ordξHx
(ape). Take{

InξHx
(ape)

}1/pe

∈ k[[y]][x],

and set

z′ = z +
{
InξHx

(ape)
}1/pe

, i.e., z = z′ − {
InξHx

(ape)
}1/pe

.

Then as in Step 1, we see

1

pe
ordξHx

(a′pe) >
1

pe
ordξHx

(ape).

We go back to the starting point, replacing the original h and (x, y, z)
by h′ and (x′, y′, z′) = (x, y, z′), with strictly increased ordξHx

(a′pe)/pe.
Since μ(ξHx) < ∞, we conclude that, after finitely many repetitions of
this process, we have to come to the situation where we are in Case A
or Case B, i.e., where h is well-adapted at ξHx with respect to (x, y, z).

The only issue here is to check, in the process, the property that h
is well-adapted at P is preserved.

Case : ordP (ape)/pe ≥ μ(P ).
In this case, we have

ordP

({
InξHx

(ape)
}1/pe)

≥ 1

pe
ordP (ape) ≥ μ(P )

and, for i = 1, . . . , pe − 1, we have (cf. Remark 6 (ii))

1

i
ordP (ai) ≥ μ(P ).

Therefore, we conclude that

1

pe
ordP (a

′
pe) ≥ μ(P ),

and hence that h′ stays well-adapted at P with respect to (x′, y′, z′).
Case : ordP (ape)/pe < μ(P ).

In this case, we have

ordP

({
InξHx

(ape)
}1/pe)

≥ 1

pe
ordP (ape)
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and, for i = 1, . . . , pe − 1, we have (cf. Remark 6 (ii))

1

i
ordP (ai) ≥ μ(P ) >

1

pe
ordP (ape).

Hence, since InP (ape) is not a pe-th power and since the degree d =
ordp(ape)-part of InξHx

(ape) is a pe-th power, we have

InP (a
′
pe) = InP (ape)− {

the degree d = ordp(ape)-part of InξHx
(ape)

}
.

Therefore, we conclude that

ordP (a
′
pe) = ordP

(
InP (a

′
pe)
)
= ordP (InP (ape)) = ordP (ape) < μ(P )

and InP (a
′
pe) is not a pe-th power, and hence that h′ stays well-adapted

at P with respect to (x′, y′, z′).

Step 3. Modify h and (x, y, z) still further to be well-adapted at
ξHy without destroying the well-adaptedness at P and ξHx .

The process of this step is almost identical to that of Step 2, and
hence is left to the reader as an exercise.

We note that the requirement as described in SITUATION (3) is
met, since the original (x, y, z) satisfies the property and since we only
modify z by adding the elements in k[[x, y]] throughout the process.

This finishes the proof of (1).

(2) We only give a proof for the case where ∗ = P , since the proof
for the case where ∗ = ξHx is identical.

Take h which is well-adapted at P with respect to (x, y, z), with the
property that the idealistic filtration RP is saturated for {∂n/∂zn | n ∈
Z≥0}.

We set

H(P ) = min

{
μ(P ), max

{
1

pe
ordP (h

′|Z′)

∣∣∣∣ h′, (x′, y′, z′),
Z ′ = {z′ = 0}

}}
where, computing the above “max”, we let h′ and (x′, y′, z′) vary among
all such pairs consisting of the unique element in an LGS and a regular
system of parameters that satisfy the condition

h′ ≡ z′p
e

mod m̂P
pe+1

.

It suffices to show

Slopeh,(x,y,z)(P ) = H(P ),
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since the number H(P ) is obviously independent of the choice of h and
(x, y, z).

Observe

Slopeh,(x,y,z)(P ) = min

{
1

pe
ordP (ape) , μ(P )

}
≤ H(P ),

since
1

pe
ordP (h|Z) = 1

pe
ordP (ape)

and since h and (x, y, z) form such a pair consisting of the unique element
in an LGS and a regular system of parameters that satisfy the condition

h ≡ zp
e

mod m̂P
pe+1

.

Now we prove the inequality in the opposite direction

Slopeh,(x,y,z)(P ) = min

{
1

pe
ordP (ape), μ(P )

}
≥ H(P ).

If Slopeh,(x,y,z)(P ) = μ(P ), then the above inequality obviously holds.

Therefore, we may assume that Slopeh,(x,y,z)(P ) = ordP (ape)/pe < μ(P )

and that InP (ape) is not a pe-th power.
Take an arbitrary pair h′ and (x′, y′, z′) as described in the definition

of H(P ) above.
We claim that

ordP (h
′|Z′) = ordP (h|Z′) ≤ ordP (h|Z) = ordP (ape) < peμ(P ),

which implies the required inequality.
Let

h′ =
∑

cBH
B =

∑
b∈Z≥0

cbh
b

be the power series expansion of h′ with respect to the LGSH = {(h, pe)}
and its associated regular system of parameters (x, y, z).

Since

h′ ≡ z′p
e ≡ c · zpe

mod m̂P
pe+1

for some c ∈ k×,

we conclude
h′ =

∑
b>0

cbh
b + c0 = u · h+ c0

for some unit u in ÔW,P . Moreover, by the formal coefficient lemma,

we have (c0, p
e) ∈ R̂P . This implies that (Mu)

pe | c0 and hence that
ordP (c0|Z′) ≥ ordP (c0) ≥ peμ(P ).
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Therefore, it suffices to prove

ordP (h|Z′) ≤ ordP (h|Z) (= ordP (ape) < peμ(P )) .

(Then ordP (h|Z′)=ordP ((u · h)|Z′)=ordP ((u · h+ c0)|Z′)=ordP (h
′|Z′).)

Now by the Weierstrass Preparation Theorem, we have

z′ = v · (z + w)

for some unit v in ÔW,P and w ∈ k[[x, y]]. Since Z ′ = {z′ = 0} =
{z + w = 0}, by replacing z′ with z + w, we may assume that z′ is of
the form

z′ = z + w, i.e., z = z′ − w with w ∈ k[[x, y]].

Plug this into

h = zp
e

+ a1z
pe−1 + a2z

pe−2 + · · ·+ ape−1z + ape

to obtain

h = z′p
e

+ a′1z
′pe−1 + a′2z

′pe−2 + · · ·+ a′pe−1z
′ + a′pe

with
a′i ∈ k[[x, y]] for i = 1, . . . , pe − 1, pe,

where

a′pe = (−w)p
e

+ a1(−w)p
e−1 + a2(−w)p

e−2 + · · ·+ ape−1(−w) + ape .

Observe that, since (cf. SITUATION in §5.1)

(Mu)
i | ai for i = 1, . . . , pe − 1,

we have

1

i
ordP (ai) ≥ ordP (Mu) = μ(P ) >

1

pe
ordP (ape) for 1 ≤ i < pe.

Case : ordP (w) > ordP (ape)/pe.
In this case, we have

ordP (h|Z′) = ordP (a
′
pe) = ordP (ape) = ordP (h|Z).

Case : ordP (w) = ordP (ape)/pe.
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In this case, since InP (ape) is not a pe-th power, we see via the
observation above that

InP (a
′
pe) = InP ((−w)p

e

) + InP (ape) �= 0

and
ordP (h|Z′) = ordP (a

′
pe) = ordP (ape) = ordP (h|Z).

Case : ordP (w) < ordP (ape)/pe.
In this case, we have

ordP (h|Z′) = ordP (a
′
pe) = ordP ((−w)p

e

)

= peordp(w) < ordP (ape) = ordP (h|Z).
Therefore, in all the cases above, we have

ordP (h|Z′) ≤ ordP (h|Z).
This completes the proof of Proposition 5. Q.E.D.

Definition 7 (Invariant “H”). We define the invariant H by the
following formula

H(∗) := Slopeh,(x,y,z)(∗)
where h is well-adapted at ∗ = P, ξHx , or ξHy with respect to (x, y, z).
By Proposition 5, the invariant H is independent of the choice of h and
(x, y, z).

Definition 8 (the tight monomial). We define the tight monomial
Mt by the formula

Mt = xhxyhy where hx = H(ξHx), hy = H(ξHy ).

Recall that the usual monomial Mu is defined by the formula

Mu = xα/ayβ/a where
α

a
= μ(ξHx),

β

a
= μ(ξHy ).

Note that we have Mt | Mu, that is to say, we have 0 ≤ hx ≤ μ(ξHx)
and 0 ≤ hy ≤ μ(ξHy ), which follow easily from the definition.

5.3. Description of the procedure (in the case τ = 1)

Analysis of the singular locus Sing(R) at P

First we analyze the singular locus Sing(R) of the idealistic filtration
R of i.f.g. type at P .
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Proposition 6. We have the following description of the singular
locus Sing(R) at P , denoted by Sing(R)P , according to the values of
hx = H(ξHx) and hy = H(ξHy ):

Sing(R)P =

⎧⎪⎪⎨⎪⎪⎩
V (z, x) ∪ V (z, y) if hx ≥ 1 and hy ≥ 1
V (z, x) if hx ≥ 1 and hy < 1
V (z, y) if hx < 1 and hy ≥ 1
V (z, x, y) = P if hx < 1 and hy < 1,

where “V” denotes the vanishing locus and where (x, y, z) is a regular
system of parameters at P with respect to which h is well-adapted simul-
taneously at P , ξHx , and ξHy .

Proof. Note first that, since (M, a) = (xαyβ , a) ∈ R̂P with a ∈
Z>0, we have

Sing(R)P ⊂ {x = 0} ∪ {y = 0} = Hx ∪Hy.

Then the asserted description is a consequence of the following analysis
of Sing(R)P ∩ Hx (and that of Sing(R)P ∩ Hy, which is identical and
hence omitted).

Case : hx ≥ 1.
In this case, we have

• (h, pe) ∈ R̂P with h = zp
e

+ a1z
pe−1 + · · · + ape−1z + ape being

well-adapted both at P and ξHx ,
• x | ai for i = 0, . . . , pe − 1, since α/a ≥ hx ≥ 1 and since Mu | ai

for i = 0, . . . , pe − 1,
• x | ape , since hx ≥ 1,
• h = 0 on Sing(R)P ,

which imply
• z = 0 on Sing(R)P ∩Hx.
Therefore, we conclude

Sing(R)P ∩Hx ⊂ V (z, x).

On the other hand, for Q ∈ V (z, x), we have
• ordQ(ai) ≥ ordQ((Mu)

i) ≥ α/a · i ≥ i for i = 0, . . . , pe − 1, since
Mu | ai for i = 0, . . . , pe − 1 and since α/a ≥ hx ≥ 1,

• ordQ(ape) ≥ hx · pe ≥ pe, since hx ≥ 1,
which imply

• ordQ(h) ≥ pe.

Therefore, for any (f, λ) ∈ R̂P with f =
∑

cbh
b being the power

series expansion with respect to the LGSH = {(h, pe)} and its associated
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regular system of parameters (x, y, z), we have

ordQ(f) ≥ λ

since
• ordQ(cb) ≥ ordQ((Mu)

λ−pe·b) ≥ α/a · (λ− pe · b) ≥ λ− pe · b for

b with λ− pe · b ≥ 0, since (cb, λ− pe · b) ∈ R̂P , which follows from the
formal coefficient lemma.

Therefore, we conclude

Sing(R)P ∩Hx ⊃ V (z, x),

and hence
Sing(R)P ∩Hx = V (z, x).

Case : 1 > hx > 0.
In this case, we have

• (h, pe) ∈ R̂P with h = zp
e

+ a1z
pe−1 + · · ·+ ape−1z + ape being

well-adapted both at P and ξHx ,
• x | ai for i = 0, . . . , pe − 1, since α/a ≥ hx > 0 and since Mu | ai

for i = 0, . . . , pe − 1,
• x | ape , since hx > 0,
• h = 0 on Sing(R)P ,

which imply
• z = 0 on Sing(R)P ∩Hx.

Subcase : hx = μ(ξx). In this subcase, the inequality 1 > hx and the

inclusion (M,a) ∈ R̂P imply

Sing(R)P ∩Hx ⊂ V (z, x, y).

Subcase : hx = ordξx(ape)/pe. In this subcase, we have 1 > hx = r/pe

where r = ordξHx
(ape), and hence ape = xr · γ(x, y) where γ(x, y) is not

divisible by x. Therefore, we conclude

Sing(R)P ∩Hx ⊂ V (z, x) ∩ {γ(x, y) = 0} = V (z, x, y).

Therefore, in both subcases, we have

Sing(R)P ∩Hx = V (z, x, y) = P.

Case : hx = 0.

Subcase : α/a = μ(ξHx) = 0. In this subcase, we have β/a = μ(ξHy ) ≥
1. Therefore, we conclude

Sing(R)P ∩Hx ⊂ V (z, x, y) and hence Sing(R)P ∩Hx = V (z, x, y) = P.
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Subcase : α/a = μ(ξHx) > 0. In this subcase, we have
• x | ai for i = 0, . . . , pe − 1, since α/a > 0 and since Mu | ai for

i = 0, . . . , pe − 1.
Set ape = g(y) + x ·ω(x, y). Then g(y) �= 0 and g(y) = InξHx

(ape) is
not a pe-th power, since h is well-adapted at ξHx . We also observe that,
for Q ∈ Sing(R)P ∩Hx, we have

pe ≤ ordQ(h) ≤ ordQ(h|Hx) = ordQ(z
pe

+ g(y)).

Therefore, there exists e′ < e such that

∂pe′

∂ype′ (z
pe

+ g(y)) =
∂pe′

∂ype′ g(y) �= 0

and that

ordQ

(
∂pe′

∂ype′ g(y)

)
= ordQ

(
∂pe′

∂ype′ (z
pe

+ g(y))

)
≥ pe − pe

′
> 0.

This implies y = 0 at Q. Therefore, we conclude

Sing(R)P ∩Hx ⊂ V (z, x, y), and hence Sing(R)P ∩Hx = V (z, x, y) = P.

This completes the proof of Proposition 6. Q.E.D.

Description of the procedure for resolution of singularities

Now based upon the analysis of the support Sing(R)P , we give the
following (local) description of the procedure (around the point P ) for
resolution of singularities in the monomial case with τ = 1:

Step 1. Check if dimSing(R)P = 1.
If the answer is yes, then blow up the 1-dimensional components

one by one. If there are two 1-dimensional components meeting at P ,
then we blow up the one associated to the boundary divisor with bigger
H first. If the boundary divisors associated to the two 1-dimensional
components have the same H, then we blow up first the one associated
to the boundary divisor created later in the history. Since the invariant
H strictly decreases under this procedure, this step comes to an end after
finitely many times with the dimension of the singular locus dropping
to 0.

If the answer is no, i.e., dimSing(R)P = 0, then go to Step 2.

Step 2. Once dimSing(R)P = 0, blow up the isolated point in the
singular locus. Then go back to Step 1.
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Repeat these steps.

(We note that, as long as the value of the invariant σ remains the
same, we stay in the monomial case during the procedure above. We
also note that in the middle of the procedure the invariant σ may drop.
If the latter happens, we are no longer in the monomial case. In this
case, we go through the mechanism described in §4.2 with the reduced
new value of σ to reach the new monomial case.)

What remains to be shown is that the above procedure terminates
after finitely many repetitions. This termination of the procedure is the
main subject of §5.4.

5.4. Termination of the procedure (in the case τ = 1)

Notion of a good/bad point (resp. hypersurface)

In order to analyze the termination of the procedure, we introduce
the following notion of the point P being “good or bad” and the bound-
ary divisor Hx (or Hy) being “good or bad”.

Definition 9 (“good/bad” point (cf. [5])). We say P is a good
(resp. a bad) point if μ(P ) − H(P ) = 0 (resp. > 0). Similarly, we say
Hx is a good (resp. bad) hypersurface if μ(ξHx) − H(ξHx) = 0 (resp.
> 0), where ξHx is the generic point of the hypersurface Hx.

The notion of Hy being a good or bad hypersurface is defined in an
identical manner.

Lemma 4. Let W
π← W̃ be the blow up with center P , EP the

exceptional divisor, R̃ the transformation of the idealistic filtration of
i.f.g. type R. Then P is a good (resp. bad) point if and only if EP is a
good (resp. bad) hypersurface.

Proof. Take h and a regular system of parameters as described in

SITUATION in §5.1. We may further assume that h is well-adapted at
P with respect to the regular system of parameters (x, y, z) (cf. Propo-

sition 5). Take a point P̃ ∈ π−1(P ) ∩ Supp(R̃) ⊂ W̃ . Since the singular

locus is empty over the z-chart, P̃ should be either in the x-chart or in

the y-chart. Say, P̃ is in the x-chart with a regular system of parameters
(x̃, ỹ, z̃) = (x, y/x − c, z/x) for some c ∈ k. We also assume that the

invariant σ stays the same, and hence (cf. Proposition 4) that (h̃, pe) is

the unique element in the LGS at P̃ where

h̃ =
π∗(h)
xpe = z̃p

e

+ ã1z̃
pe−1 + · · ·+ ãpe with ãi =

π∗(ai)
xi

∈ k[[x̃, ỹ]].
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We compute

Slopeh̃,(x̃,ỹ,z̃)(ξEP ) = min

{
1

pe
ordξEP

(ãpe), μ(ξEP )

}
= min

{
1

pe
ordP (ape)− 1, μ(P )− 1

}
= min

{
1

pe
ordP (ape), μ(P )

}
− 1

= H(P )− 1.

Case : P is a good point, i.e., H(P ) = μ(P ).
In this case, we have

Slopeh̃,(x̃,ỹ,z̃)(ξEP ) = H(P )− 1 = μ(P )− 1 = μ(ξEP ).

Therefore, we conclude that EP is a good hypersurface (with h̃ well-
adapted at ξEP with respect to (x̃, ỹ, z̃) and H(ξEP ) = μ(ξEP )).

Case : P is a bad point, i.e., H(P ) < μ(P ).
In this case, we have

Slopeh̃,(x̃,ỹ,z̃)(ξEP ) = H(P )− 1 < μ(P )− 1 = μ(ξEP ).

Therefore, in order to see that EP is a bad hypersurface, i.e., H(ξEP ) <

μ(ξEP ), we have only to show that h̃ is well-adapted at ξEP with re-
spect to (x̃, ỹ, z̃), i.e., InξEP

(ãpe) is not a pe-th power, and hence that

Slopeh̃,(x̃,ỹ,z̃)(ξEP ) = H(ξEP ).

Set ape =
∑

k+l≥d cklx
kyl where d = ordP (ape). Then

π∗(ape) =
∑

k+l≥d

cklx
k+l

(y
x

)l
= xd

{ ∑
k+l=d

ckl

(y
x

)l
+ x · Ω

(
x,

y

x

)}

= xd
{
φ
(y
x

)
+ x · Ω

(
x,

y

x

)}
,

where φ(T ) =
∑

k+l=d cklT
l. Hence, we have

ãpe =
π∗(ape)

xpe = xd−pe
{
φ
(y
x
− c+ c

)
+ x · Ω

(
x,

y

x
− c+ c

)}
= x̃d−pe {φ(ỹ + c) + x̃ · Ω(x̃, ỹ + c)} .
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Therefore, we conclude

InP (ape) =
∑

k+l=d

cklx
kyl = xdφ

(y
x

)
is a pe-th power

⇐⇒ pe | d and φ(T ) is a pe-th power

⇐⇒ InξEP
(ãpe) = x̃d−pe

φ(ỹ + c) is a pe-th power.

Now since P is a bad point in this case, InP (ape) is not a pe-th power.
Therefore, by the above equivalence, InξEP

(ãpe) is not a pe-th power,
either.

This completes the proof of Lemma 4. Q.E.D.

Remark 7.
(1) The above proof is slightly sloppy in the sense that, after blow

up, we may end up having ordP̃ (ãpe) = pe and InP̃ (ãpe) = cx̃pe

for some

c ∈ k \ {0}, even under the condition P̃ ∈ π−1(P ) ∩ Supp(R̃) ⊂ W̃
and the assumption that the invariant σ stays the same (cf. the proof
of Proposition 4 (1)). Then we would have to replace (x̃, ỹ, z̃) with

(x̃, ỹ, z̃′ = z̃+c1/p
e

x̃) to guarantee condition (1) in SITUATION in §5.1.
Accordingly, we have to analyze ãpe

′
. It is straightforward, however, to

see that the same statement holds for ãpe
′
. The details are left to the

reader as an exercise.
(2) As will be clear in the presentation that follows, especially in

the way we classify the configurations and we define the new invariant
“invMON”, the focus of our proof centers around the analysis looking at
whether the hypersurface of our concern is good/bad. The notion of a
point being good/bad, though related to our analysis via Lemma 4, is
somewhat auxiliary.

Configurations

Looking at the boundary divisor(s) in Eyoung at the point P ∈
Sing(R) and seeing whether they are good or bad, we come up with
the following classification of the “configurations”. Note that the pic-
tures depict the configurations in a 2-dimensional manner, taking the
intersection with the hypersurface Z = {z = 0}.

1© The point P is only on one boundary divisor (in Eyoung), say
Hx, which is good.
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Hx good

��
P

2© The point P is at the intersection of two boundary divisors (in
Eyoung), both of which are good.

Hx good

Hy

good��
P

3© The point P is only on one boundary divisor (in Eyoung), say Hx,
which is bad.

Hx bad

��
P

4© The point P is at the intersection of two boundary divisors (in
Eyoung), one of which, say, Hx, is bad, while the other, say Hy, is good.

Hx bad

Hy

good��
P
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5© The point P is at the intersection of two boundary divisors (in
Eyoung), say Hx and Hy, both of which are bad.

Hx bad

Hy

bad��
P

Basic strategy to show termination of the procedure

After the blow up W
π← W̃ specified by the procedure described in

§5.3, we show that, at P̃ ∈ π−1(P ) ∈ W̃ , one of the following holds:

• P̃ �∈ Sing(R̃), i.e., Sing(R̃) = ∅ in a neighborhood of P̃ ,

• P̃ ∈ Sing(R̃) and the invariant σ drops, or

• P̃ ∈ Sing(R̃) and the invariant “invMON(P )” strictly decreases,

i.e., invMON(P ) > invMON(P̃ ). We note that “invMON(P )” is a new
invariant, which we introduce below, attached to the point P ∈ Sing(R)
in any one of the configurations 1© through 5©.

Since the invariant “invMON” cannot decrease infinitely many times,

the procedure described in §5.3 terminates either with P̃ �∈ Supp(R̃) or
with the drop of the invariant σ after finitely many repetitions.

This completes the description of the basic strategy.

Definition 10 (Invariant “invMON”). We define the invariant

“invMON(P )” associated to a point P ∈ Sing(R̃) in each of the con-
figurations 1© through 5© (cf. Configurations) as follows (Note that
“MON” is short for “MONOMIAL”.):

invMON(P ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(0, 0, μx) in configuration 1©,

(0, 0,min{μx, μy},max{μx, μy}) in configuration 2©,

(ρx, 0, μx) in configuration 3©,

(min{ρx, μx},max{ρx, μx}) in configuration 4©,

(min{ρx, ρy},max{ρx, ρy}) in configuration 5©,

where μx = μ(ξHx), μy = μ(ξHy ) and the invariant ρ is defined as below
to determine ρx, ρy.
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Proposition 7. Let P be the point in configuration 3©, 4©, or 5©,
and let Hx be a bad boundary divisor (in Eyoung). Suppose h is well-
adapted at ξHx with respect to (x, y, z) (satisfying the conditions as de-

scribed in SITUATION in §5.1 at the same time). Write

ape = xr {g(y) + x · ω(x, y)} where r = ordξHx
(ape).

Set

ρh,(x,y,z),Hx
(P ) =

1

pe
{res-ord(pe)

P (InξHx
(ape))− ordξHx

(ape)}

=
1

pe
{res-ord(pe)

P (xrg(y))− r},

i.e.,

ρh,(x,y,z),Hx
(P ) =

{
ordP (g(y)) /pe in case r �≡ 0 mod pe

res-ord
(pe)
P (g(y)) /pe in case r ≡ 0 mod pe,

where res-ord
(pe)
P is the smallest degree of the term which appears with a

nonzero coefficient and which is not a pe-th power.
Then ρh,(x,y,z),Hx

(P ) is independent of the choice of h and (x, y, z).

Proof. Note first that r = H(ξHx) · pe is independent of the choice
of h and (x, y, z) by Proposition 5 (2).

We set

ρx = max

⎧⎪⎪⎨⎪⎪⎩
1

pe
ordP

({
(h′|Z′) · x′−r

}
|Z′∩Hx′

) ∣∣∣∣∣∣∣∣
h′, (x′, y′, z′),
Z ′ = {z′ = 0},
Hx′ = {x′ = 0}

= Hx

⎫⎪⎪⎬⎪⎪⎭ ,

where, computing the above “max”, we let h′ and (x′, y′, z′) vary among
all such pairs consisting of the unique element in an LGS and a regular
system of parameters that satisfy the condition{

h′ ≡ z′p
e

mod m̂P
pe+1

, and
ordξH

x′ (h
′|Z′) = ordξHx

(h′|Z′) = r.

It suffices to show that

ρh,(x,y,z),Hx
(P ) = ρx,

as the number ρx is obviously independent of the choice of h and (x, y, z).
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Firstly we claim that the inequality

ρh,(x,y,z),Hx
(P ) ≤ ρx

holds. Note that h and (x, y, z) form such a pair satisfying the above
condition described in the definition of ρx computing the “max”, since
h is well-adapted at ξHx with respect to (x, y, z).

Case : r �≡ 0 mod pe.
In this case, we have

ρh,(x,y,z),Hx
(P ) =

1

pe
ordP (g(y)) =

1

pe
ordP

({
(h|Z) · x−r

} |Z∩Hx

) ≤ ρx

by the definition of ρx above taking the “max” among all such pairs.

Case : r ≡ 0 mod pe.

In this case, we modify z in the following way.
Set g(y) =

∑
n∈Z≥0

bny
n with bn ∈ k. We have

xr

⎧⎪⎨⎪⎩
∑

n<res-ord
(pe)
P (g(y))

bny
n

⎫⎪⎬⎪⎭ = wpe

for some w ∈ k[x, y],

since L.H.S. is a pe-th power by the case assumption r ≡ 0 mod pe and

by the definition of res-ord
(pe)
P . Then set z′ = z + w, i.e., z = z′ − w.

Plug this into

h = zp
e

+ a1z
pe−1 + a2z

pe−2 + · · ·+ ape−1z + ape

to obtain

h = z′p
e

+ a′1z
′pe−1 + a′2z

′pe−2 + · · ·+ a′pe−1z
′ + a′pe

with a′i ∈ k[[x, y]] for i = 1, . . . , pe − 1, pe, where

a′pe = (−w)p
e

+ a1(−w)p
e−1 + a2(−w)p

e−2 + · · ·+ ape .

Observe that, since (cf. SITUATION in §5.1)

(Mu)
i | ai for i = 1, . . . , pe − 1,

we have

1

i
ordξHx

(ai) ≥ ordξHx
(Mu) = μ(ξHx) >

1

pe
ordξHx

(ape) =
r

pe
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for i = 1, . . . , pe − 1, where the second strict inequality follows from the
assumption that Hx is a bad boundary divisor.

Hence, we observe that a′pe is of the following form

a′pe = xr {g′(y) + x · ω′(x, y)}
where

g′(y) = g(y)− wpe · x−r =
∑

n≥res-ord
(pe)
P (g(y))

bny
n.

Therefore, we conclude that

ρh,(x,y,z),Hx
(P ) =

1

pe
res-ord

(pe)
P (g(y)) =

1

pe
ordP (g

′(y))

=
1

pe
ordP

({
(h|Z′) · x−r

} |Z′∩Hx

) ≤ ρx.

Secondly we prove the inequality in the opposite direction holds, i.e.,

ρh,(x,y,z),Hx
(P ) ≥ ρx.

Take an arbitrary pair of h′ and (x′, y′, z′) satisfying the conditions
described in the definition of ρx computing the “max”.

We claim that

ρh,(x,y,z),Hx
(P ) ≥ 1

pe
ordP

({
(h′|Z′) · x′−r

}
|Z′∩Hx′

)
,

which implies the required inequality.
Let

h′ =
∑

cBH
B =

∑
b∈Z≥0

cbh
b

be the power series expansion of h′ with respect to the LGSH = {(h, pe)}
and its associated regular system of parameters (x, y, z).

Since

h′ ≡ z′p
e ≡ c · zpe

mod m̂P
pe+1

for some c ∈ k×,

we conclude
h′ =

∑
b>0

cbh
b + c0 = u · h+ c0

for some unit u in ÔW,P .

Moreover, by the formal coefficient lemma, we have (c0, p
e) ∈ R̂P .

This implies that (Mu)
pe | c0, and hence that

ordξHx
(c0|Z′) ≥ ordξHx

(c0) ≥ peμ(ξHx) > r.
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Hence we have{
(c0|Z′) · x′−r

}
|Z′∩Hx′ =

{
(c0|Z′) · x−r

} |Z′∩Hx = 0,

which implies

ordP

({
(h′|Z′) · x′−r

}
|Z′∩Hx′

)
= ordP

({
((u · h+ c0)|Z′) · x′−r

}
|Z′∩Hx′

)
= ordP

({
(u · h|Z′) · x′−r

}
|Z′∩Hx′

)
= ordP

({
(h|Z′) · x′−r

}
|Z′∩Hx′

)
= ordP

({
(h|Z′) · x−r

} |Z′∩Hx

)
.

Therefore, it suffices to prove

ρh,(x,y,z),Hx
(P ) ≥ 1

pe
ordP

({
(h|Z′) · x−r

} |Z′∩Hx

)
.

Now by the Weierstrass Preparation Theorem, we have

z′ = v · (z + w)

for some unit v in ÔW,P and w ∈ k[[x, y]]. Since Z ′ = {z′ = 0} =
{z + w = 0}, by replacing z′ with z + w, we may assume that z′ is of
the form

z′ = z + w, i.e., z = z′ − w with w ∈ k[[x, y]].

Plug this into

h = zp
e

+ a1z
pe−1 + a2z

pe−2 + · · ·+ ape−1z + ape

to obtain

h = z′p
e

+ a′1z
′pe−1 + a′2z

′pe−2 + · · ·+ a′pe−1z
′ + a′pe

with a′i ∈ k[[x, y]] for i = 1, . . . , pe − 1, pe, where

a′pe = (−w)p
e

+ a1(−w)p
e−1 + a2(−w)p

e−2 + · · ·+ ape .

Observe that, since (cf. SITUATION in §5.1)

(Mu)
i | ai for i = 1, . . . , pe − 1,

we have

1

i
ordξHx

(ai) ≥ ordξHx
(Mu) = μ(ξHx) >

1

pe
ordξHx

(ape) =
r

pe
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for i = 1, . . . , pe − 1. We claim that

ordξHx
(w) ≥ r

pe
.

In fact, suppose ordξHx
(w) < r/pe. Then using the above observation

we would have

ordξHx
(h|Z′) = ordξHx

(a′pe) = ordξHx
((−w)p

e

) < r.

By the equation h′ = u · h+ c0 and by the inequality ordξHx
(c0|Z′) > r,

this would also imply

ordξHx
(h′|Z′) = ordξHx

(h|Z′) < r,

which is against the choice of h′ and (x′, y′, z′) that we started with,
satisfying the conditions described in the definition of ρx computing the
“max”.

Now we are at the stage to finish the argument to prove the inequal-
ity

ρh,(x,y,z),Hx
(P ) ≥ 1

pe
ordP

({
(h|Z′) · x−r

} |Z′∩Hx

)
.

Case : r �≡ 0 mod pe.
In this case, the claimed inequality ordξHx

(w) ≥ r/pe implies the
strict inequality ordξHx

(w) > r/pe, since ordξHx
(w) is an integer. To-

gether with the observation, we conclude that

InξHx
(a′pe) = InξHx

(ape) = xrg(y),

and hence that

ρh,(x,y,z),Hx
(P ) =

1

pe
ordP (g(y)) =

1

pe
ordP

({
(h|Z′) · x−r

} |Z′∩Hx

)
.

Case : r ≡ 0 mod pe.
In this case, set

w = xr/pe {h(y) + x · θ(x, y)} with h(y) ∈ k[[y]], θ(x, y) ∈ k[[x, y]].

Together with the observation, we conclude that

InξHx
(a′pe) = InξHx

(ape)− xrh(y)p
e

= xr
{
g(y)− h(y)p

e
}
,

and hence that

ρh,(x,y,z),Hx
(P ) =

1

pe
res-ord

(pe)
P (g(y)) ≥ 1

pe
ordP

(
g(y)− h(y)p

e
)

=
1

pe
ordP

({
(h|Z′) · x−r

} |Z′∩Hx

)
.
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This completes the proof of Proposition 7. Q.E.D.

Definition 11 (Invariant “ρ”). Let the situation be as described in
Proposition 7. We define the invariant ρ of Hx at P , denoted by ρx, by
the formula

ρx = ρh,(x,y,z),Hx
(P ).

Invariant ρy is defined in an identical manner, in caseHy is a bad bound-
ary divisor (in Eyoung) passing through P in configuration 5©.

Study of the behavior of the invariants under blow up

Case : blow up with 1-dimensional center

Claim 1. Let W
π← W̃ be the blow up with center being a 1-

dimensional component C = V (z, x) of Sing(R) (cf. Proposition 6), and

R̃ the transformation of the idealistic filtration R of i.f.g. type. Then

there is possibly only one point P̃ ∈ Sing(R̃) ∩ π−1(P ) ⊂ W̃ , lying in
the x-chart, with the regular system of parameters (x̃, ỹ, z̃) = (x, y, z/x).
The behavior of the invariants under blow up is described as follows (in
case the invariant σ does not drop):

μx̃ = μx − 1, hx̃ = hx − 1, and, in case Hx is bad, ρx̃ = ρx.

μỹ = μy, hỹ = hy, and, in case Hy is bad, ρỹ = ρy − 1.

Proof. Write down

h = zp
e

+ a1z
pe−1 + a2z

pe−2 + · · ·+ ape−1z + ape

with
ai ∈ k[[x, y]] and ordP (ai) > i for i = 1, . . . , pe,

as described in SITUATION in §5.1. We may assume further that h is
well-adapted at P , ξHx and ξHy simultaneously with respect to (x, y, z)
(cf. Proposition 5).

It is straightforward to see that, if a point P̃ ∈ π−1(P ) ⊂ W̃ lies

in the z-chart, then ordP (h̃) < pe, where h̃ = π∗(h)/zp
e

, and hence

P̃ �∈ Sing(R̃). Therefore, there is possibly only one point P̃ ∈ Sing(R̃)∩
π−1(P ) ⊂ W̃ , lying in the x-chart, with the regular system of parameters
(x̃, ỹ, z̃) = (x, y, z/x).

With respect to this regular system of parameters, we compute the
transform of the monomial (xαyβ , a) to be (x̃α−aỹβ , a). Therefore, we
conclude

μx̃ = μx − 1, μỹ = μy.
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Set
ape = xr {g(y) + x · ω(x, y)}

with

r = ordξHx
(ape), 0 �= g(y) ∈ k[[y]], and ω(x, y) ∈ k[[x, y]].

After blow up, we compute

h̃ =
π∗(h)
xpe = z̃p

e

+ ã1z̃
pe−1 + ã2z̃

pe−2 + · · ·+ ãpe−1z̃ + ãpe

with

ãi =
π∗(ai)
xi

for i = 1, . . . , pe.

In particular, we have

ãpe =
π∗(ape)

xpe = xr−pe {g(y) + x · ω(x, y)} = x̃r−pe {g(ỹ) + x̃ · ω(x̃, ỹ)} .

(Note that we have r ≥ pe, since hx = r/pe ≥ 1 (cf. Proposition 6).)
Therefore, we compute

Slopeh̃,(x̃,ỹ,z̃)(ξHx̃
) = min

{
1

pe
ordξHx̃

(ãpe), μ(ξHx̃
)

}
= min

{
r − pe

pe
, μx̃

}
= min

{
1

pe
ordξHx

(ape)− 1, μx − 1

}
= min

{
1

pe
ordξHx

(ape), μx

}
− 1 = Slopeh,(x,y,z)(ξHx)− 1.

Hence, if Slopeh,(x,y,z)(ξHx) = μ(ξHx), then

Slopeh̃,(x̃,ỹ,z̃)(ξHx̃
) = μ(ξHx)− 1 = μ(ξHx̃

).

If Slopeh,(x,y,z)(ξHx) < μ(ξHx), then

Slopeh̃,(x̃,ỹ,z̃)(ξHx̃
) = Slopeh,(x,y,z)(ξHx)− 1 < μ(ξHx̃

)− 1 = μ(ξHx̃
)

and
InξHx̃

(ãpe) = x̃r−pe

g(ỹ) is not a pe-th power,

since InξHx
(ape) = xrg(y) is not a pe-th power. Therefore, h̃ is well-

adapted at ξHx̃
with respect to (x̃, ỹ, z̃).

Therefore, we conclude

hx̃ = Slopeh̃,(x̃,ỹ,z̃)(ξHx̃
) = Slopeh,(x,y,z)(ξHx)− 1 = hx − 1.
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In case Hx is bad, i.e., hx < μx, so is Hx̃ since hx̃ = hx − 1 <
μx − 1 = μx̃. Moreover, we compute

ρx̃ = ρh̃,(x̃,ỹ,z̃),Hx̃
(P̃ ) =

{
ordP̃ (g(ỹ)) /pe if r − pe �≡ 0 mod pe,

res-ord
(pe)

P̃
(g(ỹ)) /pe if r − pe ≡ 0 mod pe

=

{
ordP (g(y)) /pe if r �≡ 0 mod pe,

res-ord
(pe)
P (g(y)) /pe if r ≡ 0 mod pe

= ρh,(x,y,z),Hx
(P ) = ρx.

In summary, we have

hx̃ = hx − 1, ρx̃ = ρx.

The proof for the formulas

hỹ = hy, ρỹ = ρy − 1

is similar, and left to the reader as an exercise. Q.E.D.

Remark 8. The above proof is slightly sloppy in the sense that,
after blow up, we may end up having ordP̃ (ãpe) = pe and InP̃ (ãpe) =

cx̃pe

+ c′ỹp
e

for some (c, c′) ∈ k2 \ {(0, 0)}, even under the condition

P̃ ∈ π−1(P ) ∩ Sing(R̃) ⊂ W̃ and the assumption that the invariant σ
stays the same (cf. the proof of Proposition 4 (1)). Then we have to
replace (x̃, ỹ, z̃) with

(x̃, ỹ, z̃′ = z̃ + c1/p
e

x̃+ c′1/p
e

ỹ)

to guarantee condition (1) in SITUATION in §5.1. Accordingly, we

have to analyze ãpe
′
. It is straightforward, however, to see that the

same calculations hold with ãpe
′
. The details are left to the reader as

an exercise.

Case : blow up with 0-dimensional center

Claim 2. Let W
π← W̃ be the blow up with a 0-dimensional center

C = P = V (z, x, y) ∈ Sing(R) (cf. Proposition 6 and the description

of the procedure in §5.3), and R̃ the transformation of the idealistic

filtration R of i.f.g. type. Set Z = {z = 0}. Then a point P̃ ∈ Sing(R̃)∩
π−1(P ) ⊂ W̃ must be on the strict transform Z ′ of Z, lying either in the
x-chart or in the y-chart. Assume that the invariant σ stays the same,

i.e., σ(P ) = σ(P̃ ). We make the following three observations regarding
the behavior of the invariants under blow up. (We denote the strict
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transforms of Hx and Hy by H ′
x and H ′

y, and the exceptional divisor by
EP . Note that the pictures depict the configurations in a 2-dimensional
manner, taking the intersection with the hypersurface Z before blow up
and with its strict transform Z ′ after blow up. ):

(1) The point P is in case 3©, 4© or 5©.

(1.1) Suppose hx < 1. Look at the point P̃ = EP ∩ H ′
x ∩ Z ′ in

the y-chart with a regular system of parameters (x̃, ỹ, z̃) = (x/y, y, z/y).
Then the hypersurface H ′

x = Hx̃ is bad, and we have

ρx > ρx̃.

(1.2) Suppose P is bad, and hence EP is also bad (cf. Lemma 4).

Look at a point P̃ ∈ (EP \H ′
x)∩Z ′ in the x-chart with a regular system

of parameters (x̃ = e, ỹ, z̃) = (x, y/x− c, z/x) for some c ∈ k. Then we
have

ρx ≥ ρe.

Hx bad

Hy
��

P

↑
H ′

x bad H ′
y

EP

bad(1.2)
��

P̃(1.1)

��
P̃(1.2) or

��
P̃(1.2)

(2) The point P is in case 4©. Suppose P is bad, and hence EP

is also bad (cf. Lemma 4). Look at a point P̃ ∈ (EP \H ′
y) ∩ Z ′ with a

regular system of parameters (x̃, ỹ = e, z̃) = (x/y − c, y, z/y) for some
c ∈ k. Then we have

μx > ρe.
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Hx bad

Hy

good��
P

↑
H ′

x bad H ′
y good

EP

bad��
P̃ or

��
P̃

(3) The point P is in case 5©. Suppose P is good. Then we have

ρx > μy and ρy > μx.

Look at the point P̃ = EP ∩H ′
x ∩Z ′ in the y-chart with a regular system

of parameters (x̃, ỹ, z̃) = (x/y, y, z/y). Since μx̃ = μx, we have as a
consequence

ρy > μx̃.

We draw a similar conclusion looking at the point EP ∩H ′
y ∩ Z ′ in the

x-chart.

Hx bad

Hy

bad��
P

↑
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H ′
x bad H ′

y bad

EP

good��
P̃

Proof. (1) (1.1) Take (as described in SITUATION in §5.1)

h = zp
e

+ a1z
pe−1 + a2z

pe−2 + · · ·+ ape−1z + ape

which is well-adapted at ξHx with respect to (x, y, z) (cf. Proposition
5). Set

ape = xr {g(y) + x · ω(x, y)} with 0 �= g(y) ∈ k[[y]], ω(x, y) ∈ k[[x, y]].

Then we have

hx = H(ξHx) = Slopeh,(x,y,z)(ξHx) =
1

pe
ordξHx

(ape) =
r

pe
< μ(ξHx).

Since hx < 1 by assumption, we have r < pe. We compute

ãpe =
ape

ype =
(x̃ỹ)r

ỹpe {g(ỹ) + x̃ỹ · ω(x̃ỹ, ỹ)} = x̃r {g̃(ỹ) + x̃ · ω̃(x̃, ỹ)}

where

g̃(ỹ) = ỹr−pe

g(ỹ) and ω̃(x̃, ỹ) = ỹr−pe+1ω(x̃ỹ, ỹ).

We observe that h̃ = h/yp
e

is well-adapted at ξHx̃
with respect to

(x̃, ỹ, z̃), since

Slopeh̃,(x̃,ỹ,z̃)(ξHx̃
) =

r

pe
< μ(ξHx) = μ(ξHx̃

)

and since
InξHx̃

(ãpe) = x̃r g̃(ỹ) = x̃rỹr−pe

g(ỹ)
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is not a pe-th power, a fact which follows easily from the fact that
InξHx

(ape) = xrg(y) is not a pe-th power. Therefore, we conclude that

ρx = ρh,(x,y,z),Hx
(P )

=

{
ordP (g(y)) /pe in case r �≡ 0 mod pe,

res-ord
(pe)
P (g(y)) /pe in case r ≡ 0 mod pe, i.e., r = 0

>

{
ordỹ

(
ỹr−pe

g(ỹ)
)
/pe in case r �≡ 0 mod pe,

res-ord
(pe)
ỹ

(
ỹ−pe

g(ỹ)
)
/pe in case r ≡ 0 mod pe, i.e., r = 0

=

{
ordỹ (g̃(ỹ)) /p

e in case r �≡ 0 mod pe,

res-ord
(pe)
ỹ (g̃(ỹ)) /pe in case r ≡ 0 mod pe, i.e. r = 0

= ρh̃,(x̃,ỹ,z̃),Hx̃
(P̃ ) = ρx̃.

(Note that, even under the condition P̃ ∈ π−1(P ) ∩ Sing(R̃) ⊂
W̃ and the assumption that the invariant σ stays the same, there is a
possibility that we may end up having ordP̃ (ãpe) = pe and InP̃ (ãpe) =

cỹp
e

for some c ∈ k \ {0}. (In this case, we necessarily have r = 0.)
Then we have to replace (x̃, ỹ, z̃) with (x̃, ỹ, z̃′ = z̃+c1/p

e

ỹ) to guarantee

condition (1) in SITUATION . Accordingly, we have to analyze ãpe
′
. It

is straightforward, however, to see that the same calculations hold with
ãpe

′
.)

(1) (1.2) Take (as described in SITUATION in §5.1)

h = zp
e

+ a1z
pe−1 + a2z

pe−2 + · · ·+ ape−1z + ape

which is well-adapted at P and ξHx simultaneously with respect to
(x, y, z) (cf. Proposition 5).

Set

ape =
∑

k+l≥d

cklx
kyl with d = ordP (ape) > pe

= xr{g(y) + x · ω(x, y)} with r = ordξHx
(ape).

Then we compute

π∗(ape) =
∑

k+l≥d

cklx
k+l

(y
x

)l
= xd

{ ∑
k+l=d

ckl

(y
x

)l
+ x · Ω

(
x,

y

x

)}

= xd
{
φ
(y
x

)
+ x · Ω

(
x,

y

x

)}
where φ(T ) =

∑
k+l=d

cklT
l,
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and hence

ãpe =
π∗(ape)

xpe = xd−pe
{
φ
(y
x
− c+ c

)
+ x · Ω

(
x,

y

x
− c+ c

)}
= x̃d−pe {φ(ỹ + c) + x̃ · Ω(x̃, ỹ + c)} .

Moreover, just as in the analysis of the “Case : P is a bad point” in

Lemma 4, we see that h̃ is well-adapted at ξEP with respect to (x̃, ỹ, z̃),
since

Slopeh̃,(x̃,ỹ,z̃)(ξHx̃
) =

1

pe
ordξHx̃

(ãpe) =
d− pe

pe

=
1

pe
ordP (ape)− 1 <

since P is bad
μ(P )− 1 = μ(ξHx̃

),

and since InξHx̃
(ãpe

) = x̃d−pe

φ(ỹ + c) is not a pe-th power, which is

obvious if d �≡ 0 mod pe and which follows from the fact InP (ape) =∑
k+l=d cklx

kyl is not a pe-th power and hence φ(T ) =
∑

k+l=d cklT
l is

not a pe-th power if d ≡ 0 mod pe.
Therefore, we conclude

ρx̃=e = ρh̃,(x̃,ỹ,z̃),Hx̃

=

{
ordỹ (φ(ỹ + c)) /pe in case r �≡ 0 mod pe

res-ord
(pe)
ỹ (φ(ỹ + c)) /pe in case r ≡ 0 mod pe

≤ 1

pe
deg φ(ỹ + c) =

1

pe
deg φ(y).

That is to say, we have

(�) ρe ≤ 1

pe
deg φ(y).

On the other hand, set

M =

{
ordy (g(y)) in case r �≡ 0 mod pe

res-ord(p
e)

y (g(y)) in case r ≡ 0 mod pe

Then we conclude, for all those (k, l) with k + l = d and ckl �= 0, that
we have

k + l = d ≤ r +M, and k ≥ r

and hence that

l = d− k ≤ d− r ≤ (r +M)− r = M.
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This implies

(��) deg φ(y) = deg

( ∑
k+l=d

ckly
l

)
≤ M.

From the inequalities (�) and (��), we finally conclude

ρx =
M

pe
≥ 1

pe
deg(φ(y)) ≥ ρe.

(Note that, even under the condition P̃ ∈ π−1(P ) ∩ Sing(R̃) ⊂ W̃
and the assumption that the invariant σ stays the same, there is a pos-
sibility that we may end up having ordP̃ (ãpe) = pe and InP̃ (ãpe) = cx̃pe

for some c ∈ k \ {0}. Then we have to replace (x̃, ỹ, z̃) with (x̃, ỹ, z̃′ =
z̃+c1/p

e

x̃) to guarantee condition (1) in SITUATION in §5.1. Accord-

ingly, we have to analyze ãpe
′
. It is straightforward, however, to see that

the same calculations hold with ãpe
′
.)

(2) Take (as described in SITUATION in §5.1)

h = zp
e

+ a1z
pe−1 + a2z

pe−2 + · · ·+ ape−1z + ape

which is well-adapted at P and ξHy simultaneously with respect to
(x, y, z) (cf. Proposition 5). Set

ape =
∑

k+l≥d

cklx
kyl with d = ordP (ape).

Then we see

d

pe
=

1

pe
ordP (ape) < μ(P ) and InP (ape) is not a pe-th power,

since P is bad and since h is well-adapted at P with respect to (x, y, z).
Then we conclude, for all those (k, l) with k + l = d and ckl �= 0, that
we have

α+ β

a
= μ(P ) >

d

pe
=

k + l

pe
=

k

pe
+

l

pe
≥ k

pe
+

β

a
,

since
l

pe
≥ 1

pe
ordξHy

(ape) ≥ μ(ξHy ) =
β

a
,
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where the second inequality follows from the assumption that Hy is good
and that h is well-adapted at ξHy with respect to (x, y, z). Therefore,
we conclude

μx = μ(ξHx) =
α

a
>

k

pe
.

On the other hand, we compute

π∗(ape) =
∑

k+l≥d

ckl

(
x

y

)k

yk+l = yd

{ ∑
k+l=d

ckl

(
x

y

)k

+ y ·Ω
(
x

y
, y

)}

= yd
{
ϕ

(
x

y

)
+ y ·Ω

(
x

y
, y

)}
,

where ϕ(T ) =
∑

k+l=d cklT
k, and hence

ãpe =
π∗(ape)

ype = yd−pe

{
ϕ

(
x

y
− c+ c

)
+ y ·Ω

(
x

y
− c+ c, y

)}
= ỹd−pe {ϕ(x̃+ c) + ỹ ·Ω(x̃+ c, ỹ)} .

Moreover, just as in the analysis of the “Case : P is a bad point” in

Lemma 4, we see that h̃ is well-adapted at ξEP with respect to (x̃, ỹ, z̃),
since

Slopeh̃,(x̃,ỹ,z̃)(ξHỹ
) =

1

pe
ordξHỹ

(ãpe) =
d− pe

pe

=
1

pe
ordP (ape)− 1 <

since P is bad
μ(P )− 1 = μ(ξHỹ

),

and since InξHỹ
(ãpe) = ỹd−pe

ϕ(x̃ + c) is not a pe-th power, which is

obvious if d �≡ 0 mod pe and which follows from the fact InP (ape) =∑
k+l=d cklx

kyl is not a pe-th power and hence ϕ(T ) =
∑

k+l=d cklT
k is

not a pe-th power if d ≡ 0 mod pe.
Therefore, we conclude

ρỹ=e = ρh̃,(x̃,ỹ,z̃),Hỹ
=

{
ordx̃ (ϕ(x̃+ c)) /pe if d �≡ 0 mod pe

res-ord
(pe)
x̃ (ϕ(x̃+ c)) /pe if d ≡ 0 mod pe

≤ 1

pe
degϕ(ỹ + c) =

1

pe
degϕ(y) =

1

pe
deg

( ∑
k+l=d

cklT
k

)
<

α

a
= μx.

(Note that, even under the condition P̃ ∈ π−1(P ) ∩ Sing(R̃) ⊂ W̃ and
the assumption that the invariant σ stays the same, there is a possibility
that we may end up having ordP̃ (ãpe) = pe and InP̃ (ãpe) = cỹp

e

for some
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c ∈ k \ {0}. (In this case, we necessarily have r = 0.) Then we have to
replace (x̃, ỹ, z̃) with (x̃, ỹ, z̃′ = z̃ + c1/p

e

ỹ) to guarantee condition (1)

in SITUATION in §5.1. Accordingly, we have to analyze ãpe
′
. It is

straightforward, however, to see that the same calculations hold with
ãpe

′
.)

(3) Take (as described in SITUATION in §5.1)

h = zp
e

+ a1z
pe−1 + a2z

pe−2 + · · ·+ ape−1z + ape

which is well-adapted at P and ξHx simultaneously with respect to
(x, y, z) (cf. Proposition 5).

Set

ape = xr {g(y) + x · ω(x, y)} with 0 �= g(y) ∈ k[[y]], ω(x, y) ∈ k[[x, y]].

Set

M =

{
ordP (g(y)) in case r �≡ 0 mod pe,

res-ord
(pe)
P (g(y)) in case r ≡ 0 mod pe

so that

ρx = ρh,(x,y,z),Hx
(P ) =

M

pe
.

Now we compute

r +M

pe
≥ 1

pe
ordP (ape) ≥

since P is good
μ(P ) =

α+ β

a
= μ(ξHx) +

β

a

>
since Hx is bad

H(ξHx) +
β

a
=

r

pe
+

β

a
.

Therefore, we conclude

ρx =
M

pe
>

β

a
= μ(ξHy ) = μy.

The proof for the inequality ρy > μx is identical.

This completes the proof of Claim 2. Q.E.D.

Theorem 1. Let P ∈ Sing(R) ⊂ W be a point in the monomial

case as described in SITUATION in §5.1. Let W
π← W̃ be the blow

up with center C specified by the procedure described in §5.3, and R̃ the
transformation of the idealistic filtration R of i.f.g. type.

Then at P̃ ∈ π−1(P ) ∈ W̃ , one of the following holds:

• P̃ �∈ Sing(R̃), i.e., Sing(R̃) = ∅ in a neighborhood of P̃ ,
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• P̃ ∈ Sing(R̃) and the invariant σ drops, or

• P̃ ∈ Sing(R̃) and the invariant “invMON(P )” strictly decreases,

i.e., invMON(P ) > invMON(P̃ ).

Since the invariant “invMON” cannot decrease infinitely many times,

the procedure described in §5.3 terminates either with P̃ �∈ Sing(R̃) or
with the drop of the invariant σ after finitely many repetitions.

That is to say, the basic strategy to show termination of the procedure
in the monomial case with τ = 1 is established.

Proof. We have only to show (cf. Proposition 4) that, at P̃ ∈
π−1(P ) ∈ W̃ , assuming P̃ ∈ Sing(R̃) and σ(P ) = σ(P̃ ), we have

invMON(P ) > invMON(P̃ ).

Case : dimC = 1.
In this case, by Claim 1, it is easy to see that P and P̃ are in the

same configuration and

invMON(P ) > invMON(P̃ ).

Case : dimC = 0, i.e., C = P .

1. P is in configuration 1© or 2©
Since P ∈ Sing(R), we have hx = μx ≥ 1 in configuration 1©, and we

do not choose a point center C = P in this case (cf. Proposition 6). So
we only have to consider configuration 2©, where we have μx = hx < 1
and μy = hy < 1. This implies μe < min{μx, μy}. Moreover, it is easy
to see that P is necessarily a good point, hence EP is also good, and

that P̃ is in configuration 2©, since we assume P̃ ∈ Sing(R̃). Now it is
straightforward to see

invMON(P ) > invMON(P̃ ).

2. P is in configuration 3©
(i) P̃ = (EP \H ′

x) ∩ Z ′ with EP being bad, and hence P̃ is in config-
uration 3©. In this subcase, we have ρx ≥ ρe by Claim 2 (1.2), while
μx > μx − 1 = μe. Therefore, we conclude

invMON(P ) = (ρx, 0, μx) > (ρe, 0, μe) = invMON(P̃ ).

(ii) P̃ = EP∩H ′
x∩Z ′ with EP being good, and hence P̃ is in configuration

4©. In this subcase, we have ρx > ρx̃ by Claim 2 (1.1). Therefore, we
conclude

invMON(P ) = (ρx, 0, μx) > (min{ρx̃, μx̃},max{ρx̃, μx̃}) = invMON(P̃ ).



Resolution of idealistic filtration in dimension 3 209

(iii) P̃ = EP ∩H ′
x∩Z ′ with EP being bad, and hence P̃ is in configuration

5©. In this case, we have ρx > ρx̃ by Claim 2 (1.1). Therefore, we
conclude

invMON(P ) = (ρx, 0, μx) > (min{ρx̃, ρỹ},max{ρx̃, ρỹ}) = invMON(P̃ ).

3. P is in configuration 4©
(i) P̃ =

(
EP \ (H ′

x ∪H ′
y)
) ∩ Z ′ with EP being bad, and hence P̃ is in

configuration 3©. In this case, we have ρx ≥ ρe and μx > ρe(≥ 0) by
Claim 2 (1.2) and (2). Therefore, we conclude

invMON(P ) = (min{ρx, μx},max{ρx, μx}) > (ρe, 0, μe) = invMON(P̃ ).

(ii) P̃ = EP∩H ′
x∩Z ′ with EP being good, and hence P̃ is in configuration

4©. In this case, we have ρx > ρx̃ by Claim 2 (1.1), while μx = μx̃.
Therefore, we conclude

invMON(P ) = (min{ρx, μx},max{ρx, μx})
> (min{ρx̃, μx̃},max{ρx̃, μx̃}) = invMON(P̃ ).

(iii) P̃ = EP ∩H ′
y∩Z ′ with EP being bad, and hence P̃ is in configuration

4©. In this case, we have ρx ≥ ρe by Claim 2 (1.2), while μx = α/a >
(α+ β)/a− 1 = μe since β/a = μy = hy < 1. Therefore, we conclude

invMON(P ) = (min{ρx, μx},max{ρx, μx})
> (min{ρe, μe},max{ρe, μe}) = invMON(P̃ ).

(iv) P̃ = EP ∩H ′
x∩Z ′ with EP being bad, and hence P̃ is in configuration

5©. In this case, we have ρx > ρx̃ and μx > ρỹ=e by Claim 2 (1.1) and
(2). Therefore, we conclude

invMON(P ) = (min{ρx, μx},max{ρx, μx})
> (min{ρx̃, ρỹ},max{ρx̃, ρỹ}) = invMON(P̃ ).

4. P is in configuration 5©
(i) P̃ =

(
EP \ (H ′

x ∪H ′
y)
) ∩ Z ′ with EP being bad, and hence P̃ is in

configuration 3©. In this case, we have ρx ≥ ρe and ρy ≥ ρe by Claim
2 (1.2). We also have ρx, ρy > 0 since hy, hx < 1 with P ∈ Sing(R).
Therefore, we conclude

invMON(P ) = (min{ρx, ρy},max{ρx, ρy}) > (ρe, 0, μe) = invMON(P̃ ).
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(ii) P̃ = EP∩H ′
x∩Z ′ with EP being good, and hence P̃ is in configuration

4©. In this case, we have ρx > ρx̃ and ρy > μx̃ by Claim 2 (1.1) and
(3). Therefore, we conclude

invMON(P ) = (min{ρx, ρy},max{ρx, ρy})
> (min{ρx̃, μx̃},max{ρx̃, μx̃}) = invMON(P̃ ).

(iii) P̃ = EP ∩H ′
x∩Z ′ with EP being bad, and hence P̃ is in configuration

5©. In this case, we have ρx > ρx̃ and ρy ≥ ρỹ=e by Claim 2 (1.1) and
(1.2). Therefore, we conclude

invMON(P ) = (min{ρx, ρy},max{ρx, ρy})
> (min{ρx̃, ρỹ},max{ρx̃, ρỹ}) = invMON(P̃ ).

This completes the proof of Theorem 1. Q.E.D.

This completes the detailed discussion of the monomial case in di-
mension 3, and hence completes the presentation of (the local version
of) our algorithm in dimension 3.

We finish this paper by making a couple of remarks.

Remark 9 (Invariant whose maximum locus determines the
center of blow up in the monomial case?). The invariant “invMON”
is only used to show effectively the termination of the procedure (in the
monomial case), while the choice of the center is dictated by the study of
the dimension of the singular locus (cf. Proposition 6 and the description
of the procedure in 5.3). Actually all the existing algorithms, including
the one in [5], use the analysis of the dimension of the singular locus for
the choice of the center.

It would be desirable to have an invariant (manifested as the invari-
ant Γ in characteristic zero), which satisfies the following properties:

(1) it is upper semi-continuous,
(2) its maximum locus determines the nonsingular center of blow

up for constructing the sequence of transformations for resolution of
singularities, and

(3) it strictly drops after each blow up (over the center), and can
not strictly decrease infinitely many times.

Such an invariant would not only show the termination effectively
but also dictate the choice of the center.

Remark 10.
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(1)(Global version) The presentation of our algorithm in this
paper is restricted to the local version (cf. Remark 2). However, it
is not so difficult, though technical and rather lengthy, to make some
adjustments in order for us to turn the local version into the global
version. The detailed discussion of these adjustments will be published
elsewhere.

(2)(Embedded resolution of singularities of a surface X ⊂ W
with dimW = 3) Consider a surface X ⊂ W embedded in a nonsin-
gular ambient space W of dimW = 3. Then we can establish embedded
resolution of singularities for X ⊂ W (cf. Problem 2) in the following
manner:

(i) The problem of embedded resolution of singularities for X ⊂ W
is reduced to the problem of resolution of singularities for the triplet
(W, (IX , 1), ∅) (cf. Lemma 1).

(ii) The problem of resolution of singularities for the triplet (W,
(IX , 1), ∅) is equivalent to the problem of resolution of singularities for
(W,R, ∅) where the idealistic filtration of i.f.g.type is given by R =
G((IX , 1)) (cf. §2. Overview).

(iii) The problem of resolution of singularities for (W,R, ∅) is solved
by the global version of our algorithm in dimW = 3.

(3)(Embedded resolution of singularities of a surface X ⊂ W
with dimW arbitrary) We can establish the global version of our
algorithm for resolution of singularities of the triplet (W,R, E) with
dimW arbitrary, as long as it satisfies the condition τ(P ) ≥ dimW − 2
for all P ∈ W . As an application, we can give an alternative proof
for embedded resolution of a surface X ⊂ W with dimW arbitrary, a
theorem established by [4] and [11]. We only describe the outline of our
alternative proof below (while the details will be published elsewhere):

(i) We consider the Hilbert-Samuel function HS over X, and its
maximum value M = maxx∈X{HS(x)}.

(ii) Construct a covering X =
⋃

λ∈Λ Uλ, and a pair (Iλ, aλ) of an
ideal Iλ over Uλ with level aλ ∈ Z>0 for each λ ∈ Λ (in étale topology
using the result due to Aroca (cf. [13]) or in Zariski topology using the
result by [2]) satisfying the following property:

(♠) the singular locus of the pair coincides with the maximum locus
of the Hilbert-Samuel function, i.e.,

Sing(Iλ, aλ) = {P ∈ Uλ | HS(P ) = M},
and this relation persists through any sequence of transformations (and
smooth morphisms).
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(iii) For each λ ∈ Λ, consider the idealistic filtration of i.f.g.type
R′

λ = G((Iλ, aλ)). We take its Radical-&-Differential saturation Rλ :=
RD(R′

λ) (cf. [18]). Then by the result of [6] we see that the Rλ’s
patch together, i.e., Rλ|Uλ∩Uμ = Rμ|Uμ∩Uλ

, to give rise to the idealistic
filtration R over W such that R|Uλ

= Rλ for all λ ∈ Λ, that Sing(R) =
{P ∈ W | HS(P ) = M}, and that this relation persists through any
sequence of transformations (and smooth morphisms). Note that the
R-&-D saturation gives the “biggest” idealistic filtration of i.f.g.type
with the property (♠).

(iv) Observe that, for this idealistic filtration R, we have τ(P ) ≥
dimW − 2 for all P ∈ W by the result in [7][8].

(v) Apply the global version of our algorithm to obtain resolution
of singularities for (W,R, EM = ∅), which implies the strict decrease of
(the maximum value of) the Hilbert-Samuel function.

(vi) Repeat the procedure. (Note that in the middle of the repe-
tition of the procedure, the boundary EM , which is the union of all the
exceptional divisors created so far, may not be empty.)

(vii) Since the value of the Hilbert-Samuel function can not strictly
decrease infinitely many times, the procedure must come to an end after
finitely many repetitions, providing embedded resolution of singularities
for X ⊂ W .
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Vol. 169. Springer-Verlag, Berlin, 1970.

[23] Jaros�law W�lodarczyk. Simple Hironaka resolution in characteristic zero. J.
Amer. Math. Soc., 18(4):779–822 (electronic), 2005.

Hiraku Kawanoue
Research Institute for Mathematical Sciences
Kyoto University, Kyoto 606-8502
E-mail address : kawanoue@kurims.kyoto-u.ac.jp

Kenji Matsuki
Department of Mathematics, Purdue University
150 N. University Street, West Lafayette, IN 47907-2067
E-mail address : kmatsuki@math.purdue.edu


