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Abstract. 

This paper provides an overview of selected results and open prob­
lems in the theory of hyperplane arrangements, with an emphasis on 
computations and examples. We give an introduction to many of the 
essential tools used in the area, such as Koszul and Lie algebra meth­
ods, homological techniques, and the Bernstein-Gelfand-Gelfand cor­
respondence, all illustrated with concrete calculations. We also explore 
connections of arrangements to other areas, such as De Concini-Procesi 
wonderful models, the Feichtner-Yuzvinsky algebra of an atomic lat­
tice, fatpoints and blowups of projective space, and plane curve singu­
larities. 
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§1. Introduction and algebraic preliminaries 

There are a number of wonderful sources available on hyperplane 
arrangements, most notably Orlik-Terao's landmark 1992 text [58]. In 
the last decade alone several excellent surveys have appeared: Suciu's 
paper on aspects of the fundamental group [84], Yuzvinsky's paper on 
Orlik-Solomon algebras and local systems cohomology [97], and several 
monographs devoted to connections to areas such as hypergeometric 
integrals [59], mathematical physics [91], as well as proceedings from 
conferences at Sapporo [38], Northeastern [16] and Istanbul [30]. 

The aim of this note is to provide an overview of some recent re­
sults and open problems, with a special emphasis on connections to 
computation. The paper also gives a concrete and example driven in­
troduction for non-specialists, but there is enough breadth here that 
even experts should find something new. There are few proofs, but 
rather pointers to original source material. We also explore connections 
of arrangements to other areas, such as De Concini-Procesi wonderful 
models, the Feichtner-Yuzvinsky algebra of an atomic lattice, the Orlik­
Terao algebra and blowups, and plane curve singularities. All computa­
tions in this survey can be performed using Macaulay2 [45], available at: 
http://www. math. uiuc. edu/Macaulay2/, and the arrangements pack­
age by Denham and Smith [22]. 

Let v = JKP' and let s be the symmetric algebra on V*: s = E9iEZ si 
is a Z-graded ring, which means that if Si E si and s j E sj' then 
Si . Sj E si+j. A graded S-module M is defined in similar fashion. Of 
special interest is the case where 50 is a field JK, so that each Mi is a 
JK-vector space. The free S module with generator in degree i is written 
S(-i), and in general M(i)j = Mi+j· 

Definition 1. The Hilbert function H F(M, i) = dimoc Mi. 

Definition 2. The Hilbert series HS(M,i) = LzdimocMiti. 

Example 3. S = JK[x,y], M = S/(x2 ,xy). Then 

i Mi M(-2)i 
0 1 0 
1 x,y 0 
2 y<- 1 
3 y"' x,y 
4 y4 y<-
n yn yn -"L 
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The respective Hilbert series are 

HS(M ") = 1- 2t2 + t3 d HS(M(-2) ") = t2(1- 2t2 + t3) 
'z (1 - t)2 an 'z (1 - t)2 

An induction shows that HS(S( -i), t) = ti /(1- t)i; this makes it easy 
to compute the Hilbert series of an arbitrary graded module from a free 
resolution. For S / (x2 , xy), a minimal free resolution is 

0---> S( -3) [ _"x l S( -2)' [ x' xy J S---> Sf I---+ 0. 

e1 1---7 x 2 
The map [x2 , xy] sends 

e2 1---7 xy, 

so in order to have a map of graded modules, the basis elements of the 
source must have degree two, explaining the shifts in the free resolution. 
Taking the alternating sum of the Hilbert series yields 

H S(M .) = t3 - 2t2 + 1 
'z (1 - t)2 

which agrees with the previous computation. 

Example 4. The 2 x 2 minors of [ ~ ; ~ ] define the twisted 

cubic I~ S = JK[x, y, z, w]. 

[ ~z ~z] 
0 --+ S( -3? -x y S(-2? _[ _Y_2 _-_x_z _y_z_-_x_w __ z2 ___ y_w--+] S --+ S /I 

The numerical information in a free resolution may be compactly dis­
played as a betti table: 

total· 1 3 2 
0 1 
1 - 3 2 

In particular, the indexing begins at position (0, 0) and is read over and 
down. So for the twisted cubic, b21 (S/I) = dimocTor~(S/I,lKh = 2. 
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We now give a quick review of arrangements. Let A= {H1, ... , Hn} 
be an arrangement of complex hyperplanes in e£. We assume A is 
central and essential: the £i with Hi = V(£i) are homogeneous, and the 
common zero locus V ( £1 , ... , fn) = 0 E e£. The central condition means 
that A also defines an arrangement in JP>R- 1• The main combinatorial 
object associated to A is the intersection lattice LA, which consists of 
the intersections of elements of A, ordered by reverse inclusion. en is the 
lattice element 6 and the rank one elements of LA are the hyperplanes. 

Definition 5. The Mobius function f.l : LA--+ Z is defined by 

M(6) 1 
M(t) ~Lf.l(s),ifO<t. 

s<t 

The Poincare and characteristic polynomials of A are defined as 

n(A, t) = L f.l(X). ( -tyank(x)' and x(A, t) = trk(A)n(A, ~1 ). 
xEL(A) 

Example 6. The A3 arrangement is u1~i<j~4 V(xi- Xj) ~ e4 . 

Projecting along (1, 1, 1, 1) gives a central arrangement in e3 , hence a 
configuration of lines in JP>2• This configuration corresponds to the figure 
below, but with the line at infinity (which bounds the figure) omitted. 

For the 7rank two elements of L(A3), the four corresponding to triple 
points have 1-l = 2, and the three normal crossings have 1-l = 1. Thus, 
n(A3 , t) = 1 + 6t + llt2 + 6t3 • Adding the bounding line gives the 
non-Fano arrangement NF, with n(NF, t) = 1 + 7t + 15t2 + 9t3 . 

In [57], Orlik and Solomon showed that the cohomology ring ofthe com­
plement MA =en\ U~=1 Hi has presentation H*(MA, Z) = (\(zn)/ I, 
with generators e1, ... , en in degree 1 and 

I= (""(-1)q-1e· .. • e:- .. · e· I codimH- n · · · n H- < r) ~ ll 'tq 'l.r 21 lr • 

q 

For additional background on arrangements, see [58]. 
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§2. D(A) and freeness 

n 

Let A= U Hi ~ V = cc be a central arrangement. For each i, fix 
i=l 

V(li) =Hi E A, and define QA = f}7= 1 li E S = C[x1, ... , xc]. 

Definition 7. The module of A-derivations (or Terao module) is 
the submodule of Derrc(S) consisting of vector fields tangent to A: 

D(A) ={BE Derc(S)\B(li) E (li) for allli with V(li) E A}. 

An arrangement is free when D(A) is a free S-module. In this 
case, the degrees of the generators of D(A) are called the exponents of 
the arrangement. Note that D(A) is always nonzero, since the Euler 

derivation BE= 2:::;=1 x/Jjoxi E D(A). It is easy to show that 

D(A) ~ S ·BE EB syz(JA), 

where JA is the Jacobian ideal of QA, and syz denotes the module of 
syzygies on JA: polynomial relations on the generators of JA· 

Theorem 8 (Saito [72]). A is free iff there exist£ elements 

such that det([fij]) = c · QA, for some c -=1 0. 

Example 9. For Example 6, a computation shows that 

S( -1) EB S( -2) EB S( -3) 
~ S(-1)EBS(-3)EBS(-3). 

Interestingly, the respective Poincare polynomials factor, as 

n(A3, t) = (1 + t)(1 + 2t)(1 + 3t), and n(N F, t) = (1 + t)(1 + 3t) 2 . 

This suggests the possibility of a connection between the exponents of 
a free arrangement and the Poincare polynomial. 

A landmark result in arrangements is: 

c 
Theorem 10 (Terao [86]). If D(A) ~ EB S( -ai), then 

i=l 
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Example 11. [Stanley] For A below, n(A, t) = (1 + t)(1 + 3t)2 . 

A computation shows that A is not free, so factorization of n(A, t) is a 
necessary but not sufficient for freeness of A. 

A famous open conjecture in the field of arrangements is: 

Conjecture 12 (Terao). If char(JK) = 0, then freeness of D(A) 
depends only on LA. 

Example 13. [Ziegler's pair [101]] Let A be an arrangement of 9 
lines in IP'2 , as below. 

Then D(A) depends on nonlinear geometry: if the six triple points lie 
on a smooth conic, we compute: 

0 _____,.. S( -7) E9 S( -8) _____,.. S( -5) E9 8 3 ( -6) _____,.. syz(JA) _____,.. 0, 

while if six triple points are not on a smooth conic, the resolution is: 

A version of Terao's theorem applies to any arrangement: 

Definition 14. DP(A) s;; AP(Deroc(S)) consists of e such that 
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Theorem 15 (Solomon-Terao, [82]). 

x(A, t) = ( -1)' lim" HS(DP(A); x)(t(x- 1)- 1)P. 
x---tlW 

p~O 

Problem 16. Relate the modules DP(A), for p 2: 2, to LA· 

A closed subarrangement A ~ A is a subarrangement such that 
A= Ax for some flat X. The best result relating D(A) to LA is: 

Theorem 17 (Terao, [89]). If A C A is a closed subarrangement, 
then pdimD(A) 2: pdimD(A). 

Problem 18. Find bounds on pdimD(A) depending on LA. 

A particularly interesting class of arrangements are graphic arrange­
ments, which are subarrangements of An. Given a simple (no loops 
or multiple edges) graph G, with £ vertices and edge set E, we define 
Aa = {zi- Zj = 0 I (i,j) E E ~ C'}. 

Theorem 19 (Stanley [83]). Aa is supersolvable iff G is chordal. 

Theorem 20 (Kung-Schenck [52]). If Aa has an induced k-cycle, 
then pdimD(Aa) 2: k-3. 

Example 21. The largest induced cycle of G below is a 6-cycle. 

A computation shows pdim(D(A)) = 3. 

Example 22. The largest induced cycle of G below is a 4-cycle. 

A computation shows pdim(D(A)) = 2. 

Problem 23. Find a formula for pdimD(Aa). 
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Definition 24. A triple (A', A, A") of arrangements consists of a 
choice of H E A, with A' = A\ H, A" = AI H. 

A main tool for proving freeness is Terao's addition-deletion theorem. 

Theorem 25 (Terao [87]). For a triple, any two of the following 
imply the third 

(1) D(A) ~ EBf=1 S( -bi). 
(2) D(A') ~ S( -bn + 1) EB~~l S( -bi)· 
(3) D(A") ~ EB~~lSfL(-bi)· 

Example 26. In Example 6, the A3 arrangement is free with ex­
ponents {1, 2, 3}. Let H be the line at infinity, which meets A3 in four 
points. Then D(A") is free, with exponents {1, 2}, so the non-Fano ar­
rangement is free with exponents {1, 3, 3}, which agrees with our earlier 
computation. Example 4.59 of [58] gives a free arrangement for which 
the addition-deletion theorem does not apply. 

As a corollary of Theorem 25, Terao showed that supersolvable ar­
rangements are free. 

Definition 27. An element X of a lattice is modular if for allY E L 
and all Z < Y, Z V (X 1\ Y) = (Z V X) 1\ Y. A central arrangement A 
is supersolvable if there exists a maximal chain 6 = X 0 < X1 < · · · < 
Xn = i of modular elements in L(A). 

For line configurations in IP'2 , the supersolvability condition simply 
means there is a singular point p E A such that every other singularity 
of A lies on a line of A which passes through p. For example, the A3 

arrangement is supersolvable, since any triple point is such a singularity. 
For arrangements in IP'2 , there is a beautiful characterization of freeness 
involving multiarrangements. 

Definition 28. A multiarrangemerit (A, m) consists of an arrange­
ment A, along with a multiplicity rrii E N for each H E A. 

Theorem 29. A ~ IP'2 is free if and only if 

(1) n(A, t) = (1 + t)(1 + at)(1 + bt) and 
(2) D(AIH, m) ~Sf L( -a) EB Sf L(-b), 

where (2) holds for all H = V(L) E A, with m(Hi)=J-lA(H n Hi)· 

The necessity of these conditions was shown by Ziegler in [100], and 
sufficiency was proved by Yoshinaga in [94]. In [93], Yoshinaga gives a 
generalization to higher dimensions. 
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§3. Multiarrangements 

The exponents of free multiarrangements are not combinatorial: 

Example 30. [Ziegler, [100]] Consider the two multiarrangements 
in IP'1 , with underlying arrangements defined by 

A1 V(x · y · (x + y). (x- y)) 
A2 = V(x · y · (x + y) · (x- ay)), 

with a-/=- 1. To compute D(A1 , (1, 1, 3, 3)), we must find all 

such that 

() = JI(x, y)8j8x + f28/8y 

()(x) E (x), ()(x + y) E (x + y) 3 

()(y) E (y), ()(x-y) E (x-y)3 . 

Thus, D(A1, (1, 1, 3, 3)) is the kernel of the matrix 

[ ~ : H (x 1 y)' ~ ]· 
1 -1 0 0 0 (x- y) 3 

Computations show that D(A1 , (1, 1, 3, 3)) has exponents {3, 5}, and 
D(A2 ,(1,1,3,3)) has exponents {4,4}. 

There is an analog of Theorem 15 for multiarrangements. 

Definition 31. DP(A, m) ~ AP(Deroc(S)) consists of() such that 

()(li, /2, ... , fv) E (li)m(!,), \:1 V(li) E A, fi E S. 

Theorem 32 (Abe-Terao-Wakefield [2]). Define 
£ 

w(A, m, t, x) L HS(DP(A, m), x)(t(x- 1)- 1)P. 
p=O 

x((A, m), t) ( -1)£ limx--+1 w(A, m, t, 1). 
£ 

If D 1 (A, m) !:::'.EBB( -di), then x((A, m), t) = IT (1 + dit). 
i=l 

In [1], Abe-Terao-Wakefield prove an addition-deletion theorem for 
niultiarrangements by introducing Euler multiplicity for the restriction. 
It follows from the Hilbert-Burch theorem that any (A, m) ~ lP'1 is free, 
which leads to the question of whether there exist other arrangements 
which are free for any m. In [3], Abe-Terao-Yoshinaga prove that any 
such arrangement is a product of one- and two-dimensional arrange­
ments. Nevertheless, several natural questions arise: 

Problem 33. Characterize the projective dimension of D(A, m). 

Problem 34. Define supersolvability for multiarrangements. 
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§4. Arrangements of plane curves 

For a collection of hypersurfaces 

c = uv(fi) ~ pn, 
i 

the module of derivations D(C) is obtained by substituting fi for li in 
Definition 7. It is not hard to prove that Saito's criterion still applies. 
Are there other freeness theorems? 

Example 35. For the arrangement C ~ JP2 depicted below 

we compute that D(C) ~ S( -1) EB S( -2) EB S( -5). 

This example can be explained by an addition-deletion theorem [79], 
but there is subtle behavior related to singular points. For the remainder 
of this section, C = Ui V(fi) ~ C2 is reduced plane curve, and if p E C 
is a singular point, translate sop= (0, 0). 

Definition 36. A plane curve singularity is quasihomogeneous if 
and only if there exists a holomorphic change of variables so that f ( x, y) = 
2:: Cijxiyj is weighted homogeneous: there exists a, (3 E Q such that 
2:: CijXi·cxyH3 is homogeneous. 

Definition 37. The Milnor number at (0, 0) is 

The Tjurina number at (0, 0) is 

For a projective plane curve V(Q) ~ JP2 , it is easy to see that the 
degree of Jac(Q) = L:pEsing(V(Q)) Tp· 
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Example 38. Let C be as below: 

If p is an ordinary singularity with k distinct branches, then /kp( C) = 
(k- 1)2 , so the sum of the Milnor numbers is 20. However, a compu­
tation shows that deg(Jc) = 19. All singularities are ordinary, but the 
singularity at the origin is not quasihomogeneous. 

Theorem 39 (Saito [71]). If C = V(f) has an isolated singularity 
at the origin, then f E J ac(f) iff f is quasihomogeneous. 

For arrangements of lines and conics such that every singular point 
is quasihomogeneous, [79] proves an addition/deletion theorem; [78] gen­
eralizes the result to curves of higher genus. 

Example 40. Let C be as below: 

D(C) has exponents {1, 2, 3}, which can be shown using the aforemen­
tioned addition-deletion theorem. Change C to C' via: 

y = 0 --+ X - 13y = 0. 

A computation shows that D(C') is not free. Thus, for line-conic ar­
rangements, freeness is not combinatorial. 

Problem 41. Define supersolvability for hypersurface arrangements. 

Problem 42. Give combinatorial bounds on pdimD(C). 

Problem 43. Analyze associated primes and Ext modules of D(C). 
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§5. The Orlik-Terao algebra and blowups 

The Orlik-Terao algebra is a symmetric analog of the Orlik-Solomon 
algebra. While the Orlik-Solomon algebra records the existence of de­
pendencies among sets of hyperplanes, the Orlik-Terao algebra records 
the actual dependencies. If codim nj=1 Hii < m, then there exist cii 
with 

m 

L Cii ·lii = 0 a dependency. 
j=l 

Definition 44. The Orlik-Terao ideal 
m 

IA = (L Cii (Yh · · · Yii · · · Yim) I over all dependencies) 
j=l 

The Orlik-Terao algebra is C(A) = IK[x1, ... , Xnl/ IA. 

Example 45. A= V(x1·X2·X3·(x1 +x2+x3)), the only dependency 
ish +l2+l3-l4 = 0, soIA= (Y2Y3Y4 + YlY3Y4 + YlY2Y4- YlY2Y3l· 

In [60], Orlik and Terao answer a question of Aomoto by considering 
the quotient AOT of C(A) by (x~, ... ,x~). They prove: 

Theorem 46 (Orlik-Terao [60]). HS(AOT, t) = n(A, t). 

Theorem 47 (Terao [90]). 

HS(C(A), t) = n(A, 1 ~ t). 

It is not hard to show that 

</> [ 1 1] 0 ---+ IA ---+ IK[x1, ... , Xn] ---+ lK T;_, · · · ' ln ---+ 0 

is exact, so V(IA) ~ ]pm-l is irreducible and rational. In any situation 
where weights of dependencies play a role, the Orlik-Terao algebra is 
the natural candidate to study. One such situation involves 2-formality: 

Definition 48. A is 2-formal if all dependencies are generated by 
dependencies among three hyperplanes. 

Theorem 49 (Falk-Randell [37]). If A is K(n, 1), A is 2-formal. 

Theorem 50 (Yuzvinsky [95]). If A is free, A is 2-formal. 

One reason that formality is interesting is that it is not a combina­
torial invariant: in Example 13, the arrangement for which the six triple 
points lie on a smooth conic is not 2-formal, and the arrangement for 
which the points do not lie on a smooth conic is 2-formal. 
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Theorem 51 ([79]). A is 2-formal iff codim(JAh = n- £. 

In [7], Brandt and Terao generalized the notion of 2-formality to 
k-formality: A is k-formal if all dependencies are generated by depen­
dencies among k + 1 or fewer hyperplanes. Brandt and Terao prove that 
every free arrangement is k-formal. 

Problem 52. Find an analog of Theorem 51 fork-formality. 

Example 53. The configuration of Example 45 consists of four 
generic lines: 

The Orlik-Terao ideal defines a cubic surface in IP3 , and a computation 
shows that V(IA) has four singular points. 

This can be interpreted in terms of a rational map. Let ai = QA/li, 
and define ¢A= [a1, ... ,an]· 

p£-1 ~ pn-1, 

Restrict to the case A ~ IP2 , and let XA ~ IP2 denote the blowup of 
IP2 at the singular points of A, with Eo denoting the pullback to XA of 
the class of a line on IP2 , and Ei the exceptional divisors over singular 
points of A. Let 

DA = (n -l)Eo- L p,(pi)Ei· 
p;EL2(A) 

Utilizing results of Proudfoot-Speyer [67] showing that C(A) is Cohen­
Macaulay and the Riemann-Roch theorem, [75] shows that the map ¢A 
is determined by the global sections of DA, and that ¢A 

(1) is an isomorphism on n*(IP2 \A) 
(2) contracts the lines of A to points 
(3) blows up the singularities of A. 
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Definition 54. A graded 8-module N has Castelnuovo-Mumford 
regularity d if Ext1 (N, 8)n = 0 for all j and all n :::; -d- j - 1. 

In terms of the betti table, the regularity of N is the label of the last 
non-zero row, so in Example 4, 8/ I has Castelnuovo-Mumford regularity 
one. The regularity of C(A) is determined in [75]: 

Theorem 55 ([75]). For A<::;;; lP'£-l, C(A) is£- !-regular. 

To see this, note that since C(A) is Cohen-Macaulay, quotienting 
C(A) by £ generic linear forms yields an Artinian ring whose Hilbert 
series is the numerator of the Hilbert series of C(A). The regularity of 
an Artinian module is equal to the length of the module, so the result 
follows from Theorem 47. 

A main motivation for studying C(A) is a surprising connection to 
nets and resonance varieties, which are the subject of §9. First, the 
definition of a net: 

Definition 56. Let 3 :::; k E Z. A k-net in lP'2 is a partition of the 
lines of an arrangement A into k subsets Ai, together with a choice of 
points Z <::;;; A, such that: 

(1) for every i =!= j and every LEA, L' E A1, L n L' E Z. 
(2) V p E Z and every i E {1, ... , k}, there exists a unique L E Ai 

with Z E L. 

In [53], Libgober and Yuzvinsky show that nets are related to the 
first resonance variety R1(A). The definition of a net forces each subset 
Ai to have the same cardinality, and if m = IAil, the net is called a 
(k, m)-net. Using work of [53] and [39], it is shown in [75] that 

Theorem 57. Existence of a (k, m) net implies that there is a de­
composition DA =A+ B with h0 (A) = 2 and h0 (B) = km- (mt1). 

Definition 58. A matrix of linear forms is !-generic if it has no 
zero entry, and cannot be transformed by row and column operations to 
have a zero entry. 

In [26], Eisen bud shows that if a divisor D on a smooth curve X 
factors as D ~ A+ B, with A having m-sections and B having n-sections, 
then the ideal of the image of X under the map defined by the global 
sections of D will contain the 2 x 2 minors of a 1-generic matrix. Using 
this result and Theorem 57, it can be shown that IA contains the ideal 
h(M) of 2 x 2 minors of a 1-generic 2 x ( km- (m:i 1)) matrix M. So if 

G = S(-l)km-(m,;t- 1
), the Eagon-Northcott complex [27] 

.. ·-+ 82(82)* 0 A4G-+ (82)* 0 A3G-+ A2G-+ A28 2 -+ 8/I2 (M)-+ 0 
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is a subcomplex of resolution of S/IA. The geometric content of Theo­
rem 57 is that it implies V(IA) lies on a scroll [27]. 

Example 59. For the A3 arrangement, the set of triple points Z 
gives a (3, 2) net, where the Ai correspond to normal crossing points: 
A1 = 121 34, Az = 131 24, A3 = 141 23. 

Let A = 2E0 - L Ep and B = 3E0 - L Ep. 
{PIJL(p)=2} pEL2(A) 

So n-(mt1) = 6-3 = 3 and I containsthe 2x2 minors of a 2x3 matrix, 
whose resolution appears in Example 4. The graded betti diagram for 
C[xo, ... , x5]/ IA is 

total 1 4 5 2 
0 1 - - -
1 - 4 2 -
2 3 2 

From this, it follows that the free resolution of S/IA is a mapping cone 
resolution [27]. The geometric meaning is that XA is the intersection of 
a generic quadric hypersurface with the scroll. 

Since D A contracts proper transforms of lines to points, it is not very 
ample. However, it follows from [75] that D A + Eo is very ample, and 
gives a De Concini-Procesi wonderful model (see next section) for the 
blowup. 

Problem 60. Determine the graded betti numbers of C(A). 

Problem 61. Relate Rk(A) to the graded betti numbers of C(A). 
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§6. Compactifications 

In [44], Fulton-MacPherson provide a compactification F(X, n) for 
the configuration space of n marked points on an algebraic variety X. 
The construction is quite involved, but the combinatorial data is that 
of An. In a related vein, in [18], De Concini-Procesi construct a won­
derful model X for a subspace complement MA = c.e \ A: a smooth, 
compact X such that X\ MA is a normal crossing divisor. Here it is the 
combinatorics which are complex. A key object in their construction is 

MA -----+ c.e x II lP'(c.e 1 D), 
DEC 

where G is a building set. In [41], Feichtner-Kozlov generalize the con­
struction of [18] to a purely lattice-theoretic setting. See [40] for addi­
tional background on this section. 

Definition 62. For a lattice L, a building set G is a subset of L, 
such that for all x E L, max{G<x} = {x1, ... ,xm} satisfies [O,x] ~ 
Tij=1 [6, Xj]· A building set contai:;;,s all irreducible x E L. 

Definition 63. A subset N of a building set G is nested if for any 
set of incomparable { X1, ... , xp} ~ N with p ~ 2, x1 V x 2 V · · · V Xp exists 
in L, but is not in G. 

Nested sets form a simplicial complex N(G), with vertices the ele­
ments of G (which are vacuously nested). 

Example 64. The minimal building set for A3 consists of the hy­
perplanes themselves, the triple intersections in L 2 , and the element i. 
Since i is a member of every face of N(G), the nested set complex N(G) 
is the cone over 

13 

123 134 

12 34 

There is an edge (12), (123) because there are no incomparable subsets 
with at least two elements, while (12), (34) is an edge because (12) V (34) 
exists in L (it is a normal crossing), but is not in G. 
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Suppose L is an atomic lattice, and G a building set in L. In [42], 
Feichtner and Yuzvinsky study a certain algebra associated to the pair 
L,G: 

D(L, G)= Z[x9 lg E G]/1, with x 9 of degree 2. 

where I is generated by 

IT x9; and L Xg; 

{g1,···,9n}(i!N(G)} g;?_HEh 

Theorem 65 (Feichtner-Yuzvinsky [42]). If A is a hyperplane ar­
rangement and G a building set containing i, then 

D(L, G):::=: H*(YA,a, Z), 

where YA,G is the wonderful model arising from the building set G. 

The importance of this is the relation to the Knudson-Mumford 
compactification Mo,n of the moduli space of n marked points on JP1 . 

Theorem 66 (De Concini-Procesi [19]). 

where G is the minimal building set for An-2. 

A presentation for the cohomology ring of Mo,n was first described 
by Keel in [49]; the description which follows from [42] is very economic. 

Example 67. By Theorem 65 and [19], 

H*(Mo,5, Z) :::=: D(L(A3), Gmin)· 

The nested set complex for A3 and Gmin appears in Example 64, so 
that D(L(A3), Gmin) is the quotient of a polynomial ringS with eleven 
generators by an ideal consisting of 6 linear forms (one form for each 
hyperplane) and 19 quadrics. To see that there are 19 quadrics, note that 
the space of quadrics in 11-variables has dimension 45, and N(Gmin) has 
15 + 11 = 26 edges (recall that i is not pictured). A computation shows 
that 

D(L(A3), Gmin) :::=: Z[x1, ... , x5]/ I, 

where I consists of all but one quadric of S (and includes all squares of 
variables). This meshes with the intuitive picture: to obtain a wonderful 
model, simply blow up the four triple points, so that M 0 ,5 is the corre­
sponding Del Pezzo surface X 4 , which has :2::: hi(X4 , Z)ti = 1 + 5t2 + t4 , 

agreeing with the computation. 

Problem 68. Analyze D(L, G) for other lattices. 
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§7. Associated Lie algebra of 1r1 and LCS ranks 

Let G be a finitely-generated group, with normal subgroups, 

defined inductively by Gk = [Gk_1 , G]. We obtain an associated Lie 
algebra 

00 

gr(G) ®.Q := ffi Gk/Gk+1 ® Q, 
k=l 

with Lie bracket induced by the commutator map. Let ¢k = ¢k (G) 
denote the rank of the k-th quotient. Presentations for 1r1 (MA) are 
given by Randell [68], Salvetti [73], Arvola [5], and Cohen-Suciu [13}. 
For computations, the braid monodromy presentation of [13] is easiest to 
implement. For a detailed survey of 1r1 (MA), see Suciu's survey [84]. The 
fundamental group is quite delicate, and in this section, we investigate 
properties of 1r1 ( MA) via the associated graded Lie algebra 

The Lefschetz-type theorem of Hamm-Le [46] implies that taking a 
generic two dimensional slice gives an isomorphism on 1r1 . Thus, to 
study 1r1 (MA), we may assume A~ C2 or JID2 . As shown by Rybnikov 
[70], 1r1(MA) is not determined by LA; whereas the Orlik-Solomon al­
gebra H*(MA,Z) is determined by LA. 

Example 69. In Example 6, we saw that the Hilbert series for A3 

is 1 + 6t + llt2 + 6t3. A computation shows that the LCS ranks begin 

6 4 10 21 54 ... 0 

For higher k, ¢k(7r1(A3)) = wk(2) + wk(3), where Wk is a Witt number. 
In general, we may encode the LCS ranks via 

For A3 , this is 

1 1 1 1 1 
(1-t)6 (1-t2)4 (1-t3)10 (1-t4 )21 (1-t5)54 

Expanding this and writing out the first few terms yields 

1 + 6t + 25t2 + 90t3 + 301t4 + 966t5 + 3025t6 + . 0 
• 0 
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If we multiply this with 

the result is 1, and is part of a general pattern. 

Theorem 70 (Kohno's LCS formula [51]). For the arrangement 
An-1 (graphic arrangement of Kn) 

oo n-1 

II (1- tk)<l>k = II (1- it). 
k=1 i=1 

This explains the computation of Example 69. We now compute the 
free resolution of the residue field A/mas an A-module, where m = (E1 ). 

Let 
bij = dim<QI Torf(Q, Q)J. 

Example 71. For A3, we compute bij = 0 if i-=/=- j, and 

2:: biiti = 1 + 6t + 25t2 + 9ot3 + 301t4 + 966t5 + 3o25t6 + .... 
i 

The bii are the coefficients of the formal power series in Example 69! 

Kohno's result was the first of a long line of results on LCS formulas 
for certain special families of arrangements 

(1) Braid arrangements: Kohno [51] 
(2) Fiber type arrangements: Falk-Randell [36] 
(3) Supersolvable arrangements: Terao [88] 
(4) Lower bound for ¢k: Falk [33] 
(5) Koszul arrangements: Shelton-Yuzvinsky [81] 
(6) Hypersolvable arrangements: Jambu-Papadima [48] 
(7) Rational K(n, 1) arrangements: Papadima-Yuzvinsky [64] 
(8) MLS arrangements: Papadima-Suciu [61] 
(9) Graphic arrangements: Lima-Filho-Schenck [54] 

(10) No such formula in general: Peeva [65] 

Let IL(H1 (MA, IK)) denote the free Lie algebra on H1 (MA, IK). Dualizing 
the cup product gives a map 

Following Chen [10], define the holonomy Lie algebra 
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where IA is the Lie ideal generated by Im(c). As noted by Kohno in [50], 
taking transpose of cup product shows that the image of c is generated 
by 

k 

[x1, L.::xi], 
i=1 

where Xi is a generator of IL(H1 (X,JK)) corresponding to Hi, and the 
set {H1 , ... , Hk} is a maximal dependent set of codimension two, so 
corresponds to an element of L 2 (A). The upshot is that 

This was first made explicit by Peeva in [65]; the proof runs as follows. 
First, Brieskorn [8] showed that MA is formal, in the sense of [85]. Using 
Sullivan's work and an analysis of the bigrading on Hirsch extensions, 
Kohno proved 

Theorem 72 (Kohno). ¢k(g) = ¢k(fJA)· 

Thus 

(1) TI%':1 (1-t
1k)<Pk = HS(U(f:JA, t)), which follows from Kohnos 

work and Poincar6-Birkhoff-Witt. _, 
(2) Shelton-Yuzvinsky show in [81] that U(f:JA) = A is the qua­

dratic dual of the quadratic Orlik-Solomon algebra. 
(3) Results of Priddy-Lofwall show that the quadratic dual is re­

lated to diagonal Yoneda Ext-algebra via 

11' ~ E9Ext~(Q,Q)i. 
i 

Results of Peeva [65] and Roos [69] show that in general there does 
not exist a standard graded algebra R such that fl%"= 1 (1 - tk)<l>k = 
HS(R, -t). For any quotient of a free Lie algebra, can we: 

Problem 73. Find spaces for which there is a simple generating 
function for ¢k· 

Problem 74. Relate f:JA to EB fJAx, as in [61]. 
XEL2 

As Shelton-Yuzvinsky proved in [81], the natural class of arrange­
ments for which an LCS formula holds are arrangements for which A is 
a Koszul algebra, which we tackle next. 
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§8. Koszul algebras 

Let T(V) denote the tensor algebra on V. 

Definition 75. A quadratic algebra is T(V) I I, with I <;;;; V 181 V. 

A quadratic algebra A has a quadratic dual Aj_ = T(V*)II_i: 

(a 181 {3 I a( a)· {3(b) = 0 IVa 181 bE I)= Ij_ <;;;; V* 181 V*. 

Definition 76. A is Koszul if Torf(JK, IK)j = 0, i =f. j. 

A quadratic algebra A is Koszul iff the minimal free resolution of 
the residue field over A has matrices with only linear entries. 

Example 77. The Hilbert series of S = T(!Kn)l (xi 181 Xj- Xj 181 xi) 
is 11 (1- t)n, and a computation shows that the minimal free resolution 
of lK over S is the Koszul complex, so dimoc Torf (IK, IK)i = (7). Since 

Ij_ = (xi 181 Xj + Xj 181 xi), 

we see that 8 1 = E. The Hilbert series of E is (1 + t)n = l:~=O (7)ti. 
A computation shows that dimoc Torf (IK, JK)i = (n-;+i), which are the 
coefficients in an expansion of 1 I ( 1 - t) n. 

Froberg [43] proved that if I is a quadratic monomial ideal then 
S I I is Koszul. By uppersemicontinuity [ 4 7], this means S I I is Koszul 
if I has a quadratic Grobner basis (QGB). See Example 81 below for 
a Koszul algebra having no QGB. Both S and E are Koszul, and the 
relation between their Hilbert series is explained by: 

Theorem 78. If A is Koszul, so is A', and 

HS(A, t) · HS(A 1, -t) = 1. 

Theorem 79 (Bjorner-Ziegler [6]). The Orlik-Solomon algebra has 
a QGB iff A is supersolvable. 

Example 80. A computation shows that the Orlik-Solomon alge­
bra of A3 has a quadratic Grobner basis, so is Koszul. For the non-Fano 
arrangement, dimoc Tort"(IK, IK)4 = 1, so A is not Koszul. 

Example 81. [Caviglia [9]] Map R = IK[a1 , ... a9 ] ~ IK[x, y, z] 
using all cubic monomials of IK[x, y, z] except xyz, and let I = ker(¢). 
Then Rl I is Koszul, but has no quadratic Grobner basis. 

Problem 82. For Orlik-Solomon algebras, does Koszul imply su­
persolvable? In the case of graphic arrangements, it does [76]. 

Problem 83. Find a combinatorial description of Torf(JK, IK)j. 
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§9. Resonance varieties 

Let A be the Orlik-Solomon algebra of MA, with IAI = n. For each 
a = 2:: aiei E A1, we consider the Aomoto complex (A, a), whose ith 

term is Ai, and differential is A a: 

This complex arose in Aomoto's work [4] on hypergeometric functions, 
as well as in the study of cohomology with local system coefficients 
[31], [74]. In [96], Yuzvinsky showed that for a generic a, the Aomoto 
complex is exact; the resonance varieties of A are the loci of points 
a= L~=l aiei +-+ (a1 : · · · : an) E lP'n-l for which (A, a) fails to be exact, 
that is: 

Definition 84. For each k 2: 1, 

In [34], Falk gave necessary and sufficient conditions for a E R1(A). 

Definition 85. A partition II of A is neighborly if for allY E L2(A) 
and 1r a block of II, 

Falk proved that components of R 1 (A) arise from neighborly parti­
tions; he conjectured that R1 (A) is a union of linear components. This 
was established (essentially simultaneously) by Cohen-Suciu [14] and 
Libgober-Yuzvinsky [53]. Libgober and Yuzvinsky also showed that 
R 1 (A) is a disjoint union of positive dimensional subs paces in lP'( El), 
and Cohen-Orlik [12] show that Rk~2 (A) is also a subspace arrange­
ment. 

On the other hand, as shown by Falk in· [35], in positive charac­
teristic, the components of R1 (A) can meet, and need not be linear. 
The approach of Libgober-Yuzvinsky involves connecting R 1 (A) to pen­
cils/nets/webs and there is much recent work in the area, e.g. [39], [64] 
[99]. Of special interest is the following conjecture relating R 1 (A) and 
the LCS ranks ¢k: 

Conjecture 86 (Suciu [84]). If ¢4 = B4, then 

k~l LiER1 (A) 

where ()4 is the fourth Chen rank (Definition 88). 
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Example 87. Let A= V(xy(x- y)z) <;;; lP'2 , and E = A(IK4 ), with 
generators e1 , ... , e4 , so that 

Since 8(e1e2e3e4) = e1 1\ 8(e1e2e3)- e48(e1e2e3), the second relation is 
unnecessary. To compute R 1 (A), we need only the first two differentials 
in the Aomoto complex. Using e13, e14, e23, e24, e34 as a basis for A2, we 

4 

find that e1 f--1 e1 1\ CL: aiei) = a2e12 + a3e13 + a4e14· Since 
i=l 

in A, e12 = e13 - e23, so that 

This means e1 f--1 (a2 + a3)e13 + a4e14- a2e23; similar computations for 
the other ei show that the Aomoto complex is 

a2 + a3 -a1 -a1 0 
a1 a4 0 0 -a1 
a2 -a2 al + a3 -a2 0 
a3 0 a4 0 -a2 

0 ---+ ][{1 
a4 ][{4 0 0 a4 -a3 ocs. 

The rank of the first map is always one, R 1 (A) <;;; JP'3 is the locus where 
the second matrix has kernel of dimension at least two, so the 3 x 3 minors 
must vanish. A computation shows this locus is (a4, a 1 + a 2 + a3). 

Letting a = L~=l aiei, observe that a E R 1 (A) iff there exists a 
bE E 1 so that a 1\ bE ! 2 , so that R1 (A) is the locus of decomposable 
2-tensors in ! 2 . Since ! 2 is determined by the intersection lattice L(A) 
in rank:::; 2, to study R1 (A), it can be assumed that A<;;; lP'2 . 

While the first resonance variety is conjecturally connected (under 
certain conditions) to the LCS ranks, R 1 (A) is always connected to the 
Chen ranks introduced by Chen in [10]. 

Definition 88. The Chen ranks of G are the LCS ranks of the 
maximal metabelian quotient of G: 

where G' = [G, G]. 



346 H. Schenck 

Conjecture 89 (Suciu [84]). Let G = G(A) be an arrangement 
group, and let hr be the number of components of R 1 (A) of dimension 
r. Then, fork» 0: 

~ (r+k-1) ~(G)=(k-1)~~ k . 
r2:1 

fh(G) = (k- 1). 

To discuss the Chen ranks, we need some background. The Alexander in­
variant G'/G" is a module over Z[G/G']. For arrangements, Z[G/G'] = 
Laurent polynomials inn-variables. In [55], Massey showed that 

L ek+2 tk = H8(gr G' /G" 0 Q, t). 
k2:0 

It turns out to be easier to work with the linearized Alexander invariant 
B introduced by Cohen-Suciu in [15] 

(A2 EB E3) 0 8 ~ E2 0 8 ---+ B ---+ 0, 

where ~ is built from the Koszul differential and ( E2 --+ A2 ) t. 

Theorem 90 (Cohen-Suciu [15]). 

V(ann B)= R1(A). 

Theorem 91 (Papadima-Suciu [62]). Fork;::::: 2, 

L ek tk = H8(B, t). 
k2:2 

This shows that the Chen ranks are combinatorially determined, 
and depend only on L(A) in rank:::; 2. 

Example 92. For the A3 arrangement depicted in Example 59, 
write eo = £12, e1 = £13, e2 = £23, e3 = £24, e4 = £14, e5 = £34. With 
this labelling 

I2 = (8(e1e4e5), 8(eoe1e2), 8(e2e3e5), 8(eoe3e4)), 

from which a presentation for B can be computed: 

8 14 --+ 8 4 --+ B --+ 0. 

A computation shows that R 1 (A3 ) is 
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V(x1 + x4 + x5, xo, x2, x3)U 
V(x2 + X3 + x5, xo, x1, x4)U 
V(xo + x3 + x4, x1, x2, x4)U 
V(xo + x1 + x2, x3, x4, x5)U 

V(xo + X1 + x2, Xo- x5, x1 - x3, X2- x4), 

and that the Hilbert Series of B is: 

On the other hand, the graded betti numbers Torf(A3 , IK)j are 

total 1 4 10 21 45 91 
0 1 
1 - 4 10 15 20 25 
2 - - - 6 25 66 

So the Hilbert series forB encodes the ranks of Torf(A3 ,IK)i+l· This 
suggests a connection between R 1 (A) and Torf(A3 ,IK)i+1 , which we 
tackle in the next section. 

Besides the connection to resonance varieties, there is a second rea­
son to study Torf(A, IK): the numbers bij = dimoc Torf(IK, IK)j studied 
in §7 grow very fast, while the numbers b~j = dimoc Torf(A, IK)j grow 
at a much slower rate. 

Example 93. For the non-Fano arrangement of Example 6 

total 1 7 23 63 165 387 
0 1 
1 - 6 17 27 36 45 
2 - 1 6 36 129 342 
3 - - -

b~J' 

total 1 7 35 156 664 2773 * 
0 1 7 34 143 560 2108 * 
1 1 13 103 646 * 
2 - - - 1 19 * 
3 - - - 1 

bij. 
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The spaces Torf(A,IK) and Torf(IK,IK) are related via the change 
of rings spectral sequence: 

Torf (Torf (A, IK), IK) ===? Tortt-j (IK, IK). 

For arrangements, details of this relationship are investigated in [76]. 

Problem 94. Find a combinatorial description of Torf(A, IK)J. 

Problem 95. If A is Koszul, does this provide data on Torf (A, IK)j? 

§10. Linear syzygies 

It is fairly easy to see that there is a connection between R1(A) and 
linear syzygies, that is, to the module Torf (A, IK)J. Since 

a 1\ bE h ---+a 1\ b = L cdi, Ci E IK, fi E I2, 

the relations a 1\ a 1\ b = 0 = b 1\ a 1\ b yield linear syzygies on ! 2 : 

Example 87, continued. Since 8(e1e2e3) = (e1 - e2) 1\ (e2 - e3), 
both ( e1 - e2) and ( e2 - e3) are in R1 (A), as is the line connecting them: 

s(e1- e2) + t(e2- e3) ~ R1(A) ~ lP'(El). 

Parametrically, this may be written 

(s: t- s: -t: 0) = V(a4, a1 + a2 + a3), 

so s( e1 - e2) + t( e2 - e3) 1\ 8( e1 e2e3) = 0 gives a family of linear syzygies 
on I 2, parameterized by lP'1 . 0 

To make the connection between linear syzygies and the module B 
precise, we need the following result: 

Theorem 96 (Eisenbud-Popescu-Yuzvinsky [29]). For an arrange­
ment A, the Aomoto complex is exact, as a sequence of 8-modules: 

0 ~ Ao ® S ~ A1 ® S ~ · · · ~At ® S ~ F(A) ~ 0 . 

Theorem 97 (Schenck-Suciu [77]). The linearized Alexander in­
variant B is determined by F(A): 

B ~ Ext~- 1 (F(A), S). 

Furthermore, fork?: 2, dimoc Bk = dimoc Tor~-l (A, IK)k· 
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Using this, it is possible to prove one direction of Conjecture 89. 

Theorem 98 (Schenck-Suciu [77]). Fork» 0, 

ek(G)?:(k-1) L cimLi:k-1)· 
LiER1 (A) 

Problem 99. Prove the remaining direction of Conjecture 89. 

What makes all this work is the Bernstein-Gelfand-Gelfand corre­
spondence, which is our final topic. 

§ 11. Bernstein-Gelfand-Gelfand correspondence 

LetS= Sym(V*) and E = 1\(V). The Bernstein-Gelfand-Gelfand 
correspondence is an isomorphism between derived categories of bounded 
complexes of coherent sheaves on IP'(V*) and bounded complexes of 
finitely generated, graded E-modules. Although this sounds exotic, from 
this it is possible to extract functors 

R: finitely generated, graded S-modules --+ linear free E-complexes. 
L: finitely generated, graded E-modules --+ linear free S-complexes. 

The point is that problems can be translated to a (possibly) simpler 
setting. For example, BGG yields a very fast way to compute sheaf 
cohomology, using Tate resolutions. 

Definition 100. Let P be a finitely generated, graded E-module. 
Then L(P) is the complex 

n 
where a = I: Xi ® ei, so that 1 ® p e-+ I: xi ® ei 1\ p. 

i=l 

Note that elements of V* have degree = 1, and elements of V have 
degree= -1. 

Example 101. P = E = f\JK3 . Then we have 

0 ----+ S ® Eo --+ S ® E1 --+ S ® E2 --+ S ® E3 --+ 0. 

Clearly 1 e-+ I:~ Xi ® ei. For d1 

e1 e-+ -x2e12 - X3e13 

e2 e-+ x1 e12 - x3e23 
e3 e-+ x1e13 + x2e23 
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d2 : e12 r--+ xae123, e13 r--+ -x2e123 e23 r--+ x1 e123· 

Thus, L(E) is 

[ ·~~·I I=~: ~1 
: 1 l 

81 ~ 83 _:___o __ -_x_3_x_2---=-+ 83 _:_[_x_3_-_x_2 __ x1----'+] 81. 

This is simply the Koszul complex. 

If M is a finitely generated, graded 8-module, then R(M) is the 
complex 

"' ·a "' ·a "' ·a 
·· · ~E®Mi-1 --E®Mi --E®Mi+l-- · ··, 

n A 

where a= 2:: ei ®Xi, so 1 ® m r--+ 2:: ei ®Xi· m, and E is :OC-dual toE: 
i=l 

E ':o:' E(n) = Homoc(E, :OC). 

Just as L(P) = S ®oc P, R(M) = Homoc(E, M). 

Example 3, continued. If M = :OC[x0 , x 1]/ (x0 x1 , x5), then 

1 r--+ eo ® xo + e1 ® x1 

xo r--+ eo ® x5 + e1 ® xox1 
x1 r--+ eo ® xox1 + e1 ® xi 
n tO.. n + tO.. n+l x 1 r--+ eo 'C>I xox1 e1 'C>I x 1 . 

Thus, R( M) is 

E(2) 1 [ :~] E(3) 2 [ 0 e1 ] E(4? hl E(5? hl. · ·. 
This complex is exact, except at the second step. The kernel of 

[ 0 e1 J 

is generated by a = [1, OJ and (3 = [0, e1], with relations im(dl) 
(3 + eoa = 0, e1(3 = 0, so that 

H 1 (R(M)) ':o:' E(3)/eo 1\ e1. 

The betti table for M is: 

total 1 2 1 
0 1 - -
1 - 2 1 

Note that in this example, M is 1-regula,r. 
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Theorem 102 (Eisenbud-Fl0ystad-Schreyer [28]). 
. s 

H 1 (R(M))HJ =Tori (M, IK)i+J· 

Corollary 103. The Castelnuovo-Mumford regularity of M is :S: d 
iff Hi(R(M)) = 0 for all i >d. 

What can be said about higher resonance varieties? In [12], Cohen­
Orlik prove that for k 2': 2, 

Rk(A) = U Li linear. 

As observed by Suciu, in general the union need not be disjoint. 

Theorem 104 (Eisenbud-Popescu-Yuzvinsky [29]). Rk(A) C 

Rk+1 (A). 

The key point is that 

Hk(A, a) f= 0 iff Torf_k(F(A), Sji(p)) =/= 0. 

The result follows from interpreting this in terms of Koszul cohomology. 

Theorem 105 (Denham-Schenck [21]). Higher resonance may be 
interpreted via Ext: 

Rk(A) = U V(annExtR-k' (F(A), S)). 
k'Sck 

Furthermore, the differentials in free resolution of A over E can be an­
alyzed using EGG and the Grothendieck spectral sequence. 

For any coherent sheaf F on lP'd, there is a finitely generated, graded 
saturated S-module M whose sheafification is F. IfF has Castelnuovo­
Mumford regularity r, then the Tate resolution of F is obtained by 
splicing the complex R(M;:::r): 

with a free resolution P. for the kernel of dr: 

· · · ____,.. P1 ____,.. Po ----""" E Q9 Mr ____,.. E Q9 Mr+ 1 ____,.. · · · 

~ / 

By Corollary 103, R( M ;:::r) is exact except at the first step, so this 
yields an exact complex of free E-modules. 
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Example 106. Since M = S has regularity zero, we obtain Cartan 
resolutions in both directions, and the splice map E ----t E = E(d + 1) is 

multiplication by e0 1\ e1 1\ · · · 1\ ed = ker [ eo, , ed ] t. 

Theorem 107 (Eisenbud-Floystad-Schreyer [28]). The ith free mod­
ule Ti in a Tate resolution for F satisfies 

Ti = EB E ® HJ(F(i- j)). 
j 

Example 4, continued. The betti table for the twisted cubic shows 
that S /I has regularity one, which provides us the information needed 
to compute the Tate resolution. Plugging the resulting numbers into 
Theorem 107 shows that 

i -3 -2 -1 0 1 2 
h1 (F(i)) 8 5 2 0 0 0 
hu(F(i)) 0 0 0 1 4 7 

Does this make sense? Since F =Ox = OlP'1 (3), 

and 

which agrees with our earlier computation. 0 

Problem 108. Investigate the Tate resolution for D(A) and C(A). 

Conclusion. In this note we have surveyed a number of open prob­
lems in arrangements. The beauty of the area is that these problems 
are all interconnected. Perhaps the most central objects are the reso­
nance varieties, which are related to both the LCS ranks studied in §7 
and §8 using Koszul and Lie algebras, and to the Chen ranks. The re­
sults of §5 tie resonance to the Orlik-Terao algebra, and [75] notes that 
JA ~ H 0 (DA), so the Orlik-Terao algebra is also linked to D(A) and 
freeness. But freeness ties in to multiarrangements, and can be general­
ized to hypersurface arrangements, the topics of §3 and §4. To complete 
the circle, recent work of Cohen-Denham-Falk-Varchenko [11] relates 
freeness to R 1 (A). In short, everything is connected! 
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noted in the introduction, the calculations carried out in this survey may 
be performed using the hyperplane arrangements package of Denham 
and Smith [22] in Macaulay2 [45]. Code for the individual examples is 
available at http://www. math. uiuc. edu;-schenck/. 

References 

[ 1 ] T. Abe, H. Terao and M. Wakefield, The Euler multiplicity and addition­
deletion theorems for multiarrangements, J. Lond. Math. Soc. (2), 77 
(2008), 335-348. 

[ 2 ] T. Abe, H. Terao and M. Wakefield, The characteristic polynomial of a 
multiarrangement, Adv. Math., 215 (2007), 825-838. 

[ 3 ] T. Abe, H. Terao and M. Yoshinaga, Totally free arrangements of hyper­
planes, Proc. Amer. Math. Soc., 137 (2009), 1405-1410. 

[ 4 ] K. Aomoto, Un theoreme du type de Matsushima-Murakami concernant 
l'integrale des fonctions multiformes, J. Math. Pures Appl. (9), 52 
(1973), 1-11. 

5 W. Arvola, The fundamental group of the complement of an arrangement 
of complex hyperplanes, Topology, 31 (1992), 757-765. 

6 A. Bjorner and G. Ziegler, Broken circuit complexes: factorizations and 
generalizations, J. Combin. Theory Ser. B, 51 (1991), 96-126. 

[ 7 ] K. Brandt and H. Terao, Free Arrangements and Relation Spaces, Discrete 
Comput. Geom., 12 (1994), 49-63. 

[ 8 ] E. Brieskorn, Surles groupes de tresses, In: Seminaire Bourbaki, 1971/72, 
Lecture Notes in Math., 317, Springer-Verlag, 1973, pp. 21-44. 

[ 9 ] G. Caviglia, The pinched veronese is Koszul, J. Algebraic Combin., 30 
(2009), 539-548. 

[ 10 ] K. Chen, Iterated integrals of differential forms and loop space cohomology, 
Ann. of Math. (2), 97 (1973), 217-246. 

[ 11] D. Cohen, G. Denham, M. Falk and A. Varchenko, Critical points and res­
onance of hyperplane arrangements, Canad. J. Math., 63 (2011), 1038-
1057. 

[ 12] D. Cohen and P. Orlik, Arrangements and local systems, Math. Res. Lett., 
7 (2000), 299-316. 

[ 13] D. Cohen and A. Suciu, The braid monodromy of plane algebraic curves 
and hyperplane arrangements, Comment. Math. Helv., 72 (1997), 285-
315. 

[ 14] D. Cohen and A. Suciu, Characteristic varieties of arrangements, Math. 
Proc. Cambridge Phil. Soc., 127 (1999), 33-53. 

[ 15] D. Cohen and A. Suciu, Alexander invariants of complex hyperplane ar­
rangements, Trans. Amer. Math. Soc., 351 (1999), 4043-4067. 

[ 16 J D. Cohen and A. Suciu (eds.), Arrangements in Boston: A Conference 
on Hyperplane Arrangements, Topology Appl., 118, Elsevier Sci. B.V., 
2002. 



354 H. Schenck 

[ 17] W. Decker and D. Eisenbud, Sheaf algorithms using the exterior algebra, 
In: Computations in Algebraic Geometry using Macaulay 2, Springer­
Verlag, 2002. 

[ 18] C. De Concini and C. Procesi, Wonderful models of subspace arrange­
ments, Selecta Math. (N.S.), 1 (1995), 459-494. 

[ 19] C. De Concini and C. Procesi, Hyperplane arrangements and holonomy 
equations, Selecta Math. (N.S.), 1 (1995), 495-535. 

[ 20] G. Denham, Homological aspects of hyperplane arrangements, In: Ar­
rangements, Local Systems and Singularities, Birkhauser, 2010. 

[ 21] G. Denham and H. Schenck, The double Ext spectral sequence and rank 
varieties, preprint, 2010. 

[ 22] G. Denham and G. G. Smith, Hyperplane Arrangements: A Macaulay2 
Package http:/ /www.math.uiuc.edu/Macaulay2/. 

[ 23] G. Denham and A. Suciu, On the homotopy Lie algebra of an arrangement, 
Michigan Math. J., 54 (2006), 319-340. 

[ 24] G. Denham and S. Yuzvinsky, Annihilators of Orlik-Solomon relations, 
Adv. in Appl. Math., 28 (2002), 231-249. 

[ 25] A. Dimca and S. Yuzvinsky, Lectures on Orlik-Solomon algebras, in: Ar­
rangements, Local Systems and Singularities, Birkhauser, 2010. 

[ 26] D. Eisenbud, Linear sections of determinantal varieties, Amer. J. Math., 
110 (1988), 541-575. 

[ 27] D. Eisenbud, The Geometry of Syzygies, Springer-Verlag, 2004. 
[ 28] D. Eisenbud, G. Fl0ystad and F.-0. Schreyer, Sheaf cohomology and free 

resolutions over exterior algebras, Trans. Amer. Math. Soc., 355 (2003), 
4397-4426. 

[ 29] D. Eisenbud, S. Popescu and S. Yuzvinsky, Hyperplane arrangement co­
homology and monomials in the exterior algebra, Trans. Amer. Math. 
Soc., 355 (2003), 4365-4383. 

[ 30] F. El Zein, A. Suciu, M. Tosun, M Uludag and S. Yuzvinsky (eds.), 
Arrangements, Local Systems and Singularities, Progr. Math., 283, 
Birkhauser, 2010. 

[ 31] H. Esnault, V. Schechtman and E. Viehweg, Cohomology of local systems 
on the complement of hyperplanes, Invent. Math., 109 (1992), 557-561. 

[ 32] M. Falk, The minimal model of the complement of an arrangement of 
hyperplanes, Trans. Amer. Math. Soc., 309 (1988), 543-556. 

[ 33] M. Falk, The cohomology and fundamental group of a hyperplane com­
plement, In: Singularities, Contemporary Math., 90, Amer. Math. Soc, 
Providence, RI, 1989, pp. 55-72. 

[ 34] M. Falk, Arrangements and cohomology, Ann. Combin., 1 (1997), 135-157. 
[ 35] M. Falk, Resonance varieties over fields of positive characteristic, Int. 

Math. Res. Not. IMRN, 2007, no. 3. 
[ 36] M. Falk and R. Randell, The lower central series of a fiber-type arrange­

ment, Invent. Math., 82 (1985), 77-88. 



Hyperplane arrangements: computations and conjectures 355 

[ 37] M. Falk and R. Randell, On the homotopy theory of arrangements II, In: 
Arrangements-Tokyo 1998, Adv. Stud. Pure. Math., 27, Kinokuniya, 
Tokyo, 2000, pp. 93-125. 

[ 38] M. Falk and H. Terao (eds.), Arrangements-Tokyo 1998, Proceedings of 
the Workshop on Mathematics Related with Arrangements of Hyper­
planes, celebrating the 60th birthday of Peter Orlik, Math. Soc. Japan, 
Tokyo, 2000. 

[ 39] M. Falk and S. Yuzvinsky, Multinets, resonance varieties, and pencils of 
plane curves, Compos. Math., 143 (2007), 1069-1088. 

[ 40] E. Feichtner, De Concini-Procesi wonderful arrangement models: a dis­
crete geometer's point of view, In: Combinatorial and Computational 
Geometry, Math. Sci. Res. Inst. Publ., 52, Cambridge Univ. Press, Cam­
bridge, 2005, ppp. 333-360. 

[ 41] E. Feichtner and D. Kozlov, Incidence combinatorics of resolutions, Selecta 
Math., 10 (2004), 37-60. 

[ 42] E. Feichtner and S. Yuzvinsky, Chow rings of toric varieties defined by 
atomic lattices, Invent. Math., 155 (2004), 515-536. 

[ 43] R. Froberg, Determination of a class of Poincare series, Math. Scand., 37 
(1975), 29-39. 

[ 44] W. Fulton and R. MacPherson, A compactification of configuration spaces, 
Ann. of Math. (2), 139 (1994), 183-225. 

[ 45] D. Grayson and M. Stillman, Macaulay2: a software package for commu­
tative algebra http:/ /www.math.uiuc.edu/Macaulay2/. 

[ 46] H. Hamm and D. T. Le, Un theoreme de Zariski du type de Lefschetz, 
Ann. Sci. Ecole Norm. Sup., 6 (1973), 317-366. 

[ 47] J. Herzog, Finite free resolutions, In: Computational Commutative and 
Non-Commutative Algebraic Geometry, NATO Sci. Ser. III, Comput. 
Syst. Sci., 196, lOS, Amsterdam, 2005, pp. 118-144. 

[ 48] M. Jambu and S. Papadima, A generalization of fiber-type arrangements 
and a new deformation method, Topology, 37 (1998), 1135-1164. 

[ 49] S. Keel, Intersection theory of moduli space of stable n-pointed curves of 
genus zero, Trans. Amer. Math. Soc., 330 (1992), 545-574. 

[50] T. Kohno, On the holonomy Lie algebra and the nilpotent completion 
of the fundamental group of the complement of hypersurfaces, Nagoya 
Math J., 92 (1983), 21-37. 

[51] T. Kohno, Serie de Poincare-Koszul associee aux groupes de tresses pures, 
Invent. Math., 82 (1985), 57-75. 

[52] J. Kung and H. Schenck, Derivation modules of orthogonal duals of hy­
perplane arrangements, J. Algebraic Combin., 24 (2006), 253-262. 

[ 53] A. Libgober and S. Yuzvinsky, Cohomology of the Orlik-Solomon algebras 
and local systems, Compositio Math., 121 (2000), 337-361. 

[54] P. Lima-Filho and H. Schenck, Holonomy Lie algebras and the LCS for­
mula for subarrangements of An, Int. Math. Res. Not. IMRN, 2009, no. 
8, 1421-1432. 



356 H. Schenck 

[55] W. Massey, Completion of link modules, Duke Math. J., 47 (1980), 399~ 
420. 

[56] J. Morgan, The algebraic topology on smooth algebraic varieties, Inst. 
Hautes Etudes Sci. Publ. Math., 48 (1978), 137~204. 

[57] P. Orlik and L. Solomon, Combinatorics and topology of complements of 
hyperplanes, Invent. Math., 56 (1980), 167~189. 

[ 58] P. Orlik and H. Terao, Arrangements of Hyperplanes, Grundlehren Math. 
Wiss., 300, Springer-Verlag, 1992. 

[59] P. Orlik and H. Terao, Arrangements and Hypergeometric Integrals, MSJ 
Memoirs, 9, Math. Soc. Japan, Tokyo, 2007. 

[ 60] P. Orlik and H. Terao, Commutative algebras for arrangements, Nagoya 
Math. J., 134 (1994), 65~73. 

[ 61] S. Papadima and A. Suciu, When does the associated graded Lie algebra of 
an arrangement group decompose?, Comment. Math. Helv., 81 (2006), 
859~875. 

[ 62] S. Papadima and A. Suciu, Chen Lie algebras, Int. Math. Res. Not., 2004, 
no. 21, 1057~ 1086. 

[ 63] S. Papadima and A. Suciu, Higher homotopy groups of complements of 
complex hyperplane arrangements, Adv. Math., 165 (2002), 71~100. 

[ 64] S. Papadima and S. Yuzvinsky, On rational K[1r, 1] spaces and Koszul 
algebras, J. Pure Applied Algebra, 144 (1999), 157~167. 

[ 65 ] I. Peeva, Hyperplane arrangements and linear strands in resolutions, 
Trans. Amer. Math. Soc., 355 (2003), 609~618. 

[ 66] J. Pereira and S. Yuzvinsky, Completely reducible hypersurfaces in a pen­
cil, Adv. Math., 219 (2008), 672~688. 

[ 67] N. Proudfoot and D. Speyer, A broken circuit ring, Beitriige Algebra 
Geom., 47 (2006), 161~166. 

[ 68 ] R. Randell, The fundamental group of the complement of a union of com­
plex hyperplanes, Invent. Math., 69 (1982), 103~108. 

[ 69] J. E. Roos, The homotopy Lie algebra of a complex hyperplane arrange­
ment is not necessarily finitely generated, Experiment. Math., 17 (2008), 
129~143. 

[ 70] G. Rybnikov, On the fundamental group of the complement of a complex 
hyperplane arrangement, DIMACS Tech. Report 94-13 (1994), 33~50. 

[ 71] K. Saito, Quasihomogene isolierte Singularitiiten von Hyperfliichen, In­
vent. Math., 14 (1971), 123~142. 

[ 72] K. Saito, Theory of logarithmic differential forms and logarithmic vector 
fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 265~291. 

[ 73] M. Salvetti, Topology of the complement of real hyperplanes in <CN, Invent. 
Math., 88 (1987), 603~618. 

[ 74] V. Schechtman, H. Terao and A. Varchenko, Local systems over com­
plements of hyperplanes and the Kac~Kazhdan conditions for singular 
vectors, J. Pure Appl. Algebra, 100 (1995), 93~102. 

[ 75] H. Schenck, Resonance varieties via blowups of P 2 and scrolls, Int. Math. 
Res. Not. IMRN, 20 (2011), 4756~4778. 



Hyperplane arrangements: computations and conjectures 357 

[ 76] H. Schenck and A. Suciu, Lower central series and free resolutions of hyper­
plane arrangements, Trans. Amer. Math. Soc., 354 (2002), 3409-3433. 

[ 77] H. Schenck and A. Suciu, Resonance, linear syzygies, Chen groups, and the 
Bernstein-Gelfand-Gelfand correspondence, Trans. Amer. Math. Soc., 
358 (2006), 2269-2289. 

[ 78] H. Schenck, H. Terao, and M. Yoshinaga, Logarithmic forms for quasiho­
mogeneous curve configurations in IP'2 , in preparation (2009). 

[ 79] H. Schenck and S. Tohaneanu, Freeness of Conic-Line arrangements in IP'2 , 

Comment. Math. Helv., 84 (2009), 235-258. 
[ 80] H. Schenck and S. Tohaneanu, The Orlik-Terao algebra and 2-formality, 

Math. Res. Lett., 16 (2009), 171-182. 
[ 81 ] B. Shelton and S. Yuzvinsky, Koszul algebras from graphs and hyperplane 

arrangements, J. London Math. Soc. (2), 56 (1997), 477-490. 
[ 82] L. Solomon and H. Terao, A formula for the characteristic polynomial of 

an arrangement, Adv. in Math., 64 (1987), 305-325. 
[ 83 J R. Stanley, Supersolvable lattices, Algebra Universalis, 2 (1972), 197-217. 
[ 84 J A. Suciu, Fundamental groups of line arrangements: Enumerative aspects, 

In: Advances in Algebraic Geometry Motivated by Physics, Contempo­
rary Math., 276, Amer. Math. Soc, Providence, RI, 2001, pp. 43-79. 

[ 85] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Etudes 
Sci. Publ. Math., 47 (1977), 269-331. 

[ 86] H. Terao, Generalized exponents of a free arrangement of hyperplanes and 
Shepard-Todd-Brieskorn formula, Invent. Math., 63 (1981), 159-179. 

[ 87] H. Terao, Arrangements of hyperplanes and their freeness I, J. Fac. Science 
Univ. Tokyo, 27 (1980), 293-312. 

[ 88 J H. Terao, Modular elements of lattices and topological fibration, Adv. 
Math., 62 (1986), 135-154. 

[ 89] H. Terao, On the homological dimensions of arrangements, Unpublished 
manuscript, 1990. 

[ 90] H. Terao, Algebras generated by reciprocals of linear forms, J. Algebra, 
250 (2002), 549-558. 

[ 91 J A. Varchenko, Special Functions, KZ Type Equations, and Representation 
Theory, CBMS Conference Series, 98, Amer. Math. Soc., 2003. 

[ 92 J M. Wakefield and S. Yuzvinsky, Derivations of an effective divisor on the 
complex projective line, Trans. Amer. Math. Soc., 359 (2007), 4389-
4403. 

[ 93] M. Yoshinaga, Characterization of a free arrangement and conjecture of 
Edelman and Reiner, Invent. Math., 157 (2004), 449-454. 

[ 94 J M. Yoshinaga, On the freeness of 3-arrangements, Bull. London Math. 
Soc., 37 (2005), 126-134. 

[ 95 J S. Yuzvinsky, First two obstructions to the freeness of arrangements, 
Trans. Amer. Math. Soc., 335 (1993), 231-244. 

[ 96 J S. Yuzvinsky, Cohomology of Brieskorn-Orlik-Solomon algebras, Comm. 
Algebra, 23 (1995), 5339-5354. 



358 H. Schenck 

[ 97] S. Yuzvinsky, Orlik-Solomon algebras in algebra and topology, Russian 
Math. Surveys, 56 (2001), 293-364. 

[ 98] S. Yuzvinsky, Realization of finite Abelian groups by nets in lP'2 , Compos. 
Math., 140 (2004), 1614-1624. 

[ 99] S. Yuzvinsky, A new bound on the number of special fibers in a pencil of 
plane curves, Proc. Amer. Math. Soc., 137 (2009), 1641-1648. 

[100] G. Ziegler, Multiarrangements of hyperplanes and their freeness, In: Sin­
gularities, Contemp. Math., 90, Amer. Math. Soc., Providence, 1989, 
pp. 345-359. 

[101] G. Ziegler, Combinatorial construction of logarithmic differential forms, 
Adv. Math., 76 (1989), 116-154. 

Hal Schenck 
Mathematics Department, University of Illinois Urbana-Champaign, 
Urbana IL 61801, USA 
E-mail address: schenck@math. uiuc. edu 


