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Discrete topological methods for subspace 
arrangements 

Francesca Mori and Mario Salvetti* 

§1. Introduction 

A different (and relatively new) method to deal with the topology 
of Hyperplane Arrangements (and more generally Subspace Arrange­
ments) is given by a discrete version of Morse Theory, namely the so 
called Discrete Morse Theory. Practically, this theory originated from 
the standard theory as a suitable adjustment to spaces usually pro­
duced by discrete data, like simplicial complexes and more generally 
OW-complexes (see [Fo98, Fo02, Ko08]). 

In [SaSe07] we considered complement to real hyperplane arrange­
ments applying Discrete Morse Theory to a well-known OW-complex 
with the same homotopy type ([Sa87]). We re-proved the minimality 
of the complement: the complement to a hyperplane arrangement is a 
minimal space, i.e. it has the homotopy type of a OW-complex with as 
many i-cells as its ith-Betti number (i 2:: 0). This interesting result was 
proven independently in [DP03, Ra02] as an existence-like theorem; the 
explicit structure of the minimal complex was considered before us by 
[Yo05] and after us by [De08] (see also [DeSe]) . 

The construction which uses Discrete Morse Theory is much more 
precise, even if superabundant in the description of the attaching maps 
of the cells (new "reduced" descriptions, at least in case of dimension 
two, were recently found by Yoshinaga himself and, by different method, 
by the two authors togheter with G. Gaiffi [GMSlO]). This combinato­
rial method allows to produce algebraic complexes which calculate local 
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systems in general (see formulas in [SaSe07, GaSa09]), which can be con­
sidered togheter with the many other well-known constructions which 
appear in the literature. 

In this paper we outline an extension of the use of the combinato­
rial methods above to a certain class of subspace arrangements, which 
contains interesting spaces like k(n, 1)-spaces for Coxeter groups (see 
below). 

Recall that classical Configuration Spaces in a manifold M are de­
fined as the manifolds F(M, n) of ordered n-tuples of pairwise different 
points in M (n > 0). Here we are interested in the case M = JRd, d > 0. 
By using coordinates in (JRd)n = JRnd 

Xij, i = 1, ... , n, j = 1, ... , d, 

one has 
F(IRd, n) = 1Rnd \ UiJij Hi~d), 

where Hi~d) is the codimension d-subspace 

This latter subspace is the intersection of d hyperplanes in JRnd, each 
obtained by the hyperplane Hij = {x E IRn : Xi= Xj}, considered on 
the k-th component in (IRn)d = JRnd, k = 1, ... , d. 

We consider here a Generalized Configuration Space (for brevity, 
simply a Configuration Space). Such spaces start from any Hyperplane 
Arrangement A in IRn. For each d > 0, one defines a d-complexification 
A(d) C Md of A, which is given by the collection {H(d), HE A} of the 
d-complexified subspaces. There is an associated configuration space, 
namely the complement to the subspace arrangement 

M(d) = M(A)(d) := (IRn)d \ u H(d) . 
HEA 

Notice that for d = 2 one has the standard complexification of a real 
hyperplane arrangement. The natural inclusion M(d) '---+ M(d+l) gives 
rise to a limit space which is contractible. In case of a reflection arrange­
ment relative to a group W, the limit of the orbit space with respect to 
the action of W is a model of the classifying space of W; see [DSOO]. 

In this paper we use the Discrete Morse Theory for CW -complexes 
to find an explicit minimal CW-complex for the configuration space 
M(A)(d), for all d 2: 1. That is, we give a CW-complex having as many 
i-cells as the i-th Betti number Bi of M(A)(d), i 2: 0. 
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Ford= 1 the construction is trivial, since M(l) is a disjoint union of 
convex sets (the chambers). Case d = 2 was that considered in [SaSe07]. 
Even if for d > 2 the minimality of configuration spaces can be theo­
retically deduced by their simply-connectness (see for ex. [Ha02], Prop. 
4C.l), our construction is useful in order to produce geometric bases for 
the cohomology. In fact, we give explicit bases for the homology (and 
cohomology) of M(d+l) which we call (d)-polar bases (see below). As far 
as we know, there is no other precise description of a geometric Z-basis 
in the literature, except for some particular arrangements, even if the 
Z-module structure derives from the well-known formulas in [GM88]: in 
fact, the intersection lattice of the d-complexification A(d) is the same 
for all d 2: 1. 

Notice also that the proof of minimality, in case d > 2, is straightfor­
ward from our construction because of the gaps among the dimensions 
of the critical cells. 

We construct a discrete vector field, depending on a system of polar 
coordinates in Rn, which is generic with respect to the arrangement. We 
use the coordinates to associate to such system a total ordering <l (called 
polar ordering) on the set P := { F} of all the facets of the stratification 
of Rn induced by the arrangement. So, the philosophy of the paper is 
similar to that used for d = 2 in [SaSe07]; however, the extension to 
the case d > 2 is not trivial and technical so all details of the proof 
will be published elsewhere. For reader convenience, we prefer here to 
give detailed examples, writing down complete lists of cells of the CW­
complexes involved, of the polar ordering introduced, of the pairs in the 
discrete fields and of the critical cells. 

In some details, Section 2 is devoted to recall some notations and 
results from [DSOO], including a description of the complex S(d). 

In Section 3 we introduce one example which will be reconsidered 
all over the paper: the full reflection arrangement A3 in JR3 . 

In Section 4 we briefly give the basic resuits from Discrete Morse 
Theory, using the original language from [Fo98], [Fo02], and some refer­
ence to the more combinatorial language in [Ko08]. 

In Section 5 we recall the main constructions of case d = 2, consid­
ered in [SaSe07]. 

In Section 7 we introduce the degree-d discrete polar vector field and 
we characterize its critical cells. We obtain that critical dk-cells in S(d) 

correspond to chains 

( C -< Fk -< ... -< Fk) 
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(k is the codimension) if dis odd; to 

if d is even, where op pk (C) is the chamber opposite to C with respect 
to Fk. Here ( C -< Fk) corresponds to a critical cell in g(l), with respect 
to polar ordering <l, so it is characterized by 

F <l G, V G such that F -< G; 
H <l F, V H such that C -< H -< F. 

As a final remark, we propose the following conjecture, related in 
some way to this paper: torsion-free subspace arrangements are mini­
mal, that is, when the complement of the arrangement has torsion-free 
cohomology, then it is a minimal space (see the concluding part 9 for 
some more details). 

§2. CW -structures for the configuration spaces 

In this section we use some notations and results from [DSOO]. 
Let A= {Hj}JEJ be a finite arrangement of linear hyperplanes in 

M := JRn. For brevity, we give all definitions in the case when A is a 
central arrangement, remarking that all we say can be generalized to the 
affine case with little changes. 

We introduce a coordinate x EM and coordinates (x1 , ... ,xd), Xi E 
M, in Md, d > 0. Each hyperplane is given by a linear equation Hj = 

{x E M : aj · x = 0}, aj E M \ {0}. For each d > 0, one has the 
d-complexification A(d) C Md of A, given by the collection of linear 
codimension-d subspaces 

(when d = 2 one has the standard complexification Ac c en). 
The generalized configuration space associated to A is the comple­

ment to the subspace arrangement 

M(d) = M(A)(d) := Md \ u H(d) . 
HEA 

It is convenient to introduce the intersection lattice C := C(A) of 
A, whose elements are all the subspaces of M of the form 
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The partial ordering in £ is given by 

L-< L' iff L' c L, 

so there is a minimum element, corresponding to the empty intersection, 
which is the whole space M, and a maximum Lo := nHEA H. The rank 
rk(L) of a subspace L E £is its codimension; the rank of£ is the rank 
of Lo, and we also set rk(A) := rk(£(A)). The arrangement is called 
essential when rk(A) = n = dim(M), i.e. when L0 reduces to a single 
point. 

In the present situation we can consider a finer poset l]) := l])(A) := 

( { F}, -<) whose elements are the strata (also called facets) of the strat­
ification induced on M by A, where, as usual: 

F-< F' iff F' c cl(F). 

The atoms (chambers) of l])(A) are the connected components of M(l). 

We have a map l]) --+ £ which associates to a facet F its support 
)F), which is by definition the subspace generated by F (in a different 
language, this is the standard map between an oriented matroid and its 
underlying matroid). We define the rank function on l]) via this map: 

rk(F) := rk()F)) = codim(F). 

Given L E £(A), we will use the arrangements AL := {H E A: 
H -< L}, AL := {L n H : H E A, H -/< L}. The former is an 
arrangement in M of rank equal to rk(L), the latter is an arrangement 
inside L itself (of rank rk(A)- rk(L)). Let l])L := l])(AL), l])L := l])(AL) 
be the induced stratifications of M, L respectively. There is a map 
prL : l]) --+ l])L, taking F' into the unique stratum containing it, and a 
map jL : q5L --+ l]) just given by the inclusion. 

Fixing a facet F, set also l]) F = { F' E l]) : F' -< F}. It is easy to 
see that the restriction C{JF := (priFI)I<PFI : l])F--+ l])IFI is a dimension­
preserving bijection of posets. 

Let now l])d be the product of d copies of l]), d 2: 0, and let 

q5(d) = {(F1, ... , Fd) E l])d: F1 -< · · ·-< Fd} 

be the set of d-chains in l]) (repetitions in the chain are allowed). Then 
l])(d) corresponds to a stratification of the space Md as follows (see 
[DSOO]): to each F = (F1, ... , Fd) in l])(d) it corresponds the stra­
tum F in Md given by 

F := {(x1, ... ,xd) E Md: x1 E Fd, Xk E C{JFd-k+2 (Fd-k+l), 

k = 2, ... ,d}. 
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One has: 

Proposition 2.1. (i) Each :i is homeomorphic to an open cell 

(ii) UFeWl F = Md 
(iii) :in Q = 0 if F i= g 
(iv) cl(F) n Q i= 0 iff cl(F) :J Q 
(v) M(d) = u{FE<f>(d) : Fl is a chamber of <P} :i. 

For F = (F1, ... ,Fd), one has 

d 

codim(F) := codim(F) L codim(Fi)· 
i=l 

The partial ordering on .p(d) is given by 

F-< g iff Q c cl(F). 

This has the following characterization. 

Lemma 2.2. For F = (F1 , ... , Fd), g = (G1 , ... , Gd) E .p(d) one 
has 

F-< g iff Fd-< Gd and priFi+li(Fi)-< pr1Fi+ 1 1(Gi) 

in the stratification <PIF<+ 1 1, i = d- 1, ... , 1. 

Part (v) of Proposition 2.1 gives us the poset corresponding to the 
induced stratification of the generalized configuration space M(d) which 
is 

<P~d) := {F = (F1 , ... , Fd) E .p(d) : rk(F1) = 0} 

while the union UHEA H(d) of the d-complexified subspaces correspond 
to the poset 

<P~) := {F = (F1, ... , Fd) E .p(d) : rk(FI) > 0}. 

Proposition 2.3. The set 

q(d) := U e(F), 
FE<f>(d) 

where e(F) is the dual cell to the stratum F, is a cellular n' d-ball in Md 
(a regular cell complex) dual to the stratification, where n' := rk(L0 ). 

Remark. It follows from Lemma 2.2 that if the first element F 1 of 
F is a chamber, then also the first element of any g -< F is a chamber. 
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Definition 2.4. We denote by g(d) the subcomplex of Q(d+l) whose 
cells correspond to <P~d+l) : 

g(d) := u.FE<P&d+'l e(F) 

(cased= 1 was introduced in [Sa87]; see also [BZ92], [OT92]). 
In general, given a chamber C and a facet F in q>(d+l) we will use 

the notation 

C.F := ¥?:F 1 (priFI(C)) 

which is a uniquely defined chamber containing F in its boundary. 
One has: 

Theorem 1. (i) g(d) is a deformation retract of M(d+l). 

(ii) Writing ad+ 1-chain FE <P~d+l) as F = (C,F'), F' E q>(d), we 
have: 

8( e( C, F')) u 
F" -< F', codirrt(F") = codirrt(F')-1 

(F" = (F1, ... ).) 
(ii) dim e( C, F') dim e(F') codimMd(F'). In particular, 
dim(S(d)) = dim(Q(d)) = n'd. 

§3. Examples (1) 

We outline here a 3-dimensional example. We use it later in order 
to illustrate the results of next sections. 

Example. The full reflection arrangement of type A3 is an arrange­
ment A E IR.3 = (x1,x2,x3) given by the section of the arrangement 
B = {{x1 = x2},{x1 = x3},{x2 = x3},{x1 = x4},{x2 = x4},{x3 = 
x4}} E IR.4 with the 3-plane {(x1, x2, x3, X4)lx1 + X2 + x3 + X4 = 1} or­
thogonal to the line l : x1 = x 2 = x 3 = x4 . Fig. 1 represents the section 
of A with the 2-plane z = a, a > 0, while Fig. 2 represents the section 
with the 2-plane z = -a. In Fig. 2 we indicate with F the opposite of 
a bounded facet F of Fig. 1. The center of this arrangement is a facet 
of dimension 0, not indicated in our figures and corresponding to the 
origin of JR. 3 , that we call P. 
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Fig. 1. An upper section of the reflection arrangement A 3 
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The complex S(1) is composed by the following cells: 

• 24 cells of dimension 0: 

more 

e(C77,C77),e(C7s,C7s),e(C7g,C7g),e(C71o,C71o),e(C712,(712),e(C713,(713); 

• 72 cells of dimension 1: e(C7o, F1), e(C7o, F7), e(C7o, F2o), e(C71, 
F1), e(C71, F2), e(C71, F13), e(C72, F2), e(C72, H), e(C72, F1s), 
e(C73, F3), e(C73, F4), e(C73, Fg), e(C74, F4), e(C74, F5), e(C74, F22), 
e(C75, F5), e(C75, F5), e(C75, Fl2), e(C76, F5), e(C76, F14), e(C76, F7), 
e(C77,F7), e(C77,Fs), e(C77,F15), e(C7s,Fs), e(C7s, Fg), e(C7s,Fl0), 
e(C7g, F10), e(C7g, Fu), e(C7g, F15), e(C710, Fu), e(C710, F12), e(C710, 
F13), e(C7u, F13), e(C7n, F14), e(C7n, F1g), e(C712, F15), e(C712, 
F15), e(C712,F17), e(C713,Fl7), e(C713, F1s), e(C713,F22), e(C714, 
F1s), e(C714, F1g), e(C714, F24), e(C715, F2o), e(C715, F21), e(C15, 
F12), e(C716, F21), e(C716, F22), e(C716, F23), e(C717, F23), e(C717, 
F24), e(C717, Fg), e(C77, F15), e(C77, F1 ), e(C77, Fs), e(C7s, F10), 
e(C7s, Fg), e(C7s, Fs), e(C7g, F15), e(C7g, F10), e(C7g, Fn), e(C710, 
F13), e(C710,Fn), e(C710,Fl2), e(C712,F17), e(C712,F15), e ((712, 
F15), e((713,F1s), e(C713,F22), e(C713,F17); 

• 72 cells of dimension 2: e(C7o, G1), e(C7o, G5), e(C7o, G3), e(C71, 
GI), e( (71, G3), e( (71, G5), e( (72, Gl), e( (72, G5), e( (72, G1), e( (73, 
Gl), e(C73, G2), e(C73, G1 ), e(C74, Gz), e(C74, G7 ), e(C74, G5), 
e(C75, Gz), e(C75, G3), e(C75, G5), e(C76, G3), e(C76, G5), e(C76, GI), 
e(C77, G1), e(C77, G4), e(C77, G5), e(C7s, Gl), e(C7s, Gz), e(C7s, G4), 
e(C7g, G2), e(C7g, G4), e(C7g, G5), e(C710, G2), e(C710, G3), e(C710, 
G5), e(C7n, G3), e(C7n, G5), e(C7n, Gl), e(C71z, G4), e(C712, G5), 
e(C712,G5), e(C713,G5), e(C713,G6), e(C713,G7), e(C714,G5), e(C714, 
G1 ), e( (714, G1), e(C715, G5), e(C715, G2), e(C715, G3), e(C716, G5), 
e(C716, G7), e(C716, Gz), e(C717, G7), e(C717, Gl), e(C717, G2), e(C77, 
G5), e(C77, Gl), e(C77, G4), e(C7s, G4), e(C7s, Gl), e(C7s, Gz), e(C7g, 
G5), e(C7g, G4), e(Cg, G2), e(Cw, G5), e(Cw, G2), e(Cw, G3), 
e(C712, G5), e(C71z, G5), e(C712, G4), e(C713, G7 ), e(C713, G5), e(C713, 
G5); 
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Fig. 2. A lower section of the reflection arrangement A3 



Discrete topological methods for subspace arrangements 303 

• 24 cells of dimension 3: 

e(Ci,P), i=0, ... ,17, 

more 

e(C?,P),e(C8 ,P),e(Cg,P),e(Clo,P),e(C12,P),e(C13,P). 

The complex S(2) is composed by the following cells: 

• 24 cells of dimension 0: The cells of form e(Ci, Ci, Ci) where 
Ci E <P(A) is a chamber, i.e. a facet of codimension 0. 

• 72 cells of dimension 1: The cells of form e( Ci, Ci, FJ) where 
Ci is a chamber, and FJ E <P(A) is a facet of codimension 1 in 
the boundary of Ci, i.e. Ci -< Fj. 

• 72+ 72 cells of dimension 2: 72 cells of forme( Ci, Ci, Gk) where 
Ci is a chamber, and Gk E <P(A) is a facet of codimension 2 in 
the boundary of Ci, i.e. Ci -< G k; 72 cells of form e( Ci, FJ, FJ) 
where Ci is a chamber, and FJ is a facet of codimension 1 in 
the boundary of ci 0 

• 24+ 144 cells of dimension 3: 24 cells of form e( Ci, Ci, P) where 
ci is a chamber, and p E <P(A) is the center of A, i.e. the only 
facet of codimension 3 in <P(A); 144 cells of form e(Ci, Fj, Gk), 
where Ci is a chamber, Fj is a facet of codimension 1 in the 
boundary of Ci, and G k is a facet of co dimension 2 in the 
boundary of Fj, i.e. Fj -< Gk. 

• 72+ 72 cells of dimension 4: 72 cells of form e( Ci, FJ, P), where 
Ci is a chamber, FJ is a facet of codimension 1 in the boundary 
of Ci and P is the center of A; 72 cells of form e( Ci, G k, G k), 
where Ci is a chamber and Gk is a facet of codimension 2 in 
the boundary of ci 0 

• 72 cells of dimension 5: The cells of form e(Ci, Gk, P), where 
Ci is a chamber, Gk is a facet of codimension 2 in the boundary 
of ci and p is the center of A. 

• 24 cells of dimension 6: The cells of the forme( Ci, P, P) where 
ci is a chamber, and pis the center of A. 

The complex S(3) is composed by the following cells: 

• 24 cells of dimension 0: The cells ofform e( Ci, Ci, Ci, Ci) where 
ci is a chamber. 

• 72 cells of dimension 1: The cells ofform e( Ci, Ci, Ci, Fj) where 
Ci is a chamber, and Fj is a facet of co dimension 1 in the 
boundary of ci 0 

• 72+72 cells of dimension 2: 72 cells of form e(Ci, Ci, Ci, Gk) 
where Ci is a chamber, and Gk is a facet of codimension 2 in 
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the boundary of Ci; 72 cells ofform e( Ci, Ci, FJ, FJ) where Ci is 
a chamber, and FJ is a facet of codimension 1 in the boundary 
of ci. 

• 24+ 144+ 72 cells of dimension 3: 24 cells ofform e( Ci, Ci, Ci, P) 
where Ci is a chamber and Pis the center of A; 144 cells of form 
e(Ci, Ci, FJ, Gk), where Ci is a chamber, FJ is a facet of codi­
mension 1 in the boundary of Ci, and Gk is a facet of codimen­
sion 2 in the boundary of FJ; 72 cells of form e( Ci, FJ, FJ, FJ) 
where Ci is a chamber, and FJ is a facet of codimension 1 in 
the boundary of ci. 

• 72+ 72+ 144 cells of dimension 4: 72 cells ofform e( Ci, Ci, FJ, P), 
where Ci is a chamber, FJ is a facet of codimension 1 in the 
boundary of ci and P is the center of A; 72 cells of form 
e(Ci, Ci, Gk, Gk), where Ci is a chamber and Gk is a facet 
of codimension 2 in the boundary of Ci; 144 cells of form 
e( Ci, FJ, FJ, G k), where Ci is a chamber, FJ is a facet of codi­
mension 1 in the boundary of Ci, and G k is a facet of codimen­
sion 2 in the boundary of Fj. 

• 72+ 72+ 144 cells of dimension 5: 72 cells ofform e( Ci, Ci, Gk, P), 
where Ci is a chamber, Gk is a facet of codimension 2 in the 
boundary of Ci and P is the center of A; 72 cells of form 
e( Ci, FJ, FJ, P), where Ci is a chamber, FJ is a facet of co di­
mension 1 in the boundary of Ci and P is the center of A; 144 
cells of form e( Ci, FJ, Gk, Gk), where Ci is a chamber, FJ is a 
facet of co dimension 1 in the boundary of Ci, and G k is a facet 
of co dimension 2 in the boundary of Fj. 

• 24+144+72 cells of dimension 6: 24 cells ofform e(Ci, Ci, P, P) 
where Ci is a chamber, and P is the center of A; 144 cells of 
form e(Ci,FJ,Gk,P), where Ci is a chamber, FJ is a facet of 
co dimension 1 in the boundary of Ci, and G k is a facet of 
codimension 2 in the boundary of FJ and P is the center of A; 
72 cells of form e(Ci, Gk, Gk, Gk), where Ci is a chamber, FJ 
is a facet of co dimension 1 in the boundary of ci. 

• 72+72 cells of dimension 7: 72 cells of form e(Ci,Gk,Gk,P), 
where Ci is a chamber, Gk is a facet of codimension 2 in the 
boundary of Ci and P is the center of A; 72 cells of form 
e(Ci,FJ,P,P), where Ci is a chamber, FJ is a facet of codi­
mension 1 in the boundary of Ci and P is the center of A. 

• 72 cells of dimension 8: The cells of form e( Ci, G kJ P, P), where 
Ci is a chamber, G k is a facet of codimension 2 in the boundary 
of Ci and P is the center of A. 
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• 24 cells of dimension 9: The cells of form e(Ci, P, P, P) where 
Ci is a chamber, and Pis the center of A. 

§4. Essentials on discrete Morse theory for CW-complexes 

We recall here some of the main definitions and results from [Fo98], 
[Fo02], where Morse theory from a combinatorial viewpoint was first 
developed. See also [Ko08], where the same theory is re-formulated 
from a more combinatorial point of view. 

Let C be a finite regular CW-complex. Let K be the collection of 
cells of C, partially ordered by 

a < T {? aCT. 

As usual, denote by Kp the p-skeleton of K. 

Definition 4.1. A discrete Morse function on C is a function 

f: K ---'t lR 

satisfying for all aCP) E Kp the following two conditions 

(i) ~{TCP+ 1 ) > aCP) 1 f(TCP+1l):::; f(aCP))} < 1 
(ii) ~{vCP- 1 ) < aCP) I f(aCP)):::; f(vCP- 1))} < 1. 

Actually, one shows that, if f satisfies (i) and (ii) above, then for any 
given cell of K at least one between (i), (ii) is a strict inequality. 
The analog of a critical point of index p in standard Morse theory is 
here a critical cell of dimension p: a p-cell aCP) is critical iff both the 
cardinalities in i), ii) are zero. 

Let mp(f) denote the number of critical p-cells of f. Then one has 

Proposition 4.2. C is homotopy equivalent to a CW -complex which 
has exactly mp(f) cells of dimension p. 

The discrete gradient vector field r f of a Morse function f over K 
is the set of all pairs of cells for which the exception in Definition 4.1 
happens: 

Since, for any given cell, at most one between (i), (ii) in 4.1 is an equality, 
it follows that each cell belongs to at most one pair of r 1 . 

A general definition of discrete vector field is the following. 
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Definition 4.3. A discrete vector field r on C is a collection of 
pairs of cells (CT(p), T(p+l)) E C x C such that CT(p) < T(p+l) and such that 
each cell of C belongs to at most one pair of r. 

Remark 4.4. A discrete vector field over a CW -complex corre­
sponds to a matching of the associated poset (see [Ko08]). 

For r as above, define a f-path as a sequence of cells 

(1) 

such that for each i = 0 · · · r one has (CT(p) 'T(p+l)) E r and CT(P) ...L , , r , r ~ I 

CT(p) < T(p+l) 
2+1 2 

The f-path is closed (and non-trivial) iff CTbp) = CT~~ll r 2:: 0. One has: 

Theorem 2. A discrete vector field r is the gradient vector field of 
a discrete Morse function on C iff there are no non-trivial closed r -paths. 

Remark 4.5. A gradient vector field over a CW complex C corre­
sponds to an acyclic matching of the associated poset, i.e. a matching 
without closed loops. In many cases it is convenient to find directly a 
gradient vector field, or equivalent an acyclic matching, without passing 
through an effective discrete Morse function. The critical cells in this 
case are simply all the cells which do not belong to pairs of the field. The 
datum of an acyclic matching produces a collapsing ordering on the non 
singular cells of C, producing a constructive reduction of C in proposition 
4.2 (see [Ko08]). 

§5. The standard case of complexified real arrangements 

In this part we consider the case of standard complexified arrange­
ments. 

The last part of Section 5 is devoted to recall (skipping some de­
tails) some of the results in [SaSe07], where we applied the theory to 
Hyperplane Arrangements. We set in this sectionS := g(l), the case of 
standard complexification. A k-cell of S is written as e( F), F = ( C, F), 
with codim(F) = k. We write for brevity also e(F) = e(C, F). The 
boundary condition given in Lemma 2.2 specializes here to: e(D, G) is 
in the boundary of e( C, F) iff 

i) G--< F 
ii) the chambers C and Dare contained in the same chamber of Ac, 

that is D = C.G in the notations of part 2. 
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The following constructions are based on a generic system of polar 
coordinates in M, which is associated to a generic flag of subspaces 

Vi = < e1, ... , ei >, i = 0, ... , n (dim(Vi) = i). 

Consider the pencil of n-1-dimensional subspaces of M, Vn_ 1 (B), 8 E 

JR, with base Vn-2 : so Vn- 1 (0) = Vn- 1 and 8 grows according to some 
positive orientation of V/Vn_2. By recurrence, let Vi(B, Bi+1, ... , Bn-1), 
8 E JR, be the pencil of i-dimensional subspaces in Vi+1 (8i+1, ... , Bn-d, 
with base Vi- 1 , i = 1, ... , n- 2. Let also V0 (8, 81 , ... , Bn-d be the point 
with distance e from the origin V0 inside the line V1 ( 81, ... , Bn-1). 

Each point P -=/=- V0 is written uniquely as P = Vo ( 80 , 81 , ... , Bn-1 ), 

so we associate toP the polar coordinates (Bo, ... , Bn-d· 

Definition 5.1. We say that the above flag is generic with respect 
to the arrangement A if it satisfies the following conditions: 

i) the origin V0 is contained in a chamber C0 of A; 
ii) there exists a 6 > 0, 6 < < 1, such that the set of bounded facets 

of A is contained into { P E M : 0 < ei ( P) < 6, i = 0, ... , n - 1}; 
iii) subspaces Vi(B) = Vi(Bi, ... , Bn-d which intersect the union of 

bounded facets are generic with respect to A, in the sense that, for each 
codim-k subspace L E L(A), 

i ~ k =? Vi(B) n L n closCB)-=!=- 0 and dim(IVi(B)I n L) = i- k. 

One proves that a generic system of polar coordinates always exists. 
Fix a system of polar coordinates associated to a generic flag. 
We consider the subspace Vi(B), B = (Bi, ... , Bn-1)· The arrangement 

A induces a stratification <P( B) in Vi (B) : given a codimension-k facet 
F E S, let us denote by 

F(B) := F n Vi(B), eJ E [0, 5], j = i, ... , n- 1. 

By genericity conditions, if i ~ k then F(e) is either empty or it 
is a co dimension k + n - i facet contained in Vi (B). 

For each such (j we want to give a total ordering on <P( e). 

Definition 5.2. Given any facet F(B) let us denote by 

PF(e) E clos(F(B)) 

the "minimum" vertex of clos(F(e)) n {Bi ~ 0, i = 0, ... } : this 
is the 0-dimensional facet which has minimum polar coordinates, with 
respect to the anti-lexicographic ordering of the coordinates (one says 
that ( 80 , ... , Bn-d is less than ( Bb, ... , 8~_ 1 ) iff, being k the last index 
such that eh-=!=- e~, one has ek < eu 
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Remark that the minimum vertex is well defined by genericity con­
ditions. 

Definition 5.3. We define the polar ordering by recurrence on the 
dimension as follows: given F, G E <P, and given e = (ei, ... , Bn-d, 
0 ~ i ~ n, Bj E [0,6] for j E i, .. ,n -1, (0 = f/J fori= n) such that 
F(O), G(O) -=f. f/J, we set 

F(O) <J G(O) 

iff one of the following cases occurs: 

i) PF(iJ) -=f. Pc(iJ) and the coordinates of the former point are lower 
(in the anti-lexicographical ordering) than the coordinates of the latter 
point. 

ii) PF(iJ) = Pc(iJ)· Then either 

iia) dim(F(O)) = 0 (so PF(iJ) = F(O)) and F(O) -=f. G(O) (so dim(G(O)) > 
0) 

or 

iib) dim(F(O)) > o, dim(G(B)) > o. 
Let io :=max{Ji 01(PF(iJ)) -j.0}+1, andleti1 :=min{io,i}. Ifthe 

coordinates of the minimal point are P = (Oo, ... , Bn-d then VE, 0 < 
E < < 6, it must happen 

F(Bi,-l+E,Biu···) <l G(Bi,-l+E,Biw··)· 

The idea in (iib) is to intersect F and G with a lower dimensional 
subspace contained in Vi(B), very close to the minimum point (see also 
[DeSe] for a purely combinatorial version of polar ordering). 

One shows that polar ordering <J is a total ordering on the facets of 
Vi(O), for any given e = (Oi, ... ,en-d· In particular (taking e = f/J, which 
corresponds to all Vn = M) it gives a total ordering on <P. 

We consider now the regular CW-complex S = S(l) and we define 
a combinatorial gradient vector field r over S. One can describe r as a 
collection of pairs of cells 

r c {(e, f) E s X s I dim(!)= dim( e)+ 1, e E 8(!)} 

so that r decomposes into its dimension-p components 

n 

r = U rP, 
p=l 

(Sp being the p-skeleton of S). 
We give the following recursive definition: 
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Definition 5.4 (Polar Gradient). We define a combinatorial gradi­
ent field r overs in the following way: 

the (j + 1)-th component rH1 off, j = 0, ... , n -1, is given by all pairs 

(same chamber C) such that 

(2) 

1. F1+ 1 <J FJ 
2. \fF1-l --< FJ such that C--< p)-l the pair 

(e(C--< pJ- 1),e(C--< FJ)) tJ_ fJ. 

Theorem 3. One has: 

1. r is a combinatorial vector field on S which is the gradient of 
a discrete Morse function. 

2. The pair 

(e(C--< FJ),e(C--< pH1 )), p)--< pH1 

belongs to r iff the following conditions hold: 
(a) pJ+l <J FJ 
(b) V p)-l such that C--< p)-l --< FJ, one has pj-l <J FJ. 

3. Given FJ E P, there exists a chamber C such that the cell 
e( C --< FJ) is the second factor of a pair in r iff there exists 
p)-l --< p1 with FJ <J p1-l. More precisely, for each chamber 
C such that there exists pj-l with 

c--< p)-l--< p1, pj <J p1-l 

the pair (e(C --< P1-l ), e(C --< F1)) E r, where pj-l is the 
maximum (j -1)-facet (with respect to polar ordering) satisfy­
ing conditions (*). 

4. The set of k-dimensional critical cells is given by 

Singk(S) 
= {e(C--<Fk): FknVk=f-0, FJ<JFk, VC--<FJ~Fk}. 

Equivalently, FknVk is the maximum (in polar ordering) among 
all facets of c n vk 0 
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In Section 7 we will need some more specific results which were used 
in the Proof of part (1) of Theorem 3. 

Take a r-path inS (according to [Fo02]) 
(3) 

e(C1, F1k), e(C1, Ff+l), ... , e(Cm, F~J, e(Cm, F!+1), e(Cm+1, F!+1). 

Here the pair (e(Ci, Fik), e( Ci, Fik+l )) is an element of r, and e( Ci, Fik) 
is in the boundary of e(Ci-1, Fik_+"/). 

According to a standard result in Discrete Morse Theory ([Fo98]) 
we have to show that, if the path (3) is closed, (i.e. if e(Cm+1,F!+d 
equals to e(C1,F{')), then it is trivial, i.e. Fik = Fl+1, pik+1 = Fi~i1 , 
and ci = ci+1 (i = 1, ... 'm- 1). 

The proof directly follows from the following two claims. 

Claim 1. Given a triple of consecutive cells in (3) of the form: 

(4) 

we have that pk+1 <J Fk+1 
2+1 - 2 . 

Claim 2. Given a quadruple of consecutive cells in (3) of the form: 

(5) e( Ci, Fik), e( Ci, pk+1 ), e( Ci+1, Fi~ 1 ), e( Ci+1, pk+1 ), 

we have Fik ::::1 Fl+1· 

Remark 5.5. 1) Once a polar ordering is assigned, the set of sin­
gular cells is described only in terms of it by 
Singk(S) := { e( C -< Fk) : 

a) pk <J pk+l, 1jpk+1 s.t. pk -< pk+1 
b) F' <J Fk, VF' s.t. C-< F'-< pk }. 

2) The construction of Theorem 3 gives an explicit additive basis for the 
homology and for the cohomology in terms of the singular cells in S. 
We can call it a polar basis (relative to a given system of generic polar 
coordinates). 
3) The minimality of the associated Morse complex is obtained by the 
one-to-one correspondence between singular cells and the set of all the 
chambers of <P, and the well-known formula 2:: Bi = I {chambers} I 
(see [Za75]). Here Bi means the ith-Betti number of the complement. 

§6. Examples (2) 

Consider now the arrangement A E JR3 of Example 1 (see Fig. 1 and 
2). The system of polar coordinates here is given by 0, V1 and \12. Here 
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v2 is the 2-plane in JR3 which corresponds to the plane z =a, a > 0, i.e. 
the plane of Fig. 1, while V1 is the line indicated in Fig. 1. 

To give the total ordering in 4>(A) we proceed as follows: the cells 
intersecting the plane v2 comes before all the others cells, and they 
are ordered as in the case of a line arrangement with 0, V1 as polar 
coordinates system. The center P comes after these cells and before of 
the other ones. For ordering the other ones we have to move the plane 
V2 fixing the line V1 , until meeting the center P, and then we have to 
pass to the other side and ordering all the cells comparing in Fig. 2 as in 
the case of a line arrangement with 0, V1 as polar coordinates system. 
So the polar ordering in A 3 is given by: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
F1 ~ C1 ~ Fs ~ Cs~ Fg ~ G2 ~ Fw <1 Cg ~ Fu ~ Cw ~ F12 ~ G3 ~ F13 ~ 
Cu ~ F14 ~ G4 ~ F15 ~ C12 ~ F16 ~ G5 ~ F11 ~ C13 .~ F1s ~ C14 ~ F19 ~ 
G6 ~ F2o ~ C15 ~ F21 ~ C16 ~ F22 ~ G1 ~ F23 ~ C11 ~ F24 ~ P ~ G1 ~ 
F1s ~ C13 ~F22 ~ G6 ~F11 ~ C12 ~F15 ~ C1 ~ F1 ~ G5 ~F13 ~ Cw ~ 
Fu ~ Cg ~ F16 ~ G4 ~ Fw ~ Cs ~ Fs ~ G3 ~ F12 ~ G2 ~ Fg ~ G1. 

Recall that the complex S(l) has 192 cells. The polar gradient has 
components: r = r 1 ur2 ur3 . Following Definition 5.4 we can see that: 

• r 1 is composed by 23 pairs of type (e(Ci,Ci),e(Ci,Fj)), with 
Fi ~ Ci; 

• r 2 is composed by 43 pairs of type (e(Ci, FJ), e(Ci, Gk)), with 
G k ~ Fi and e( Ci, Fi) does not belong to any pair of r 1· 

• r 3 is composed by 18 pairs of type (e(Ci,Gk),e(Ci,P)), with 
P ~ Gk and e(Ci, Gk) does not belong to any pair of r 2 . 

So the set of critical cells Sing(S) is composed by the cells not 
appearing in any pair of r, i.e. by the following cells: 

• 1 critical 0-cell e(Co, Co); 
• 6 critical1-cells e(C0 ,Fl),e(Cl,F2),e(C2,F3),e(C3,F4),e(C4, 

F5 ), e(C5 , F6 ), which correspond to those 1-cells e(Ci, Fj) with 
Fi n V1 =/=- 0 and Fi n V1 is the maximum (in polar ordering) 
among all facets of c n vl; 

• 11 critical 2-cells e(C1,G1), e(C2,G1), e(C3,G2), e(C4,G2), 
e(C5, G3), e(C7, G5), e(Cs, G4), e(Cg, G5), e(Cw, G5), e(C12, G5), 
e(C13 ,G7 ), which correspond to those 2-cells e(Ci,Gk) with 
Gk n V2 =/=- 0 and Gk n V2 is the maximum (in polar ordering) 
among all facets of c n v2. 

• 6 critical 3-cells e(C7,P),e(Cs,P),e(Cg,P),e(Cw,P),e(Cl2, 
P),e(C13 ,P), which correspond to those 2-cells e(Ci,P) with 
Pis the maximum (in polar ordering) among all facets of C. 
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Remark 6.1. The number of cells is 1 +6+ 11 +6+2*(23+43+ 18) = 
192. 

§7. Discrete methods on configuration spaces 

We now consider general configuration spaces as in part 2, and we 
generalize the theory of part 5. We fix a polar ordering <1 induced by a 
generic system of polar coordinates V0 , V1 , ... , Vn as in part 5. 

Lemma 7.1. Let L E .C(A) be a codimension k subspace. Then 
the system Vo, ... , Vk gives a generic system of polar coordinates for the 
arrangement AL n vk := {H n Vkl H E AL} in vk, so it induces a 
polar ordering <IL on if>£. The system Vk n L, ... , Vn n L gives a generic 
system of polar coordinates for the arrangement AL on L, inducing a 
polar ordering <JL on q>L. 

One has that <JL coincides with the restriction <Jiq;L of the polar 
ordering <1 to q>L c if>. 

Definition 7.2. Given G E if>, we set also <Ia:= <11a1 . 

Definition 7.3. Given G E if>, and being if>a as in Section 2, we 
define an involution: 

opa : if>a -+ if>a 

F H opa(F) 

where opa(F) is the unique facet which is symmetric to F with respect 
to supp( G). In other terms (using the maps cpa, pr1a1 defined in Section 
2}: 

opa(F) := cp01 ( -(pr1a1 (F))). 

Here we notice that, for a central arrangement, every facet F has a 
unique opposite F with respect to the center. 

Definition 7.4. Define the opposite polar ordering <13' in if>a as: 

F <13' F' {::? opa(F) <Ia opa(F') 

F,F' E if>a. 

Definition 7.5. For all arrangements A, all polar orderings <1 on 
A, and all d :2: 1, we define the degree-d discrete field 
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on the complex g(d)(A). Assume by recurrence that r(d')(AL) has been 
defined ford' < d, for any AL C A, L E .C(A), for the induced polar 
ordering <lL {see Lemma 7.1}. Then the k-dimensional part f~a)(A) is 

given by the set of pairs of cells in g(d) (A) 

(e(F), e(F')) 

where dim(e(F)) = k - 1, dim(e(F')) = k, F' -< F {so e(F) c 
fJ(e(F'))), and the two flags differ only in a single position: 

F' = (C, F1, ... , Fi-1,Fj+l, Fi+1, ... , Fa) 

with Fj -< Fj+1 (j, j + 1 denote codimensions}. Moreover, such pairs 
satisfy the following conditions {6},{7): 

(6) 

(7) 

for i < d, e(F/, Fi+1, ... , Fa) is a critical cell in the complex 
g(d-i)(AL), endowed with the discrete (d- i)-vector field 

f(d-i)(AL), with L :=IF/I 
{i.e., e(Fj,Fi+1, ... ,Fa) 5if(d-i)(AL), see Remark (4.5}} 

Set l = d - i; then: 

for even l 
j+1 j . . 

Fi <1FH1 Fi and Ff = max<JFH 1 {F I Fi-1 -< F -< Ff}; 

for odd l 

Fj+1 <1';,.+1 Fj and Fj = max<Jop {F I Fi-1 -< F-< F/}. 
Fi+l 

Fori = d there is no Fi+1 in the first condition of {7}, which is to be 
considered in this case as defined by using the given polar ordering <1 . 

We have f(a) = EBk~1 f~d)' n' = rk(A). 

Definition 7.6. Let L E .C(A) be a codimension k subspace. 
Set rfa) as the degree-d discrete field of the arrangement AL with 

respect to the polar ordering <1L=<11L. 

Set rL,(d) as the degree-d discrete field of the arrangement AL n yk 
with respect to the polar ordering <lL (see Lemma {7.1}}. 

The following main theorem describes the minimal complex in terms 
of the field r (d), exhibiting its critical cells. 
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Theorem 4. One has: 

1. r(d) is a discrete vector field; 
2. r(d) is a gradient field of a discrete Morse function; 
3. the critical cells of r(d) are the following ones, depending on 

the parity of d: 

with e(C, Fk) E S(l) critical cell for (fc1J, <l), if dis odd; 

e(oppk (C), Fk, ... , Fk) 

with e(C, Fk) E g(l) critical cell for (r(l), <l), if d is even. 

As an immediate consequence of Theorem 4 we have 

Theorem 5. 1. The configuration space M(d)(A) is a mini-
mal space (d ~ 1). 

2. The cohomology of S(d) (or of M(d+l) ), d ~ 1, is concentrated 
in dimension 

id, i = 0 ... n. 

The Betti numbers are given by 

Proof of Theorem 5. Case d = 1 is considered in Section 5. For d > 1 
minimality follows immediately from the gap between the dimensions of 
the critical cells. Q.E.D. 

The Proof of Theorem 4 is very technical and will appear elsewhere. 

Remark. For d > 1 the configuration space is simply connected, 
therefore its minimality follows by general means. Ford = 1 there is also 
a non-trivial Morse complex for the cohomology with local coefficients 
(see [SaSe07],[GaSa09]). 

Remark. Notice the essential difference between the case when d 
is even and the case when d is odd, while the shape of the flags is essen­
tially the same when the parity is the same. This fact reflects similar 
well known phenomena about the representation of a reflection group W 
onto the cohomology of the corresponding configuration spaces: for odd 
complexifications one has the regular representation of W, while in the 
even case one obtain an induced representation (see [Ma96],[Le00]). 

Q.E.D. 
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§8. Examples (3) 

We consider again now the arrangement A C JR.3 of Example 1 (see 
Fig. 3 and 2). 

Cased= 2. 
Recall that the complex S(2) has 648 cells. 
The polar gradient r (2) has components: r (2) = U~=l q2). By 

Definition 7.5 we have: 

• r(2) is composed by 23 pairs of type (e(Ci, Ci, Ci), e(Ci, Ci, Fj)), 

with Fi <1 Ci, i.e. (e(Ci,Ci),e(Ci,Fi)) E r(1); 

• q2) is composed by two types of pairs: 43 pairs of type (e(Ci, Ci, 
Fj), e(Ci, Ci,Gk)), with Gk <l Fj and e(Ci,Ci,Fj) does not 
belong to any pair of r(2), i.e. (e(Ci, Fi ), e(Ci, Gk)) E rr1); 6 
pairs oftype (e(Ci, Ci, Fj), e(Ci, Fj, Fj)) with e(Ci, Fj) critical 
for r(l); 

• rf2) is composed by three types of pairs: 60 pairs of type 
(e(Ci,Fj,Fj), e(Ci,Fj,Gk)), with Gk <l Fj; 11 pairs of type 
(e(Ci,Ci,Gk),e(Ci,Fj,Gk)) with Fi <ldk Ci, and e(Ci,Gk) is 
critical for f(1); 18 pairs of type (e(Ci, Ci, Gk), e(Ci, Ci, P)), 
with P <1 Gk and e(Ci, Ci, Gk) does not belong to any pair of 
q2), i.e. (e(Ci, Gk), e(Ci, P)) E rf1); 

• r(2) is composed by three types of pairs: 48 pairs of type 

(e(Ci, Fi, Gk), e(Ci, Fi, P)) with P<1Gk and Gk = max<J{FICi 
-< F -< Gk}; 25 pairs of type ( e( Ci, Fj, Gk), e( Ci, Gk, Gk)) with 

Gk <ldk Fj and e(Fj, Gk) critical for r~i) 1 , i.e. Gk <l P; 6 pairs 

of type (e(Ci, Ci, P), e(Ci, Fj, P)) with Fj <l';f Ci and e(Ci, P) 
critical for r(l), i.e. ci n v2 # 0 and bounded; 

• ff2) is composed by two types of pairs: 18 pairs of type (e(Ci, Fj, 

P), e(Ci, Gk, P)) with e(Fj, P) critical for r(l) (AIFj 1), i.e. Fin 
V2 # 0 and bounded, and Gk <l';f Fi; 36 pairs oftype (e(Ci, Gk, 
Gk), e(Ci, Gk, P)) with P <1 Gk; 

• r(2) is composed by 18 pairs oftype (e(Ci, Gk, P), e(Ci, P, P)), 

with P <l';f Gk, such that e(Ci, Gk, P) is not in a pair of rf2); 

So the set of critical cells Sing(S) is given by the cells not appearing 
in any pair of r (3)' i.e. by the following cells: 

• 1 critical 0-cell e(Co,Co,Co); 
• 6 critical2-cells e(C1, F1, Fl), e(C2, F2, F2), e(C3, F3, F3), e(C4, 

F4, F4), e(C5, F5, F5), e(C6, F6, F6); 
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Fig. 3. An upper section of A3 and critical cells in case d 
odd 

• 11 critical 4-cells e(C7, G1, G1), e(Cs, G1, GI), e(Cg, G2, G2), 
e(Cw, G2, G2), e(Cn, G3, G3), e(C12, G4, G4), e(C13, G5, G5), 
e(C14,G5,G5), e(C15, G6,G6), e(CI6,G6,G6), e(C17,G7,G7); 
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• 6 critical6-cells e(C7, P, P), e(C8 , P, P), e(C9 , P, P), e(C10 , P, P), 
e(C12, P,P), e(C13,P,P). 

Remark 8.1. As in previous examples we can calculate the number 
of cells as 1 + 6 + 11 + 6 + 2 * (23 + 43 + 6 + 60 + 11 + 18 + 48 + 25 + 
6 + 18 + 36 + 18) = 648. 

Cased= 3. 
Recall that the complex S(3) has 1536 cells. 

9 . 
The polar gradient r (3) has components: r (3) = Ui=l q3). Follow-

ing Definition 7.5 we can see that: 

• r(3) is composed by 23 pairs of type (e(Ci, Ci, Ci, Ci), e(Ci, Ci, 
Ci,FJ)), with FJ <l Ci, i.e. (e(Ci,Ci,Ci),e(Ci,Ci,FJ)) E r(2); 

• r(3) is composed by two types of pairs: 43 pairs of type (e(Ci, Ci, 
Ci,FJ), e(Ci,Ci,Ci,Gk)), with Gk <l FJ and e(Ci,Ci,Ci,FJ) 
does not belong to any pair of r(3), i.e. ( e( Ci, Ci, FJ), e( Ci, Ci, 

Gk)) E r(2); 6 pairs of type (e(Ci,Ci,Ci,FJ), e(Ci,Ci,FJ,FJ)) 
with e(Ci, FJ) critical for rc1), i.e. (e(Ci, Ci, FJ), e(Ci, FJ, FJ)) E 
r2 . 

(2)' 
• rf3) is composed by four types of pairs: 60 pairs of type (e(Ci, Ci, 

FJ, FJ ), e(Ci, Ci, FJ, Gk)), with Gk<lFJ, i.e. (e(Ci, FJ, FJ ), e( Ci, 
Fj,Gk)) E rf2); 11 pairs of type (e(Ci,Ci,Ci,Gk),e(Ci,Ci,FJ, 
Gk)) with FJ <ldk Ci, and e(Ci, Gk) is critical for r(1), i.e. 

(e(Ci, Ci, Gk), e(Ci, FJ, Gk)) E rf2); 18 pairs of type (e(Ci, Ci, 
Ci,Gk), e(Ci,Ci,Ci,P)), with P <l Gk and e(Ci,Ci, Ci,Gk) 
does not belong to any pair of r(3), i.e. (e(Ci, Ci, Gk), e(Ci, Ci, 

P)) E rf2); 6 pairs of type (e(Ci,Ci,FJ,FJ),e(Ci,FJ,FJ,FJ)) 
with e(Ci, Fj, FJ) critical for r(2); 

• rt3) is composed by four types of pairs: 48 pairs of type ( e( ci' ci' 
FJ, Gk), e(Ci, Ci, FJ, P)) with P<lGk and Gk = max<l{FICi -< 
F -< Gk}, i.e. (e(Ci, FJ, Gk), e(Ci, FJ, P)) E r{2); 25 pairs of 

type (e(Ci, Ci, FJ, Gk), e(Ci, Ci, Gk, Gk)) with Gk <ldk FJ and 

e(Fj,Gk) critical for r~f) 1 , i.e. (e(Ci,Fj,Gk), e(Ci,Gk,Gk)) E 

r{2); 6pairs of type (e(Ci,Ci,Ci,P), e(Ci,Ci,FJ,P)) with 
FJ<lftCi and e(Ci, P) critical for r(1), i.e. (e(Ci, Ci, P), e(Ci, FJ, 
P)) E r{2); 60 pairs of type (e(Ci,Fj,Fj,FJ), e(Ci,FJ,FJ, 
Gk)), with Gk <l FJ. Notice that in rc3) there are no pair 
of type (e(Ci,Ci, Fj,Gk), e(Ci,Fj,Fj,Gk)) because no cell of 
the form e(Ci, FJ, Gk) is critical for rc2); 
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• r(3) is composed by five types of pairs: 18 pairs of type ( e( ci' ci' 

Fj,P), e(Ci,Ci,Gk,P)) with e(Fj,P) critical for r(l)(AIFil), 
and Gk <!'J Fi, i.e. (e(Ci, Fj, P), e(Ci, Gk, P)) E fb; 36 pairs 
of type (e(Ci, Ci, Gk, Gk), e(Ci, Ci, Gk, P)) with P <1 Gk, i.e. 
(e(Ci, Gk, Gk), e(Ci, Gk, P)) E r(2l; 11 pairs of type (e(Ci, Ci, 
Gk, Gk), e(Ci, Fj, Gk, Gk)) with Fi <1 Ci, and e(Ci, Gk, Gk) is 
critical for r(2); 48 pairs of type (e(Ci, Fj, Fj, Gk), e(Ci, Fj, 
Fj, P)) with P <1 Gk and Gk = max<J{FIFi -< F -< Gk}; 36 
pairs of type (e(Ci, Fj, Fj, Gk), e(Ci, Fj, Gk, Gk)) with e(Fj, 
Gk) critical for r(l)(AIFil), Gk <16k Fi. Notice that in f(3) 

there are no pair of type (e(Ci,Ci,Fj,P), e(Ci,Fj,Fj,P)) be­
cause no cell of the form e(Ci, Fj, P) is critical for r(2); 

• rf3) is composed by four types of pairs: 18 pairs of type ( e( ci, ci, 
Gk, P), e(Ci, Ci, P, P)), with P<!'IJ'Gk, such that e(Ci, Ci, Gk, P) 
is not inT(3), Le. (e(Ci,Gk,P),e(Ci,P,P)) E rf2l; 72 pairs 
of type (e(Ci, Fj, Gk, Gk), e(Ci, Fj, Gk, P)) with P <1 Gk; 25 
pairs oftype (e(Ci, Fi, Gk, Gk), e(Ci, Gk, Gk, Gk)) with Gk<IFj 

and e(Fj, Gk, Gk) critical for rl~) 1 , i.e. Gk <1 P; 24 pairs 
oftype (e(Ci, Fj, Fj, P), e(Ci, Fj, Gk, P)) with e(Fj, P) critical 
for f(1)(A1Fil), i.e. Fin V2 -=/- 0 and bounded, and Gk <1'7 Fi. 
Notice that in r(3) there are no pair of type (e(Ci, Ci, Gk, P), 
e(Ci, Fj, Gk, P)) because no cell of the form e(Ci, Gk, P) is 
critical for r (2); 

• rr3) is composed by three types of pairs: 6 pairs of type ( e( ci' ci' 
P,P), e(Ci,Fj,P,P)) with Fj <1 Ci, and e(Ci,P,P) is critical 
for f(2); 36 pairs of type (e(Ci, Gk, Gk, Gk), e(Ci, Gk, Gk, P)) 
with P<1Gk; 48 pairs of type (e(Ci, Fj, Gk, P), e(Ci, Fj, P, P)), 
with P <1'7 Gk, and Gk = max<l';!'{FIFi -< F -< Gk}. No­
tice that in r(3) there are no pair of type (e(Ci,Fj,Gk,P), 
e(Ci, Gk, Gk, P)) because no cell of the form e(Fj, Gk, P) is 
critical for r1Fj I. 

(2) ' 
• rf3l is composed by two types of pairs: 18 pairs of type ( e( Ci, Fi, 

P,P), e(Ci,Gk,P,P)) with e(Fj,P,P) critical for r(2)(A1Fil), 
i.e. FjnV2 = 0, and Gk<IFj; 36 pairs of type (e(Ci, Gk, Gk, P), 
e(Ci, Gk, P, P)) with P <!'J Gk; 

• q3) is composed by 18 pairs of type (e(Ci, Gk, P, P), e(Ci, P, P, 
P)), with P <1 Gk, such that e(Ci, Gk, P, P) is not in a pair of 
rs . 

(3)' 
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So the set of critical cells Sing(S) is composed by the cells not 
appearing in any pair of r' i.e. by the following cells: 

• 1 critical 0-cell e(Co, Co, Co, Co); 
• 6 critical3-cells e(Co, F1, F1, Ft), e(C1, F2, F2, F2), e(C2, F3, F3, 

F3), e(C3, F4, F4, F4), e(C4,F5, F5, F5), e(C5, F6, F6, F6); 
• 11 critical 6-cells e(Cl,Gl,Gl,Gl), e(C2,G1,Gl,Gt), e(C3, 

G2, G2, G2), e(C4, G2, G2, G2), e(C5, G3, G3, G3), e(Cs, G4, G4, 
G4), e(Cg, G5, G5, G5), e(C10, G5, G5, G5), e(C7, G6, G6, GB), 
e(C12, G6,G6,G6), e(C13,G7,G7, G1); 

• 6 critical9-cells e(C1, P, P, P), e(Cs, P, P, P), e(Cg, P, P, P), e(C10, 
P,P,P), e(C12,P,P,P), e(C13,P,P,P). 

Remark 8.2. The number of cells is 1 + 6 + 11 + 6 + 2 * (23 + 43 + 
6+00+11+18+6+~+25+6+00+18+~+11+~+~+18+ 

72 + 25 + 24 + 6 + 36 + 48 + 18 + 36 + 18) = 1536. 

§9. Concluding remarks 

As we mentioned in the introduction, it would be interesting to 
analyze the situation for general subspace arrangements. Of course, 
minimality condition requires that the cohomology is torsion-free. For 
Hyperplane Arrangements, such property was known much before than 
the minimality condition. 

For general subspace arrangements, it is well known that the com­
plement can have torsion. An explicit example can be found in [J94]. Let 
V = JR10 . By using coordinates ( x 1 , ... , x 10 ) in V, the arrangement is 
given by A= {Ai}i=1 ... 6 , where A1 , •.• , A6 are the coordinate-subspaces: 

A1 = {x1 = x2 = X3 = X4 = X5 = 0} 
A2 = { x1 = x2 = X5 = X7 = xs = 0} 
A3 = { Xl = X3 = X6 = Xg = XlQ = 0} 
A4 = { X2 = X4 = X7 = Xg = XlQ = 0} 
A5 = {x3 = X5 = X7 = xs = Xg = 0} 
A6 = {x4 = X5 = x6 = xs = x10 = 0}. 
One can verify (for example by using the Goreski-MacPherson for­

mula) that the complement has 2-torsion in dimension 7. 
The previous example can be generalized by using the recent theory 

of moment-angle complexes, of the special type Z(K, (D2 , S 1 )). For every 
simplicial complex K, such complexes realize the complement of certain 
coordinate-subspace arrangements ([BPOO]). 

The non-trivial part of the conjecture stated in the introduction 
deals with non-torsion and non-simply connected subspace arrangements. 
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The previous examples in general produce simply-connected subspace 
arrangements. 

[BZ92] 

[BPOO] 

[DSOO] 

[De08] 

[DeSe] 

[DP03] 

[Fo98] 

[Fo02] 

[GaSa09] 

[GMS10] 
[GM88] 

[Ha02] 

[J94] 

[Ko08] 

[LeO OJ 

[Ma96] 

[OT92] 

[Ra02] 
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