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On the computation of algebraic local cohomology 
classes associated with semi-quasihomogeneous 

singularities 

Katsusuke N abeshima and Shinichi Tajima 

Abstract. 

In this paper, a new effective algorithm for computing algebraic 
local cohomology classes associated with semi-quasihomogeneous sin­
gularities, is presented. The key ingredients of the proposed algorithm 
are weighted-degrees and Poincare polynomials for algebraic local co­
homology. An extension of the algorithm to parametric cases is also 
discussed. 

§1. Introduction 

A new algorithm for computing algebraic local cohomology associ­
ated with semi-quasihomogeneous singularities is proposed. Local co­
homology is key ingredients in algebraic geometry and commutative al­
gebra, and hence provides fundamental tools for applications in several 
fields both inside and outside mathematics [2], [7], [10]. For isolated 
singularity cases, the concept of algebraic local cohomology is also use­
ful to analyze properties of singularities [4], [17], [25]. Therefore, it 
is meaningful to provide an efficient algorithm for computing algebraic 
local cohomology classes. In the previous works [18], [21], the com­
putational methods for computing algebraic local cohomology classes 
associated with isolated singularities, were introduced. As a byproduct, 
a new efficient method to compute standard bases of zero-dimensional 
ideals was constructed [21]. These algorithms have also been used to 
analyze holonomic 'Dx-modules attached to hypersurface isolate singu­
larities [13], [19], [20]. 
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In this paper, we consider a computation method for the cases of 
semi-quasihomogeneous singularities. There are close relations between 
properties of semi-quasihomogeneous singularities and their quasihomo­
geneous parts [1], [16], [23]. Some of properties of semi-quasihomogeneous 
singularities are determined by only their quasihomogeneous parts [5], [26]. 
However, a lot of analytic properties of semi-quasihomogeneous singular­
ities are not decided by only their quasihomogeneous parts [3], [6], [8], [9]. 
In order to analyze such subtle phenomena, it is desirable to construct 
an algorithm of computing algebraic local cohomology classes with re­
spect to a monomial order compatible with a weight filtration. For 
semi-quasihomogeneous singularities, the list of weighted-degrees of a 
basis of algebraic local cohomology classes, is completely determined by 
a Poincare polynomial associated with a weight vector. By exploiting 
this result, we are able to construct an efficient and simple algorithm 
for computing algebraic local cohomology classes. In 1996, Traverso [22] 
gave, among other results, an algorithm of computing standard bases 
that utilize Poincare polynomials to detect unnecessary computation of 
S-polynomials. In contrast, the proposed algorithm that is based on the 
Grothendieck local duality theorem, utilize Poincare polynomial more 
directly to construct algebraic local cohomology classes. 

The proposed algorithm has been implemented in a computer al­
gebra system. Computational experiments in this paper suggest that 
the proposed algorithm is superior in practice in comparison to other 
existing algorithm. 

The paper organized as follows. Section 2 briefly reviews alge­
braic local cohomology, and gives notations and definitions that used 
in this paper. Section 3 is the discussion of the new algorithm for semi­
quasihomogeneous singularities. Section 4 illustrates the possibility to 
generalize the new algorithm to the parametric cases. 

§2. Preliminaries 

In this section, first we briefly review a Cech cohomology represen­
tation of algebraic local cohomology classes. We introduce "polynomial 
representation" to treat, on computer, Cech cohomology classes suit­
ably. Second, we introduce notions of weighted degrees and Poincare 
polynomials, which will be exploited several times in this paper. 

2.1. Algebraic local cohomology 

We use the notation x as the abbreviation of n variables x 1 , ... , Xn. 

The set of natural numbers N includes zero. K is the field of rational 
numbers Q or the field of complex numbers C. 
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Let H[01 (K[x]) denote the set of algebraic local cohomology classes, 
defined by 

H[01 (K[x]) := lim ExtK[x](K[x]/(x1, x2, .. , Xn)k, K[x]) 
k-too 

where (x1, x2, ... , Xn) is the maximal ideal generated by X1, X2, ... , Xn. 

Let X be a neighbourhood of the origin 0 of en. Consider the 
pair (X, X - 0) and its relative Cech covering. Then, any section of 
H[01 (K[x]) can be represented as an element of relative Cech cohomol-

ogy. We use the notation I: C.>. [x)\1 ] for representing algebraic local 
cohomology classes in H[01(K[x]) where C>. E K, x>-+l = x~1 +1x;2+1 ... 
x~n+l with .A = (.A1, .A2, ... , .An) E Nn. Note that the multiplication is 
defined as 

otherwise, 

where a= (a1, ... , an) E Nn and .A+l-a = (.A1 +1-al, ... , .An+1-an)· 
We represent an algebraic local cohomology class I: C.>. [xl+1 ] as an 

variables polynomial I: C>.e to manipulate algebraic local cohomology 
classes efficiently (on computer), where~ = (6,6, ... ,~n)· We call 
this representation "polynomial representation". For example, let 

'lj; = [ x3~4 J + [ x 25Y 3 J be an algebraic local cohomology class where x, y 

are variables. Then, the polynomial representation of 'lj;, is 4~2 ry3 + 5~ry2 
where variables (~, ry) are corresponding to variables (x, y). That is, we 
have the following table for n variables: 

Cech representation polynomial representation 

where C>. E K. The multiplication for polynomial representation is de-

fined as follows: { >. 
~ -a Ai 2: ai, i = 1, . .. , n, 

x<> * ~>. = 
0 otherwise, 

where a= (a1, ... , an) E Nn, .A= (.A1, ... , An) E Nn, and .A- a= 
(.A1- a1, ... , An- an). (We use " *" for polynomial representation.) 

After here, we adapt polynomial representation to repre­
sent an algebraic local cohomology class. 
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2.2. Weighted-degrees and Poincare polynomials 

Let us fix a weight vector w = ( w1, w2 , •.. , Wn) in Nn for a fixed 
coordinate system x = (x1, ... , Xn)· 

Definition 2.1 ([1]). (1) We define a weighted degree of 
the monomial X a = xr1 X~2 • • • X~n, with respect to W by 
[xa[w := L~=l WiCti· 

(2) A nonzero polynomial f E K[x] is quasihomogeneous of 
type ( d; w) if all monomials off have the same weighted degree 

d with respect tow, i.e., f = L CaXa where Ca E K. Also, 
lx"lw=d 

we define a weighted degree of f by 

degw(f) := max{[xa[w: xa is a monomial of!}. 

(3) Let f E K[x] be a polynomial. We define ordw(f) = min{[xa[w 
: xa a monomial of !} ( ordw ( 0) : = -1). The polynomial f is 
called semi-quasihomogeneous of type ( d; w) if f is of the 
form f = fa + g where fa is a quasihomogeneous polynomials 
of type ( d; w) with an isolated singularity at the origin, f = fa 
or ordw(f- fa) > d. 

In the next definition, we recall a Poincare polynomial for the Jacobi 
ideal of qusihomogeneous function fa, which plays a key role in our 
algorithm. 

Definition 2.2 ([1],[15]). The Poincare polynomial of type (d; w) 
is defined by 

The Poincare polynomial of type (d; w) is a polynomial over N. We 
give an example of a Poincare polynomial. A polynomial f = x3 y+xy4 is 
a quasihomogeneous polynomial of type (11; (3, 2) ). Then, the Poincare 
polynomial of type (11; (3, 2)) is 

p(11;(3,2)) (t) 
tll-3 - 1 tll-2 - 1 

t 3 - 1 t 2 - 1 

1 + t 2 + t 3 + t 4 + t 5 + 2t6 + t 7 + t8 + t9 + t 10 + t 12 . 

Throughout this paper, we use the following monomial order to 
compute algebraic local cohomology classes. 
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Definition 2.3 (a weighted monomial order). For two multi-indices 
.X= (.X1, .X2, ... , An) and A'= (.X~, .X~, ... , .X~) in Nn, we denote 

(\' -< (\ or .X' -< .X 

if 1(\'lw < 1e1w, or if jC·'Iw = 1e1w and there exists j E N so that 
.X~ = Ai for i < j and .Xj < Aj. 

For a given algebraic local cohomology class h of the form (in poly­
nomial representation), 

we call e the head monomial and e', .X' -< .X the lower monomials. 
We denote the head monomial of a cohomology class h by hm(h). For a 
given algebraic local cohomology class of the form 

L C>.(\+ 
lelw=a 1e' lw<a 

we call L C>.(\ the head part and L cA'(\' the lower part. 

§3. Computation of algebraic local cohomology 

Let f := fo + g be a semi-quasihomogeneous polynomial of type 
( d; w) where fo is a quasihomogeneous polynomial of type ( d; w) and 
defines an isolated singularity at the origin. 

We define a vector space H f to be the set of algebraic local cohomol­
ogy classes, in polynomial representation, in K[~] that are annihilated 
by Jacobi ideal (jt(x), ... , /!;;(x)), 

In this section we describe an algorithm for computing a basis of the 
vector space H f. 

The new algorithm consists of the following two parts. 

(1) Compute a basis Q of Hfo by using a Poincare polynomial. 
(2) Compute a basis of Ht by using the result Q. 

First, we consider how to obtain a basis Q of a vector space Hfo· In 
order to construct an algorithm for computing the basis Q, we require 
two lemmas. 
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Let us recall the following lemma which follows from the fact that 
if hE Hfa, so is Xi* hE Hfa for each i = 1,2, .. . ,n. 

Lemma 1 ([21]). Let AHa denote the set of exponents of head mono­

mials in Hfa and ACj;~ denote a subset of AHa: 

AHa = {A E Nnl::lh E Hfa such that hm(h) = e} and ACj;~ = {A' E 
AHaiA'-< A}. 
Let A= (A1, ... , An) E Nn. (C): "If A E AHa, then, for each j = 1, 2, 

... , n, (A1, A2, ... , Aj-1, Aj-1, AJ+1, ... , An) is in ACj;l, provided Aj ~ 1." 

The condition above, denoted by (C), is used in Algorithm 1 to 
select candidates of head monomials. 

£ 

Let Pc d;w) ( t) = L mi tdi be the Poincare polynomial of type ( d; w) 
i=1 

where mi E N and Q be a set in K[~]. We introduce the set Dp of 
weighted-degrees as 

£ 

Dp := u{di, di, ... , di}· 
i=1 "-v-"' 

mi elements 

For a subset Q in K[~], we define DQ to be the set of weighted-degrees 
of elements of Q: 

The vector space Hfa is the dual space of K[[x]]/ 30 , where K[[x]] 
stands for the space of formal power series with coefficients in K and 
Jo =(~fa, ... , ~fa). The duality is induced by the Grothendieck local 

UXl UXn 

residue paring K[[x]]/ .]0 x Hfa -+ K. The following lemma, given in [12], 
follows immediately from the non-degenerateness of the Grothendieck 
local residue paring. 

Lemma 2 ([12]). There exists a basis Q of Hfa which satisfies the 
following conditions 

(1) 
(2) 

Q consists of quasihomogeneous polynomials. 
DQ =Dp. 

Lemma 2 together with Lemma 1 allows us to design an efficient 
algorithm to compute a basis Q of H fa. 

As a Poincare polynomial gives us the set DQ by Lemma 2, we only 
select monomials whose weighted-degrees belong to DQ, to construct a 
basis of H fa. Namely, a number of selecting monomials becomes less 
than our previous algorithm's one [21] (non-special cases). In Algorithm 
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1, LL means the set of these selected monomials. Since all monomial 
elements of the basis are found first in Algorithm 1, every element in 
LL is not a monomial element of the basis. Therefore, we must find an 
element whose form is 2::: c.\e. As the head monomial is not known, we 
must check whether every monomial in LL is the head monomial or not. 

Now, we are ready to introduce a new algorithm for computing a 
basis of H fo . 

Theorem 3. The following algorithm outputs a basis of Hto and 
terminates. 

Algorithm 1. (a basis of Hto). -"'-------------........ 

Input: fa: a quasihomogeneous polynomial, w, --<, 
Output: Q: a basis of Hfo (in polynomial representation). 
BEGIN 
G f- {x"'l a monomial of~ for each 1 :S: i :S: n}; G' f- {~"'lx"' E G} 
Q +-Compute the monomial basis of K[~]/(G'). (*1) 
Dq f- {degw(q)lq E Q} 
Dp +-Compute a set Dp (of Lemma 2 (2)). ; D +- Dp\Dq 
WhileD oJ0 Do 

N +-All minimal elements of D; D +- D\N; k +-Select an element from N. 
LL f- W·l degw(e) = k 1\ e ~ Q} 
L +- Select the lowest and second lowest elements in LL w.r.t. --<. 
LL +- LL \L ; j +- ~N (cardinality of N) 

while j oJ 0 do e +-Take the highest element in L w.r.t--< 
If A satisfies the condition (C) then 

u f- Set e + L C),te' where c;v is an undetermined coefficient. (*2) 
.\'EL\{~-"},.\ 1 -<.\ 

Make a system of c-'' s linear equations from the condition 
8fo * u = 8fo * u = ... = 8fo * u = 0, and solve the system. Bx1 lJX2 ax;;: 

if the solution exists then 
q +-Substitute the solution into c.x's of u. ; Q +- QU{q}; L +- L\{e} ; j +- j -1 

end-if 
end-If 
e' +-Take the lowest element in LL w.r.t. --<. ; L +- Lu{e'}; LL +- LL \{e'} 
end-while 

end-While 
return Q 
END 

(Termination) As fo defines isolated singularity at the origin, the Jacobi 
ideal (!!h_88 0 , ••• , 88fo) is zero-dimensional. Hence, DQ and Dp have finte 

Xl Xn 

elements. By this fact and Lemma 2 (2), D is a finite set. Theorefore, 
obviously, two while-loops must be terminated. This implies that this 
algorithm terminates. 
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( Corectness) At ( * 1), every element of Q is monomial whose degree is 
lower than an arbitrary element of G'. This means that for all q E Q, 
~fa * q = 0 for each i = 1, . .. , n, which yields that Q is included in a ux, 

basis of Hfa· At (*3), an each proper linear form of an algebraic local 
cohomology class, is determined. Hence, by Lemma 2, this algorithm 
outputs a basis of H fa. 

In [21] we have already intoroduced conditions of head monomials 
and lower monomials. In order to keep the presentation simple, we 
have deliberately avoided tricks and optimizations such as applying the 
conditions at ( *2). All the tricks suggested in [21] can be used here as 
well. In fact, our implementations fully incorporate these optimizations. 

We give an example to illustrate Algorithm 1. 

Example 4. A polynomial f = x 3 y + x2y3 + y7 + 2y8 E K[x, y] 
is semi-quasihomogeneous polynomial of type (7; (2, 1)). Set fo = x 3y + 
x 2y3 + y7 which is quasihomogeneous, and g = 2y8 . Consider a basis 
of H fa. The partial derivatives of fo are BJ: = 3x2 y + 2xy3 and BJJ = 
x 3 +3x2y2 + 7y6 . Then, the monomial basis of K[~, 77]/ (e7J, b73 , e, e772 , 

776 ) is given by the following ten monomials 

Q = {1,7],7]2,~2,7]3,~27],7]4,~7]2,~2,7]5} 

where variables ( ~, 77) are corresponding to variables ( x, y). These mono­
mials can be easily computed from the reduced Grabner basis of (e7J, ~773 , e, ~2 772 , 776 ). Fig. 1 means the set of weighted-degrees of Q, i.e., DQ = 
{ 0, 1, 2, 2, 3, 3, 4, 4, 4, 5}. Since the Poincare polynomial of type (7; (2, 1)) 
is 

e-2 - 1 e-l - 1 2 3 4 5 6 7 s 
p(7;(2,1))(t) = t2- 1 . t- 1 = 1+t+2t +2t +3t +2t +2t +t +t ' 

we obtain Dp = {0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8}. As D = Dp\DQ = 
{5, 6, 6, 7, 8}, we only need to consider monomials whose weighted degrees 
belong to D, for obtaining five more elements of the basis. 

The minimal element in D is 5. N = {5} and D = D\{5} = 

{6, 6, 7, 8}. In Fig. 2, • means an element in Q and a number means 
its weighted-degree which is lower than 8. We must select monomials 
whose weighted degree is 5. (We do not need to consider monomials in 
Q.) Then, LL = {~773 ,e77} and L = {~773 ,e7J}. (By Lemma 2, we 
need only quasihomogeneous polynomials as elements of the basis.) As 
~7]3 --< e7] and e7] satisfies the condition (C)' set u = e7] + C(1,3)~7]3 
and check BJ: *U = 3+2c(1,3) = 0, BJJ *U = 0. Then, we get the solution 

C(1,3) = - ~. Therefore, e7] - ~~7]3 is a member of the basis. 
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The minimal elements in Dare 6. N = {6,6} and D = D\{6,6} = 
{7, 8}. We must select monomials whose weighted degree is 6. Then, 
LL = { 776 , ~77\ e772, e} and L = { 776 , ~774 }. In this case, ~774 does not 
satisfy the condition (C). Thus, we renew the set L as { 776 , ~774 } U { e772}. 

Set u = e772 + C(1,4)~774 + C(o,6)776 and check DJ: * u = 377 + 2c(1,4)77 = 
0, DJ: * u = 3 + 7cco,6) = 0. The system of linear equations 

3 + 2c(1,4) = 0, 3 + 2cco,6) = 0 

has the solution {c(1,4) = -~, C(1,7) = -n. Hence, e772 - ~~774 - ~776 
is a member of the basis. We need one more element whose weighted de­
gree of the head monomial is 6. We also renew L as (L\ {~2 772 }) U {e}. 
As e satisfies the condition (C), set u = e + C(1,1)~774 + C(o,6)776 and 

check ~ * u = 2cc1,4)77 = 0, DJ: * u = 1 + 7cco,6) = 0. Then, we obtain 
the solution { C(1,4) = 0, C(0,6) = - ~}, and e - ~776 is a member of the 
basis. 

The minimal element in D is 7. N = {7} and D = D\{7} = 
{8}. We must select monomials whose weighted degree is 7. Then, 
LL = {777 ,~775 ,~2 773 ,e77} and L = {777 ,~775 }. As ~775 does not sat­
isfy the condition (C), we renew the set L as { 77 7, ~775 , ~2 773 }. In this 
case, e773 does not satisfy the condition (C), again. Renew the set 
L as { 77 7, ~775 , e773, e77}. Since, e77 satisfies the condition (C), set 
U = e77 + C(2,3)~2 773 + C(1,5)~775 + C(0,7)777 and check ~ * U = 3~ + 
3c(2,3)773 + 2c(2,3)~ + 2c(1,5)772 = 0, DJ: * u = 77 + 3c(2,3)77 + 7cco,7)77 = 0. 
The solution of the system of linear equations 

3 + 2c(2,3) = 0, 3c(2,3) + 2c(1,5) = 0, 1 + 3c(2,3) + 7cco,7) = 0 
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is { c(2,3) = - ~, c(1, 5) = - ~, C(o,7) = ~}. Thus, a member of the basis is 
e77- ~~2773 + ~~775 + ~777. 

The minimal element in D is 8. N = {8} and D = D\{8} = 0. 
We must select monomials whose weighted degree is 8. Then, LL = 

{ 778, ~776 , e774, e772, ~4 }. As the monomials 778, ~776 , ~2 774 do not satisfy 
the condition (C), set L = {778 ,~776 ,e774 }, u = e772 + C(2,4)~2 774 + 
c( 1 , 6)~776 + C(o,8)778 and check BJ: * u = 0, BJ: * u = 0. In this case, u is 
not a member of the basis. We renew Las {778 ,~776 ,e774 ,e772 }. Then, 
we obtain ~4 - -fg~2 773 + .:}g~2 774 - #,e776 - fg778 which is a member of 
the basis. As D = 0, the computation terminates. 

Conclusively, we obtain a basis of Hfo as follows: 
{1, 77,772, e, 773, e77, 774, ~772,e, 775, e77- ~~773,e772- ~~774- ¥776, 

e- ~776 , e77- ~~2 773 + ~~775 + ~777 , ~4 - 7~e773 + 225 e774 - 235~2 776 - i5 778}· 

Next, we consider semi-quasihomogeneous cases. The following the­
orem shows the relation between a basis of H fo and a basis of H f. 

Theorem 5 ([12] Proposition 3.2.). Let Q = {q1 ,q2 , ... ,q!L} be a 
basis of H fo which is given as an output of Algorithm 1. Then, for each 
i = 1, ... , J-l, there uniquely exists ri such that degw(qi) > degw(ri) and 
hi = Qi + ri is an element of Ht. Namely, the set { h1 , ... , h!L} is a basis 
of Ht. 

Since Algorithm 1 outputs head parts of H f, we only need to com­
pute their lower parts. By this theorem, we can construct an algorithm 
for computing a basis of H f, which is the following. 

Theorem 6. The following algorithm outputs a basis of Ht and 
terminates. 

Algorithm 2. (a basis of Hf ). 

Input: f := fo + g: a semi-quasihomogeneous polynomial of (d; w), w, -< 
Output: H: a basis of a vector space H1 . 
BEGIN 
G +- {xaj a monomial of ~~0 for each 1 :S i :S n}; G' +- {~ajxa E G} 

H +-Compute the monomiaJ basis of K[~]/(G'). (*1) 
Q +-Compute a basis of Ht0 by Algorithm 1. ; Q +- Q\H 
while Q oJ 0 do 
q +-Select the minimal polynomial in Q w.r.t. -<. ; Q +- Q\{q} 
L +- {el degw(e) < degw(q) 1\ (' ¢: {hm(h)jh E H}} (*2) 

'""' >-' 8! h +- Set u = q + L...J cv~ , check HXi * u = 0 and determine cv. ( *3) 

H+-HU{h} 
end-while 
return H 
END 

A'EL 
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(Termination) At (*1), by the same reason of Algorithm 1, His a finite 
set. As Algorithm 1 outputs a finite set, Q\H is a finite or empty set. 
Theorefore, the while-loop must be terminated. This algorithm termi­
nates. 
( Corestness) As all head parts are known by Algorithm 1, the algorithm 
determines their lower parts at ( *3). Hence, by Theorem 5, this algo­
rithm outputs a basis of H f. 

Note that we compute the set L whose elements are lower mono­
mials of q at ( *2). In order to keep the presentation simple, we have 
deliberately avoided tricks and optimizations such as applying the con­
dition of lower monomials at ( *2). All the tricks suggested in [21] can be 
used here as well. In fact, our implementations fully incorporate these 
optimizations. 

We give an example to illustrate Algorithm 2. 

Example 7. Let consider Example 4, again. A polynomial f := 

fo + g E K[x, y] is semi-quasihomogeneous of type (7; (2, 1)) where fo = 
x 3y + x 2y3 + y7 and g = 2y8 . In Example 4, we obtained a basis of a 
vector space Hfo· Here, we follow Algorithm 2 to obtain a basis of HJ. 

The partial derivatives of f are ~~ = 3x2 y + 2xy3 and U = x3 + 
3x2y2 + 7y6 + 16y7. Then, the monomial bais of K[~,'IJJ!(e'IJ,~'IJ3 ,e, 
ery2 , ry6 , ry7 ) is the same as the case of Hf0 , i.e., H = {1, '1}, ry2 ,e, ry3 ,e'IJ, 
ry4 ,~ry2 ,e,7J5 }. By Algorithm 1, we obtain a set Q which is a basis of 
Hfo· The set Q is already known in Example 4, so Q = Q\H = {e'IJ­
~~'1}3, e'l}2 _ ~~'1}4 _ ~'1}6, e _ h6, e'l}- ~e'l}3 + ~~'1}5 + ~'1}7, e'l}2 _ ~e'l}4 _ 

~~7]6 + ~ry8 }. As an each element of Q is a head part, we have to decide 
an each lower part. 

The minimal element in Q is q = e'IJ- ~~ry3 whose weighted degree is 
5. Q = Q\{ery-~~7]3 }. Next, we must select monomials whose weighted 
degree are lower than degw ( q) (except for elements in {hm( h) I h E H}). 
In this case, there is no monomial. Thus, e'IJ- ~~7J3 is a member of 
the basis and H = H u {e'IJ- ~~ry3 }. 

The minimal element in Q is q = e7J2 - ~~7]4 - ~7]6 whose weighted 
degree is 6, and Q = Q\{ery2 -~~ry4 -~ry6 }. Then, L = {el degw(e) < 
6 (\ e ~ {hm(h)lh E H}} = {~ry3 } and seth= q + C(1,3)~7J3 . Solve a 
system of linear equations which is from the condition ¥x*h = U*h = 0. 

The solution is C(1,3) = 0. Thus, e'l}2 - ~~'1}4 - ~'1]6 is a member of the 
basis and H = H u {ery2 - ~~'IJ4- ~'IJ6}. 

Next, we consider e- ~ry6 . Q = Q\{e- h 6 }. Repeat the same 
procedure. Then, we obtain e - ~'1]6 as a member of the basis and 
H = H U {e- ~ry6 }. 
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The. minimal element in Q is q = e'TJ- ~~2 ry3 + t~'f/5 + ~ry7 whose 
weighted degree is 7, and renew the set Q as Q\{q}. Then, L = {el 
degw(e) < 7 1\ e rf_ {hm(h)lh E H}} = {~ry3 ,~ry4 ,ry6 } and seth= 
q + c( 1 , 3)~'f/3 + c( 1 ,4)~'f/4 + C(o,6)ry6 . By checking the condition ~; * h = 
~~ * h = 0, we obtain the solution {c(1,3) = c(1,4) = 0, C(o,6) = -n. 
Thus, q- ~'f/6 is a member of the basis and H = H U {q- ~ry6 }. 

Finally, we consider the last element q = ~4 - 7~ e'f/3 + {5 e'f/4 -

235 ~2 ry6 - :f5 ry8 whose weighted degree is 8. Then, L = {el degw(e) < 
8 1\ e rf_ {hm(h)lh E H}} = {~ry3 ,~ry4 ,ry6 ,ery3 ,~ry5 ,ry7 } and seth= 
q + C(1,3)~'f/3 + C(1,4)~'f/4 + C(o,6)'f/6 + C(2,3)e'f/3 + C(1,5)~'TJ5 + C(0,7)'TJ7 · By 
checking the condition ~; * h = U * h = 0, we obtain the solution 

{ C(1,3) = C(1,4) = C(2,3) = C(1,5) = 0, C(0,6) = - 1li5 , C(o,7) = li5 }. Thus, 
32 7 512 6 . b 1 th b . q + 525 "1 - 3675 ry zs a mem er o e aszs. 
Conclusively, we obtain a basis of Ht as follows: 

In semi-quasihomogeneous cases, as a Poincare polynomial tells us 
candidates of head monomials and number of elements of a basis, the 
computation cost of selecting candidates of head monomials and lower 
monomials, becomes smaller than the our previous one. In this point, 
our new algorithm is more efficient than the our previous one. 

We have implemented Algorithm 1 and Algorithm 2 in the com­
puter algebra system Risa/ Asir1 version 20091015 (Kobe Distribution) 
and have executed some computation. 

Here, we give the results of benchmark tests. The Table 1 shows 
a comparison of the implemantation of Algorithm 1 with our previous 
implementation (non-special cases) [21]. That is, in Table 1, quasihomo­
heneous polynomials are computed. (x, y, z are variables.) The Table 2 
shows a comparison of the implemantation of Algorithm 2 with our pre­
vious implementation (non-special cases) [21]. In Table 2, proper semi­
quasihomoheneous polynomials are computed. (!I, ... , f 10 are from Ta­
ble 1.) 

1 Risa/ Asir is an open source general computer algebra system [14]. Kobe 
distribution is being developed by OpenXM committers. The original Risa/ Asir 
is developed at Fujitsu Labs LTD. 
http://www.math.kobe-u.ac.jp/Asir/asir.html 
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Quasihomogeneous Milnor no. Algorithm cpu time 
11 := (x4 + y6 + x2y3)2 77 Algorithm 1 0.031 

+x2y9 [21] 0.936 
i 2 := (xs + y7)2 + 3Y14 117 Algorithm 1 0.015 

[21] 1.56 
is := (y13 + x3)2 + x6 125 Algorithm 1 0.016 

[21] 1.669 
i 4 := (x4 + y6 + x2y3)3 187 Algorithm 1 0.171 

+x8y6 [21] 22.09 
is:= (x2z + yz2 + ys + y3z)2 204 Algorithm 1 3.135 

+z5 +x6y [21] 941.4 
i 6 := (x2y + z4 + ys)2 + xs 252 Algorithm 1 0.983 

+y5z4 [21] 1014.4 
h := (y4 + xz3 + x3)2 280 Algorithm 1 0.718 

+ys +z9 [21] 1151.5 
is := (x3y + y7 + x2y3)4 351 Algorithm 1 1.217 

+x14 [21] 285.1 
i 9 := (x4 + y9)4 + 3x16 525 Algorithm 1 0.577 

l21] 378.6 
iw := (x3 + xz2 + xy3 + zy3)3 800 Algorithm 1 1.619 X 104 

+xzB + xy12 [21] 1.987 X 105 

Table 1: T1mmgs 

Semi-quasihomo. Milnor no. Algorithm cpu time 
it+ 3x3ys 77 Algorithm 2 0.359 

[21] 1.263 
h + x10y5 + xy14 117 Algorithm 2 0.905 

[21] 1.607 
is- 2x3y2o 125 Algorithm 2 0.827 

[21] 1.544 
i4 + 2xlly2 187 Algorithm 2 7.94 

[21] 38.63 
is+ x3y2z2 204 Algorithm 2 143.2 

[21] 2023.6 
i6 + x2y3z3 252 Algorithm 2 356.1 

[21] 1393.8 
h+xy7 280 Algorithm 2 415.9 

[21] 1876.3 
is+ x13y3 351 Algorithm 2 93.85 

[21] 893.3 
i 9 + x1sy3 525 Algorithm 2 287.8 

[21] 1244 
iw + 4x2ylO z 800 Algorithm 2 1.003 X 105 

[21] 3.167 X 105 

Table 2: T1mmgs 
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We used a PC [OS: Windows 7 (64bit), CPU: Intel(R) Xeon(R) 
CPU X5650@ 2.67 GHz 2.66 GHz, RAM: 64GB]. The time is given in 
second. 

As is evident from Table 1, Algorithm 1 generates head parts effi­
ciently, which results the better performance of Algorithm 2 in contrast 
to our previous algorithm. 

§4. Algebraic local cohomology with parameters 

Here, we consider how to generalize Algorithm 2 to manipulate 
the parametric cases. Let fo be a quasihomogeneous polynomial type 
( d; w) with parameters and generically define an isolated singularity 
at the origin. If fo has the isolated singularity, then let us fix the form 
f := fo + g as a semi-quasihomogeneous polynomials of type ( d; w). 
(A parameter means that a parameter can take an arbitrary value from 
C and parameters are in cofficients.) In parametric cases, there is a 
possibility that fo have a non-isolated singularity for some values of pa­
rameters. In order to generalize Algorithm 2, we have to take away 
these values of parametes because Algorithm 2 assumes that fo has the 
isolated singularity. 

How do we compute these values of parameters? 
This classification is possible by computing a comprehensive Grabner 
system of the Jacobi ideal of fo [24]. There is a computer algebra tech­
nique "classification of dimensions for parametric ideals." By using this 
technique, one can detect and discard unnecessary values of parametes. 

After the classification, we follow Algorithm 2 to obtain bases of H f. 
In Algorithm 2, systems of parametric linear equations apper. There 
are also computer algebra techniques and implementations for solving 
systems of parametric linear equations. Therefore, it is possible to 
generalize Algorithm 2 to the parametric cases. The detail of the 
algorithm is described in our preprint [11]. 

Concluding this section, we give an example for a parametric case. 

Example 8. A polynomial f = x 4 + y6 + tx2y3 + ay7 is semi­
quasihomogeneous polynomial of type (12; (3, 2)) where x, y are variables 
and t, a are parameters. Set fo = x 4 + y6 + tx2y3 which is quasihomo­
geneous, and g = ay 7 . First, take away unnecessary values by using a 
comprehensive Grabner system of(~, 8J; ). Then, we obtain t = 2, -2. 
We take away the cases t = 2 and t = -2. Next, we follow Algorithm 
2 which needs techniques for slaving systems of parametric linear equa­
tions. We can obtain the following bases for Hfo. (Variables (~, 71) are 
corresponding to variables ( x, y).) 
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• Ift = 0, then a basis of Hto is 
{1,ry,ry2,ry3,ry4,~,~ry,~ry2,~2,~2ry,~2ry4,~2ry3,~ry4,~2ry2,~ry3}. 

• Ift3 - 4t =f 0, then a basis of Hto is 
{1,ry,ry2,ry3,ry4,~,~ry,~ry2,~2,~2ry,~3- f~ry3,~4ry- f~2ry4 +ry7, 
~4- h3e + ry6, ery- t~ry4, ery2- !try5}. 

By using these parametric bases, the generalized Algorithm 2 outputs the 
following. 

• Ift = 0, then a basis of Ht is 
{1,ry,ry2,ry3,ry4,~,~ry,~ry2,~2,~2ry,~2ry4,~2ry3,~ry4,~2ry2,~ry3}. 

• Ift3 - 4t =f 0, then a basis of Ht is 
{1, ry, ry2, ry3, ry4, ~, ~ry, ~ry2, e, ery, e _ t~ry3, ~4ry ~ tery4 + ry7 _ 
iary6 + i~a2ry5' ~4- tery3 +ry6- iary5' ery- f~ry4, ery2- ~try5}. 

The method in [21] that utilize a basis of Ht for computing standard bases 
is also applicable to parametric cases. One obtains, by this method, a 
parametric standard bais of .J := ( ~, %) w. r. t. the local weighted degree 
reverse lexicographic order as follows: 

• If t = 0, then a standard basis of .J is 
{x3, y5}. 

• If t 3 - 4t =f 0, then a standard basis of .J is 
{x5' x3y2' y5- i~a2x4y + iax4 + ~tx2y2' xy3 + fx3}. 

§5. Conclusion 

A new effective method that utilize Poincare polynomials for con­
structing algebraic local cohomology classes associated with semiquasi­
homogeneous isolated singularities, is proposed. The resulting algo­
rithms efficiently compute algebraic local cohomology classes with re­
spect to a weighted monomial order. Computer experiments show that 
the algorithms are superior in practice in comparison to our previous 
algorithms. 

A generalization of the proposed method to parametric cases is dis­
cussed. It is shown that the algorithms can be also extendable to handle 
parametric cases. 
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