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Existence of weak solutions to the three-dimensional 
steady compressible Navier-Stokes equations for any 

specific heat ratio 1 > 1 

Song Jiang 

Abstract. 

In this paper we present the recent existence results from [14], 
[15] on weak solutions to the the steady Navier-Stokes equations for 
three-dimensional compressible isentropic flows with large data for any 
specific heat ratio 1 > 1. The existence is proved in the framework of 
the weak convergence method due to Lions [16] by establishing a new 
a priori potential estimate of both pressure and kinetic energy (in a 
Morrey space) and using a bootstrap argument. The results presented 
in the current paper extend the existence of weak solutions in [9] from 
1 > 4/3 to 1 > 1. 

§1. Introduction 

The steady isentropic compressible Navier-Stokes equations, which 
describe conservation of the mass and momentum of an isentropic flow, 
can be written as follows. 

(1) 
(2) 

div(pu) 

-J-LDU- jl.'Vdivu + div(pu ® u) + 'V P 

0, 

pf+g. 

Here u = (u 1 ,u2 ,u3 ) is the velocity and pis the density, the viscosity 
constants J-l and p. satisfy J-l > 0, p. = J-L + >.. with >.. + 2J-L/3 2: 0, the 
pressure P for the isentropic flow is given by 

P(p) = ap"~ 

with a being a positive constant and 1 > 1 being the specific heat ratio, 
f = (h, h, h) and g = (91, 92, 93) are the external forces. We shall 
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consider the system (1), (2) in a bounded domain 0 c ~3 , and for 
simplicity, we assume that 

f, g E £ 00 (0). 

Moreover, the total mass is prescribed: 

(3) lpdx=M>O. 

In the last decades, the well-posedness of the equations (1), (2) for 
large f and g has been investigated by a number of researchers. In 
1998, under the assumption that 'Y > 1 in ~2 and 'Y > 5/3 in ~3 , Lions 
[16] first proved the existence of weak solutions to different boundary 
problems for (1), (2). Roughly speaking, the condition on 'Y comes from 
the integrability of the density p in £P. The higher integrability of p 
has, the smaller 'Y can be allowed. If f is potential and g = 0 , then 
weak solutions are shown to exist for any 'Y > 3/2, see [19]. Then, 
Frehse, Goj and Steinhauer, Plotnikov and Sokolowsk obtained an im­
proved integrability bound for the density by deriving a new weighted 
estimate of the pressure in [6], [20], where the authors assumed a priori 
the £ 1-boundedness of pu2 which, unfortunately, was not shown to hold. 
Recently, by combining the £=-estimate of!:::. - 1 P with the (usual) en­
ergy and density bounds, Brezina and Novotny [3] were able to show 
the existence of weak solutions to the spatially periodic problem for any 
'Y > (3 + J4I) /8 when f is potential, or for any 'Y > 1.53 when f E £ 00 , 

without assuming the boundedness of pu2 in £ 1 . More recently, Frehse, 
Steinhauer and Weigant [9] established the existence of weak solutions 
to the Dirichlet problem in three dimensions for any 'Y > 4/3 in the 
framework of [3]. Also, the existence of a weak solution to (1), (2) 
with different boundary conditions was obtained in the two-dimensional 
isothermal case ("! = 1) [7], [8]. 

In this paper, we shall present recent existence results from [14], 
[15] which are inspired by the works [9], [3] and extend the existence 
in [9] from 'Y > 4/3 to 'Y > 1. Roughly speaking, the basic idea in our 
proof is to employ a careful bootstrap argument to obtain the higher 
integrability of the density which eventually relaxes the restriction on 'Y 
in [9]. We point out that quite recently, using the idea in [14], Jessle 
and Novotny [11] showed the existence of weak solutions to (1), (2) with 
slip (or Navier) boundary conditions for any 'Y > 1. As indicated in [11], 
however, their result does not imply any improvement with respect to 
[9] in the case of the Dirichlet boundary conditions. 
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We mention that for a three-dimensional model of steady compress­
ible heat-conducting flows (i.e., the steady compressible Navier-Stokes­
Fourier system), Mucha, Novotny, Pokorny [17], [18] recently studied the 
existence of weak solutions under some assumptions on the pressure and 
heat-conductivity, which unfortunately exclude the case of polytropic 
idea gases. For the corresponding non-steady system (to (1), (2)) with 
large initial data, Lions [16] first proved the global existence of weak 
solutions in the case of"(~ 3n/(n + 2) (n = 2, 3: dimension). His result 
has been improved and generalized recently in [5], [12], [13] and among 
others, where the condition 'Y > 3/2 is required in three dimensions for 
general initial data. 

This paper is organized as follows. In Section 1 we investigate the 
case that solutions are spatially periodic, while at the end of the paper, 
we give a remark on the Dirichlet boundary value problem. 

§2. Spatially periodic solutions 

In this section, we consider the case of spatially periodic solutions 
to (1), (2), namely, (p, u) is periodic in each Xi with period 27r for all 
1 :::; i :::; 3. For this purpose, we assume that f is periodic in each Xi 

with period 27r for 1 :::; i :::; 3, and g = 0 without loss of generality. 
For simplicity, throughout this section, we denote by n the periodic cell 
(-7r,7r)3. 

In general, there could be no solution for arbitrary f, since for a 
(smooth) solution, which is periodic in x with period 271", f has to satisfy 
the necessary condition: 

(4) for 1:::; i:::; 3. 

However, if we consider f with symmetry 

(5) fi(x) = -fi(Yi(x)) and fi(x) = fi(Yj(x)), if i :/=j, i,j = 1,2,3, 

where 
Yi(· ··,xi,···)=(···, -xi,···), 

then u will have the same symmetry and p with the symmetry 

(6) p(x) = p(Yi(x)) for i = 1, 2, 3, 

and the condition ( 4) is satisfied automatically. Moreover, u satisfies 

for all 1 :::; i :::; 3. 
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We now introduce some notations (see [1]). Define 

{ cj:> E 000 (1~3 ), cj:> is periodic in Xi of period 27r 

for all 1 ::=:; i ::=:; 3} 

V(n) = {¢(x) I :3 ¢(x) E V(JR3 ), s.t. ¢(x) = ¢(x), for .X En}. 

By V'(JR3 ) (resp. V'(n)), we denote the dual space of V(JR3 ) (resp. 
V(n)). For example, V'(JR3 ) is the space of periodic distributions in 
JR3 (dual to V(JR3 )). We also introduce the spaces of symmetric func­
tions: (W8~I:,(n)) 3 denotes the space of vector functions in Wk,v(n) 
which possess the symmetry (5), while Lrym(n) stands for the space of 
functions in LP(n) with symmetry (6). BR(a) := {x E JR3 : lx-al < R} 
denotes the open ball centered at a with radius R. 

We are now able to introduce the notation of a renormalized bounded 
energy weak solution. 

Definition 1. (Renormalized bounded energy weak solution) We 
call (p, u) a renormalized bounded energy weak solution to the spatially 
periodic problem of the system (1) and (2), if 

i) p;:::: o, p E L"(n), u E H 1 (n), J0 p(x)dx = M > o. 
ii) (p, u) satisfies the energy inequality: 

L (JLIVul 2 + Jlldiv ul 2 )dx ::=:; L (pf +g)· udx. 

iii) The system (1), (2) holds in the sense ofV'(n). 
iv) The mass equation (1) holds in the sense of renormalized solutions, 
i.e., 

(7) div[b(p)u] + [b'(p)p- b(p)]divu = 0 in V'(n) 

for any bE C 1 (1R), such that b'(z) = 0 when z is big enough. 

Remark 1. In the periodic case, the periodic cell n in Definition 1 
actually can be replaced by any cube in JR3 with length 27r. 

Thus, the existence theorem for (1), (2) in the spatially periodic 
case reads as follows. 

Theorem 1. Let ry > 1 and f E L 00 (JR3 ) satisfy (5). Then, there 
exists a renormalized bounded energy weak solution (p, u), satisfying (6) 
and (5), to the spatially periodic problem of the system (1), (2). 
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Roughly speaking, the proof of Theorem 1 is based on the new a 
priori estimates for the approximate solutions and the weak convergence 
method in the framework of Lions [16]. The crucial point, compared 
with [9], [3], is to establish a new higher than L'Lintegrability of the 
(approximate) density for any "( > 1 by deriving simultaneous weighted 
boundedness of both Pli and Plilulil 2 in a Morreyspace. In the following, 
we give the main steps of the proof. 

MAIN STEPS OF THE PROOF: 

Step I. Approximate system. 
We first work with the standard approximation by introducing an 

artificial pressure term 

where 0 < 8 :::; 1. Here we choose p6 just for technical reason, and in fact 
we can take p01 for any a ~ 6 instead of p6 . We consider the following 
approximate problem in n: 

(8) 

(9) 

div(pou0) 

-Jl,!:::,.uli- j:i,\7diVU/j + div(poU8 0 U8) + \7Pli(Pli) 

According to [3], there is at least a weak solution (pli, u 0) to the 
problem (8), (9) with the following properties ('Y =max("!, 6)): 

(10) 

Pli E L~Jm(O), Uo E (Ws~!(0))3 , lnplidx = M; 

div[b(pli)uli] + [b'(Po)Po- b(po)]divuli = 0 in V'(O); 

where b is the same as in (7). 
Denote 

(11) 0 < (3 < 1, 

where and in what follows, ll·lb := ll·lb(n) and II·IIH= := II·IIH=(n), 
etc. 

Our next goal is to bound A for a suitable (3 (sufficiently close to 1) 
by a bootstrap argument, the boundedness of A will lead to the desired 
uniform-in-8 estimates which will be used in passing to the limit as 8-+ 0 
to get a weak solution of the system (1), (2). To this end, we start with 
the following potential estimate which can also be understood as an 
estimate in a Morrey space. 
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Step II. A potential estimate 
For xo E 0, we define cp = (¢1 , ¢2 , ¢ 3 ) with 

where 0 < /3 ~ 1, b(xo,?r) = {x E JR3 : lxi- xbl < 1r, i = 1,2,3} is a 
periodic cell, and '11 E C0 (JR) is a cut-off function satisfying 0 ~ ry(t) ~ 1, 
IDryl ~ 2, ry(t) = 1 if ltl ~ 1 and ry(t) = 0 if ltl ~ 2. 

If we extend ¢ to JR3 periodically in Xi with period 27r for all 1 ~ 
i ~ 3, then¢ E H1~c(JR3 ) can be a test function. We thus test (9) with 
this ¢ to deduce, after a careful but straightforward calculation, that 

Leinma 1. Let (p0 , u0 ) be the solutions of the approximate problem 
(8), (9). Then the following estimate holds. 

for all (3 E (0, 1) and Xo E 0, where the constant C depends only on 
llfll£=, f.J,, jl, M, "( and /3, but not on xo and o. 
Step III. Estimate of A. 

Let D' ::J ::J n be a domain and E be a bounded linear extension 
operator from W 1,P(fl) into W~'P(fl'), such that Eu = u inn (see, for 
example, [10, Theorem 7.25]) 

Since P0 and u0 are periodic in Xi with period 27r for all 1 ~ i ~ 3, 
we can get from Lemma 1 that 

for any 0 < f3 < 1 and x0 E D', where the constant C is independent of 
o and xo. 

Let h be the unique weak solution of the elliptic problem: 

Then by the classical theory for elliptic equations and (12), we have 

C 1 Po+ (Poluc5I 2 ).Bd < sup x 
xoE!1' !1' lx- xol 

(13) < C(1 + IIPoll£1 + IIPc5luc51 2 ll£1 + lluoiiH1 )· 
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Since u,; E H 1(fl), Eu.; E HJ(O'). Now, we consider 

A': = f [P8 + (p8 Ju8 J2 )13]JEu8 J2dx = f .6hJEu8 J2dx Jn, Jn, 
(14) ::::; CJJEu,;JIHJ(n')IIIEu,;JJV'hlli£2(n')' 
where, by integrating by parts, one infers that 

IIIEu,;JIV'hilli2cn') 

(15) ::::; C fn, (JhiJ.6hJJEu,;J2 + lhiiY'hiiEu,;JJV'u,;l)dx 

::::; CJJhiiL=(n')(A' + IIIEu,;JJV'hlli£2Cn')IIEu,;JIHJ(n'))· 

Thus, the inequalities (14) and (15) imply that 

A'::::; CJJEu,;Jit-J(n')llhliL=(n')::::; CJJu,;Jit-JiihliL=(n')' 

which, by combining with (13) and recalling A ::::; A', proves that 

Lemma 2. Let A be defined by (11), then we have 

where the constant C depends on llfiiL=,f.L,,U,M,'"}' and (3, but not on 8. 

Remark 2. We point out here that Lemma 2 can be also obtained 
by using the arguments in [3]. 

Step IV. Roundedness ofu.; in H 1 and P.; in L 8 (for somes> 1). 
To close the estimate for A, we have to bound the terms on the 

right-hand side of (16). To this end, we use the energy inequality (10) 
to obtain 

where the right-hand side can be bounded as follows, using Holder's and 
Sobolev's inequalities, and recalling fn p.; = M. 

k (P.;u~) 2(-rfJ'+-t 2fJJ (p~u~f3+2 ) 2hfJ~~1 2fJJ pp§:l:;-~§J 
-y-f! 

which together with (17) and Poincare's inequality results in 

(18) 
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Let Wt5 be a solution of the problem 

diVWt5 = f15 in fl, w = 0 on an, 

where 

s-1 1 r s-1 
ft5 = pt5 - Jnr ln pt5 dx with 1<s~f3+1-f3h 

satisfying fn f.5(x)dx = 0. Then, from a lemma due to Bogovskij [2] we 
get 

Now, we use the function Wt5 to test the momentum equation (9) to 
obtain by employing (19) and a direct computation similar to Lemma 
2.3 in [6] that 

(20) 

where the last term can be bounded as follows, using Holder's and 
Sobolev's inequalities, and recalling 1 < s ~ f3 + 1- f3h. 

(21) 

~ :ys+l-2s 

< CIIPt5lut51 2 11Zf+r-2!311P~Iut5I 213+2 IIZf+-r- 2!3 
~ < CA 'Yi3+'Y-2i3, 

which, together (20) and (18), gives 

8('"(-,3) ~ ~ 

IIPtJIIi·cn) ~ C(1 +A 4 hi3+-r 2,3) +A 'Yi3+'Y- 2i3) ~ C(1 +A 'Yi3+'Y-2,3 ). 

The above inequality and (18) implies thus 

Lemma 3. We have 

for s E (1,/3 + 1- f3h], where the constant C depends only on llfiiL=, 
p,, >., M, 'Y and 0. 

Step V. Uniform-in-o a priori estimates. 
Noting that Lemma 3 holds for any s E (1,/3 + 1- f3h], we write 

s = 1 + E, where E will be chosen small enough later on, and use (16), 
Holder's inequality, Lemma 3 and (21) to infer that 

y-(3 -y-{3 ys-{3 1 
A < CA 2hi3+'Y 2,32 (1 +A 4('Yi3+'Y 2,3) +A ('YM'Y 2,3) ·1+•) 

(22) 
3{=y-,3) +0() < 0(1 + A2hi3+'Y 2i3l e). 
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Now, recalling "( > 1, we choose f3 E (0, 1) sufficiently close to 1, such 
that 'Y/(2"(- 1) < (3, i.e., 

3("(- (3) < 1 
2("((3 + "(- 2/3) 

3("(- (3) 
2("((3 + "(- 2/3) + O(E) < 1, 

provided that E is chosen small enough. Therefore, we conclude by (22) 
that A ~ C, which immediately implies the following uniform estimate: 

Lemma 4. There is a number u > 1, such that 

where the constant C depends only on llfllu"', J.L, jl, M and"( (but not 
on 8). Moreover, 

Step VI. Limit as 8 -t 0. 
Having had the a priori estimates Lemma 4, we can in general fol­

low the framework of the weak convergence method due to Lions [16] 
(also see [5]) to take to the limit as 8 -t 0 for the approximate prob­
lem (8) and (9) to obtain a weak solution of (1), (2) for any "( > 1. 
However, we could not directly use the arguments in [16], since we just 
have P8 E L''W(fl) with u > 1 being very close to 1 when "( is close 
to 1, while in [16] P8 E LP(fl) (p > 5/3) is required. Fortunately, this 
difficulty can be circumvented by exploiting the estimates established in 
Lemma 4 and a simple lemma on the weak convergence of product of 
two functional sequences [14, Lemma 3.1], and consequently getting the 
weak compactness of the effective viscous flux. Then, by the standard 
procedure of the weak convergence method (see [16, 4, 5]) we obtain a 
spatially periodic weak solution to (1), (2). This completes the proof of 
Theorem 1. 

Remark 3. Very recently, Plotnikov and Weigant [21] established 
the existence for the Dirichlet boundary value problem for any "( > 1 by 
using elaborate weighted estimates up to boundary. Now, the existence 
in the isothermal case "( = 1 is left open only. 
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