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models 
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Abstract. 

Arrangement theory plays an essential role in the study of the 
unfolding model used in many fields. This paper describes how ar­
rangement theory can be usefully employed in solving the problems of 
counting (i) the number of admissible rankings in an unfolding model 
and (ii) the number of ranking patterns generated by unfolding models. 
The paper is mostly expository but also contains some new results such 
as simple upper and lower bounds for the number of ranking patterns 
in the unidimensional case. 

§ 1. Introduction 

The unfolding model (Coombs [6], De Leeuw [8]) is a model for 
preference rankings in psychometrics. It is now widely applied not only 
in psychometrics (De Soete, Feger, and Klauer [10]) but also in other 
fields such as marketing science (DeSarbo and Hoffman [9]) and voting 
theory (Clinton, Jackman, and Rivers [5]). The model is also used as 
a submodel for more complex models, as in item response theory for 
unfolding (Andrich [1, 2]). Moreover, in the context ofVoronoi diagrams, 
this model can be regarded as a higher-order Voronoi diagram (Okabe, 
Boots, Sugihara, and Chiu [22]). 

The unfolding model describes the ranking process in which judges 
rank a set of objects in order of preference. In this model, judges and 
objects are assumed to be represented by points in the Euclidean space 
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~Rn. Suppose a judge y E !Rn ranks m objects x 1, ... , Xm E !Rn. Accord­
ing to the unfolding model, y ranks x 1 , ... , Xm in descending order of 
proximity in the usual Euclidean distance. Hence, y likes Xi1 best, Xi2 

second best, and so on, iff IIY - Xi! II < IIY - Xi2 ll < · · · < IIY - Xim II· In 
this case, we will say y gives ranking (i1i2 · · · im)· 

For a given m-tuple (x1, ... ,xm) of objects, let RPUF(x1, ... ,xm) 
be the set of admissible rankings, i.e., (i1 · · · im) such that IIY- Xi1 ll < 
· · · < IIY-Ximll for some y E !Rn. We call RPUF(x1, ... ,xm) the ranking 
pattern of the unfolding model with m-tuple (x1, ... , xm)· In the psy-
chometric literature, there has not been much study on the structure of 
the ranking pattern. In this paper, we investigate the ranking pattern 
by using the theory of hyperplane arrangements (Orlik and Terao [23]). 
Specifically, we consider the following two problems: 

(i) Find the cardinality of RPUF(x1, ... ,xm) for a given generic 
m-tuple (x1, ... , Xm); 

(ii) Find the cardinality of 

{RPUF(x1, ... ,xm): (x1, ... ,xm) is a generic m-tuple}. 

The first problem asks how many rankings are admissible in one un­
folding model, and the second inquires how many ranking patterns are 
possible by using different unfolding models (that is, by taking different 
choices of m-tuples of objects). As we will see, these problems can be 
reduced to those of counting the numbers of chambers of some real ar­
rangements; moreover, the latter problems can be solved by employing 
general results in the theory of hyperplane arragements {e.g., Zaslavsky's 
result on the number of chambers of a real arrangement, the finite field 
method, etc.). In this sense, arrangement theory plays an essential role 
in the study of the unfolding model. 

This paper gives a survey of recent results ([13], [14], [15], [19]) on 
the problems stated above. It also contains new results on upper and 
lower bounds for the number of ranking patterns in the unidimensional 
case n = 1. In addition, the problem of counting inequivalent ranking 
patterns (i.e., those which cannot be obtained from one another by just 
the relabeling of the objects) when n = 1 was not dealt with specifically 
in [13] but is discussed fully in the present paper. 

The organization of the paper is as follows. In Section 2, we de­
fine genericness of the unfolding model, and give the answer to problem 
(i) above, i.e., the number of admissible rankings of the unfolding model 
with generic objects. Next, in Section 3 we discuss the problem of count­
ing the number of ranking patterns (problem (ii)). In Subsection 3.1, 
we deal with the unidimensional case, and give the number of ranking 
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patterns in terms of the number of chambers of the mid-hyperplane ar­
rangement. We also provide explicit upper and lower bounds for the 
number of ranking patterns. In Subsection 3.2, we treat the unfolding 
model of codimension one, where the restriction by dimension is weak­
est. In this case, we describe how the number of ranking patterns can 
be expressed by the number of chambers of an arrangement called the 
all-subset arrangement. 

§2. Number of admissible rankings 

In this section, we define genericness of the unfolding model, and 
discuss the problem of counting the number of admissible rankings gen­
erated by the unfolding model with generic objects. 

Suppose we are given X1, .•. , Xm E JRn with m 2: 3 and n :::; m - 2. 
In general, for m distinct points Z1, .•. , Zm E JRV (m 2: v + 1), let 

ZiZj denote the one-simplex connecting two points Zi and Zj (i < j). 
Consider the following condition: 

(A) The union of v distinct one-simplices ZikZJk (ik < jk, k = 
1, ... , v) contains no loop if and only if the corresponding vec­
tors Zik - Zjk (k = 1, ... , v) are linearly independent. 

We assume x 1 , ••. , Xm E JRn (n :::; m- 2) are generic in the sense 
that they satisfy the following two conditions: 

(Al) Them points x 1 , ..• ,Xm E lRn satisfy condition (A). 
(A2) Them points (xf, llx1II 2)T, ... , (x;;,, llxmii 2)T E JRn+l satisfy 

condition (A). 

Now, according to the unfolding model, judge y E JRn prefers Xi to 
Xj (i =/- j) iff lly-xill < lly-xjll· This condition is equivalent toy being 
on the same side as Xi of the perpendicular bisector 

of the line segment XiXj joining Xi and Xj· Let us define a hyperplane 
arrangement 

in JRn. We call Am,n the unfolding arrangement. 
Then Am,n, like any real hyperplane arrangement, cuts JRn into 

chambers, i.e., connected components of the complement JRn \ UAm,n, 
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where UAm,n := UHEAm n H. Moreover, each of these chambers is of 
the form ' 

for some admissible ranking (i1 · · · im) E IP'm, where IP'm denotes the set 
of permutations of [m] := {1, ... , m }. 

We observe that y E JRn gives ranking ( i 1 · · · im) E lP' m if and only if 
y E Ci, .. ·irn -#0. Thus there is a one-to-one correspondence between the 
set of admissible rankings and the set of chambers Ch(Am,n) of Am,n: 

( il ... im) +--t ci, .. ·i, 

for ( i 1 · · · im) such that Ci, .. ·i,. -# 0. This implies that the problem of 
counting the number of admissible rankings reduces to that of counting 
the number of chambers of Am,n· The answer to the latter problem is 
given by the theorem below. Let SJ: (k E Z) be the signless Stirling 
numbers of the first kind: t( t + 1) · · · ( t + m - 1) = l:k SJ:tk. 

Theorem 1 (Good and Tideman [11], Kamiya and Takemura [14, 
15], Zaslavsky [30]). Suppose x 1 , ... , Xm E JRn (n:::; m- 2) are generic. 
Then, the number of chambers of Am,n = Am,n(xl, ... , Xm) is 

ICh(Am,n)l = s;;::_n + s;;::_n+l + ... + s;;::. 
Furthermore, the number of bounded chambers of Am,n is 

The proof of Theorem 1 is based on Zaslavsky's general result on 
the number of chambers of an arrangement (Zaslavsky [29]) and the 
following proposition. Denote by IIm the partition lattice, consisting 
of partitions of [m] and ordered by refinement. Further, let II~ stand 
for the rank n truncation of IIm, i.e., the subposet of IIm comprising 
elements of rank ( = m - # of blocks) at most n. 

Proposition 1 (Kamiya and Takemura [14, 15]). The intersection 
poset L(Am,n) of the unfolding arrangement Am,n is isomorphic to II~: 

L(Am,n) ~II~. 

The isomorphism is given by 

L(Am,n) 3 X 1--)- Ix E II~, 

where Ix is the partition of [m] into equivalence classes under the equiv­

alence relation "'x defined by i "'x j ~ X <;;;; Hij ( Hii := JRn). 
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Remark 1. When n ;::: m-1, and X1, ... , Xm E lRn satisfy condition 
(A 1) with the v = n in (A) replaced by m - 1, we can easily see that 
ICh(Am,n)l = m! and that the number of bounded chambers of Am,n is 
zero (so the results in Theorem 1 continue to be valid). Therefore, all 
m! rankings arise as unbounded chambers of Am,n in this case. 

§3. Number of ranking patterns 

In this section, we consider the problem of counting the number 
of ranking patterns. We treat two extreme cases-the unidimensional 
unfolding model: n = 1 (Subsection 3.1) and the unfolding model of 
codimension one: n = m- 2 (Subsection 3.2). 

3.1. Unidimensional unfolding models 

In this subsection, we look into the problem of counting the number 
of ranking patterns of unidimensional unfolding models: n = 1. A 
related problem is studied in Stanley [24]. 

In this case n = 1, objects are m points on the real line: x1 , ... , Xm E 
JR. We assume x1, ... , Xm are generic, i.e., the midpoints Xij := (xi+ 
x1)j2, 1 ~ i < j ~ m, are all distinct. This condition can be written as 

(x1, ... ,xm) E lRm \ UMm, 

where Mm := Bm U Nm is the mid-hyperplane arrangement (Kamiya, 
Orlik, Takemura, and Terao [13]) with 

{ Kij : 1 ~ i < j ~ m}, 

{(x1, ... ,xm) E lRm: Xi= Xj}, 

{Hijkl: (i,j, k, l) E !4}, 
{(x1, ... ,Xm) E JRm: Xi+ Xj = Xk +X!}, 

{( i, j, k, l) : i, j, k, l are all distinct, 

1 ~ i < j ~ m, i < k < l ~ m}. 

(In this subsection, we write elements of JRm as row vectors.) Note that 
Bm is the braid arrangement. We have Hij = { Xij }, 1 ~ i < j ~ m, 
and Am,l = {{Xij}: 1 ~ i < j ~ m}. 

An m-tuple x := (x1 , ... , Xm) of objects gives the ranking pattern 

We want to know 

(1) 
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The braid arrangement Bm has a chamber Co E Ch(Bm) defined by 
X1 < · · · < Xm: 

Co:= {(xl, ... ,Xm) E lRm: X1 < ·· · < Xm}· 

Let us concentrate our attention on Co. For x = ( x 1 , ... , Xm) E C0 \ 

UNm and x' = (x~, ... , x~) E Co \ UNm, we can easily see that 
RPUF (x) = RPUF (x') if and only if the order of the midpoints on lR is 
the same for x and x' (i.e., 'V(i,j, k, l) E ! 4 : Xij < Xkl ~ x~j < x~ 1 ). 
Noting that Xij < Xkl iff (x1, ... ,xm) E HiJkl := {(x1, ... ,xm) E lRm: 

Xi+ x 1 < Xk + xz}, we obtain the following lemma. 

Lemma 1 (Kamiya, Orlik, Takemura, and Terao [13]). For x, x' E 

Co\ UNm, we have RPUF (x) = RPUF (x') if and only if x and x' are 
in the same chamber of Nm. 

Put 

i.e., the number of ranking patterns of unidimensional unfolding models 
with generic m-tuples such that x1 < · · · < Xm. Then, by Lemma 1 we 
have 

(2) ro(m) = ICh(Mm)l 
m! 

(Kamiya, Orlik, Takemura, and Terao [13]). 
Now consider r(m) in (1). For x = (x1, ... , Xm) E lRm \ U Mm, 

define -x := ( -x1, ... , -xm) E lRm \ U Mm. Then, clearly we have 
RPUF(x) = RPUF(-x). On the other hand, for C,C' E Ch(Mm) 
such that C' # ±C ( -C := { -x : x E C} ), we can easily see that 
RPUF(x) # RPUF(x') for x E C and x' E C'. These two facts, together 
with Lemma 1, yield the following theorem. 

Theorem 2. The number of ranking patterns of unidimensional 
unfolding models with generic m-tuples of objects is 

( ) _ m! ( ) _ ICh(Mm)l r m - -2- r 0 m - -'-------'c2_c.:.:...:., m~ 3. 

Let us define equivalence of ranking patterns by saying that two 
ranking patterns RPUF (x) and RPUF (x') are equivalent iff 

(3) 

where 6m is the symmetric group on m letters, consisting of all bijec­
tions: [m] --+ [m], and aRPUF(x') := {(a(il) · · ·a(im)) : (i1 · · ·im) E 
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RPUF (x')}. We want to find the number of inequivalent ranking pat­
terns. 

Let riE(m) be the number of inequivalent ranking patterns of uni­
dimensional unfolding models with generic m-tuples of objects: 

where [ · ] stands for the equivalence class under the equivalence relation 
defined by (3). We will see that riE(m) is half of r 0 (m) for m 2: 4. 
Suppose we are given x = (x1, ... , Xm) E Co \ UNm with m 2: 4. 
Then x' = (x~, ... ,x~) := (-xm, ... ,-x1) also lies in Co\ UNm: 
x' E Co\ UNm· Moreover, since m 2: 4, four indices 1, 2, m- 1, mare 
all distinct and we have Xlm < X2,m~l iff x~m > x~,m~l· This means 
RPUF(x) 7'= RPUF(x') by Lemma 1. However, [RPUF(x)] = [RPUF(x')] 
since RPUF (x) = RPUF ( -x). Next, it can be seen that any x" E Co\ 
UNm such that RPUF(x") =/= RPUF(x) and [RPUF(x")] = [RPUF(x)] 
satisfies RPUF (x") = RPUF (x'). These arguments lead to the following 
theorem. 

Theorem 3. The number of inequivalent ranking patterns of uni­
dimensional unfolding models with generic m-tuples of objects is 

{
ro(3) = ICh(~3)1 = 1 

riE(m) = r 0 (
2
m) = IC~(M,)I 

2-m! 

ifm = 3, 

if m 2: 4. 

So far, we have expressed the number of ranking patterns in terms of 
the number of chambers of an arrangement. We can use the finite field 
method (Athanasiadis [3, 4], Crapo and Rota [7], Kamiya, Takemura, 
and Terao [16, 17, 18], Stanley [25, Lecture 5]) to calculate specific values 
of r 0 (m), m ~ 10: 

r 0 (4) = 2, r 0 (5) = 12, r 0 (6) = 168, r 0 (7) = 4680, 

r 0 (8) = 229386, r 0 (9) = 18330206, r 0 (10) = 2241662282. 

The values of r(m) for m ~ 8 are given in Kamiya, Orlik, Takemura, 
and Terao [13] along with the characteristic polynomials x(Mm, t) of 
Mm, m ~ 8. After [13], the second author of the present paper, Take­
mura [26], improved on Lemma 3.3 of [13] and calculated x(M 9 , t) and 
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r0 (9); later Ishiwata [12] obtained x(M 10 , t) and r 0 (10) after an exten­
sive computation. The characteristic polynomials found by them are: 

x(Mg, t) = t(t- 1)(t7 - 413t6 + 73780t5 

-7387310t4 + 447514669t3 

-16393719797t2 + 336081719070t 

-2972902161600), 

x(MlO, t) t(t- 1)(t8 - 674t1 + 201481t6 - 34896134t5 

+3830348179t4 - 272839984046t3 

+ 12315189583899t2 - 321989533359786t 

+3732690616086600). 

However, for large values of m, the finite field method is not feasible. 
We will provide simple upper and lower bounds for r 0 (m). 

Theorem 4. For all m :::0: 4, we have 

(3)m-4 2 { ( 1)2}m-2 
2 4 {(m- 3)!} 2 ::; r0 (m) < m! em~-

Proof. First, we derive the upper bound in the theorem. 
Define Ho := { (x1, ... , Xm) E JR.m : x1 + · · · + Xm = 0}, and consider 

the essentialization (Stanley [25, p.392]) M~ := {HnH0 : HE Mm} of 
Mm. Since L(M~) ~ L(Mm), we may consider the essential, central 
arrangement M~ in Ho (dimHo = m- 1) instead of Mm· 

Recall, in general, that h hyperplanes divide JR.d into at most 
l::~=O (~) ::; (eh/d)d =: c(h, d) chambers (see, e.g., [20, Proposition 6.1.1] 

and [21, Theorem 3.6.1]). Thus, h linear hyperplanes divide JR.d into at 
most 2c(h- 1, d- 1) chambers. 

In our case, M~ is central, so we can take h = IMml = IBml + 
INml = (';) + 3(7) ::; m(m- 1) 2 (m- 2)/8 (m :::0: 4) and d = m- 1. 
Hence, we have 

JCh(M~)I < 2c(h- 1, d- 1) 

< 2 X { e ( m(m-lr(m-2) - 1) }m-2 
m-2 

< 2 X { em(~- 1 )2 } m-2 

This together with (2) and JCh(Mm)l = JCh(M~)I gives the upper 
bound of r0 ( m) in the theorem. 
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Next, we will obtain the lower bound in the theorem. 
Let x = (x1, ... , Xm), x1 < · · · < Xm be fixed. We add one more 

object y = Xm +2t (t > 0) to x, and we will count the number of ranking 
patterns arising from Yt = (x,y), t > 0. Let M = {xij: 1 ~ i < j ~ m} 
be the set of midpoints for x, and yt = { Xim + t : 1 ~ i ~ m} the 
set of midpoints of xi (1 ~ i ~ m) and y. Then M U yt is the set 
of midpoints for Yt· To guarantee all these midpoints are distinct, we 
require the following. First, by perturbing each Xi without changing the 
ranking pattern of x, we may assume that x1, ... , Xm are independent 
over Q. Then we have IM n Ytl ~ 1 for all t > 0. Next, let T0 = {t > 
0: IM n Ytl = 1}, T1 = (0, oo) \To, and we only consider t E T1. Then 
M U yt is legal, i.e., all midpoints are distinct. 

Now the crucial observation is as follows: I{RPUF(Yt): t E T1}1 = 

1 + ITol· Moreover, we have ITol = I::~ 1 1Vil, where Vi = {v E M : 
Xim < v}. Using IVil :::0: m -1- i obtained by Vi:::) {xjm: i < j < m}, 
we have 

I{RPUF(Yt): t E Tl}l = 1 + ~ IVil :::0: 1 + IV1I + (m- 3)2(m- 2) =: N. 
i=l 

Namely, N is a lower bound for the number of ranking patterns arising 
from Yt, t E T1. 

Applying exactly the same argument to x' = ( -xm, ... , -xi) in­
stead of x, we see that the number of ranking patterns arising from 
(x', -x1 + 2t), t > 0 (or equivalently, (x1 - 2t,x), t > 0) is at least 
N' = 1 + IV{I + (m- 3)(m- 2)/2, where IV{I = l{u EM: u < Xlm}l = 
c;) - IVll - 1. Notice that N + N' = 1 + (';') + (m- 3)(m- 2) > 
(3/2)(m- 2) 2 . Therefore, by the averaging argument, we have 

ro(m + 1) :::0: r 0 (m) x ~(N + N') > ~(m- 2) 2 r 0 (m). 

So the induction starting from r0 ( 4) = 2 gives the desired lower bound. 
Q.E.D. 

Let R.(m) and u(m) be the lower and upper bounds in the theorem, 
respectively. A computation shows {u(m)p1mjm 2 --+ e2 /8 r:::; 0.92 and 
{R.(m)p!m jm2 --+ 3/(4e2 ) r:::; 0.1 as m--+ oo. It would be interesting to 
prove (or disprove) the existence of lim{r0 (m)p!m jm2 . 

Strangely enough, r 0 (m) = a(m) holds for 4 ~ m ~ 7, where 

(m- 2){(m- 2)m~3 - 1} · (m- 4)! 
a(m) := , 

m-3 

but r 0 (8) > a(8), r 0 (9) > a(9), r 0 (10) > a(10). Also, a(m) satisfies 
{a(m)}1/m jm2 --+ 1/e r:::; 0.37. We mention that a(m)/{(m- 3)!} = 
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m ro(m) a(m) R(m) u(m) f(m) 

4 2 2 2 12 2 

5 12 12 6 334 12 

6 168 168 41 18,744 286 

7 4,680 4,680 486 1.82 X 106 33,592 

8 229,386 223,920 9,113 2.76 X 108 23,178,480 

9 18,330,206 16,470,720 246,038 6.06 X 1010 108, 995, 910, 720 

10 2,241,662,282 1,725,655,680 9.05 X 106 1.81 X 1013 3,973,186,258,569,120 

Table 1. r 0 (m), a(m), £(m), u(m), f(m), 4 :S m :S 10. 

(m- 2){(m- 2)m-3 - 1}/(m- 3)2 (m?: 4) is the number of acyclic­
function digraphs on m- 2 vertices (Walsh [28], OEIS id:A058128). 

Thrall [27] gave an upper bound f(m) for r 0 (m): 

{ m(m-1) }I Ilm-2 ·1 
2 . i=1 z. 

f(m) := Ilm-1(2"- 1)1 
i=1 z . 

Here, f ( m) is the number of mappings { ( i, j) : 1 :S: i < j :S: m} 3 

(i,j) H d(i,j) E {1, 2, ... , m(m- 1)/2} satisfying the condition that 
d( i, j) be increasing in i for each fixed j as well as increasing in j for 
each fixed i. He obtained this number by considering a problem similar 
to that of counting the number of standard Young tableaux. Since for 
x = (x1, ... , Xm) E Co\ UNm, the ranks dx(i,j) of the midpoints Xij = 
(xi+xj)/2 from left to right on the real line~ meet this condition, f(m) 
is an upper bound for r 0 (m). We can see our u(m) satisfies f(m) < u(m) 
form :S: 8, f(m) > u(m) form?: 9, and u(m) = o(f(m)). Form such 
that f(m) < u(m), we know the exact values r 0 (m) anyway, so the upper 
bound u( m) based on arrangement theory may be said to be better than 
f(m). 

We list the values of ro(m), a(m), f(m) and approximate values 
of f(m), u(m) for m = 4, ... , 10 in Table 1. (For f(m), m :::; 9, and 
u(m), m :S: 6, we exhibit l£(m)l and lu(m)J, respectively. For £(10), we 
display l£(m) x 10-4l x 104 , and similarly using l· J for u(m), m?: 7.) 

3.2. Unfolding models of codimension one 

In this subsection, we deal with the problem of counting the number 
of ranking patterns of unfolding models of codimension one: n = m - 2 
(i.e., when the restriction by dimension is weakest). 

First, let us forget the unfolding model for a while and consider the 
ranking patterns of braid slices. 



Application to unfolding models 

We begin by defining the ranking pattern of a braid slice. For 

Ho = {x = (xt, ... ,xrnf E IRrn: Xt + · · · + Xrn = 0}, 

consider the essential arrangement 

B! := {HnHo: HE Brn} 

in H0 , and write its chambers as 

for (it··· irn) E IP'rn. Moreover, define a hyperplane 

Kv := { x E Ho : vT X = 1} 

409 

in Ho for each v E §=-2 := {x E Ho: llxll = 1}. Now we call the subset 

RP(v) :={(it· ··irn) E IP'rn: Kv nBi1 ···im =f. 0}, v E §=-2 , 

of IP'rn the ranking pattern of the braid slice by Kv. 
Next, let us define genericness of the braid slice as follows. For the 

all-subset arrangement (Kamiya, Takemura, and. Terao [19]) 

Am:= {HI: I~ [m], III~ 1} 

with HI:= {x = (xt, ... ,xrn)T E JR=: LiEIXi = 0}, 0 =f. I~ [m], 
consider its restriction to Ho = H[rn]: 

Then define 

A~:= A;[,o = {HJ: I C [m], 1:::; III:::; m- 1}, 

HJ :=HI n Ho (1 :::; III :::; m- 1). 

v := (Ho \ UA~) n §=-2 . 

We will say v E §=-2 , or the braid slice by Kv, is generic if v E V. 
Now, we will see that the set of ranking patterns RP(v) for generic 

v's is in one-to-one correspondence with the set of chambers of A~. 
Write Vas V = UvED(A;i.J D (disjoint union), where 

D(A~) := {D = iJ n §rn-2 : iJ E Ch(A~)}, 

which clearly is in one-to-one correspondence with Ch(A~). Then, we 
can prove (Kamiya, Takemura, and Terao [19]) that there is a bijection 
from D(A~) to {RP(v): v E V} given by 

(4) D(A~) 3D r--+ RP(v), v ED. 
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Hence, 
RPv := RP(v) for v ED E D(A~,) 

is well-defined, and the mapping D(A~J -+ {RPv : D E D(A~,)} = 
{RP(v): v E V}: Dr-+ RPv is bijective. 

Let us get back to the unfolding model and consider the ranking 
pattern of the unfolding model of codimension one. 

Suppose we are given x1, ... , Xm E JR.n with n = m - 2 ?: 1. We as­
sume x1, ... , Xm are generic in the sense that they satisfy ( Al) and ( A2) 
in Section 2. We call the unfolding model with such x1, ... , Xm E JR.m-2 

the unfolding model of codimension one (for the reason stated below). 
In addition, we will assume without loss of generality that X1, ... , Xm 

are taken so that LZ:1 Xi= 0, LZ:1 llxill 2 /m = 1. 
We will see that the ranking pattern of the unfolding model of codi­

mension one with m-tuple (x1, ... ,xm): 

RPUF(x1, ... ,xm) 

(5) 
{(i1" · im) E lP'm : IIY- Xi1ll < "· < IIY- Xi,J 

for some y E JR.m- 2 } 

can be expressed as the ranking pattern of a braid slice. 
Define 

where Matmx(m-2)(JR.) denotes the set of m x (m- 2) matrices with 
real entries. For the affine map "" : JR.m-2 -+ JR.m defined by "'(Y) := 

Wy + u, y E JR.m-2 , consider the image K := im"" = {k(y): y E JR,m- 2 } 

of ""· Then we have 
K = u +col W c Ho, 

where col W stands for the column space of W. Using this K, we can 
easily see that RPUF (x1, ... , Xm) in (5) can be expressed as 

We have dimK = dimH0 - 1 and u tJ. col W by (Al) and (A2), respec­
tively. That is, K is an affine hyperplane of H 0 . For this reason, we 
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called the unfolding model with generic x1, ... , Xm E !Rm-2 the unfold­
ing model of codimension one. 

Write the affine hyperplane K C H 0 as 

using the orthogonal projection of u E H0 on (col W)_L := {x E H0 

xTW = 0}: 

where projcol w denotes the orthogonal projection on col W. Noting 
v -:f. 0, we can represent (6) as 

in terms of Kv(x 1 , ... ,xm) = {x E Ho: v(x1, ... ,xm)Tx = 1} instead of 
K = K;,. The right-hand side of (7) is the ranking pattern of the braid 
slice by Kv(x1 , ... ,xm): RP(v(x1, ... , Xm)). Besides, it can be seen that 
v(x1, ... , Xm) E V. 

Proposition 2 (Kamiya, Takemura, and Terao [19]). For generic 
X1, ... , Xm E !Rm-2 , we have v(x1, ... , Xm) E V and 

Proposition 2 and bijection (4) tell us that in order to find the 
number of ranking patterns of unfolding models of codimension one, we 
need to study the image of the mapping v: { (x1, ... , Xm) : Xl, ... , Xm E 
!Rm-2 are generic}---+ V = UDED(A?,.) D, (x1, ... , Xm) f-t v(x1, ... , Xm)· 

In their main theorem (Theorem 4.1), Kamiya, Takemura, and Terao 
[19] proved that the image im v is given by 

where 

{v = (v1, ... ,vmf E V: Vj > 0 for at least two j E [m] and 

Vk < 0 for at least two k E [m]} 
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and 

Di .- {v = (v1, ... ,vmf E V: Vi.> 0, Vj < 0 (j of. i)} E D(A~J, 
- Di .- { -v : v E Di} 

{v = (v1, ... ,vmf E V: Vi< 0, Vj > 0 (j of. i)} E D(A~) 

fori E [m]. 
By Proposition 2 and im v in (8), we obtain the number of ranking 

patterns of unfolding models of codimension one, which is denoted by 

q(m) := I{RPUF(xl, ... ,xm): genericxl, ... ,Xm ElR.m-2 }1. 

Theorem 5 (Kamiya, Takemura, and Terao [19]). The number 
q( m) of ranking patterns of unfolding models of codimension one is given 
by 

q(m) = ICh(~)l- m. 

Kamiya, Takemura, and Terao [19, Lemma 5.3] obtained the charac­
teristic polynomials x(A~, t) of A~ form:::; 8 by the finite field method. 
Then q(m) can be calculated by q(m) = ( -l)m-lx(A~, -1)- m: 

q(3) = 3, q(4) = 28, q(5) = 365, 

q(6) = 11286, q(7) = 1066037, q(8) = 347326344 

([19, Corollary 5.5]). 
We end this subsection by looking at the problem of finding the num­

ber of inequivalent ranking patterns of unfolding models of codimension 
one. 

In (3), we defined equivalence ofranking patterns of unidimensional 
unfolding models. We define equivalence of ranking patterns of unfold­
ing models of codimension one in an obvious similar manner. At the 
moment, we can only give ari upper bound for the number QIE ( m) of 
inequivalent ranking patterns of unfolding models of codimension one: 
(9) 

QIE(m):::; ICh(A~lU B~)l -1 = IDl···m(A~)I-1 = ID~···m(A~)I + 1 
m. 

for m ~ 3 (Kamiya, Takemura, and Terao [19]), where D1···m(A~) := 
{DE D(A~): D n B 1 ... m of. 0} and n~···m(A~J :={DE D(A~): D c 
V2, D n B 1 ... m of. 0} = D1···m(A~) \ {D1 , -Dm}· It is shown in [19], 
however, that the upper bound in (9) is actually the exact number for 
m :::; 6. The specific values are 

QIE(3) = 1, QIE(4) = 3, QIE(5) = 11, QIE(6) =55 
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([19, Subsection 6.2]). 
Open problem: Does the upper bound in (9) agree with the exact 

number qiE ( m) for all m? 
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