
Advanced Studies in Pure Mathematics 62, 2012 
Arrangements of Hyperplanes-Sapporo 2009 
pp. 261-291 

Resonance webs of hyperplane arrangements 

Jorge Vit6rio Pereira 

Abstract. 

Each irreducible component of the first resonance variety of a hy­
perplane arrangement naturally determines a codimension one foliation 
on the ambient space. The superposition of these foliations define what 
we call the resonance web of the arrangement. In this paper we initi­
ate the study of these objects with emphasis on their spaces of abelian 
relations. 

§1. Introduction 

Let A = { H 1 , ... , H r} be an arrangement of r ;:::: 1 hyperplanes in 
]pm. The complement of A is an affine variety that will be denoted by 
M = M(A). It is a result of Arnold [2] (for the braid arrangement) 
and Brieskorn [5] (for and arbitrary hyperplane arrangement) that the 
cohomology ring of M, H•(M, Z), is torsion free and generated, as a 
graded algebra, by the degree one elements determined by the classes of 
the logarithmic differential forms 

for i E { 1, ... , r - 1} 

where h1 , ... , hr are linear polynomials in C[xo, ... , Xn] defining the hy­
perplanes in A. 

Given a E H 1 (M) = H 1 (M, C), consider the complex (H•(M), a) 
with arrows given by multiplication by a: 
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The resonance varieties of M, or A, are defined as 

The paper [14] provides the following nice description of the first 
resonance variety R1 (M). The irreducible components of R1 (M) are 
precisely the maximal isotropic subspaces of H 1 ( M) for the quadratic 
form 

having dimension at least two. Moreover, the irreducible components 
of R1 (M) of dimension k are in correspondence with pencils of hyper­
surfaces on ]pm having exactly k + 1 elements with support contained in 
the arrangement. In particular, for each irreducible component I; of the 
resonance variety there is a unique (singular holomorphic) foliation Fl', 
on pn defined by the corresponding pencil of hypersurfaces. 

The interest of the study of the resonance varieties of a hyperplane 
arrangement is amplified by its relation with the cohomology jumping 
loci ofrank one local systems on M. The characteristic variety Chari(M) 
of M is the subvariety of Hom(n1 (M), C*) defined as 

where Cp is the rank one local system determined by p. The above men­
tioned relation is given by the following Theorem [1, 11]: the exponential 
map 

defines isomorphisms between the germs (Ri(M), 0) and (Chari(M), 1), 
where 1 E Hom( n1 ( M), C*) is the trivial representation. 

The study of the foliation Fl', for irreducible components I; c R1 (M) 
led the author and S. Yuzvinsky (see [23]) to bounds for the dimension 
of I;. Although there is now (especially after [29]) a reasonably clear 
picture about each of the irreducible components of R1 (M), it is not 
very clear how the totality of them sit inside H 1 ( M, q. In this paper 
we propose an approach to produce invariants for arrangements that 
may turn out to be useful to the study of this question. The underlying 
idea is fairly simple: instead of looking at the foliations associated to 
the irreducible components of R1 ( M) one at a time, we should look at 
all of them at the same time. More precisely, we will associate to an 
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arrangement A what we call its resonance web W(A)-the superposition 
of all the foliations F'B associate to irreducible components of R1(A)­
and will study its space of abelian relations. 

Conversely, many relevant examples for web geometry, especially in 
what concerns the dimension of the space of abelian relations, appear 
as resonance webs of certain arrangements. The list starts with the Bol 
exceptional 5-web [4], contains the Spence-Kummer exceptional 9-web 
[27, 25], and ends with some other exceptional webs presented in [27, 25]. 
This provides further motivation to pursue the study of resonance webs. 

Our main result is Theorem 4.1 which determines the rank of the 
resonance webs for the braid arrangements which, as we will see in Sec­
tion 4, correspond to the (n13)-web on Mo,n+3 (the moduli space of 
n + 3 distinct ordered points on IP'1) defined by the (n13) natural maps 

Mo,n+3 --+ Mo,4 ~ C \ {0, 1}. 

We will also draw some general considerations about the abelian rela­
tions of resonance webs and use them to study some of the examples of 
exceptional webs mentioned above. Although we have no major results 
on the structure of the space of abelian relations of resonance webs for 
arbitrary arrangements, the blurry picture delineated by these examples 
is considerably intricate and, we believe, invites further investigation. 

Plan of the paper. In Section 2 we define webs, their spaces of abelian 
relations, and show how to bound the rank of arbitrary codimension one 
webs. We also review the algebraization results for webs of maximal 
rank, define exceptional webs, and present Bol's example of exceptional 
planar 5-web. In Section 3 we define resonance webs and initiate the 
study of their spaces of abelian relations, more specifically the subspace 
of polylogarithmic abelian relations generated by collections of iterated 
integrals of logarithmic 1-forms with poles on the arrangement. The 
reader will also find in Section 3 a brief presentation of a couple of 
basic results from Chen's theory of iterated integrals relevant to our 
study. Section 4 is devoted to the statement and proof of our main 
result: the determination of the rank of the resonance webs of the braid 
arrangements. Section 5 studies some of the exceptional planar webs 
found by Pirio and Robert as resonance webs of line arrangements in 
IP'2. 
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§2. Web geometry 

For us a germ of codimension one k-web W = F1 l:8l · · · l:8l Fk on 
(en, 0) is a collection of k germs of smooth codimension one holomor­
phic foliations subjected to the condition that any two distinct foliations 
Fi, Fj have distinct tangent spaces at zero. 

Usually in the literature a stronger condition is imposed on the 
tangent spaces at zero. In the terminology of [7] the tangent spaces 
are usually assumed to be in strong general position, meaning that 
for any 1 :::; m :::; n the intersection of tangent spaces at zero of m distinct 
foliations Fi have codimension m. 

Perhaps the most studied invariant of a germ of codimension one web 
W is its space of abelian relations A(W). If we choose integrable 
1-forms wi inducing the foliations Fi then A(W) is equal to 

If Ui : (en, 0) ---+ ( e, 0) are local submersions defining the foliations 
Fi then, after integration, the abelian relations can be read as functional 
equations of the form 2:::=1 gi(ui) = 0 for some germs of holomorphic 
functions gi : (e, 0) ---+ (e, 0). Thus we can interpret the abelian rela­
tions of Was functional equations (of a rather special kind) among the 
first integrals of the foliations defining it. 

2.1. Rank of webs 

Clearly A(W) is a vector space and its dimension is commonly called 
the rank of Wand is denoted by rank(W). We will now explain how 
one can bound the rank of arbitrary codimension one webs. This is a 
classical subject in web geometry and has been treated by Bol (n = 2) 
and Chern (n ?: 3 for webs in strong general position) in the decade 
of 1930, and more recently by Cavalier-Lehmann for ordinary webs, see 
the definition below. Here we will deal with arbitrary codimension one 
webs. This section is a summary of [21, Section 2.2]. 

For every i E { 1, ... , k} let Wi be a germ of 1-form defining Fi and 
satisfying wi(O) -=1- 0. For any positive integer j define £i (W) as the 
subspace of the e-vector space Symi (!11 (en, 0)) generated by the j-th 
symmetric powers of the exterior forms Wi ( 0) with i E { 1, ... , k}. Set 
f) (W) = dim £i (W). 
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Alternatively, if ui : (en, 0) ---+ (e, 0) are local submersions defining 
the foliations Fi, and hi are their linear terms then 

(1) 

Notice that the integer gJ (W) is bounded by k and by the dimen­
sion of the vector space of homogeneous polynomials of degree j in n 
variables, i.e. 

(2) 

In the terminology of [7], a germ of k-web W on (en, 0) is ordinary if 

and only if .CJ(W) =max { k, (n~~~ 1)} for every positive integer j. 

A good lower bound is harder to obtain. For webs in strong general 
position there is a lemma by Castelnuovo [21, Proposition 2.2.2] which 
says that 

(3) .eJ(W) ~ min(k,j(n -1) + 1). 

For arbitrary webs, no longer in strong general position, the best possible 
lower bound is .eJ (W) ~ min(k, j + 1 ). 

The argument used to prove the proposition below is borrowed from 
Trepreau's proof [28] of Chern's bound for the rank of webs in strong 
general position. 

Proposition 2.1. IfW is an arbitrary k-web on (en,o) then 

00 

rk(W) :::; L max( 0, k - .eJ (W)) 
j=1 

and the sum involves only finitely many non-zero terms. 

Proof. The space of abelian relations of W admits a natural filtra­
tion A(W) = A0 (W) ::;2 A 1 (W) ::;2 ... ::;2 AJ(W) ::;2 •.. , where 

and m is the maximal ideal of e{ x1, ... , Xn}. 
One can easily verify [21, Lemma 2.2.6] that 

. AJ (W) ( · 1 · 1) 
(4) d1m AH1 (W) :::;k-dim e-h{+ +···+e·hi+ 
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where hi is as in (1). The bound follows. Moreover, as fJ (W) > 
min(k,j + 1) there are only finitely many non-zero terms at the summa­
tion above. Q.E.D. 

The proposition above combined with the lower bounds previously 
discussed allows us to recover the bounds for the rank of germs of codi­
rilension one webs available elsewhere. 

Corollary 2.1. Let W be a germ ofk-web on (Cn,o). The asser­
tions below hold true. 

(1) (Bol's bound) If n = 2 then 

k(w) (k- 1)(k- 2) 
ran ~ 2 . 

(2) (Chern's bound) If n ~ 3 and W is in strong general position 
then 

00 

rank(W) ~ L:max(O, k- j(n -1) -1). 
j=l 

(3) (Cavalier-Lehmann's bound) If n ~ 3 and W is an ordinary 
web then 

~ ( (n+j -1)) rank(W) ~ ~max 0, k - n _ 1 . 

The number at right-hand side of Chern's bound is Castelnuovo's 
bound 1r(n, k) for the arithmetic genus of irreducible, non-degenerated 
curves of degree k on ]pm. 

2.2. Algebraic and algebraizable webs 

An important class of examples of webs is the class of algebraic 
webs which are webs dual to projective curves. If C is a reduced de­
gree k projective curve on lP'n then for every general hyperplane H 0 a 
germ of codimension one k-web We is naturally defined on (rr£n, H 0 ) 

through projective duality. More precisely We is defined by the germs 
of submersions Pi : (rr£n, H0 ) ---+ C characterized by 

H · C = P1(H) + P2(H) + · · · + Pk(H) 

for every H sufficiently close to H 0 . 
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If we denotes the sheaf of abelian differentials on C, see for instance 
[21, Chapter 3, Section 2.2] for the definition, then Abel's addition The­
orem says that for every p0 E C and every regular 1-form w E H 0 ( C, we) 
the sum 

1
P1(H) 1p2(H) 1pk(H) 

w+ w+···+ w 
Po Po Po 

does not depend on H. One can reformulate this statement as 

k 

L:>?w = 0. 
i=l 

It follows that (p]'w, ... ,p'kw) can be interpreted as an abelian relation of 
the algebraic web We. Consequently there is an injection of H 0 (C,we) 
into A(We). There is a converse to Abel's addition Theorem (due to 
Lie, Poincare, Darboux, Wirtinger see [21, Chapter 4]) which implies 
that this injection is indeed an isomorphism. 

Since h0 (C,we) = (k -1)(k- 2)/2 for any reduced plane curve of 
degree k, it follows that every algebraic planar web has maximal rank. 
The same is no longer true in higher dimensions as the (arithmetic) 
genus of curves is not determined by theirs degrees. The curves giving 
rise to maximal rank webs are exactly those which have maximal genus 
in a given degree, the so called Castelnuovo curves. 

2.3. Exceptional webs 

For k-webs in strong general position on (CCn, 0), n 2': 3, the max­
imality of rank implies that the web is algebraizable (biholomorphic 
to a web obtained from a projective curve through duality as explained 
above) when k ::; n + 1 or k 2': 2n. This was proved by Bol for n = 3, 
and for n > 3 is a recent result of Trepreau, see [28]. The planar case 
(n = 2) is rather special in what concerns the classification of webs of 
maximal rank. For k :S 4 it is well-known that planar webs of max­
imal rank are algebraizable, the proof for k = 4 can be traced back 
to Lie's work on double translation surfaces, and for k = 3 is due to 
Blaschke-Dubourdieu. In sharp contrast, [19] exhibits examples of non­
algebraizable planar k-webs of maximal rank for every k 2': 5. Further 
infinite families of examples appear in [20]. Despite recent advances, 
see for instance [15, 16, 19, 20], the classification of exceptional (non­
algebraizable and of maximal rank) planar k-webs is wide open. For a 
short review of these results see [22]. A more leisurely account can be 
found in [21]. 

So far the focus was on germs of webs, but we can consider webs 
globally defined on a complex variety X. For our pourposes it will 
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be sufficient to consider completely decomposable webs, that is webs 
W which can be globally presented as the superposition of k pairwise 
distinct global foliations F 1 ~ · · · ~ Fk. For the general definition of 
global webs see [21, Chapter 1]. 

Given a global web W, there exists a subvariety A= A(W) C X such 
that for every x E X\A the germ of web Wx obtained by localizing W at 
xis a germ of codimension one web and the rank of Wx is independent 
of x E X\ A, see [26, Theorem 1.2.2]. More precisely, over X\ A the 
space of abelian relations of W is a local system of k-uples of germs of 
closed 1-forms. Therefore it still makes sense to talk about the rank for 
global webs. 

The first example of exceptional web dates back to the 1936 and 
was found by Bol, see [4]. It is the global 5-web B5 on lP'2 formed by the 
superposition of 4 pencils of lines with base points in general position 
and one pencil of conics through these four base points. We will explain 
below that this web is naturally associated to an arrangement of lines 
on lP'2 • 

§3. Resonance webs 

Let A = { H 1 , ... , Hr} be an arrangement of r ~ 1 hyperplanes in 
lP'n. Recall from the introduction that R1 (A), the first resonance variety 
of A, is the union of the maximal isotropic subspaces of (H1 (M), /\) of 
dimension at least two. 

For i E {1, ... , r }, let hi E C[x0 , .•. , Xn] be a linear polyno­
mial defining Hi. From now on we will identify H•(M) with the al­
gebra generated by the logarithmic 1-forms ( d log hi - d log hr) with 
iE{1, ... ,r-1}. 

Before defining our main object of study, let us give a brief idea on 
how one can associate a pencil of hypersurfaces with d + 1 completely 
decomposable fibers to an irreducible component ~.of R1(A) of dimen­
sion d. Let w1 , ... , wa be a basis of ~. As ~ is isotropic there exists 
non-constant rational functions hij E C(x0, ... ,xn) (i of. j) such that 
Wi = hijWj. Differentiating this last expression one obtains 0 = dhij /\w1. 
Thus the level sets of the functions hij are tangent to the distribution 
determined by Wi for every i E { 1, ... , d}. Stein factorization theo­
rem ensures the existence of a rational map f : lP'n --+ lP'1 such that 
df 1\ dhij = df 1\ Wi = 0 for every i,j E {1, ... , d}. Moreover, there 
exists d linearly independent logarithmic 1-forms on lP'1 , say ry1 , .•. , 'T/d, 

such that f*{TJi)oo C A, and f*(TJi) = Wi for every i E {1, ... , d}. The 
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maximality of I; implies that the cardinality of 

Pz; = U(7Ji)oo 
iEg 

is equal to d + 1. Thus the rational map f = h determines a pencil 
of hypersurfaces with d + 1 fibers contained in the support of the ar­
rangement. Moreover, the restriction of f to M = ]pm \A is a regular 
morphism 

where Cz; = JID1 \ P~> 

Let Fz; be the foliation on M (or on lP'n) determined by the level 
sets of fz;. We define W(A), the resonance web of A as the global web 
on M (or on lP'n) obtained by the superposition of the foliations Fy:, with 
I; ranging over the irreducible components of R1 (A). 

Example 3.1. Consider the arrangement on JID2 defined by the poly­
nomial {xyz(x- z)(y- z)(x- y) = 0}. The points of its complement 
can be interpreted as isomorphism classes of 5 ordered points on JID 1 . To 
wit, the point (x: y: 1) E JID2 satisfying x- y # 0, x # 0, 1, andy# 0,1 
naturally correspond to the 5-tuple (0, 1, oo, x, y) E (J!D1 ) 5 . We will de­
note this arrangement by A0 ,5 and its complement in JID2 by 9J10 ,5 . The 
resonance variety of 9J10 ,5 has five irreducible components and the asso­
ciated morphisms are the five forgetting maps 9J10 ,5 --+ 9J10 ,4 , sending 
isomorphism classes of five ordered points on JID1 to isomorphism classes 
of four ordered points on JID1 . It is a simple exercise to verify that fibers 
of four of these maps form pencils of lines with base points in general 
position, and that the fibers of one of them is a pencil of conics through 
these base points. Thus Bol's exceptional 5-web l35 is nothing more than 
W(Ao,s) the resonance web of Ao,5 . 

Due to the important role of Bol's 5-web in the development of web 
geometry it is natural to enquire about the rank of the resonance webs 
for arbitrary arrangements. To determine the rank of an arbitrary web 
is a daunting task. The only general method dates back to Abel (see [26, 
25] for a modern account) and involves lengthy algebraic manipulations 
which lead to linear differential equations of high order that have to 
be solved. Although implementable, in practice such method is not 
computationally efficient and cannot deal with k-webs when k is large, 
say k > 10. 

An alternative approach to compute the rank of certain webs has 
been devised by Gilles Robert. Loosely speaking it restricts the search 
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Fig. 1. Affine trace of the arrangement A0 ,5 

of abelian relations to a certain class of differential forms defined from 
iterated integrals of logarithmic differentials. Here we will explore this 
approach, adding some topology/ combinatorics of arrangements to the 
picture. 

3.1. Logarithmic abelian relations 

Consider the morphism 

I 

where :E ranges over all the irreducible components of R1 (A). Let 
Log1 W(A) be its kernel, i.e., Log1 W(A) = ker l]i 1 . 

Proposition 3.1. The vector space Log1 W(A) embeds into the 
space of abelian relations of W(A). 

Proof. Let (TJ"E) E kerl]i1 be a non-zero element. Each 1]'2:. corre­
sponds to a logarithmic 1-form on IP'1. The pull-backs under the cor­
responding rational map ff.TJ"E are closed logarithmic 1-forms on IP'n, 
and ff.TJ"E defines a distribution tangent to the foliation F'E.. Thus 
(ff.TJ"E) E A(W(A)) as wanted. Q.E.D. 

A natural place to look for further abelian relations is to consider 
differential forms with logarithmic coefficients, that is, differential forms 
like 

dz 
log(z)--. 

z-1 
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A convenient formalism to deal with such objects is Chen's theory of 
iterated integrals. 

3.2. Chen's theory of iterated integrals 

In this paragraph M will be an arbitrary connected complex mani­
fold. Given a path 'Y: [0, 1] ---+Manda collections of 1-forms w1 , ... , Wk 

the iterated integral of w1 Q9 · · · Q9 wk along 'Y is defined as 

where Pi : Mk ---+ M is the projection on the i-th factor and tlk is the 
image on Mk of the k-simplex in JR.k given by 0 ::::; x 1 ::::; · · · ::::; Xk ::::; 1 
under the map 'Y x · · · x 'Y. 

'--v---" 
k times 

Even if the 1-forms Wi are closed this integral does depend on the 
path and not just on its homotopy class. It is a result of Chen [8, The­

orem 4.1.1] that the elements of 0 1(M) 181 k for which the corresponding 
iterated integral does not depend on the representative in a given ho­
motopy class are in the intersection of the kernels of the linear maps, 
i E {1, ... , k - 1 }, 

n1(M)®k ---+ n1(M)®i-1 ® n2(M) ® n1(M)®(k-i-1) 

W1 Q9 • · · Q9 Wk f-+ W1 Q9 · · · Q9 Wi+1 1\ Wi+2 Q9 Wi+3 Q9 · · · Q9 Wk ; 

with the kernels of the linear maps, i E {1, ... , k }, 

f!1(M)®k ---+ f!1(M)®i-1 Q9 f!2(M) Q9 f!1(M)®(k-i) 

w1 Q9 • · · Q9 wk f-+ w1 Q9 · · · Q9 dwi+1 Q9 wi+2 Q9 · · · Q9 wk . 

If Bk(M) denotes this intersection then every element of Bk(M) gives 
rise to a function on the universal covering of M through (iterated) 
integration. Thus we can interpret the elements of Bk ( M) as closed 
1-forms on the universal covering of M by considering the differential of 
this function. 

Moreover, Chen also proved that if we consider a vector subspace 
V of 0 1 (M) formed by closed 1-forms with no non-zero exact forms 
then the iterated integrals define an injection of EBk> 1 V 181k nBk(M) into 
the space of holomorphic functions on the universal covering of M. In 
particular, when M is the complement of a hyperplane arrangement, 
this is the case for H 1(M) seen as a vector subspace of 0 1 (M). For 
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more about iterated integrals of logarithmic 1-forms on the complement 
of arrangements see [18]. 

It is also interesting to observe that B(M) = tJJ'f=1Bk(M) admits 
a natural structure of n1 (M)-module, with action defined by analytic 
continuation of the iterated integrals. Notice that the summands Bk(M) 
are not n 1 ( M)-invariant when k ?: 2, but the terms of the filtration 
p• : Fk(M) = EB:=l Bi(M) are. 

3.3. Polylogarithmic abelian relations 
It is natural to extend the construction of Section 3.1 to arbitrary 

iterated integrals of logarithmic 1-forms. For each i ?: 1, consider the 
morphism 

I 

where, as before, :E ranges over all the irreducible components of R1(A). 
Define Logi W(A) as its kernel, i.e., Logi W(A) = ker'l!i. Define also 
Log00 W(A) as the direct sum 

00 

Log= W(A) = E9 Logi W(A). 
i=l 

Proposition 3.2. If W is the localization of the web W(A) at a 
generic point of M then the vector space Log= W(A) embeds into the 
space of abelian relations of W. Moreover, the analytic continuation of 
this embedding gives rise to a local system of abelian relations globally 
defined on M. 

Proof. Fix i E N, and let ( rtr.) E ker w i be a non-zero element. 
Each 'f/E corresponds to a iterated integral in CE. The pull-backs f~'f/E 
under the corresponding rational maps are iterated integrals on M, and 
as such can be interpreted as functions on the universal covering of 
M. Moreover the (multi-valued) functions on M determined by f~'f/E 
are (locally) constant along the leaves of the foliation FE. As we are 
considering iterated integrals of logarithmic 1-forms, the properties of 
iterated integrals recalled on Section 3.2 imply the functions on the 
universal covering of M coming from the components of ("'E) E ker'lli 
will sum up to zero. Thus the differentials of these functions will define 
an abelian relation for W(A). To check injectivity one has just to notice 
that two different elements in tBiH1 (CE)®i will define different functions 
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on the universal covering of Cr. according to Chen's Theory, see Section 
3.2. Q.E.D. 

Let kd(A) be the number of irreducible components of R1 (A) of di­
mension d and k(A) be the total number of irreducible components of 
R1 (A). Notice that the resonance web of A is a k(A)-web. 

Corollary 3.1. The following inequalities hold true: 

rank(W(A)) 2: dimLog00 (A), 

d . L oo(A) < (k(A) -1)(k(A)- 2) 
1m og _ 2 , 

dimLogi(A) 2: Ldikd(A)- dimBi(M) n H 1 (M)0i. 
d 

In particular Log00 (A) is a finite dimensional vector space. 

Proof. The first inequality follows from Proposition 3.2. The sec­
ond follows from the first combined with Bol's bound (Corollary 2.1) 
for the rank of planar webs. To prove the third inequality it suffices to 
notice that Chen's integrability conditions are trivially satisfied by col­
lections of 1-forms on a curve. Thus the morphism \]!k factors as·in the 
diagram below 

where Hi= Hi(M) and Nk(M) = Bk(M) n H 1(M)0 k. The corollary 
follows. Q.E.D. 

Since M is the complement of a hyperplane arrangement, H•(M) is 
generated in degree one. Consequently 

In general we do not know how to control the dimensions of the vec­
tor spaces Ni(M) when i 2: 3. Nevertheless for fiber type arrangements 
there is the following Kiinneth type formula which is a corollary of [6, 
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Theorem 3.38]: If A is a fiber type arrangement on JP'n with exponents 
{el, ... 'en} then 

dimNi(M) = L e{1 .. • e~n 

where the sum is over all ordered n-uples 0 ::=:; j 1 ::=:; · · · ::=:; Jn with 
Jl + · · · + Jn = i. 

As will be made clear by the examples in Section 5 th,e bound for 
the rank given by Corollary 3.1 is rather crude and does not capture 
many otherwise easily predicable abelian relations. Nevertheless, we 
will need not more than these crude bounds to determine the rank of 
the resonance webs of the braid arrangements. 

§4. Resonance webs of the braid arrangements 

For n :::0:: 2, let Ao,n+3 be the arrangement of hyperplanes on JP'n 
defined by the vanishing of the polynomial 

It is the quotient of the braid arrangement Bn+2 on JP'n+2 

II (yi-YJ) 
0:5i:5j:5n+l 

by its center {Yo= Yl = ... = Yn+ 1 }. The resonance variety of Ao,n+3 is 
isomorphic to the resonance variety of Bn+2, and the resonance web of 
Bn+2 is a linear pull-back of the resonance web of Ao,n+3. Consequently, 
both webs have isomorphic space (local system) of abelian relations. 

The complement of Ao,n+3 will be denoted by 9Jto,n+3 and can be 
identified with the moduli space of (n + 3)-uples of pairwise distinct 
ordered points of lP'1 . According to [11], the resonance variety of 9Jto,n+3 
has (n!3) irreducible components which are in correspondence with the 
forgetful maps 

9Jto,n+3 ----+ 9Jto,4· 

Thus the resonance web of W(Ao,n+3) is a (n!3)-web on 9Jto,n+3 C 
lP'n. The main result of this paper is the determination of the rank of 
W(Ao,n+3) given below. 

Theorem 4.1. For every n :::0:: 2 the equality 

( n + 3) (n + 2) (n + 1) rank(W(Ao,n+J)) = 3 4 - 3 - 2 - n 



Resonance webs of hyperplane arrangements 275 

holds true. 

The remaining of this Section is devoted to the proof of this Theo­
rem. It will be convenient to work in the affine chart x 0 = 1. 

4.1. Upper bound for the rank 

For each ordered 4-uple of ordered integers 1 ::; a < (3 < 'Y < 8 ::; 
n + 3 consider the map 

PafJ"fli : 9Jto,n+3 --+ 9Jto,4 

(x1, ... , Xn+3) t----+ (xa, XfJ, x7 , Xo) 

where the points in the source and the target represent isomorphism 
classes. 

Since 9Jto,4 = C - {0, 1} each of these (nJ3) maps define isotropic 
subspaces of H 1(9Jto,n+3), namely p~fJ"fliH 1 (9Jto,4) C H 1(9Jto,n+3)· It 
can be verified that these isotropic subspaces are maximal, and that 
there are no other resonance varieties for Ao,n+3 , see [11]. 

Consider now W = W(Ao,n+3), the germification of the resonance 
web of Ao,n+3 at a generic point of 9Jto,n+3 c en. It will be useful to 
consider the following subwebs: 

(1) For each a En+ 3let Wa be the (ni2)-subweb defined by the 
maps p1 where I ranges over all the ordered 4-uples containing 
a. Similarly for distinct a, (3 and a, (3, 'Yin the above range let 
Wa,fJ be the (n~ 1)-subweb and Wa,fJ,"f be the n-subweb where 
I ranges over the ordered 4-uples that contains a, (3 and a, (3, 'Y 
respectively. 

(2) For each a En+ 3let W"' be the pull back of W(Ao,n+2) under 
the morphism 

P01 
: 9Jto,n+3 --+ 9Jto,n+2 

that forgets the a-th point. 

We combine the two constructions above and define 

W,8,7 = W"' n W/3,7 

where the intersection of the webs is the web formed by the ·common 
foliations of both webs. 

Proposition 4.1. For each a E {1, 2, 3, 4} and every ordered sub­
set I of n + 3 of cardinality 4 - a, ca(W) is isomorphic to ca(W1 ). 

Moreover, the dimension of ca(W) is given by the formula 

ea(W) = ea(WI) = (n +a -1). 
n-1 
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Proof. The proof will be by a double induction on n and a. 
When n = 2, WI = W(A0 ,5 )I is an (a+ 1)-web on C2 . Therefore 

ca(W) contains ca(WI ), and equation (2) implies 

a+ 1 2: .ea(W) 2: .ea(WI) =a+ 1. 

The result follows in this case. 
When a = 1, we can assume that I = (n + 1, n + 2, n + 3) and 

therefore by normalizing the points of m1o,n+3 in such way that the last 
three are 0, 1, oo we have that the n foliations defining WI are defined 
by the morphisms (x1 , ... , Xn, 0, 1, oo) r+ (xi, 0, 1, oo). Clearly C1 (W) = 

C1(WI) = EEli=lCxi. 
Suppose now that a 2: 2 and n 2: 3. Assume I C {n+1, n+2, n+3}, 

j E {1, ... , n }, and (xn+l, Xn+2, Xn+3) = (0, 1, oo ). Consider the linear 
map defined by the derivation a~j from Ca [x1 , ... , xn] ':o:' Symanl (en, 0) 

to Ca-dx 1 , ..• ,xn] ':o:' Syma-10 1 (Cn,o). It induces the following dia­
gram with exact rows where the unlabeled arrows are the natural inclu­
sions. 

Notice that WJ is isomorphic to W(Ao,n+2 ) and therefore, by induc­
tion hypothesis, the leftmost vertical arrow is an isomorphism. The 
induction hypothesis also implies that the vector spaces ca-l (Wj) and 
ca-1 (WIU{j}) are both isomorphic to ca-1 (W). Thus the rightmost 
arrow is also an isomorphism. It follows that the middle vertical arrow 
is also an isomorphism and has dimension given by 

.ea(W) = ((n- 1) +a- 1) + (n +(a- 1)- 1) = (n +a -1). 
(n-1)-1 n-1 n-1 

The proposition follows. Q.E.D. 

As a consequence we obtain that for every n 2: 2 the webs W(Ao,n+3 ) 

are ordinary webs. 

Corollary 4.1. For every n 2: 2 the inequality 

(n + 3) (n + 2) (n + 1) rank(W(Ao,n+3)) ::=; 3 4 - 3 - 2 - n 

holds true. 
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Proof. It suffices to combine Propositions 2.1 and 4.1. 

4.2. Lower bound for the rank 
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Q.E.D. 

As there are exactly G) + 2n + 1 hyperplanes in the (projec­
tive) arrangement Ao,n+3, h1(m1o,n+3) = (~) + 2n. Notice also that 
h1 (m1o,4) = 2. Since k(Ao,n+3) = k2(Ao,n+3), Corollary 3.1 implies 

(5) dim Log1 W(Ao,n+3) ~ 2 ( n: 3) - h1 (m1o,n+3) 

= 2(n; 3)- (~) +2n. 

Similarly, 

dimLog2 W(Ao,n+3) ~ (n: 3) · h1 (m1o,4) 2 - dimN2 (m1o,n+3). 

It is a result of Arnold [2] that the Poincare polynomial of m1o,n+3 is 
P(t) = (1 + 2t)(1 + 3t) · · · (1 + (n + 1)t). Therefore the dimension of 
N 2 (m1o,n+3) is equal to 

h1 (m1o,n+3) 2 - h2(m1o,n+3) = ( (~) + 2n) 
2

- P"(0)/2. 

Consequently 

. 2 ) (n + 3) 1 )2 2( ) (6) dlmARz09 (Ao,n+3 ~ 4 4 - h (Mo,n+3 + h Mo,n+3 . 

4.3. Proof of Theorem 4.1 
It is not hard to prove by induction that summing the right-hand 

side of the inequalities (5) and (6) one obtains 3(n!3)- (n!2)- (nt1) -n. 
Therefore, Proposition 3.2 implies that 

rank(W(Ao,n+3)) > dimARf09 (Ao,n+3) + dimARt09 (Ao,n+3) 

> 3(n;3) _ (n;2) _ (n;1) -n. 

Combining this lower bound with the upper bound given in Corollary 
4.1 concludes the proof of Theorem 4.1. Q.E.D. 

As the webs W(Ao,n+3) attain Cavalier-Lehmann's bound, it is nat­
ural to ask if they are algebraizable or, more generally, linearizable. As 
the leaves of algebraic webs are contained in hypersurfaces, every al­
gebraizable web is linearizable but the converse is not always true. In 
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[24] it is proved that the webs W(Ao,n+3 ) are not linearizable. We refer 
to this work and references therein for more about the linearization of 
webs. 

It is interesting to compare our Theorem 4.1 with Damiano's deter­
mination of the rank of the (dimension one) web given by the (n + 3) 
maps [12] 

9J1o,n+3 -----+ 9J1o,n+2 · 

These webs turn out to attain the corresponding bound for the rank of 
one-dimensional webs and are also non-linearizable. 

§5. Examples 

This section is devoted to the study of some exceptional planar 
webs-first found by Pirio and Robert [25, 27]-which are resonance 
webs of suitable line arrangements in JP2 . We use them to recognize 
other sources of abelian relations besides iterated integrals with loga­
rithmic forms with poles on the arrangement. 

5.1. More polylogarithmic abelian relations 

We start with a simple example. Consider A0 as the arrangement 
of 8 lines on JP2 with affine trace presented in Figure 2. If we suppose 
that the triple point is at the origin of C 2 then pencil of lines through 
it corresponds to an irreducible component of the resonance variety of 
dimension two. There are other two triple points at the line at infinity 
and they also correspond to irreducible components of the resonance 
variety of dimension two. There are no other irreducible components 
of R1 (A0 ). The resonance web W(Ao) is the 3-web determined by the 
superposition of the foliations given by the level sets of the functions 
x, y, xjy. It clearly has rank one as 

X 
d log x - d logy - d log - = 0 , 

y 

but dim Log= W(A0 ) = 0 as one can promptly verify. 

Given an arrangement of hyperplanes A on lP'n we define the reso­
nance closure of A, denoted by A, as the arrangement of hypersurfaces 
on lP'n characterized by the following property: H E A if and only H E A, 
or there exists two distinct irreducible components I:1 , I:2 of R1 (A) such 
that dim f-L; 1 (H) =dim f-L; 2 (H) = 0. In other words either H belongs to 
the original arrangement A or it is invariant by two distinct foliations of 
the web W(A). The complement of A will be denoted by M. 



Resonance webs of hyperplane arrangements 279 

Fig. 2. 1 = rank(W(A)) >dim Log= W(A) = 0 

Example 5.1. The resonance closure of the example Ao is obtained 
by adding the lines {x = 0} and {y = 0}. A more interesting (family 
of) examples is obtained by considering the (family of) arrangement(s) 
K5 determined by the 10 lines joining 5 points in lP'2 in general position. 
It can be verified that the resonance variety of K5 has 10 irreducible 
components: 5 of dimension 3 corresponding to pencils the lines through 
the points, and 5 of dimension 2 corresponding to the pencils of conics 
through 4 of the 5 points. If C denotes the conic through the 5 points 
then K5 = K5 U {C}. 

Fig. 3. On the left K5 , on the right K5 . The line at infinity 
is not included in the arrangements above 

The relevance of the definition of the closure of an arrangement is 
put in evidence by the following specialization of [26, Theorem 1.2.2]. 
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Proposition 5.1. IfW(A) is the resonance web of an arrangement 
A then every germ of abelian relation of W(A) extends to the universal 
covering of M. 

If ~ is an irreducible component of R1 (A) we define its closure ~ 
as the maximal isotropic subspace of H 1 ( M) containing the image of 
~under the natural inclusion H 1 (M) -+ H 1 (M). The closure of the 
resonance variety of A is the subvariety of H 1 ( M) defined as 

Rl(A) = u ~. 
ECR1 (A) 

Notice that R1 (A) c R1 (A) but the equality does not hold in general. 

To each irreducible component ~ C R1 (A) there is a set of points 
of lP'\ P"E :J PE with complement CE satisfying (h)* H 1 (CE) =~.By 
analogy with what has been done in Sections 3.1 and 3.3, we can consider 

\Ifi: ffiH 1 (CE)®i ---+ H 1 (M) 0 i 

"E 

and define, for every i E N, LogiW(A) = ker \Ifi. We also define 

Log00 W(A) as the direct sum EBiLogiW(A). 

Of course, we also have a Proposition 3.2: 

Proposition 5.2. If W is the localization of the web W(A) at a 
generic point of M then the vector space Log00 W(A) embeds into the 
space of abelian relations of W. Moreover, the analytic continuation of 
this embedding gives rise to a local system of abelian relations globally 
defined on M. 

Of course, we can write lower bounds for LogiW(A) analogous to 
the ones given by Corollary 3.1. 

If A = { C1 , ... , Cr} is an arrangement of curves on lP'2 it is still 
a simple matter to determine the dimension of the second cohomology 
group of the complement. If ti(A) denotes the number of singular points 
in the support of A through which there exactly i branches, and x(Ci) 
( i = 1, ... , r ) are the Euler characteristic of the normalizations of the 
curves in the arrangement then [10, Proposition 2.4], 

oo r 

(7) h 1 (M) = r -1 and h2 (M) = 1 + 2)i -1)ti(A)- 2)x(Ci) -1). 
i=2 i=l 
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We can use these observations (together with some computer algebra) 
to recover the following (unpublished) joint result of Pirio and Robert. 

Theorem 5.1. The resonance web of K5 is exceptional. 

Proof. Notice that the closures of the irreducible components of 
R1 (K5 ) all have dimension 3. As h1 (M) = 10, we obtain the lower 
bound 

Log1W(K5 )?: 10 · 3- h1 (M) = 30-10 = 20. 

To control Log2W(K5 ), we need to know the dimensions of N 2 (M) 
ker{H1 (M)<Zi2 ---+ H 2 (M)}. For an arbitrary arrangement of curves the 
cohomology algebra of the complement has no reason to be generated in 
degree 1, but for M = lP'2 \ K5 , [10, Theorem 2.46] implies it is the case. 
Thus 

The inequalities above turn out to be equalities. To determine the di­

mension of Log3 W(K5 ) one has just to compute the dimension of the 
kernel of a 3375 x 243 matrix. A brute-force calculation1 shows that 

dimLog3W(Ks) = 1. 

Thus W(K5 ) attains Bol's bound 9 · 8/2 = 36. To prove it is non­
algebraizable it suffices to apply [20, Proposition 2.1]. Q.E.D. 

Notice that K5 is indeed a 2-parameter family of 10-webs as the 
moduli space of isomorphisms classes of 5 point on lP'2 has dimension 2. 

5.2. Rational abelian relations 

The inclusion of Log00 W(A) into A(W(A)) does not exhaust the 
space of abelian relations of W(A) in general, unlike when A = A0 ,5 

or A = K5 . The simplest example is when A is an arrangement of 
9 lines with 3 aligned threefold intersection points and all the other 
intersections are ordinary. In this case the resonance variety has only 
three local components, each of them having dimension two. Supposing 
that these three points are (0 : 1 : 0), (1 : 0: 0), and (1 : 1 : 0) then the 
corresponding foliations are defined by the 1-forms dx, dy, and dx + dy. 
As they satisfy (dx) + (dy) - (dx + dy) = 0, it is clear that W(A) has 
rank one but dim Log00 W(A) = 0. 

1 Maple script available at www. imp a. br/- jvp/artigos .html. 
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Define RatW(A) as the kernel of the linear map 

where C(IP'n) stands for the field of rational functions on lP'n, and the sum­
mation~ run over all the irreducible components of R1 (A). Coordinate­
wise differentiation injects kerT into A(W(A)). Notice that its image 
intersects Log00 W(A) only at zero. Therefore, we have the following 
lower bound for the rank of W(A) 

(8) rank(W(A)) 2: dimLog00 W(A) + dimRatW(A). 

We do not know how to give general lower bounds for dim RatW(A). 
We have only the following simple result. 

Lemma 5.1. Let A be a planar arrangement, and let {£1 , ... , £m} be 
the lines in its closure. Ifni is the number of local irreducible components 
~ c f?-(A) containing .ei in its support then 

dimRatW(A) 2: t (ni- 1~(ni- 2). 

i=l 

Proof. Suppose that £1 is the line at infinity. The foliations as­

sociated to the n 1 components of R1 (A) containing £1 are defined by 
dh1 , ... , dhn 1 where hi is a linear form. To prove the lemma it suffices 
to observe that for p 2: 1, the kernel of the maps 

n1 

(a1, ... , anJ f-t L ai(hi)P 
i=O 

will correspond to rational abelian relations with polar set contained in 
£1. Q.E.D. 

Of course one can do better by considering rational functions with 
poles on fibers of Jr. for non-local components of R1 (A). 

Example 5.2. Let B5+n, n = 1, 2, 3, be the arrangements obtained 
from Ao,5 by adding n generic lines, each through a distinct double point, 
see Figure 4. The resonance webs are the webs 8 6 , 8 7 and 8 8 considered 
by Robert and Pirio, and proved to be exceptional by them. 

The rank of B6 can be computed easily as follows. As it contains 
Ao,5 it has rank at least 6. Adding the pencil of lines through a double 
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Fig. 4. Arrangements 8 6 , 8 7 , and 8 8 

point of the support of A0 ,5 we have that 8 6 = 8 6 contain two lines 
with three triple points, thus Lemma 5.1 implies dim Rat W(86 ) ~ 2. 
The proof of Theorem 4.1 tell us that \II 1 : t£JH1 ( Cz:,) -+ H 1 ( M) and 
\II2 : tfJH1 (Cz:,) 02 -+ H 1 (M) 02 , with~ c R1 (A0 ,5 ), are both surjective. 
If h1 , h2 are the equations of the lines intersecting at the double point 
under consideration then d log h1 - d log h2 and ( d log h1 - d log h2 ) 02 

belong (respectively) to the image of \II1 and \II2 . Thus 

dimLog00 W(86 ) ~ dimLog00 W(Ao,s) + 2. 

Putting all together we deduce that rank W(86 ) ~ 6 + 2 + 2 = 10. Thus 
B6 = W(86 ) is of maximal rank as it attains Bol's bound. 

One can deal similarly with 8 7 and 8 8 but Lemma 5.1 does not 
suffice. One has to consider also rational first integrals for the foliation 
associated to the non-local component of R1 (86 ) with poles on one (for 
8 7 ) or three (for 8 8 ) fibers. 

For general arrangements of lines, the inclusion 

Log00 W(A) ffi Rat00 W(A) c A(W(A)) 

is strict. In the next two sections we will consider two examples of line 
arrangements on JID2 with resonance webs having abelian relations which 
support this claim. 

5.3. Mixed abelian relations 

In the same way that we looked for abelian relations among collec­
tions of iterated integrals of logarithmic 1-forms we can also look for 
them in collections of iterated integrals of arbitrary rational 1-forms. 
In this section we will consider a one-parameter family of arrangements 
with resonance webs having abelian relations of this form. 

Example 5.3. For A E C \ {0, 1} , let P = JID.>- be the arrangement 
of 8 lines obtained form A0 ,5 = { xyz(x- y)(x- z)(y- z) = 0} by adding 
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Fig. 5. The arrangement P 

the two extra lines { ( x - )..z) (y - )..z) = 0}, see Figure 5. Its resonance 
variety has 8 irreducible components: two local of dimension three; three 
local of dimension two; and three non-local of dimension two determined 
by pencils of conics. It is closed arrangement in the sense that P = P. 

The family of webs W(P>.) have been studied in [25, 26]. There 
explicit generators for the corresponding spaces of abelian relations are 
presented. 

From Corollary 3.1 we see that 

These inequalities are indeed equalities. Moreover, one can verify that 
dim Rat W(P) = 4. Thus we have at least a 20-dimensional subspace of 
the space of abelian relations. 

There is still one extra abelian relation, relation G~1 in Section 3.3 
of [25], involving the pull-backs under h. of 

d (log(x)) = -dlog(x- 1) + dlog(x) + ( log(x ~ 2 dx. 
1-x 1-x 

The last summand is neither the differential of a rational function, nor 
an iterated integral of logarithmic 1-forms. Indeed it can be written as 
d: ® (l~~) 2 , and therefore is an iterated integral of rational 1-forms. 

5.4. Twisted logarithmic abelian relations 

Of course the class of abelian relations with components being it­
erated integrals of rational 1-forms encompass all previous classes of 
abelian relations considered. Note that if we consider all the abelian 
relations in this class we obtain an unipotent local system over the com­
plement of the closure of the arrangement. We believe that the maximal 
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unipotent local system in A(W(A)) is exactly the one generated by the 
abelian relations given by iterated integrals of rational 1-forms. 

Our last example shows that the local system A(W(A)) is not in 
general unipotent. 

Example 5.4. Let F be the non-Fano arrangement presented in 
Figure 6. It is a closed arrangement (F = F) and its resonance variety 
has 9 irreducible components: six of them are local of dimension two, and 
three of them are determined pencil of conics and also have dimension 
two. The resonance web W(F) is the so called Spence-Kummer excep­
tional 9-web and was studied independently by Pirio [25] and Robert 
[27]. They proved that W(F) is an exceptional 9-web. The reference to 
Spence-Kummer comes from the fact that the foliations of the web are 
defined, up to a change coordinates, by the rational functions appearing 
in Spence-Kummer functional equation for the trilogarithm 

. J dz dz dz L13(z) = - 0 - 0 -- . 
z z 1- z 

Fig. 6. The non-Fano arrangement 

Corollary 3.1 implies 

dimLog1 W(F) ~ 12 and dimLog2 W(F) ~ 9, 

and Lemma 5.1 implies dim Rat W(F) ~ 4. These bounds are indeed 
equalities. Moreover, brute-force computation yields dimLog3 W(F) = 
2. Thus we have a 27-dimensional subspace of the space of abelian 
relations. 

The missing abelian relation comes from the intersection of the ir­
reducible components of Char1 (M) determined by the three non-local 
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components. In order to explain this abelian relation we will digress a 
little. 

§ 
Let A be an arrangement of hypersurfaces on lP'n and M be its com­

plemente. Recall from the introduction the morphism 

For a 1-form w E H 1 ( M), let Qw : 1!'1 ( M) --+ C* be the representation 
exp(w) and Cw the corresponding rank one local system. 

The C-sheaf Cw admits the following resolution 

where n•(M) are the sheaves of holomorphic differentials on M and 
Y'w: n•(M)--+ n•+l(M) is given by the formula Y'w(a) = da- w 1\ a. 
Since M is Stein, the sheaves n• ( M) are acyclic and consequently 

Hi(M C ) = kerY'w: H 0 (M,Di(M))--+ H 0 (M,Di+l(M)) 
' w Y'w(HD(M,Di-1)) . 

If W1- W2 = dlog F for some FE H 0 (M, OM) then Cw1 '::':' Cw2 and 
the corresponding resolutions relate through the diagram 

(9) 

where the vertical arrows are multiplication by F-1. 
For a E D1(M) we have V' w(a) = 0 if and only if the (multi-valued) 

1-form exp (J w) a is closed. Moreover, if w belongs to some irreducible 
component L; of R1 (A) then for every a E L; we have that the 1-form 
exp (J w) a is closed. 

Let L; be an irreducible component of R1 (A) and let a E 'E be a 
logarithmic 1-form with residues in Q \ Z>o· Let P : N --+ lP'n be the 
finite abelian covering determined by Ca. Since the monodromy is finite 
(residues E Q), N is a quasi-projective variety. 
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Lemma 5.2. If f3 E E is not a complex multiple of a then 
exp (- J P* a) P* f3 is a closed rational 1-form on N which is not ex­
act. 

Proof. Let f = fE : ]pm --~ IP'1 be the associate rational map. 
Recall that for a, f3 E E there exist logarithmic 1-forms a, j3 on IP'1 with 
poles of PE such that f3 = ft jj. 

If p : C --+ IP'1 \ PE is the finite ramified covering determined by 
exp (- J a) then it fits in the commutative diagram 

Clearly exp (- f P* a) P* f3 is equal to j* exp (- f p* a) jj. Thus if 
the former is exact, the same holds for the latter. 

Suppose exp (- J p*a) j3 = dg for some rational function on C. The 

rational function h = exp (J p* a) g is invariant under the covering trans­
formation, thus is equal to p* h for some rational function on IP'1 . It is 
a simple matter to verify that '\7 a(h) = /3, and therefore f3 represents 
the zero class in H 1 (1P'1 \ PE, ICa)· But the main result of [13] implies 
that the complex (D•(JP>1 \ PE), '\7 a) is quasi-isomorphhic to the complex 
(H•(JP>1 \ P a, C), 1\a). Hence the class of f3 is not zero. Q.E.D. 

Proposition 5.3. Let A be an arrangement of hyperplanes on 
IP'n and let E1 , ... , Er be irreducible components of the resonance va­
riety f?-(A). Suppose exp(El), ... ,exp(Er) intersect at some p E 

Hom(w1 (M), IC*) distinct from the trivial representation. If N, the pro­
jective closure of the finite covering of M determined by p, is simply­
connected then 

. A(W(A)) 1( ) ~( . 
dim Log=W(A) EEl RatW(A) ;:: -h M, Cw + {=t dimEi- 1). 

Proof. Since w is in the intersection of exp(El), ... , exp(Er) there 
exist non-zero logarithmic 1-forms ai E Ei ( i = 1, ... , r) and rational 
functions fij E O(M) ( i, j = 1, ... , r) satisfying 

ai- aj = dlogfii. 

In particular, ICa; is isomorphic to ICaj for every i,j. It is harmless to 
assume that all the 1-forms ai have non-integer residues and w = a 1 . 
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Since I:i C ker \7 a; it follows from (9) that (fij )-1 · I:j E ker \7 a; for 
every i, j. Therefore we can define the map 

r 

(f3i) r+ !31 + L:uli)-1 f3i. 
i=2 

Notice that as we explained before the (multi-valued) 1-forms 

are closed. 
If ((31 , ... , f3r) belongs to ker A then there exists g E H 0 ( M, 0 M) for 

which 
r 

!31 + L(fli)-1 f3i = dg- ga1 
i=2 

or, equivalently, for suitable choices of branches of exp (f -ai) we have 
that 

If we pull-back this equation toN using the finite covering P: N-+ 
M then all the 1-forms involved are legitime (univalued) closed rational 
1-forms. Since N is simply-connected, the pull-backs h:. of the maps h:. 
have as target rational curves. Thus the 1-fo~s exp (f -a1) (f1i)-1f3i 
can be uniquely written as the pull-back by h:. of the sum of an exact 
rational differential with an logarithmic 1-form. Discarding the rational 
component, one obtains an identity as above but with zero right-hand 
side. Clearly it is an abelian relation. The linear independence of the 
c~rresponding abelian relations for ((31 , ... , f3r) varying on a basis of 
ker A follows from Lemma 5.2. Q.E.D. 

We do not know if the hypothesis made on the topology of N is 
necessary to prove the proposition above. 

§ 
Back to the analysis of Example 5.4, we have that the exponential of 

the three non-local components intersect at a representation p for which 
h1 (M, Cp) = 2. Moreover, p satisfies the hypothesis of Proposition 5.3 as 
it is non-trivial only along two fibers of the corresponding rational maps 
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j2;, see [11, Example 10.5]. Thus Proposition 5.3 ensures the existence 
of the missing abelian relation of W(F). 

5.5. Final remarks 

In the table below we present the dimensions of the subspaces of the 
space of abelian relations of resonance webs of line arrangements studied 
in this paper. 

k Log1 Log1 Log2 Log2 Log3 Log3 Rat Mixed Twisted 

Ao,s 5 5 5 1 1 0 0 0 0 0 

B5 6 6 6 2 2 0 0 2 0 0 

B7 7 7 7 3 3 0 0 5 0 0 

Bs 8 8 8 4 4 0 0 9 0 0 

p 8 11 11 5 5 0 0 4 1 0 

F 9 12 12 9 9 2 2 4 0 1 

Ks 10 16 20 5 15 0 1 0 0 0 

Although we have studied resonance webs for hyperplane arrange­
ments one can study resonance webs for arbitrary hypersurfaces arrange­
ments on JP'n. Even more generally, if the cohomology algebra H•(M) is 
replaced by a finite dimensional algebra of differential forms on a quasi­
projective variety then one can still talk about resonance varieties. Its 
irreducible components are still in correspondence with rational maps to 
projective curves [3], and consequently one can still define the resonance 
webs. We are not aware of any exceptional web arising this way that 
are not pull-backs by rational maps of resonance webs of hyperplane 
arrangements. 
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