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Abstract.

The classical Beauville-Bogomolov Decomposition Theorem as-
serts that any compact Kähler manifold with numerically trivial canon-
ical bundle admits an étale cover that decomposes into a product of a
torus, and irreducible, simply-connected Calabi-Yau– and holomorphic-
symplectic manifolds. The decomposition of the simply-connected part
corresponds to a decomposition of the tangent bundle into a direct sum
whose summands are integrable and stable with respect to any polari-
sation.

Building on recent extension theorems for differential forms on
singular spaces, we prove an analogous decomposition theorem for the
tangent sheaf of projective varieties with canonical singularities and
numerically trivial canonical class.

In view of recent progress in minimal model theory, this result
can be seen as a first step towards a structure theory of manifolds
with Kodaira dimension zero. Based on our main result, we argue that
the natural building blocks for any structure theory are two classes of
canonical varieties, which generalise the notions of irreducible Calabi-
Yau– and irreducible holomorphic-symplectic manifolds, respectively.
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§1. Introduction

1.A. Introduction and main result

The minimal model program aims to reduce the birational study of
projective manifolds with Kodaira dimension zero to the study of asso-
ciated minimal models, that is, normal varieties X with terminal sin-
gularities whose canonical divisor is numerically trivial. The ideal case,
where the minimal variety X is smooth, is described in the fundamental
Decomposition Theorem of Beauville and Bogomolov.

Theorem 1.1 (Beauville-Bogomolov Decomposition, [Bea83] and
references there). Let X be a compact Kähler manifold whose canonical
divisor is numerically trivial. Then there exists a finite étale cover,
X ′ → X such that X ′ decomposes as a product

(1.1.1) X ′ = T ×
∏
ν

Xν

where T is a compact complex torus, and where the Xν are irreducible
and simply-connected Calabi-Yau– or holomorphic-symplectic manifolds.

Remark 1.2. The decomposition (1.1.1) induces a decomposition of
the tangent bundle TX′ into a direct sum whose summands have vanish-
ing Chern class, and are integrable in the sense of Frobenius’ theorem.
Those summands that correspond to the Xν are slope-stable with re-
spect to any ample polarisation.

In view of recent progress in minimal model theory, an analogue
of Theorem 1.1 for minimal models would clearly be a substantial step
towards a complete structure theory for varieties of Kodaira dimension
zero. However, since the only known proof of Theorem 1.1 heavily uses
Kähler-Einstein metrics and the solution of the Calabi conjecture, a full
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generalisation of Beauville-Bogomolov Decomposition Theorem 1.1 to
the singular setting is difficult.

Main result The main result of our paper is the following Decompo-
sition Theorem for the tangent sheaf of minimal varieties with vanishing
first Chern class. Presenting the tangent sheaf as a direct sum of in-
tegrable subsheaves which are stable with respect to any polarisation,
Theorem 1.3 can be seen as an infinitesimal analogue of the Beauville-
Bogomolov Decomposition 1.1 in the singular setting.

Theorem 1.3 (Decomposition of the tangent sheaf). Let X be a
normal projective variety with at worst canonical singularities, defined
over the complex numbers. Assume that the canonical divisor of X is
numerically trivial: KX ≡ 0. Then there exists an Abelian variety A

as well as a projective variety X̃ with at worst canonical singularities, a

finite cover f : A × X̃ → X, étale in codimension one, and a decompo-
sition

T
X̃

∼=
⊕

Ei

such that the following holds.

(1.3.1) The Ei are integrable saturated subsheaves of T
X̃
, with triv-

ial determinants.

Further, if g : X̂ → X̃ is any finite cover, étale in codimension one, then
the following properties hold in addition.

(1.3.2) The sheaves (g∗Ei)
∗∗ are slope-stable with respect to any

ample polarisation on X̂.

(1.3.3) The irregularity of X̂ is zero, h1
(
X̂, O

X̂

)
= 0.

The decomposition found in Theorem 1.3 satisfies an additional
uniqueness property. For a precise statement, see Remark 7.5 on page 93.

Taking g to be the identity, we see that the irregularity of X̃ is zero, and
that the summands Ei are stable with respect to any polarisation.

Other results In the course of the proof, we show the following two
additional results, pertaining to stability of the tangent bundle, and to
wedge products of differentials forms that are defined on the smooth
locus of a minimal model. We feel that these results might be of inde-
pendent interest.

Proposition 1.4 (Stability of TX does not depend on polarisation,
Proposition 5.7). Let X be a normal projective variety having at worst
canonical singularities. Assume that KX is numerically equivalent to
zero. If the tangent sheaf TX is slope-stable with respect to one polarisa-
tion, then it is also stable with respect to any other polarisation. Q.E.D.
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Proposition 1.5 (Non-degeneracy of the wedge product, Proposi-
tion 6.1). Let X be a normal n-dimensional projective variety X having
at worst canonical singularities. Denote the smooth locus of X by Xreg.
Suppose that the canonical divisor is trivial. If 0 ≤ p ≤ n is any number,
then the natural pairing given by the wedge product on Xreg,∧

: H0
(
Xreg, Ω

p
Xreg

)×H0
(
Xreg, Ω

n−p
Xreg

) −→ H0
(
Xreg, ωXreg

)︸ ︷︷ ︸
∼=H0

(
X,ωX

)
∼=C

,

is non-degenerate. Q.E.D.

Singular analogues of Calabi-Yau and irreducible symplectic mani-
folds Based on the Decomposition Theorem 1.3, we will argue in Sec-
tion 8 that the natural building blocks for any structure theory of pro-
jective manifolds with Kodaira dimension zero are canonical varieties
with strongly stable tangent sheaf. Strong stability, introduced in Defi-
nition 7.2 on page 92, is a formalisation of condition (1.3.2) that appears
in the Decomposition Theorem 1.3.

In dimension no more than five, we show that canonical varieties
with strongly stable tangent sheaf fall into two classes, which natu-
rally generalise the notions of irreducible Calabi-Yau– and irreducible
holomorphic-symplectic manifolds, respectively. There is ample evidence
to suggest that this dichotomy should hold in arbitrary dimension.

Outline of the paper The proof of Theorem 1.3 relies on recent ex-
tension results for differential forms on singular spaces, which we recall
in Section 2 below. There are three additional preparatory sections,
Sections 3–5, where we recall structure results for varieties with trivial
canonical bundle, and discuss stability properties of the tangent sheaf on
varieties with numerically trivial canonical divisor. Some of the material
in these sections is new.

Using the extension result together with Hodge-theoretic arguments,
we will show in Section 6 that the wedge-product induces perfect pairings
of reflexive differential forms. This will later on be used to split the
inclusion of certain subsheaves of the tangent sheaf. The results obtained
there generalise ideas of Bogomolov [Bog74], but are new in the singular
setting, to the best of our knowledge. With these preparations in place,
Theorem 1.3 is then shown in Section 7.

Based on our main results, the concluding Section 8 discusses pos-
sible approaches towards a more complete structure theory of singular
varieties with trivial canonical bundle, and proves first results in this
direction.
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Global Convention Throughout the paper we work over the com-
plex number field. In the discussion of sheaves, the word “stable” will
always mean “slope-stable with respect to a given polarisation”. Ditto
for semistability.

1.B. Acknowledgements
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and Keiji Oguiso for a number of discussions, and for answering our
questions. The authors thank the referee for reading the manuscript
with great care. The first named author wants to thank János Kollár
and Burt Totaro for their invitations and for useful comments concerning
the topics discussed in this paper.

§2. Reflexive differentials on normal spaces

2.A. Differentials, reflexive tensor operations

Given a normal variety X, we denote the sheaf of Kähler differ-
entials by Ω1

X . The tangent sheaf will be denoted by TX = (Ω1
X)∗.

Reflexive differentials, as defined below, will play an important role in
the discussion.

Definition 2.1 (Reflexive differential forms, cf. [GKKP11,
Sect. 2.E]). Let X be a normal variety, let Xreg be the smooth locus
of X and ı : Xreg ↪→ X its open embedding into X. If 0 ≤ p ≤ dimX
is any number, we denote the reflexive hull of the pth exterior power of
Ω1

X by

Ω
[p]
X :=

(∧pΩ1
X

)∗∗
= ı∗Ω

p
Xreg

.

We refer to sections in Ω
[p]
X as reflexive p-forms on X.

Remark 2.2 (Reflexive differentials and dualising sheaf). In the set-
ting of Definition 2.1, recall that the Grothendieck dualising sheaf ωX is
always reflexive. We obtain that

Ω
[dimX]
X = ωX = OX

(
KX

)
.

Notation 2.3 (Reflexive tensor operations). Let X be a normal va-
riety and A a coherent sheaf of OX -modules, of rank r. For n ∈ N, set
A [n] := (A ⊗n)∗∗. Further, set detA =

(∧rA
)∗∗

. If π : X ′ → X is a

morphism of normal varieties, set π[∗](A ) :=
(
π∗A

)∗∗
.
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2.B. Extension results for differential forms on singular
spaces

One of the main ingredients for the proof of the Decomposition
Theorem 1.3 is the following extension result for differential forms on
singular spaces, recently shown in joint work of the authors and Sándor
Kovács. In its simplest form, the extension theorem asserts the following.

Theorem 2.4 (Extension Theorem, [GKKP11, Thm. 1.5]). Let X
be a quasi-projective complex algebraic variety and D an effective Q-
divisor on X such that the pair (X,D) is Kawamata log terminal (klt).

If π : X̃ → X is any resolution of singularities and 0 ≤ p ≤ dimX any
number, then the push-forward sheaf π∗Ω

p

X̃
is reflexive. Q.E.D.

Using Definition 2.1, the Extension Theorem 2.4 can be reformu-

lated, saying that π∗Ω
p

X̃
= Ω

[p]
X for all p ≤ dimX. Equivalently, if

E ⊂ X̃ denotes the π-exceptional set, then the Extension Theorem as-
serts that for any open set U ⊂ X, any p-form on π−1(U) \ E extends
across E, to give a p-form on π−1(U). In other words, it asserts that
the natural restriction map

Ωp

X̃

(
π−1(U)

) → Ωp

X̃

(
π−1(U) \E)

is surjective. We refer to the original papers [GKKP11, Sect. 1] and
[GKK10] or to the survey [Keb13] for an in-depth discussion.

§3. Irregularity and Albanese map of canonical varieties

The Albanese map is one important tool in the study of varieties
with trivial canonical divisor. The following invariant is relevant in its
investigation.

Definition 3.1 (Augmented irregularity). Let X be a normal pro-
jective variety. We denote the irregularity of X by q(X) := h1

(
X, OX

)
and define the augmented irregularity q̃(X) ∈ N ∪ {∞} as

q̃(X) := max
{
q(X̃) | X̃ → X a finite cover, étale in codimension one

}
.

Remark 3.2 (Irregularity and the Albanese map). IfX is a projective
variety with canonical singularities, recall from [Kaw85, Sect. 8] that the
Albanese map αX : X → Alb(X) is well defined, and that dimAlb(X) =

q(X). Better still, if π : X̃ → X is any resolution of singularities, then

the Albanese map α
X̃

of X̃ agrees with αX . In other words, there exists
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a commutative diagram as follows,

X̃

π, desing.

��

α
X̃

Albanese map
�� Alb(X̃)

X
αX

Albanese map
�� Alb(X).

The following result of Kawamata describes the Albanese map of
varieties whose canonical divisor is numerically trivial. As we will see
in Corollary 3.6, this often reduces the study of varieties with trivial
canonical class to those with q̃(X) = 0.

Proposition 3.3 (Fibre space structure of the Albanese map,
[Kaw85, Prop. 8.3]). Let X be a normal n-dimensional projective variety
X with at worst canonical singularities. Assume that KX is numerically
trivial. Then KX is torsion, the Albanese map α : X → Alb(X) is
surjective and has the structure of an étale-trivial fiber bundle.

In other words, there exists a positive number m ∈ N+ such that
OX(m ·KX) ∼= OX . Furthermore, there exists a finite étale cover B →
Alb(X) from an Abelian variety B to Alb(X) such that the fiber product
over Alb(X) decomposes as a product

X ×Alb(X) B ∼= F ×B,

where F is a normal projective variety. Q.E.D.

Remark 3.4. If X is a projective variety with canonical singulari-
ties and numerically trivial canonical class, Proposition 3.3 implies that

q(X) = dimAlb(X) ≤ dimX. If X̃ → X is any finite cover, étale

in codimension one, then X̃ will likewise have canonical singularities
[KM98, Prop. 5.20] and numerically trivial canonical class. In summary,
we see that q̃(X) ≤ dimX. The augmented irregularity of canonical
varieties with numerically trivial canonical class is therefore finite.

Remark 3.5. In the setting of Proposition 3.3, the canonical map

F ×B ∼= X ×Alb(X) B → X

is étale. The variety F × B is thus canonical by [KM98, Prop. 5.20].
Since B is smooth, this automatically implies that F is canonical. If
the canonical divisor of X is trivial, then F will likewise have a trivial
canonical divisor.

A variant of the following corollary has appeared as [Pet94,
Thm. 4.2].
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Corollary 3.6 (Structure of varieties with numerically trivial
canonical class, cf. [Kaw85, Cor. 8.4]). Let X be a normal n-dimensional
projective variety with at worst canonical singularities. Assume that KX

is numerically trivial. Then there exist projective varieties A, Z and a
morphism ν : A× Z → X such that the following holds.

(3.6.1) The variety A is Abelian.
(3.6.2) The variety Z is normal and has at worst canonical singu-

larities.
(3.6.3) The canonical class of Z is trivial, ωZ

∼= OZ .
(3.6.4) The augmented irregularity of Z is zero, q̃(Z) = 0.
(3.6.5) The morphism ν is finite, surjective and étale in codimen-

sion one.

Proof. We construct a sequence of finite surjective morphisms,

F ×B
γ

étale
�� X(2) β

étale in codim. one
�� X(1) α

index-one cover
�� X,

as follows. Recall from Proposition 3.3 that the canonical divisor of X
is torsion, and let α : X(1) → X be the associated index-one cover,
cf. [KM98, Sect. 5.2] or [Rei87, Sect. 3.5]. We have seen in Remark 3.4
that the variety X(1) has a trivial canonical divisor and at worst canon-
ical singularities. Remark 3.4 also shows that q̃(X(1)) is finite. This
implies that there exists a finite morphism β : X(2) → X(1), étale in
codimension one, such that

q̃
(
X(1)

)
= q

(
X(2)

)
= q̃

(
X(2)

)
.

Again, X(2) has trivial canonical divisor and canonical singularities.
Next, let γ : F × B → X(2) be the étale morphism obtained by ap-
plying Proposition 3.3 and Remark 3.5 to the variety X(2). The variety
B then satisfies the following,

(3.6.6) dimB = dimAlbX(2) = q
(
X(2)

)
= q̃

(
X(2)

)
.

Remark 3.5 also asserts that F has a trivial canonical divisor and canon-
ical singularities.

To finish the proof, it suffices to show that q̃(F ) = 0. If not, we
could apply Proposition 3.3 and Remark 3.5 to F , obtaining an étale
map δ : (F ′ × B′) × B → F × B, where B′ is Abelian, and of positive
dimension. The composed morphism γ ◦ δ : F ′ × (B′ × B) → X(2) is
again étale, showing that

q̃
(
X(2)

)
≥ q

(
F ′ × (B′ ×B)

) ≥ dimB + dimB′ > dimB,
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thus contradicting Equation (3.6.6) above. This shows that q̃(F ) = 0
and finishes the proof of Corollary 3.6. Q.E.D.

§4. A criterion for numerical triviality

The proof of the Decomposition Theorem 1.3 of rests on an analysis
of the tangent sheaf of Kawamata log terminal spaces and of its destabil-
ising subsheaves. We will show that the determinant of any destabilising
subsheaf is trivial, at least after passing to a suitable cover. This part
of the proof is based on a criterion for numerical triviality, formulated
in Proposition 4.2. The criterion generalises the following result which
goes back to Kleiman.

Lemma 4.1 (Kleiman’s criterion for numerical triviality). Let Z be
an irreducible, normal projective variety of dimension n ≥ 2 and D a
Q-Cartier divisor on Z. If D ·H1 · · ·Hn−1 = 0 for all (n− 1)-tuples of
ample divisors H1, . . . ,Hn−1 on Z, then D is numerically trivial.

Proof. Passing to a sufficiently high multiple of D, we can assume
without loss of generality that D is Cartier, and thus linearly equivalent
to the difference of two ample Cartier divisors, D ∼ H1,1 − H1,2. Let
H2, . . . ,Hn−1 be arbitrary ample divisors. Recall from [Kle66, Prop. 3
on page 305] that to prove numerical triviality of D, it suffices to show
that the following two equalities

D ·H1 ·H2 · · ·Hn−1 = 0 and(4.1.1)

D ·D ·H2 · · ·Hn−1 = 0(4.1.2)

hold. Equation (4.1.1) holds by assumption. For Equation (4.1.2), ob-
serve that

D ·D ·H2 · · ·Hn−1 = D ·H1,1 ·H2 · · ·Hn−1 −D ·H1,2 ·H2 · · ·Hn−1,

where both summands are zero, again by assumption. Q.E.D.

Proposition 4.2, the main result of this section, is a variant of this
criterion, adapted to the discussion of Q-factorialisations, where the am-
ple divisors Hi are replaced by big and nef divisors which are obtained
as the pull-back of ample divisors via the Q-factorialisation map.

Proposition 4.2 (Criterion for numerical triviality on
Q-factorialisations). Let φ : Z ′ → Z be a small birational mor-
phism of irreducible, normal projective varieties of dimension n ≥ 2.
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Let D′ be a pseudoeffective Q-Cartier Q-divisor on Z ′ and assume that
there are ample Cartier divisors H1, . . . ,Hn−1 on Z such that

(4.2.1) D′ · φ∗(H1) · · ·φ∗(Hn−1) = 0.

If Z ′ is Q-factorial, then D′ is numerically trivial.

Remark 4.3 (Small morphisms). In Proposition 4.2 and elsewhere
in this paper, we call a birational morphism ψ of normal, irreducible
projective varieties small if its exceptional set has codimension at least
two.

Proof of Proposition 4.2. Let B′ � Z ′ be the φ-exceptional set,
and B := φ(B′) � Z its image. It suffices to prove Proposition 4.2 for a
multiple of D′. We will therefore assume without loss of generality that
D′ is an integral Cartier divisor. To show that D′ is numerically trivial,
we aim to apply Kleiman’s criterion for numerical triviality, Lemma 4.1.
To this end, let A1, . . . , An−1 be arbitrary ample Cartier divisors on
Z ′. Choose numbers a1, . . . , an−1 ∈ N+ such that the aiAi are very
ample, choose general elements Θi ∈ |aiAi| and consider the complete
intersection curve Γ′ := Θ1 ∩ · · · ∩ Θn−1 � Z ′. By general choice,
the curve Γ′ is smooth and will not intersect with the small set B′.
Lemma 4.1 asserts that in order to establish numerical triviality of D′

it suffices to show that

(4.3.1) Γ′ ·D′ = a1 · · · an−1 ·A1 · · ·An−1 ·D′ = 0.

To establish (4.3.1), consider the image Γ := φ(Γ′), which is a smooth
curve contained in Z \ B. The curve Γ is not necessarily a complete
intersection curve for H1, . . . ,Hn−1, but can be completed to become
a complete intersection curve, as follows. Choosing sufficiently large
numbersm1, . . . ,mn−1 ∈ N+, we can assume that the linear sub-systems

Vi := {Δ ∈ |miHi| : Γ ⊂ suppΔ}
are positive-dimensional, basepoint-free outside of Γ, and separate points
outside of Γ. We can also assume that the sheaves IΓ ⊗ OZ(miHi) are
spanned. Choose general elements Δi ∈ Vi and consider the complete
intersection curve

Γcomplete := Δ1 ∩ · · · ∩Δn−1 ⊂ Z.

The curve Γcomplete is reduced, avoids B and clearly contains Γ. We can
thus write

Γcomplete = Γ ∪ Γrest and φ−1(Γcomplete) = Γ′ ∪ φ−1(Γrest),
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where Γrest is an irreducible movable curve on Z. To end the argument,
observe that

0 = m1 · · ·mn−1 ·D′ · φ∗(H1) · · ·φ∗(Hn−1) by Assumption (4.2.1)

= D′ · φ∗(Γcomplete) = D′ · Γ′︸ ︷︷ ︸
≥0

+D′ · φ∗(Γrest)︸ ︷︷ ︸
≥0

.

Since D′ is pseudoeffective, and since both Γ′ and φ−1(Γrest) are
movable, it follows that both summands are non-negative, hence
zero. This shows Equation (4.3.1) and finishes the proof of Proposi-
tion 4.2. Q.E.D.

§5. The tangent sheaf of varieties with trivial canonical class

5.A. Semistability of the tangent sheaf

To prepare for the proof of the Decomposition Theorem 1.3, we
study stability notions of the tangent sheaf. For canonical varieties with
numerically trivial canonical divisor, we show that the tangent sheaf TX

is semistable with respect to any polarisation, and that TX is stable with
respect to one polarisation if and only if it is stable with respect to any
other.

The following result of Miyaoka is crucial. We will refer to Theo-
rem 5.1 at several places throughout the present paper.

Theorem 5.1 (Generic semipositivity, [Miy87a, Miy87b]). Let X
be a normal projective variety of dimension n > 1. Assume that X
is not uniruled. Let H1, . . . ,Hn−1 be ample line bundles on X. Then
there exists a number M ∈ N+ such that for all m1, . . . ,mn−1 > M the
following holds.

(5.1.1) The linear systems |mjHj | are basepoint-free.
(5.1.2) If C = D1 ∩ · · · ∩Dn−1 � X is a curve cut out by general

elements Dj ∈ |mjHj |, then C is smooth, X is smooth

along C, and Ω
[1]
X |C is a nef vector bundle on C. Q.E.D.

Notation 5.2. The conclusion of Theorem 5.1 is often rephrased by

saying that Ω
[1]
X is generically nef with respect to H1, . . . ,Hn−1.

Theorem 5.3 (Mehta-Ramanathan theorem, cf. [MR82, Rem. 6.2]
and [Fle84]). In the setup of Theorem 5.1, if one chooses the number
M large enough, then TX is semistable with respect to the polarisation
(H1, . . . ,Hn−1) if and only if its restriction TX |C is semistable as a
vector bundle on the curve C. Q.E.D.
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The well-known semistability of the tangent bundle is an immediate
consequence of Miyaoka’s generic semipositivity result.

Proposition 5.4 (Semistability of the tangent sheaf). Let X be
a normal projective variety having at worst canonical singularities. If
KX is numerically trivial, then TX is semistable with respect to any
polarisation.

Proof. Let (H1, . . . ,Hn−1) be arbitrary ample Cartier divisors on
X. Choose numbers M,m1, . . . ,mn−1 and construct a general complete
intersection curve C � X as in Theorems 5.1 and 5.3.

It follows from numerical triviality of KX and from the assumption
on the singularities thatX is not uniruled. Theorem 5.1 therefore asserts

that the restriction Ω
[1]
X |C is nef. Since additionally KX · C = 0 by

assumption, it follows that the bundle TX |C is semistable. The Mehta-
Ramanathan Theorem 5.3 then shows that TX is semistable with respect
to (H1, . . . ,Hn−1). Q.E.D.

Remark 5.5. Although semistable, the tangent sheaf of a variety
with trivial canonical bundle might not be stable. To give an easy ex-
ample, the tangent sheaf of the product of two such varieties is not
stable.

5.B. Pseudoeffectivity of quotients of Ω
[p]
X

The proof of our main result uses the following criterion for the
pseudoeffectivity of Weil divisors on Q-factorial spaces. In case where
X is smooth, this has been shown by Campana-Peternell.

Proposition 5.6 (Pseudoeffectivity of quotients of Ω
[p]
X , cf. [CP11,

Thm. 0.1]). Let X be a normal, Q-factorial projective variety and let D
be a Weil divisor on X. Assume that there exists a number 0 ≤ p ≤
dimX and a non-trivial sheaf morphism ψ : Ω

[p]
X → OX(D). If X is not

uniruled, then D is pseudoeffective.

Proof. Assume that X is not uniruled, and that a non-trivial sheaf

morphism ψ : Ω
[p]
X → OX(D) is given. The existence of a resolution of

singularities combined with a classical result of Rossi [Ros68, Thm. 3.5]

shows that there exists a strong log resolution of singularities π : X̃ → X
with the additional property that π[∗]OX(D) is locally free. The π-

exceptional set E � X̃ is then of pure codimension one, and has simple

normal crossing support. Finally, write π[∗]OX(D) = O
X̃
(D̃), where D̃

is a divisor on X̃ that agrees with the strict transform π−1
∗ (D) outside

of the π-exceptional set E.
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Since the two sheaves π[∗]Ω[p]
X and Ωp

X̃
are isomorphic outside of E,

there exists a number m ∈ N+ and a sheaf morphism

ψ̃ : Ωp

X̃
→ O

X̃
(D̃ +mE)

which agrees on X̃ \ E with the pull-back of ψ. If L := (Image ψ̃)∗∗

denotes the reflexive hull of the image sheaf, then L is invertible by
[OSS80, Lem. 1.1.15]. Recalling that Ωp

X̃
is a quotient of (Ω1

X̃
)⊗p, it

follows from [CP11, Thm. 0.1] that the line bundle L is in fact pseu-

doeffective. It follows that D̃ + mE is pseudoeffective as well, since it
contains the pseudoeffective subsheaf L .

Since X is assumed to be Q-factorial, it is clear that the cycle-

theoretic push-forward of any pseudoeffective divisor on X̃ is Q-Cartier

and again pseudoeffective. Using that π∗D̃ = D, this shows our claim.
Q.E.D.

5.C. Stability of the tangent sheaf

While Theorem 5.1 and Proposition 5.4 are fairly standard today,
the following result, which shows that stability of the tangent bundle
is independent of the chosen polarisation, is new to the best of our
knowledge. We feel that it might be of independent interest.

Proposition 5.7 (Stability of TX does not depend on polarisa-
tion). Let X be a normal projective variety having at worst canonical
singularities. Assume that KX is numerically equivalent to zero. Let

h1 := (H
(1)
1 , . . . ,H

(1)
n−1) and h2 := (H

(2)
1 , . . . ,H

(2)
n−1) be two sets of ample

polarisations. If TX is h1-stable, then it is also h2-stable.

Proof. Suppose that TX is not h2-stable. Even though not stable,
recall from Proposition 5.4 that TX is semistable with respect to h2.
Choose a Jordan-Hölder filtration of TX with respect to h2 and let
0 � S � TX be its first term, cf. [HL97, Sect. 1.5]. The sheaf S is
then h2-stable, and saturated as a subsheaf of TX . Semistability of TX

implies that S has h2-slope zero. In other words, μh2(S ) = 0.
Next, let φ : X ′ → X be a Q-factorialisation, that is, a small bi-

rational morphism where X ′ is Q-factorial and has at worst canonical
singularities. The existence of φ is established in [BCHM10, Lem. 10.2].
Consider the reflexive pull-back sheaf S ′ := φ[∗]S . Since S ′ injects
into TX′ outside of the small π-exceptional set, and since both sheaves
are reflexive, we obtain an injection S ′ ↪→ TX′ = φ[∗]TX .

We claim that detS ′ is numerically trivial on X ′. To this end,
recall from Proposition 5.6 that

(
detS ′)∗ is pseudoeffective. On the
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other hand, since S ′ and φ∗(S ) agree outside of the π-exceptional set,
we obtain (

detS ′)∗ · φ∗(H(2)
1

) · · ·φ∗(H(2)
n−1

)
= −μh2(S ) = 0.

Together with Proposition 4.2, these two observations show that
(detS ′)∗ and detS ′ are numerically trivial, as claimed.

Using numerical triviality of detS ′, the same line of reasoning now
gives

μh1(S ) =
(
detS ′) · φ∗(H(1)

1

) · · ·φ∗(H(1)
n−1

)
= 0,

showing that TX is not h1-stable. This contradiction concludes the
proof. Q.E.D.

§6. Differential forms on varieties with trivial canonical class

6.A. Non-degeneracy of the wedge product

Differential forms on smooth varieties with trivial canonical class
were studied by Bogomolov [Bog74]. In this section we apply the Ex-
tension Theorem 2.4 to study reflexive differential forms on singular
varieties with trivial canonical classes, following an approach discussed
in [Pet94]. The results obtained in this section will play an important
role in the proof of the Decomposition Theorem 1.3, which is given in
the subsequent Section 7.

Proposition 6.1 (Non-degeneracy of the wedge product). Let X be
a normal n-dimensional projective variety X having at worst canonical
singularities. Suppose that ωX

∼= OX . If 0 ≤ p ≤ n is any number, then
the natural pairing given by the wedge product,∧

: H0
(
X, Ω

[p]
X

)×H0
(
X, Ω

[n−p]
X

) −→ H0
(
X, ωX

) ∼= C,

is non-degenerate.

Remark 6.2. If ı : Xreg ↪→ X is the inclusion of the smooth locus

into X, recall from Definition 2.1 that Ω
[p]
X = ı∗Ω

p
Xreg

. Given a non-zero

form η ∈ H0
(
Xreg, Ω

p
Xreg

)
, Proposition 6.1 simply says that there exists

a “complementary” form φ ∈ H0
(
Xreg, Ω

n−p
Xreg

)
, such that η ∧ φ extends

to a non-zero, hence nowhere vanishing section of OX
∼= ωX

∼= Ω
[n]
X .

Remark 6.3. Proposition 6.1 has been shown in relevant cases in
[Pet94, Prop. 5.8]. Our proof of Proposition 6.1 follows [Pet94] closely.
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6.A.1. Proof of Proposition 6.1 We end the present Section 6.A with
a proof of Proposition 6.1. To improve readability, the proof is subdi-
vided into six, mostly independent steps.

Step 1 in the proof of Proposition 6.1: Setup of notation We choose

a desingularisation π : X̃ → X of X. Denote the π-exceptional set by

E ⊂ X̃ and fix a non-zero section σ ∈ H0
(
X,ωX

)
. Since ωX is invertible,

and since X has canonical singularities, it follows immediately from the

definition that the pull-back of σ is a holomorphic n-form on X̃, possibly
with zeroes along the exceptional set, say

τ := π∗(σ) ∈ H0
(
X̃, ω

X̃

)
.

Because H0
(
X̃, ω

X̃

) ∼= H0
(
X, ωX

)
= C · σ, the form τ clearly spans

the vector space H0
(
X̃, ω

X̃

)
. By the Extension Theorem 2.4 we have

π∗Ω
p

X̃
= Ω

[p]
X . To prove Proposition 6.1, it is therefore sufficient to prove

the following claim.

Claim 6.4. Given any holomorphic p-form α ∈ H0
(
X̃, Ωp

X̃

)
there

exists a “complementary” form β ∈ H0
(
X̃, Ωn−p

X̃

)
such that α ∧ β = τ .

Step 2 in the proof of Proposition 6.1: Dolbeault cohomology on

X̃ Following standard notation, let Aa,b denote the sheaf of C-valued

differentiable forms of type (a, b) on X̃. Taking products and wedge
products with σ and τ , respectively, we obtain sheaf morphisms,

ψX : OX → ωX ψ
X̃

: O
X̃

→ ω
X̃

f �→ f · σ f �→ f · τ

ψ0 : A0,0 → An,0 ψq : A0,q → An,q

f �→ f · τ α �→ α ∧ τ.

where 0 < q ≤ n. Observe that ψX is isomorphic by assumption.
Since τ is holomorphic, its exterior derivative vanishes ∂τ = 0. This

immediately implies relations

(6.5.1) ∂ ◦ ψq = ψq+1 ◦ ∂ for all 0 ≤ q ≤ n.

In particular, the sheaf morphisms ψq induce well-defined morphisms
between Dolbeault cohomology groups,

φq : H0,q
(
X̃
) → Hn,q

(
X̃
)

for all 0 ≤ q ≤ n.

We will later see in Step 4 of this proof that the morphisms φq are in
fact isomorphic.



82 D. Greb, S.Kebekus and T. Peternell

Step 3 in the proof of Proposition 6.1: Dolbeault and sheaf coho-

mology on X̃ The sheaf morphisms ψX and ψ
X̃

induce additional mor-
phisms between sheaf cohomology groups,

Hq
(
ψX

)
: Hq

(
X, OX

) → Hq
(
X, ωX

)
and

Hq
(
ψ
X̃

)
: Hq

(
X̃, O

X̃

) → Hq
(
X̃, ω

X̃

)
,

for all 0 ≤ q ≤ n. Again, observe that the morphisms Hq
(
ψX

)
are

isomorphic by assumption. We will see in Step 4 of this proof that the
morphisms Hq

(
ψ
X̃

)
are isomorphic as well.

The morphisms φq andHq
(
ψ
X̃

)
are closely related. In fact, it follows

from (6.5.1) that the sheaf morphisms ψ• align to give a morphism
between the Dolbeault resolutions of O

X̃
and ω

X̃
, respectively. In other

words, there exists a commutative diagram as follows,

O
X̃
� � ��

ψ
X̃

��

A0,0 ∂ ��

ψ0

��

A0,1 ∂ ��

ψ1

��

A0,2 ∂ ��

ψ2

��

A0,3 ∂ ��

ψ3

��

· · ·

ω
X̃
� � �� An,0

∂

�� An,1

∂

�� An,2

∂

�� An,3

∂

�� · · ·
(6.5.2)

The following is then a standard consequence of homological algebra,
see for instance [Dem09, Ch. IV, §6, eq. (6.3)].

Conclusion 6.6. There exist commutative diagrams

H0,q
(
X̃
) φq ��

Dolbeault isom. ∼=
��

Hn,q
(
X̃
)

Dolbeault isom.∼=
��

Hq
(
X̃, O

X̃

) Hq(ψ
X̃
)

�� Hq
(
X̃, ω

X̃

)
for all indices 0 ≤ q ≤ n. Q.E.D.

Step 4 in the proof of Proposition 6.1: cohomology on X̃ and on X

Next, we aim to compare cohomology groups on X̃ with those on X.
More precisely, we claim the following.
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Claim 6.7. Given any index 0 ≤ q ≤ n, there exist morphisms ρO ,
ρω forming a commutative diagram as follows,

Hq
(
X̃, O

X̃

) Hq(ψ
X̃
)

�� Hq
(
X̃, ω

X̃

)

Hq
(
X, OX

) Hq(ψX)

∼=
��

ρO ∼=
��

Hq
(
X, ωX

)
.

ρω∼=
��

(6.7.1)

In particular, the morphisms Hq(ψ
X̃
) are isomorphic for all 0 ≤ q ≤ n.

Proof. Since π has connected fibers, and sinceX has only canonical
singularities, we have canonical identifications

π∗OX̃
∼= OX and π∗ωX̃

∼= ωX .

Observe that the section σ, seen as a section in π∗ωX̃
, will be identified

with the differential form τ . Using these identifications, we need to show
that there exist two morphisms

ρO : Hq
(
X, OX

) → Hq
(
X̃, O

X̃

)
and ρω : Hq

(
X, ωX

) → Hq
(
X̃, ω

X̃

)
,

which make Diagram (6.7.1) commutative and are isomorphic. While
this can be concluded from universal properties and spectral sequences,
we found it more instructive to give an elementary construction using
Čech cohomology.

To this end, choose an open affine cover (Ui)i∈I of X, which will be
acyclic for any coherent sheaf, and let ρO , ρω be the compositions of the



84 D. Greb, S.Kebekus and T. Peternell

vertical arrows in the following natural diagram.

Ȟq
(
X̃, O

X̃

) Ȟq(ψ
X̃
)

�� Ȟq
(
X̃, ω

X̃

)

Ȟq
(
(π−1Ui)i∈I , O

X̃

) Ȟq((π−1Ui)i∈I , ψX̃
)
��

r
X̃,O

��

��
∼=
��

Ȟq
(
(π−1Ui)i∈I , ωX̃

)r
X̃,ω

��

��
∼=
��

Ȟq
(
(Ui)i∈I , π∗OX̃

) Ȟq((Ui)i∈I , π∗ψX̃
)

��
��

∼=
��

Ȟq
(
(Ui)i∈I , π∗ωX̃

)
��
∼=
��

Ȟq
(
(Ui)i∈I , OX

) Ȟq((Ui)i∈I , ψX) ��

rX,O ∼=
��

Ȟq
(
(Ui)i∈I , ωX

)
rX,ω∼=
��

Ȟq
(
X, OX

) Ȟq(ψX)

∼=
��

ρ̌O

��

Ȟq
(
X, ωX

)

ρ̌ω

��

Here, the morphisms r•,• are the standard refinement morphisms that

map Čech cohomology groups defined with respect to a specific open
covering into Čech cohomology. Identifying Čech and sheaf cohomology,
commutativity of Diagram (6.7.1) is then immediate.

To prove that ρO and ρω are isomorphic, it suffices to show that the
refinement morphisms, r

X̃,O and r
X̃,ω

are isomorphic. We do that by

showing that the covering (π−1Ui)i∈I is acyclic for both O
X̃

and ω
X̃
.

That, however, follows immediately from the following two well-known
vanishing results which hold for all indices q > 0,

Rqπ∗OX̃
= 0 because X has rational singularities, [KM98, Thm. 5.22]

Rqπ∗ωX̃
= 0 Grauert-Riemenschneider vanishing, [KM98, Cor. 2.68].

The finishes the proof of Claim 6.7. Q.E.D.

Combining Conclusion 6.6 and Claim 6.7, we arrive at the following
statement, which summarises the results obtained so far.

Conclusion 6.8. The morphisms φq : H0,q
(
X̃
) → Hn,q

(
X̃
)
are iso-

morphic for all 0 ≤ q ≤ n. Q.E.D.

Step 5 in the proof of Proposition 6.1: Serre duality Given any in-
dex 0 ≤ p ≤ n, consider the complex bilinear form ρ obtained as the
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composition of the following morphisms,

H0
(
X̃, Ωp

X̃

)×H0
(
X̃, Ωn−p

X̃

) Dolbeault isom.−−−−−−−−−−−−−→ Hp,0(X̃)×Hn−p,0(X̃)

Id× conjugation−−−−−−−−−−−−−→ Hp,0(X̃)×H0,n−p(X̃)

Id×φn−p−−−−−−−−−−−−−→ Hp,0(X̃)×Hn,n−p(X̃)

Id× conjugation−−−−−−−−−−−−−→ Hp,0(X̃)×Hn−p,n(X̃)
s−−−−−−−−−−−−−→ C,

where s is the perfect pairing given by Serre duality, cf. [Dem09, Ch. VI,
Thm. 7.3].

Recall from Conclusion 6.8 that with the exception of s all maps used
in the definition of ρ are isomorphisms. It follows that ρ is a perfect
pairing. Unwinding the definition, ρ is given in elementary terms as
follows,

ρ : H0
(
X̃, Ωp

X̃

)×H0
(
X̃, Ωn−p

X̃

) → C,
(
α, β

) �→ ∫
X

α ∧ β ∧ τ .

Step 6 in the proof of Proposition 6.1: End of proof We are now
ready to prove Claim 6.4. Assume we are given a non-zero form α ∈
H0

(
X̃, Ωp

X̃

)
. Using that ρ is a perfect pairing, we can therefore find a

form β ∈ H0
(
X̃, Ωn−p

X̃

)
such that

(6.8.1) ρ(α, β) =

∫
X

α ∧ β ∧ τ = 1

Equation (6.8.1) implies that α ∧ β is a non-vanishing element of

H0
(
X̃, ω

X̃

)
. Since H0

(
X̃, ω

X̃

)
is one-dimensional, there exists a scalar

λ ∈ C∗ such that

τ = λ · (α ∧ β) = α ∧ (λ · β).
This finishes the proof of Claim 6.4 and hence of Proposi-
tion 6.1. Q.E.D.

6.B. Hodge duality for klt spaces

If X is a projective manifold, Hodge theory gives a complex-linear

isomorphism between the spacesH0
(
X, Ωp

X

)
andHp

(
X, OX

)
. We show

that the same statement holds for reflexive differentials if X has canon-
ical singularities, or more generally if X is the base space of a klt pair.
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Proposition 6.9 (Hodge duality for klt spaces). Let X be a normal
n-dimensional projective variety X. Suppose that there exists an effective
Q-divisor D on X such that (X,D) is klt. Given any number 0 ≤ p ≤ n,
there are complex-linear isomorphisms

H0
(
X, Ω

[p]
X

) ∼= H0
(
Xreg, Ω

p
Xreg

) ∼= Hp
(
X, OX

)
.

Proof. Fix a resolution of singularities π : X̃ → X of X. Then we
have the following chain of complex-linear isomorphisms

H0
(
X, Ω

[p]
X

) ∼= H0
(
X̃, Ωp

X̃

)
see below

∼= Hp,0
(
X̃
)

Dolbeault isomorphism

∼= H0,p
(
X̃
)

Conjugation

∼= Hp
(
X̃, O

X̃

)
Dolbeault isomorphism

∼= Hp
(
X, OX

)
see below.

The first isomorphism exists because π∗Ω
p

X̃
= Ω

[p]
X by the Extension

Theorem 2.4. The last isomorphism exists because X has rational sin-
gularities, cf. [KM98, Thm. 5.22]. Q.E.D.

We list a few immediate consequences of the results obtained so far.

Corollary 6.10. Let X be a normal n-dimensional projective vari-
ety X having at worst canonical singularities. Suppose that the canonical
sheaf of X is trivial, ωX

∼= OX . Then the following holds.

(6.10.1) Non-zero forms η ∈ H0
(
Xreg, Ω

q
Xreg

)
do not have any ze-

roes.
(6.10.2) For all 0 ≤ p ≤ n, we have complex-linear isomorphisms

H0
(
X, Ω

[p]
X

) ∼= H0
(
X, Ω

[n−p]
X

)∗
, canonically given up to

multiplication with a constant.
(6.10.3) If the dimension of X is odd, then χ

(
X, OX

)
= 0. Q.E.D.

Corollary 6.11 (Existence of forms on canonical varieties with
KX ≡ 0). Let X be a normal n-dimensional projective variety X having
at worst canonical singularities. Assume that q̃(X) = 0 and that the
canonical divisor KX is numerically trivial. Then

h0
(
X, Ω

[1]
X

)
= h0

(
X, Ω

[n−1]
X

)
= 0.

Proof. We show that H0
(
X, Ω

[n−1]
X

)
= 0. Assume to the contrary,

and let σ be a non-zero reflexive (n − 1)-form on X. Recalling from
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Kawamata’s analysis of the Albanese map, Proposition 3.3, that KX

is torsion, let f : X̃ → X be the associated index-one cover. The

morphism f is finite and étale in codimension one, the space X̃ has
canonical singularities, and trivial canonical sheaf ω

X̃
∼= O

X̃
, cf. [KM98,

5.19 and 5.20]. In particular, the reflexive form σ pulls back to a give

non-vanishing reflexive (n− 1)-form σ̃ on X̃. Furthermore, observe that

the covering space X̃ satisfies all requirements made in Proposition 6.9
and Corollary 6.10. This shows

0 = q̃(X) ≥ q(X̃) = h1
(
X̃, O

X̃

)
= h0

(
X̃, Ω

[1]

X̃

)
by Proposition 6.9

= h0
(
X̃, Ω

[n−1]

X̃

)
by Corollary (6.10.2),

contradicting the existence of σ̃. The same argument also shows

H0
(
X, Ω

[1]
X

)
= 0, finishing the proof of Corollary 6.11. Q.E.D.

6.C. Existence of complementary sheaves

We conclude the present Section 6 with a final corollary which gener-
alises [Pet94, Lem. 5.11]; see also [Bog74, p. 581]. It shows that saturated
subsheaves of TX with trivial determinant often have a complementary
subsheaf which presents TX as a direct product. Corollary 6.12 is thus
an important ingredient in the proof of our main result, the Decompo-
sition Theorem 1.3.

Corollary 6.12 (Existence of complementary subsheaves in TX).
Let X be a normal projective variety with trivial canonical sheaf ωX

∼=
OX , having at worst canonical singularities. Let E � TX be a saturated
subsheaf with trivial determinant, det E ∼= OX . Then there exists a
subsheaf F � TX with trivial determinant such that

TX
∼= E ⊕ F .

We will prove Corollary 6.12 in the remainder of the present Sec-
tion 6.C. For convenience, the proof is subdivided into four steps.

Step 1 in the proof of Corollary 6.12: Setup We consider the obvious
quotient sequence

(6.12.1) 0 −→ E
α−−−−→ TX

β−−−−→ TX/E︸ ︷︷ ︸
=:Q

−→ 0.

Since E is saturated in the reflexive sheaf TX , it is itself reflexive. Fur-
ther, the associated quotient Q is a torsion free sheaf, say of rank r > 0.
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We aim to split sequence (6.12.1) in codimension one. To be more pre-
cise, let Z � X be the smallest set such that X◦ := X \Z is smooth and
Q|X◦ is locally free. Since X is normal, and since torsion-free sheaves on
manifolds are locally free in codimension one, [OSS80, p. 148], it follows
that Z is small, that is, codimX Z ≥ 2. If we can find a splitting of
Sequence (6.12.1) on X◦ and write TX◦ ∼= E |X◦ ⊕ Q|X◦ , it will follow
from reflexivity that TX

∼= E ⊕Q∗∗, and the proof of Corollary 6.12 will
be finished.

Step 2 in the proof of Corollary 6.12: Construction of the splitting In
order to construct the splitting, recall the assumptions that detE ∼= OX

and ωX
∼= OX . As a consequence, we have triviality of determinants,

detQ ∼= detQ∗ ∼= OX , see [Kob87, Ch. V, Prop. 6.9] for details. Let
ηQ ∈ H0

(
X, detQ∗) be any non-vanishing section.

Taking duals on X◦, Sequence (6.12.1) gives injections

β∗ : Q∗|X◦ → Ω1
X◦

∧rβ∗ : ∧rQ∗|X◦ → Ωr
X◦

detβ∗ : detQ∗ → Ω
[r]
X .

We obtain a non-trivial reflexive form

η :=
(
detβ∗)(ηQ) ∈ H0

(
X, Ω

[r]
X

) \ {0}.
Denoting the dimension of X by n, Proposition 6.1 asserts the existence

of a complementary reflexive form μ ∈ H0
(
X, Ω

[n−r]
X

)
such that η ∧ μ

gives a nowhere-vanishing section of ωX . The triviality of detQ|X◦ and
of ωX◦ = detT ∗

X◦ thus gives isomorphisms of sheaves,

(6.12.2)

δQ : Q|X◦ → ∧r−1Q∗|X◦

q �→ ηQ(q, ·)

δTX : TX◦ → Ωn−1
X◦

�v �→ (
η ∧ μ

)
(�v, ·).

Remark 6.13. If r = 1, then ∧r−1Q∗|X◦ = OX◦ is simply the sheaf
of functions.

Using the isomorphisms (6.12.2) and the complementary form μ, we
can now define a sheaf morphism φ : Q|X◦ → TX◦ as the composite of
the following natural maps

(6.13.1) Q|X◦
δQ−−→ ∧r−1Q∗|X◦

∧r−1β∗
−−−−−−→ Ωr−1

X◦
∧μ−−−→ Ωn−1

X◦
δ−1

TX−−−→ TX◦ .
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Remark 6.14. In case where r = 1, the sheaves ∧r−1Q∗|X◦ and
Ωr−1

X◦ both equal the trivial sheaf OX◦ . The morphism ∧r−1β∗ is then
the identity map.

To end the proof of Corollary 6.12, it will now suffice to prove the
following claim.

Claim 6.15. The morphism φ : Q|X◦ → TX◦ defines a splitting of
Sequence (6.12.1) over the open set X◦.

Step 3 in the proof of Corollary 6.12: preparation for proof of
Claim 6.15 It suffices to show Claim 6.15 locally, over sufficiently small
open sets U ⊆ X◦. We will prove Claim 6.15 by explicit computation,
choosing frames for the bundles E , TX and Q to write down the mor-
phism φ and all relevant differential forms. Indeed, choosing U small
enough, we can find frames

e1, . . . , en−r, . . . frame of E |U ,
�q1, . . . , �qr, α(e1), . . . , α(en−r) . . . frame of TX |U , and
β(�q1), . . . , β(�qn−r) . . . frame of Q|U .

To simplify notation, set

�ei := α(ei) ∈ TX(U) and qj := β(�qj) ∈ Q(U).

We denote the dual frames by

e∗1, . . . , e
∗
n−r . . . frame of E ∗|U ,

�q ∗
1 . . . , �q ∗

r , �e ∗
1 , . . . , �e

∗
n−r . . . frame of Ω1

X |U , and
q∗1 , . . . , q

∗
r . . . frame of Q∗|U .

Observe that α∗(�e ∗
i ) = e∗i and β∗(q∗j ) = �q ∗

j , for all indices i and j.
Scaling the frame �q1, . . . , �qr appropriately, we may assume that

(6.15.1) ηQ|U = q∗1 ∧ · · · ∧ q∗r and η|U = �q ∗
1 ∧ · · · ∧ �q ∗

r .

Scaling the frame e1, . . . , en−r, we can then find forms σ1, . . . σr ∈
Ωn−r−1

X (U) such that the complementary form μ can be written as

(6.15.2) μ|U = �e ∗
1 ∧ · · · ∧ �e ∗

n−r +

r∑
i=1

�q ∗
i ∧ σi.

Remark 6.16. We do not claim that Equation (6.15.2) defines the
forms σi uniquely. In fact, there will almost always be several ways to
write μ|C in this way. If n− r − 1 = 0, then the σi are just functions.
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Remark 6.17. On the open set U , Equations (6.15.1) and (6.15.2)
together imply that the globally defined form η ∧ μ is given as(

η ∧ μ
)|U = �q ∗

1 ∧ · · · ∧ �q ∗
r ∧ �e ∗

1 ∧ · · · ∧ �e ∗
n−r.

If n − r − 1 > 0, then the forms σi of Equation (6.15.2) can be
decomposed further, writing them as sums of pure tensors that only
involve �e ∗

1 , . . . , �e
∗
n−r, and tensors that involve �q ∗

1 , . . . , �q ∗
r ,

(6.17.1) σi =
n−r∑
j=1

aij · �e ∗
1 ∧ · · ·�����e

∗
j · · · ∧ �e ∗

n−r +
r∑

k=1

�q ∗
k ∧ τik,

for suitable functions aij ∈ OX◦(U) and forms τik ∈ Ωn−r−2
X (U).

Remark 6.18. Again, we do not claim that Equation (6.17.1) defines
the forms τik uniquely. In contrast, note that the functions aij are
uniquely determined by (6.15.2) and (6.17.1).

Step 4 in the proof of Corollary 6.12: proof of Claim 6.15 and end
of proof We will prove Claim 6.15 only in case where n− r−1 > 0. The
case where n− r = 1 follows exactly the same pattern, but is easier. To
be precise, we will prove that

(6.18.1)
φ|U : Q|U → TX |U

q
 �→ �q
 +
∑n−r

j=1 ±a
j · �ej
where the a
j ∈ OX◦(U) are the functions introduced in Equa-
tion (6.17.1) above. Therefore, β|U ◦ φ|U = idQ|U , establishing
Claim 6.15. By definition of φ, (6.18.1) is equivalent to showing that
(6.18.2)

δ−1
TX

((
(∧r−1β∗) (δQ(q
))

) ∧ μ
)
= �q
 +

n−r∑
j=1

±a
j · �ej for all indices �.

The computation proving (6.18.2) uses the following elementary ob-
servation.

Observation 6.19. It follows immediately from (6.15.1) and from
Remark 6.17 that the sheaf morphisms δQ and δTX introduced in (6.12.2)
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have the following explicit description on U ,

δQ|U : Q|U → ∧r−1Q∗|U
q
 �→ (−1)
+1 · q∗1 ∧ · · ·����q∗
 · · · ∧ q∗r

δTX |U : TX |U → Ωn−1
X |U

�q
 �→ (−1)
+1 · �q ∗
1 ∧ · · ·�����q ∗


 · · · ∧ �q ∗
r ∧ �e ∗

1 ∧ · · · ∧ �e ∗
n−r

�e
 �→ (−1)r+
+1 · �q ∗
1 ∧ · · · ∧ �q ∗

r ∧ �e ∗
1 ∧ · · ·�����e ∗


 · · · ∧ �e ∗
n−r.

With Observation 6.19 in place, Equation (6.18.2) is now shown
easily by direct computation as follows.

A := δQ(q
)

Obs. 6.19
= (−1)
+1 · q∗1 ∧ · · ·����q∗
 · · · ∧ q∗r

B :=
(∧r−1β∗)(A)

Defn. of β∗
= (−1)
+1 · �q ∗

1 ∧ · · ·�����q ∗

 · · · ∧ �q ∗

r

C := B ∧ μ

by (6.15.2)
= (−1)
+1 · �q ∗

1 ∧ · · ·�����q ∗

 · · · ∧ �q ∗

r ∧
(
�e ∗
1 ∧ · · · ∧ �e ∗

n−r +
r∑

i=1

�q ∗
i ∧ σi

)
= (−1)
+1 · �q ∗

1 ∧ · · ·�����q ∗

 · · · ∧ �q ∗

r ∧ (
�e ∗
1 ∧ · · · ∧ �e ∗

n−r + �q ∗

 ∧ σi

)
by (6.17.1)

= (−1)
+1 · �q ∗
1 ∧ · · ·�����q ∗


 · · · ∧ �q ∗
r ∧

(
�e ∗
1 ∧ · · · ∧ �e ∗

n−r

+ �q ∗

 ∧

(
n−r∑
j=1

a
j · �e ∗
1 ∧ · · ·�����e

∗
j · · · ∧ �e ∗

n−r +
r∑

k=1

�q ∗
k ∧ τik

))
= (−1)
+1 · �q ∗

1 ∧ · · ·�����q ∗

 · · · ∧ �q ∗

r ∧ �e ∗
1 ∧ · · · ∧ �e ∗

n−r

+
n−r∑
j=1

±a
j · �q ∗
1 ∧ · · · ∧ �q ∗

r ∧ �e ∗
1 ∧ · · ·�����e

∗
j · · · ∧ �e ∗

n−r

and finally

D := δ−1
TX

(C)
Obs. 6.19

= �q
 +
n−r∑
j=1

±a
j · �ej .
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This finishes the proof of Equations (6.18.2), (6.18.1), Claim 6.15,
and hence of Corollary 6.12. Q.E.D.

§7. Proof of Theorem 1.3

We have divided the proof of Theorem 1.3 into a sequence of steps,
each formulated as a separate result. Some of these statements might be
of independent interest. The proof of Theorem 1.3 follows quickly from
these preliminary steps and is given in Section 7.C.

Theorem 7.1 (Splitting the tangent sheaf of varieties with trivial
canonical bundle). Let X be a normal n-dimensional projective variety
with at worst canonical singularities. Assume that ωX

∼= OX and that
q̃(X) = 0. Let h = (H1, . . . ,Hn−1) be ample divisors on X and assume
that TX is not h-stable. Let 0 � E � TX be a saturated destabilising
subsheaf, that is, a proper subsheaf with non-negative slope μh(E ) ≥ 0
and torsion free quotient TX/E .

Then there exists a number M ∈ N+ such that (detE )[M ] ∼= OX .

Further, there exists a finite cover f : X̃ → X, étale in codimension
one, and a proper subsheaf F � T

X̃
such that the following holds.

(7.1.1) The tangent sheaf of X̃ decomposes as a direct sum, T
X̃

∼=(
f [∗]E

)⊕ F .
(7.1.2) Both summands in (7.1.1) have trivial determinant. In

other words, det f [∗]E ∼= O
X̃

and detF ∼= O
X̃
.

Before proving Theorem 7.1 in Section 7.A below, we note an im-
portant corollary, obtained from Theorem 7.1 by iterated application.
The following notation, which summarises the conditions spelled out
in Condition (1.3.2) of the Decomposition Theorem 1.3, is used in its
formulation.

Definition 7.2 (Strong stability). Let X be a normal projective vari-
ety of dimension n, and F a reflexive coherent sheaf of OX -modules. We

call F strongly stable, if for any finite morphism f : X̃ → X that is étale

in codimension one, and for any choice of ample divisors H̃1, . . . , H̃n−1 on

X̃, the reflexive pull-back f [∗]F is stable with respect to (H̃1, . . . , H̃n−1).

Corollary 7.3 (Existence of a decomposition). Let X be a nor-
mal projective variety having at worst canonical singularities. Assume

that ωX
∼= OX . Then there exists a finite cover f : X̃ → X, étale in

codimension one, and a decomposition

T
X̃

∼=
⊕

Ei,
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where the Ei are strongly stable subsheaves of T
X̃

with trivial determi-
nants, detEi

∼= O
X̃
.

Remark 7.4. We note that the summands Ei in the decomposition
established in Corollary 7.3 are automatically saturated. Indeed, as
a subsheaf of the torsion-free sheaf T

X̃
each Ei is torsion-free. The

quotient of T
X̃

by any of the summands is a direct sum of the remaining
summands, hence torsion-free.

Proof of Corollary 7.3. We need to find a cover f : X̃ → X and a
decomposition T

X̃
∼= ⊕

Ei, such that all factors Ei are strongly stable.

Since the rank of TX is finite, there exists a finite cover f : X̃ → X,
étale in codimension one, with a proper decomposition

(7.4.1) T
X̃

∼=
⊕
i≥1

Ei,

in which the number of direct summands is maximal. We claim that
each summand is then automatically strongly stable.

We argue by contradiction and assume that there exists a further

finite cover, g : X̂ → X̃, étale in codimension one, and a list of ample

divisors ĥ = (Ĥ1, . . . , Ĥn−1) on X̂ such that the reflexive pull-back of

one of the summands, say Ê1 := g[∗]E1, is not stable with respect to ĥ.

Let 0 � Ŝ � Ê1 be a ĥ-destabilising subsheaf. By [Kob87, Prop. 7.6(b)],
whose proof carries over without change from the smooth to the singular

setup, we may assume that Ŝ is saturated in Ê1 and therefore also in

T
X̂
. Since Ê1 and T

X̂
both have vanishing ĥ-slope, the sheaf Ŝ is

also a destabilising subsheaf for T
X̂
. Replacing X̂ by a further cover,

if necessary, Theorem 7.1 therefore allows to assume without loss of

generality that the tangent sheaf splits, say T
X̂

= Ŝ ⊕ Q̂. Since the

sheaves T
X̂
, Ê1, Ŝ and Q̂ are all locally free on the smooth locus of X̂,

elementary linear algebra gives a decomposition

Ê1|X̂reg
= Ŝ |

X̂reg
⊕ (Ê1 ∩ Q̂)|

X̂reg
.

Taking double duals, we obtain a decomposition Ê1 = Ŝ ∗∗⊕ (Ê1∩Q̂)∗∗,
which contradicts maximality of the decomposition (7.4.1) and therefore
finishes the proof of Corollary 7.3. Q.E.D.

Remark 7.5 (Uniqueness of the decomposition). Given a variety X

as in Corollary 7.3, let f1 : X̃1 → X and f2 : X̃1 → X be two finite
morphisms, étale in codimension one, such that the tangent bundles split
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into strongly stable summands,

T
X̃1

∼=
N⊕
i=1

E 1
i and T

X̃2

∼=
M⊕
j=1

E 2
j .

Let X̂ be an irreducible component of the normalisation of the fibered

product X̃1 ×X X̃2. We obtain a diagram

X̂
g1 ��

g2
��

X̃1

f1

��
X̃2

f2

�� X,

where g1, g2 are again finite and étale in codimension one. Since T
X̃

∼=
g
[∗]
1 T

X̃1

∼= g
[∗]
2 T

X̃2
, we obtain decompositions

(7.5.1) T
X̂

∼=
N⊕
i=1

g
[∗]
1 E 1

i
∼=

M⊕
j=1

g
[∗]
2 E 2

j .

Choosing any ample polarisation on X̂, stability of the summands im-

plies that any morphism Ê 1
i → Ê 2

j must either be trivial, or an isomor-
phism. It follows that the decompositions (7.5.1) satisfy the following
extra conditions

(7.5.2) the number of summands in the decompositions agrees,
N = M , and

(7.5.3) up to permutation of the summands we have isomorphisms

g
[∗]
1 E 1

i
∼= g

[∗]
2 E 2

i for all i ∈ {1, . . . , N}.
In that sense, the decomposition found in Corollary 7.3 is unique.

7.A. Proof of Theorem 7.1

Since the proof of Theorem 7.1 is somewhat long, we have subdivided
it into four relatively independent steps, given in Sections 7.A.1–7.A.4
below. Figure 7.1 on the facing page gives an overview of the spaces and
morphisms constructed in the course of the proof.

7.A.1. Step 1: The subsheaf E � TX To start the proof of The-
orem 7.1, we discuss the structure of the saturated destabilising sheaf
E � TX . First note that due to torsion-freeness of E and of TX/E , the
sheaf E is a sub-vectorbundle of TX outside of a set of codimension two.
Next, we compute its slope.
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X̃ ′ g, index-one cover for E ′

finite, étale in codim. one
�� X ′ φ, Q-factorialisation

small, birational
�� X

X̃ ′ ψ, Stein factorisation I

conn. fibers, small, birational
�� X̃

f, Stein factorisation II

finite, étale in codim. one
�� X

Fig. 7.1. Spaces and morphisms constructed in the proof of
Theorem 7.1

Lemma 7.6 (Slopes of destabilising subsheaves). In the setup of
Theorem 7.1, any destabilising subsheaf of TX has slope zero. In par-
ticular, μh(E ) = 0.

Proof. Let G be any destabilising subsheaf of TX . Since KX is
assumed to be trivial, it follows that G has non-negative slope, μh(G ) ≥
0. On the other hand, we know from Proposition 5.4 that TX is h-
semistable. Consequently, we have μh(G ) = 0, as claimed. Q.E.D.

7.A.2. Step 2: The Q-factorialisation of X Let φ : X ′ → X be a
Q-factorialisation of X, that is, a small birational morphism where X ′

is Q-factorial and has only canonical singularities. The existence of φ is
established in [BCHM10, Lem. 10.2]. Since φ is small, it is clear that
ωX′ ∼= φ∗ωX

∼= OX′ , and that q̃(X ′) = 0. Set E ′ := φ[∗](E ). Since
E ′ injects into the tangent sheaf TX′ away from a set of codimension
two, it follows from reflexivity that E ′ injects into TX′ everywhere. We
can therefore view it as a proper subsheaf E ′ � TX′ . Notice that E ′ is
saturated in TX′ , since φ is small.

Claim 7.7. To prove statements (7.1.1) and (7.1.2) of Theorem 7.1,

it suffices to find a finite cover g : X̃ ′ → X ′, étale in codimension one,
and a decomposition

(7.7.1) T
X̃′ ∼= F ′ ⊕

(
g[∗]E ′

)
where detF ′ ∼= det

(
g[∗]E ′) ∼= O

X̃′ .

Proof. As indicated in Figure 7.1, consider the Stein factorisation
of the composed morphism φ ◦ g,

X̃ ′
ψ, small birational

��

φ◦g
��X̃

f, finite, étale in codim. 1
�� X.
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The reflexive push-forward of (7.7.1),

T
X̃

∼= (
ψ∗TX̃′

)∗∗ ∼=
(
ψ∗

(
F ′ ⊕ g[∗]E ′))∗∗ ∼= (

ψ∗F ′)∗∗︸ ︷︷ ︸
=:F

⊕ (
ψ∗(g[∗]E ′)

)∗∗︸ ︷︷ ︸
∼=f [∗]E

,

then yields a decomposition on X̃ that satisfies both (7.1.1) and (7.1.2),
thus finishing the proof of Claim 7.7. Q.E.D.

7.A.3. Step 3: High reflexive powers of det E and detE ′ are trivial
We need to show that high reflexive powers of det E and detE ′ are trivial.
To this end, recall that the reflexive sheaf detE ′ is a Weil divisorial sheaf
on X ′. In other words, there exists a Weil divisor D′ on X ′ so that
det E ′ ∼= OX′(D′). Since X ′ is Q-factorial, there exists be a number
m ∈ N+ such that mD′ is actually Cartier.

As a first step towards showing triviality of a sufficiently high mul-
tiple, we prove numerical triviality of D′.

Lemma 7.8. Setting as above, then the Q-Cartier divisor D′ is
numerically trivial.

Proof. We aim to apply Proposition 4.2 in order to conclude that
D′ is numerically trivial. As a first step in this direction, recall from
Lemma 7.6 that μh(E ) · h = 0. Consequently, we have the following
equality of intersection numbers of Q-Cartier divisors,

(7.8.1) 0 = D′ · φ∗(H1) · · ·φ∗(Hn−1) = −D′ · φ∗(H1) · · ·φ∗(Hn−1).

Secondly, observe that the inclusion E ′ ↪→ TX′ yields an inclusion
det E ′ ↪→ ∧[p]TX′ . Dualising, we obtain a non-zero morphism

Ω
[p]
X′ → (detE ′)∗ ∼= OX′(−D′).

Since KX is trivial and since X has only canonical singularities, X is not
uniruled and Proposition 5.6 therefore implies that the Q-Cartier divisor
−D′ is pseudoeffective on X ′. Due to Equation (7.8.1), Proposition 4.2
applies to show that −D′ and hence D′ is numerically trivial indeed.

Q.E.D.

Next up, we conclude from numerical triviality that high reflexive
powers of det E and detE ′ are trivial.

Corollary 7.9. Setting as above. Then there exists a number M ∈
N+ such that (detE ′)[M ] ∼= OX′ and (detE )[M ] ∼= OX .
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Proof. We are going to use the assumption that q̃(X) = 0, which
implies that

0 = q(X ′) = h1
(
X ′, OX′

)
,

hence the Picard group of X ′ is discrete. The subgroup Pic0(X ′) �

Pic(X ′) of invertible sheaves with numerically trivial Chern class is
therefore finite. It follows that there exists a positive natural num-
ber k such that (detE ′)[km] ∼= OX′ . Since the reflexive sheaves OX

∼=
φ∗

(
(detE ′)[km]

)
and (det E )[km] agree in codimension one, they agree

everywhere, and (detE )[km] is likewise trivial. Q.E.D.

7.A.4. Step 4: Constructing the splitting on a cover of X ′ Since

det E ′ is torsion, there exists an index-one cover g : X̃ ′ → X ′ for detE ′,
see for example [KM98, 2.52]. This is a finite morphism from a normal
variety, étale in codimension one, such that

(7.9.1) g[∗] det E ′ ∼= O
X̃′ .

Recall from [KM98, 5.20] that X̃ ′ has trivial canonical bundle and at

worst canonical singularities. Set Ẽ ′ := g[∗]E ′. We aim to construct a
splitting of T

X̃′ using the existence of complementary subsheaves shown
in Corollary 6.12 on page 87. The following claim guarantees that the
assumptions made in Corollary 6.12 are satisfied in our context.

Claim 7.10. The inclusion E ′ ↪→ TX′ induces an inclusion Ẽ ′ ↪→
T

X̃′ . With the inclusion understood, Ẽ ′ is a saturated subsheaf of T
X̃′

Proof. Since φ◦g : X̃ ′ → X is étale in codimension one, the reflex-

ive sheaf Ẽ ′ injects into T
X̃′ outside of a small set, and is a saturated

subsheaf there. Since both Ẽ ′ and its saturation in T
X̃′ are reflexive

and agree in codimension one, it follows that Ẽ ′ actually is isomorphic
to its saturation, as claimed. Q.E.D.

With Claim 7.10 in place, Corollary 6.12 asserts the existence of a

sheaf F̃ ′ with trivial determinant such that T
X̃′ ∼= Ẽ ′⊕F̃ ′. As we have

seen in Claim 7.7, this concludes the proof of Theorem 7.1. Q.E.D.

7.B. Integrability of direct summands

In this section, we show that the individual summands in the de-
composition stated in Corollary 7.3 are integrable; that is, they define
foliations.

Theorem 7.11 (Integrability of direct summands). Let X be a
normal projective variety with at worst canonical singularities. Assume
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that ωX
∼= OX . Let TX

∼= ⊕
Ei be a decomposition into reflexive sheaves

with trivial determinants. Then all Ei are integrable.

Proof. We follow the arguments of [Hör07]. Without loss of gen-
erality we assume that TX

∼= E1 ⊕ E2, that is, we assume that TX can
be decomposed into two summands. We will show that E2 is integrable.
The integrability of E1 then follows for symmetry reasons. Let r1 be the
rank of E1, and consider the trivialisable sheaf L1 := det E1. Since E ∗

1 is

a direct summand of Ω1
X , the reflexive sheaf L1⊗Ω

[r1]
X has a trivial direct

summand. Let θ ∈ H0
(
X, L1 ⊗ Ω

[r1]
X

)
be the corresponding nowhere

vanishing L1-valued differential form and let π : X̃ → X be a resolution
of singularities. By the Extension Theorem 2.4, the reflexive differential

form θ pulls back to a non-trivial section θ̃ ∈ H0
(
X̃, π∗(L1)⊗ Ωr1

X̃

)
.

At general points of X̃, where π is isomorphic, the sheaf π∗E2 coin-

cides with the degeneracy sheaf Sθ̃ of θ̃, that is, the sheaf of vector fields
�v such that the contraction

i�v(θ̃) = θ̃(�v, ·) ∈ H0
(
X̃, π∗(L1)⊗ Ωr1−1

X̃
)

vanishes1. In this setting, it follows from [Dem02, Main Thm.] that
Sθ̃ is integrable. As a consequence, we obtain that E2 is integrable at
general points of X. Since E2 is a saturated subsheaf of TX , it follows
that it is integrable everywhere. Q.E.D.

7.C. Proof of Theorem 1.3

We maintain notation and assumptions of Theorem 1.3. Corol-
lary 3.6 implies the existence of an Abelian variety A and of a projective
variety X ′ with at worst canonical singularities, with trivial canonical
bundle and q̃(X ′) = 0, together with a finite cover A×X ′ → X, étale in
codimension one. Property (1.3.3) stated in Theorem 1.3 is hence ful-

filled for any cover of the form A×X̃ → A×X ′, where X̃ → X ′ is a finite

cover, étale in codimension one. The existence of such a cover X̃ → X
and of a decomposition of T

X̃
satisfying Properties (1.3.1) and (1.3.2)

follows by combining Corollary 7.3 and Theorem 7.11. In summary, this
finishes the proof of Theorem 1.3. Q.E.D.

Remark 7.12. The decomposition theorem of Beauville-Bogomolov
holds for compact Kähler manifolds. Therefore, we should expect a
singular version in the non-algebraic context as well. In particular, The-
orem 1.3 should hold for Kähler varieties. There are however two main

1Degneracy subsheaves are introduced and discussed in more detail in Sec-
tion 8.B.2 below.
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ingredients in our argument which are not yet available in the Kähler
context: the Extension Theorem 2.4 and the pseudoeffectivity result
Proposition 5.6.

§8. Towards a structure theory

If X is any projective manifold with Kodaira dimension zero,
κ(X) = 0, standard conjectures of minimal model theory predict the
existence of a birational contraction2 map λ : X ��� Xλ, where Xλ has
terminal singularities and numerically trivial canonical divisor. General-
ising the Beauville-Bogomolov Decomposition Theorem 1.1, it is widely
expected that Xλ admits a finite cover, étale in codimension one, which
can be birationally decomposed into a product

T ×
∏

Xj ,

where T is a torus and the Xj are singular versions of Calabi-Yau mani-
folds and irreducible symplectic manifold, which cannot be decomposed
further. Such a decomposition result would clearly be a central pillar
to any structure theory for varieties with Kodaira dimension zero. The
main result of the present paper, Theorem 1.3, is a first step in this
direction.

Section 8.A discusses the remaining problems of turning the decom-
position found in the tangent sheaf into a decomposition of the variety.
Section 8.B gives a conjectural description of the irreducible pieces com-
ing out of the decomposition, discussing singular analogues of Calabi-
Yau and irreducible holomorphic-symplectic varieties, and proving the
conjectured description in low dimensions. Finally, fundamental groups
of varieties with trivial canonical class, which are crucial for our un-
derstanding of this class of varieties, are discussed in the concluding
Section 8.C.

Remark 8.1. Corollary 3.6 and Theorem 1.3 allow to restrict our
attention to varieties with vanishing augmented irregularity. For most
of the present Section 8, we will therefore only consider varieties X with
q̃(X) = 0.

8.A. Decomposing varieties with trivial canonical bundle

In technically correct terms, the setup of our discussion is now sum-
marised as follows.

2Following standard use, we call a birational map a contraction map if its
inverse does not contract any divisors.
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Setup 8.2. Let X be a normal Q-factorial projective variety with
canonical singularities such that KX is torsion and q̃(X) = 0. By Theo-

rem 1.3, there exists a finite cover f : X̃ → X, étale in codimension one,
such that ωX = OX and such that there exists a decomposition

T
X̃

=
⊕

Ei

of T
X̃

into strongly stable integrable reflexive subsheaves.

In view of the desired decomposition of the variety X̃, this naturally
leads to the following problems.

Problem 8.3 (Algebraicity of leaves). In Setup 8.2, show that the
leaves of the foliations Ei are algebraic, perhaps after passing to another
cover.

Problem 8.4 (Decomposition of the variety). In the setup of Prob-
lem 8.3, show that the algebraicity of the leaves leads to a birational

decomposition of X̃, perhaps after passing to another cover. More pre-
cisely, show that there is a birational morphism

g : X̃ ���
∏

Xi,

isomorphic outside of a small set V ⊂ X̃, such that the following holds.

(8.4.1) The varieties Xj are smooth, projective with κ(Xj) = 0 for
all j.

(8.4.2) If pj denotes the composition of g with jth projection
ΠXi → Xj, then p∗j (TYj ) = Ej over X \ V for all j.

Remark 8.5. Once it is known that the leaves of Ej are algebraic,
one easily obtains rational maps X ��� Yj to smooth projective varieties
such that Ej = TX/Yj

generically. The main problem is now to show
that the equality Ej = TX/Yj

holds everywhere, and that κ(Yj) = 0.

A solution to Problem 8.4 is not the yet desired final outcome of
our decomposition strategy for X: since KX is (numerically) trivial
one clearly aims for a decomposition into varieties with trivial canonical
class. Assuming that the minimal model program works for varieties of
Kodaira dimension zero, each Xj may be replaced by a minimal model
X ′

j . As a consequence we would obtain a birational map g′ : X ���
ΠX ′

i. If the singularities of X ′ are not only canonical but terminal,
it follows from [Kaw08] that g′ is isomorphic in codimension one and
decomposes into a finite sequence of flops. One might hope that each
terminal variety with numerically trivial canonical class decomposes into
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terminal varieties with trivial canonical class and strongly stable tangent
bundle, after performing a finite cover, étale in codimension one, and
after performing a finite number of flops.

8.B. Classifying the strongly stable pieces: Calabi-Yau
and irreducible holomorphic-symplectic varieties

We start with after a short discussion of the notion of strong stability
in Section 8.B.1, showing by way of example that varieties with strongly
stable tangent sheaves are the “right” objects when building a structure
theory for spaces of Kodaira dimension zero. The remainder of the
present Section 8.B discusses these spaces in detail.

Sections 8.B.2 and 8.B.3 relate stability properties of the tangent
bundle to non-degeneracy of differential forms, and discuss implications
for the exterior algebra of reflexive forms. We apply these results in the
concluding Section 8.B.4 to show that singular varieties with strongly
stable tangent sheaf are in a very strong sense natural analogues of
Calabi-Yau and irreducible holomorphic-symplectic manifolds, at least
in dimension up to five. There is ample evidence to conjecture that this
description holds in general, for strongly stable varieties of arbitrary
dimension.

8.B.1. Strong stability versus stability At first sight, it seems tempt-
ing to consider varieties with stable tangent bundle as the building blocks
of varieties with semistable tangent sheaf, such as varieties with trivial
canonical bundle. However, the following example shows that strong
stability is indeed the correct notion in our setup.

Example 8.6 (A variety with stable, but not strongly stable tangent

sheaf). Let Z be a projective K3-surface, let X̃ := Z×Z with projections

p1, p2 : X̃ → Z, and let φ ∈ AutO(X̃) be the automorphism which

interchanges the two factors. The quotient X := X̃/〈φ〉 = Sym2(Z) is
then a projective holomorphic-symplectic variety with trivial canonical

bundle and rational Gorenstein singularities. The quotient map π : X̃ →
X is finite and étale in codimension one. Let h be any ample polarisation
on X. The tangent sheaf TX of X is obviously not strongly stable.

However, we claim that TX is h-stable. Indeed, suppose that there
exists a non-trivial h-stable subsheaf 0 � S � TX with slope zero that

destabilises TX . Then, the reflexive pull-back S̃ := π[∗](S ) is π∗(h)-
polystable, see [HL97, Lem. 3.2.3], and injects into T

X̃
= p∗1(TZ) ⊕

p∗2(TZ). Since neither of the two sheaves p∗jTZ is stable under the action

of φ, clearly S̃ is not one of these. More is true: looking at the maps
to the two summands of T

X̃
and using that morphisms between stable

sheaves with the same slope are either trivial or isomorphic, we see that
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S has to be stable of rank two, and isomorphic to both p∗1TZ and p∗2TZ .
This is absurd, as restriction to p1-fibers shows that the sheaves p∗1TZ

and p∗2TZ are in fact not isomorphic.

8.B.2. Non-degeneracy of differential forms If X is a canonical va-
riety with numerically trivial canonical class, stability of the tangent
bundle has strong implications for the geometry of differential forms X.
This section is concerned with degeneracy properties. Conjectural con-
sequences for the structure of the exterior algebra of forms are discussed
in the subsequent Section 8.B.3.

Non-degeneracy of differential forms will be measured using the fol-
lowing definition.

Definition 8.7 (Contraction of a reflexive form, degeneracy sub-
sheaf). Let X be a normal complex variety, let 0 < q ≤ dimX be

any number and σ ∈ H0
(
X, Ω

[q]
X

)
any reflexive form. The contraction

map of σ is the unique sheaf morphism

iσ : TX → Ω
[q−1]
X

whose restriction to Xreg is given by �u �→ σ(�u, ·). Let Sσ := ker(iσ)
be the kernel of iσ. We call Sσ ⊆ TX the degeneracy subsheaf of the
reflexive form σ. If Sσ = 0, we say that σ is generically non-degenerate.

The main result of the present section asserts that in our setup,
forms never degenerate. This can be seen as first evidence for the con-
jectural classification of the stable pieces into “Calabi-Yau” and “irre-
ducible holomorphic-symplectic” which we discuss later in Section 8.B.4
below.

Proposition 8.8 (Non-degeneracy of forms on canonical varieties
with stable TX). Let X be a normal n-dimensional projective variety
X having at worst canonical singularities, n > 1. Assume that the
canonical divisor KX is numerically trivial, and that the tangent sheaf
TX is stable with respect to some ample polarisation. If σ is any non-
zero reflexive form on X, then σ is generically non-degenerate, in the
sense of Definition 8.7.

Proof. We argue by contradiction and assume that there exists a
reflexive q-form σ whose degeneracy subsheaf does not vanish, Sσ �= 0.
Consider the exact sequence

(8.8.1) 0 → Sσ → TX
i(σ)−−→ Image i(σ)︸ ︷︷ ︸

=:E ⊆ Ω
[q−1]
X

→ 0.
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Recalling from Proposition 5.7 that TX is stable with respect to any
ample polarisation, we choose an ample Cartier divisor H on X, a suf-
ficiently large number m, and let (Dj)1≤j≤n−1 ∈ |mH| be general ele-
ments. Consider the corresponding general complete intersection curve
C := D1 ∩ · · · ∩Dn−1 � X, which avoids the singular locus of X.

Since KX is torsion, the Kodaira-dimension of X is zero, κ(X) = 0.
As X has only canonical singularities, this implies that X is not cov-
ered by rational curves. Miyaoka’s Generic Semipositivity Theorem 5.1

therefore asserts that the vector bundle TX |C ∼= (
Ω

[n−1]
X ⊗ ω∗

X

)∣∣
C

is
nef. This has two consequences in our setup. On the one hand, since
E is a quotient of TX , it follows that E |C and detE |C are nef. On the

other hand, since E ⊆ Ω
[q−1]
X by definition, its dual E ∗|C is a quotient

of ∧q−1TX |C , and it follows that E ∗|C and detE ∗|C are likewise nef.
Consequently, we obtain detE |C ≡ 0. The exact Sequence (8.8.1) then
implies that Sσ destabilises TX . This contradicts the assumed stability
of TX , and finishes the proof of Proposition 8.8. Q.E.D.

Corollary 8.9 (Reflexive two-forms on canonical varieties with sta-

ble TX , I). In the setup of Proposition 8.8, h0
(
X, Ω

[2]
X

) ≤ 1.

Proof. We argue by contradiction and assume that there are two

linearly independent forms σ1, σ2 ∈ H0
(
X̃, Ω

[2]

X̃

)
. Since both forms are

non-degenerate by Proposition 8.8, they induce linearly independent iso-

morphisms φ• : T
X̃

→ Ω
[1]

X̃
. The composition φ−1

1 ◦ φ2 is thus a non-

trivial automorphism of T
X̃
. We obtain that the stable sheaf T

X̃
is not

simple, contradicting [HL97, Cor. 1.2.8] and thereby finishing the proof
of Corollary 8.9. Q.E.D.

Corollary 8.10 (Reflexive two-forms on canonical varieties with
stable TX , II). In the setup of Proposition 8.8, if there exists a non-

trivial reflexive two-form σ ∈ H0
(
X, Ω

[2]
X

)
, then σ is a complex-

symplectic form on the smooth part of X. In particular, dimX is even,
ωX is trivial, and X has only rational Gorenstein singularities.

Proof. Proposition 8.8 implies that the non-degeneracy subsheaf
Sσ vanishes. For general points x ∈ Xreg, this implies that σ|x is a
non-degenerate, and hence symplectic, form on the vector space TX |x.
This already shows that the dimension of X is even, say dimX = 2k. If
τ ∈ H0

(
X, ωX

)
is the section induced by ∧kσ, then τ does not vanish

at x.
To prove that σ is a complex-symplectic form on the smooth part

of X, we need to show that non-degeneracy holds at arbitrary points of
Xreg. If not, there exists a point y ∈ Xreg such that σ|y is a degenerate
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2-form on the vector space TX |y. The form τ will therefore vanish at y,
showing that KX can be represented by a non-trivial, effective Q-Cartier
divisor, contradicting the assumption that KX is numerically trivial.

The remaining assertions of Corollary 8.10 follow immedi-
ately. Q.E.D.

8.B.3. Exterior algebras of differential forms on the strongly sta-
ble pieces The algebra of differential forms on irreducible holomorphic-
symplectic and Calabi-Yau manifolds has a rather simple structure
cf. [Bea83, Props. 1 and 4]. In order to characterise the strongly stable
pieces in the singular case one would need a similar description which
we formulate as the following problem.

Problem 8.11 (Forms on varieties with strongly stable tangent
bundle). Let X be a normal projective variety of dimension n > 1 with
ωX

∼= OX , having at worst canonical singularities. Assume that the
tangent sheaf TX is strongly stable. Then show that the following holds.

(8.11.1) For all odd numbers q �= n, we have H0
(
X̃, Ω

[q]

X̃

)
= 0 for

all finite covers f : X̃ → X, étale in codimension one.
(8.11.2) If there exists a finite cover g : X ′ → X, étale in codi-

mension one, and an even number 0 < q < n such that

H0
(
X ′, Ω[q]

X′
) �= 0, then there exists a reflexive 2-form

σ′ ∈ H0
(
X ′,Ω[2]

X′
)
, symplectic on the smooth locus X ′

reg,

such that for any finite cover f : X̃ → X ′, étale in codi-
mension one, the exterior algebra of global reflexive forms

on X̃ is generated by f∗(σ′). In other words,⊕
p

H0
(
X̃,Ω

[p]

X̃

)
= C

[
f∗(σ)

]
.

Remark 8.12. Notice that the assumptions on the strong stability
of TX and on the dimension of X automatically imply q̃(X) = 0.

As we will discuss in more detail in the subsequent Section 8.B.4, a
positive solution to Problem 8.11 leads to a characterisation of canonical
varieties with trivial canonical class and strongly stable tangent bundle
as singular analogues of Calabi-Yau or irreducible holomorphic symplec-
tic manifolds. There are a number of cases where Problem 8.11 can be
solved. We conclude Section 8.B.3 with two propositions that provide
evidence by discussing the case where X is smooth, or of dimension ≤ 5,
respectively.

Proposition 8.13. The claims of Problem 8.11 hold if X is smooth.
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Proof. Note that on a smooth variety X the sheaves Ωp
X and Ω

[p]
X

coincide and that any finite cover of X that is étale in codimension one
is actually étale by purity of the branch locus.

Let now X be a smooth projective variety of dimension n with
ωX

∼= OX . Assume that the tangent bundle TX is strongly stable.
As noticed in Remark 8.12, this implies that q̃(X) = 0. Consequently,

the fundamental group of X is finite by [Bea83, Thm. 2(2)]. Let X̂ → X
be the universal cover. Since TX is strongly stable, T

X̂
is stable with

respect to any polarisation, and X̂ is hence irreducible in the sense of
the Beauville-Bogomolov decomposition Theorem 1.1. As q̃(X) = 0, the

manifold X̂ is therefore either Calabi-Yau or irreducible holomorphic-
symplectic.

In order to show (8.11.1), pulling back forms from any étale cover

X̃ → X to the universal cover X̂ if necessary, it suffices to note that both
in the Calabi–Yau and in the irreducible holomorphic-symplectic case,

X̂ does not support differential forms of odd degree p < n by [Bea83,
Props. 1 and 3].

To show (8.11.2), let X ′ → X be any étale cover, and assume that

there exists a non-vanishing form such that that σ′ ∈ H0
(
X ′, Ω[q]

X′
)

for some even number 0 < q < n. Pulling back σ′ to the universal

cover X̂, we see that X̂ cannot be Calabi–Yau and is therefore irre-
ducible holomorphic-symplectic, say with symplectic form σ̂. Conse-
quently, [Bea83, Prop. 3] implies that the algebra of differential forms

on X̂ is generated by σ̂. Hence, in order to establish the claim it there-

fore suffices to show that X̂ is biholomorphic to X and therefore also to
X ′. In other words, we need to show thatX is already simply-connected.
This is done in Lemma 8.14 below. Q.E.D.

We are grateful to Keiji Oguiso for pointing us towards [OS11] and
for explaining the following observation to us.

Lemma 8.14. Let X be a projective manifold whose universal cover
is an irreducible holomorphic-symplectic manifold. If the canonical bun-
dle of X is trivial, ωX

∼= OX , then X is simply-connected, and therefore
itself irreducible holomorphic-symplectic.

Proof. The assumptions on X imply that X is an Enriques man-
ifold in the sense of Oguiso and Schröer [OS11], see also [BNWS11].
Since the canonical bundle of X is trivial, and since the universal cover
of X is irreducible holomorphic-symplectic, the fundamental group of X
is finite, cf. [Bea83, Thm. 2(2)]. Let d denote the degree of the universal

covering map X̂ → X, and set dimX = dim X̂ = n = 2k. It then follows
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from [OS11, Prop. 2.4] that d | (k+1). Moreover, since X is assumed to
have trivial canonical bundle, [OS11, Prop. 2.6] implies that additionally
d | k. Consequently, we have d = 1, which proves the claim. Q.E.D.

Proposition 8.15. The claims of Problem 8.11 hold if dimX ≤ 5.

Proof. Let X be a projective variety of dimension greater than one,
having at worst canonical singularities. Assume that X has a trivial
canonical bundle, ωX

∼= OX , and a strongly stable tangent sheaf TX .
Again we have q̃(X) = 0, since TX is strongly stable. Fix a finite cover

X̃ → X, étale in codimension one.
If dimX = 3, then Corollary 6.11 immediately implies that

h0
(
X̃, Ω

[1]

X̃

)
= h0

(
X̃, Ω

[2]

X̃

)
= 0. Conditions (8.11.1) and (8.11.2) of

Problem 8.11 are therefore satisfied.
Now assume that dimX = 4. In this setting, Corollary 6.11 gives

that h0
(
X̃, Ω

[1]

X̃

)
= h0

(
X̃, Ω

[3]

X̃

)
= 0. The claims of Problem 8.11 thus

follow from Corollary 8.10 and from the fact that h0
(
X̃, Ω

[2]

X̃

) ≤ 1, as

shown in Corollary 8.9.
It remains to consider the case where dimX = 5, where Corol-

lary 6.11 asserts that h0
(
X̃, Ω

[1]

X̃

)
= h0

(
X̃, Ω

[4]

X̃

)
= 0. The claims of

Problem 8.11 will follow once we show that h0
(
X̃, Ω

[2]

X̃

)
and h0

(
X̃, Ω

[3]

X̃

)
vanish as well. For that, recall from item (6.10.2) of Corollary 6.10

that there exists a non-trivial 3-form on X̃ if and only if there exists

a non-trivial reflexive 2-form on X̃. However, by Corollary 8.10 any
non-trivial 2-form would be non-degenerate, forcing dimX to be even,
a contradiction. Q.E.D.

8.B.4. Calabi-Yau and holomorphic-symplectic varieties The follow-
ing definition is motivated by the description of the exterior algebra
of Calabi-Yau manifolds and irreducible holomorphic-symplectic mani-
folds, [Bea83, Props. 1 and 4], and by the discussion of Problem 8.11 in
the previous section.

Definition 8.16 (Calabi-Yau and symplectic varieties in the singular
case). Let X be a normal projective variety with ωX

∼= OX , having at
worst canonical singularities.

(8.16.1) We call X Calabi-Yau if H0
(
X̃, Ω

[q]
X

)
= 0 for all numbers

0 < q < dimX and all finite covers X̃ → X, étale in
codimension one.

(8.16.2) We call X irreducible holomorphic-symplectic if there exists

a reflexive 2-form σ ∈ H0
(
X,Ω

[2]
X

)
such that σ is every-

where non-degenerate on Xreg, and such that for all finite
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covers f : X̃ → X, étale in codimension one, the exterior
algebra of global reflexive forms is generated by f∗(σ).

Remark 8.17 (Augmented irregularity of Calabi-Yau and symplectic
varieties). If X is Calabi-Yau or irreducible holomorphic-symplectic in
the sense of Definition 8.16, it follows immediately that the augmented
irregularity of X vanishes, q̃(X) = 0.

Remark 8.18 (Definition (8.16.1) for “Calabi-Yau” in the smooth
case). By [Bea83, Sect. 3, Prop. 2] the conditions spelled out in (8.16.1)
are in the smooth case equivalent to the existence of a Kähler metric
with holonomy SU(m). If X is smooth and Calabi-Yau in the sense
of Definition 8.16, then X is not necessarily simply-connected, but may
have finite fundamental group. If we assume additionally that dimX is
even, then a simple computation with holomorphic Euler characteristics
shows that X is in fact simply-connected, cf. [Bea83, Prop. 2 and Rem.].

Remark 8.19 (Definition (8.16.2) for “irreducible symplectic” in the
smooth case). If X is smooth and irreducible holomorphic-symplectic
in the sense of Definition 8.16, then X is simply-connected. In fact,
even without the condition on the algebra of differential forms on étale
covers, if X is a holomorphic-symplectic manifold of complex dimension
2n such that

Hk,0(X) ∼=
{
C if k is even

0 if k is odd,

then X is simply-connected, that is, X is an irreducible holomorphic-
symplectic manifold, see [HNW11, Prop. A.1].

Assuming Problem 8.11 can be solved, the following two propositions
provide a classification of the strongly stable pieces in the conjectural
version of the Beauville-Bogomolov decomposition for the singular case.

Proposition 8.20 (Characterisation of strongly stable pieces, I).
Let X be Calabi-Yau or irreducible holomorphic-symplectic in the sense
of Definition 8.16. Then TX is strongly stable in the sense of Defini-
tion 7.2.

Proof. Let X be Calabi-Yau or irreducible symplectic. We argue

by contradiction and assume that there exists a finite cover g : X̃ → X,

étale in codimension one, and ample Cartier divisors H̃1, . . . H̃n−1 on X̃

such that the tangent sheaf T
X̃

is not stable with respect to the H̃i. In
this setting, Theorem 7.1 asserts that there exists a further finite cover

h : X̂ → X̃ and a proper decomposition

(8.20.1) T
X̂

∼= E ⊕ F .
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with det E ∼= O
X̂
. Setting r := rank E , the splitting (8.20.1) immedi-

ately gives an embedding O
X̂

∼= det E ∗ ↪→ Ω
[r]

X̂
, and an associated form

τ ∈ H0
(
X, Ω

[r]

X̂

)
. Since 0 < r < dimX, it follows that X cannot be

Calabi-Yau.
Since F is contained in the degeneracy subsheaf Sτ , as introduced

in Definition 8.7, it is clear that τ cannot be a wedge-power of the pull-
back of any symplectic form on X. This rules out that X is irreducible
holomorphic-symplectic in the sense of Definition 8.16. We obtain a
contradiction, which finishes the proof of Proposition 8.20. Q.E.D.

A positive solution to Problem 8.11 would immediately give a partial
converse to Proposition 8.20.

Proposition 8.21 (Characterisation of strongly stable pieces, II).
Let X be a normal projective variety with ωX = OX having at worst
canonical singularities. Assume that TX is strongly stable. If the asser-
tions of Problem 8.11 hold, then either

(8.21.1) the semistable sheaf ∧[2]TX is strongly stable, and X is
Calabi-Yau, or

(8.21.2) there exists a finite cover X̃ → X, étale in codimension

one, such that the sheaf ∧[2]T
X̃

is not H̃-stable for some

polarisation H̃ on X̃, and X̃ is irreducible holomorphic-
symplectic. Q.E.D.

Remark 8.22. In the second case of the previous proposition one
would of course rather like X itself to be irreducible holomorphic-
symplectic. This is in fact true if X is additionally assumed to be

smooth: If X is not Calabi–Yau, then the universal cover X̃ of X is irre-
ducible holomorphic-symplectic. Since additionally the canonical bundle
ωX is assumed to be trivial, Lemma 8.14 implies that X itself is irre-
ducible holomorphic-symplectic.

8.C. Fundamental groups of varieties with trivial canoni-
cal class

A Kähler manifold X with trivial canonical class and vanishing
augmented irregularity q̃(X) has finite fundamental group, see [Bea83,
Thm. 1]. We believe that the same should hold for projective varieties,
in our singular setting. We show that this is true, at least under the
assumption that χ(X,OX) �= 0.

Proposition 8.23 (Fundamental groups of canonical varieties with
KX ≡ 0, I). Let X be a normal projective variety with at worst canonical
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singularities. If KX is torsion and if χ(X,OX) �= 0, then π1(X) is finite,
of cardinality

|π1(X)| ≤ 2n−1

|χ(X,OX)| .

Remark 8.24. If X is smooth and KX is torsion, then then classical
Beauville-Bogomolov Decomposition Theorem 1.1 together with Propo-
sition 8.23 shows that χ(X,OX) �= 0 implies q̃(X) = 0.

Proof of Proposition 8.23. Set n := dimX. Let π : X̃ → X be a
strong resolution of singularities. Recalling from [KM98, Thm. 5.22] that

X has rational singularities, we obtain that χ(X̃,O
X̃
) = χ(X,OX) �= 0.

Consider the invariant

κ+
(
X̃
)
:= max

{
κ
(
detF

) ∣∣F ⊆ Ωp

X̃
a coherent subsheaf, for some p

}
.

We are going to show that κ+
(
X̃
)
= 0. Using the assumption that

χ(X̃,O
X̃
) �= 0, Campana has then shown in [Cam95, Cor. 5.3] that

π1(X̃) is finite, of cardinality at most 2n−1 · |χ(X̃,O
X̃
)|−1. Since the

natural map π1

(
X̃
) → π1(X) is isomorphic by [Tak03, Thm. 1.1], this

implies that π1(X) is likewise finite of the same cardinality.
So let 0 ≤ p ≤ n be any number and let F ⊆ Ωp

X̃
be a coherent

subsheaf. As a subsheaf of a torsion-free sheaf, F is itself torsion-free,
and therefore locally free in codimension one. Next, let C ⊂ X be a
general complete intersection curve. Recall that the strong resolution

map π is isomorphic along C, and denote the preimage curve by C̃ :=
π−1(C). The restricted sheaves Ωp

X̃

∣∣
C̃

and F |C̃ are then both locally

free.
Since KX is torsion, the Kodaira-dimension of X is zero, κ(X) = 0.

AsX has only canonical singularities, this shows thatX is not covered by
rational curves. Miyaoka’s Generic Semipositivity Theorem 5.1 therefore
implies that Ωq

X̃
|C̃ is nef for all q. Better still, we have degΩn

X̃
|C̃ = 0,

so that(
Ωp

X̃
|C̃
)∗ ∼= ∧pTX |C̃ ∼= Hom

(
Ωn

X̃
|C̃ , Ωn−p

X̃
|C̃
) ∼= (

Ωn
X̃
|C̃
)∗ ⊗ Ωn−p

X̃
|C̃

is likewise as a nef vector bundle on the curve C̃. Its quotient F ∗|C̃ is

then nef as well. In summary, we obtain that c1(F ) · C̃ ≤ 0. Since the

curves C̃ are moving, this implies κ(detF ) ≤ 0, and therefore κ+
(
X̃
) ≤

0. Since κ
(
X̃
)
= 0, we obtain κ+

(
X̃
)
= 0, as claimed. This finishes the

proof of Proposition 8.23. Q.E.D.
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Corollary 8.25 (Fundamental groups of canonical varieties with
KX ≡ 0, II). Let X be a normal projective variety with at worst canoni-
cal singularities. Assume that dimX ≤ 4, and that the canonical divisor
KX is numerically trivial. Then π1(X) is almost Abelian, that is, π1(X)
contains an Abelian subgroup of finite index.

Proof. Recall from [Kol95, 4.17.3] that the statement of Corol-
lary 8.25 is well-known if dimX ≤ 3. We will therefore assume for
the remainder of the proof that X is of dimension four.

Let f : X̃ → X be the index-one cover associated with KX . As

we have noted before, f is étale in codimension one, X̃ has canonical
singularities, and ω

X̃
= O

X̃
, cf. [KM98, 5.19 and 5.20]. The image of

the natural map π1(X̃) → π1(X) has finite index in π1(X), cf. [Kol95,

Prop. 2.10(2)] and [Cam91, Prop. 1.3]. Replacing X by X̃, if necessary,
we may therefore assume without loss of generality that ωX is trivial.
Passing to a further cover, Corollary 3.6 even allows to assume that
X is of the form X = A × Z, where A is an Abelian variety, and Y
is normal projective variety with at worst canonical singularities, with
trivial canonical class and vanishing augmented irregularity, ωZ

∼= OZ

and q̃(Z) = 0.
If dimZ ≤ 3, then [Kol95, 4.17.3] asserts that π1(Z) is almost Abel-

ian. Since π1(A) is Abelian, this finishes the proof.
It remains to consider that case where dimZ = 4, that is, where

X = Z and q̃(Z) = 0. In this case, we finish proof by showing that
the fundamental group of X is finite. Recall from Corollary 6.11 that
X does not carry any reflexive 1-form or 3-forms. Using Proposition 6.9
to relate Hp

(
X, OX

)
with the space of reflexive p-forms we see that

χ(X,OX) > 0, and we conclude by Proposition 8.23 that π1(X) is finite,
thus finishing the proof of Corollary 8.25. Q.E.D.

Remark 8.26 (Fundamental groups of smooth 4-folds with κ = 0).
If X is a smooth projective 4-fold with κ(X) = 0 admitting a good
minimal modelX ′, then π1(X) = π1(X

′) by [Tak03, Thm. 1.1] or [Kol93,
Thm. 7.8.1]. Consequently, π1(X) is almost Abelian.

Assuming that the claims of Problem 8.11 hold, the following corol-
lary complements the results obtained in Section 6, and in particular
the results of Corollary 6.10.

Corollary 8.27 (Fundamental groups of even-dim. X with TX

strongly stable). Let X be a normal projective variety with ωX
∼= OX

having at worst canonical singularities. Suppose furthermore that dimX
is even and that TX is strongly stable. If Problem 8.11 has a positive
solution, then χ(X,OX) > 0 and π1(X) is finite. Q.E.D.
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