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On a problem of arrangements related to the 
hypergeometric integrals of confluent type 

Hironobu Kimura 

Abstract. 

The general hypergeometric integrals on the complex matrix space 
are considered. We study the twisted algebraic de Rham cohomology 
group associated with the integrand of the general hypergeometric inte­
grals. After reviewing some fundamental facts, we discuss the exterior 
product structure of the cohomology group. 

§1. Introduction 

Let j 0 , fi, ... , fn be polynomial functions of degree 1 on cc:rand let 
Hj = ker jj be the hyperplane in rcr defined as zeros of fj = 0. Then 
A = { H 0 , ... , H n} defines an arrangement in rcr. Many authors are 
interested in the topology of the complement of these hyperplanes. One 
of the important topics related to this topological problem is the theory 
of hypergeometric functions on the Grassmannian manifold initiated by 
K. Aomoto [1] and I.M. Gelfand [3]. It is given by the integral 

F = fc f(f" · · · J!;ndul 1\ · · · 1\ dur, 

where O!j are complex constants and C is some r-dimensional chain. The 
integral gives a function on the space of coefficients of the polynomials 

k 
The typical example is the Gauss hypergeometric function 

F (a b c·x) = ~ (a)m(b)mxm = A11 ua- 1(1-u)c-a- 1 (1-xu)-bdu 
21''' ~()' ' 

m=O C mffi· 0 
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where the polynnomials are fo = 1, h = u, h = 1- u, h = 1- xu and 
the chain Cis an open segment (0, 1) C lR C C and A is a constant. 

Let £ be the local system on X = cr \ Uj=oHi defined by the func­
tion foa.o · · · J;;a.n. Then to investigate the hypergeometric function it 
is important to study and compute the cohomology group H*(X, £)and 
the homology group H*(X, £V). Note that elements of the cohomology 
group H*(X, £) are represented by rational differential forms by virtue 
of algebraic de Rham theory due to Deligne and Grothendieck. 

This paper concerns an analogous problem of arragements of hy­
perplanes in the complex affine space cr related to the hypergeometric 
integrals of confluent type. We focus on the computation of the twisted 
algebraic de Rham cohomology group. 

§2. · General hypergeometric integrals 

2.1. Regular elements of GLN(C) 

To define the general hypergeometric integrals, we use a class of max­
imal abelian subgroups of GLN(q which are obtained as centralizers of 
regular elements. We start with explaining about regular elements. 

Definition 1. An element a E GLN(C) is a regular element when 
the orbit O(a) = {gag- 1 I g E GLN(C)} under the adjoint action is of 
maximum dimension. 

One can see that a E GLN(C) is regular if any two Jordan cells 
of the Jordan normal form of a have different eigenvalues and in this 
case dime O(a) = dime GLN(C) - N. Then the centralizer Z(a) of a 
is a maximal abelian subgroup of GLN(C) of dimension N. The size of 
Jordan cells gives a partition of N. 

Example 2. If a E GL4(C) is a regular element, then a is similar 
to the following Jordan normal form. Partitions of 4 mean possible 
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structure of Jordan normal forms. 

c a2 J +---t (1,1, 1,1) 
a3 

c 
1 

J a1 
+---t (2,1, 1) 

a3 

c 
1 

J a1 
+---t (2, 2) 

a3 

c 
1 

J a1 1 
(3, 1) +---t 

a1 

c 
1 

J a1 1 
(4) +---t 

a1 

where ai =I- a1 ( i =I- j). 

2.2. Maximal abelian groups 

We shall describe the centralizer more explicitly. Assume that a 
regular element a is of Jordan normal form and that the Jordan cells of 
a have the size n 1 , ... , ne and arrayed in non increasing order: n1 ~ n2 ~ 

· · · ~ ne > 0. Hence the partition A = (n1 , ... , ne) of N is associated 
with a. The centralizer Z(a) depends on the partition A but not on the 
Jordan normal form. So we denote the centralizer by H;>... 

Lemma 3. The centralizer H;>.. is written as 

where ! (ho h1 hn-1) ) 
J(n) = h = : ; ho =I- 0 . 

hl 
ho 
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An element h E H >.. is denoted as 

where A= (8i+r,j) E Matn(C) is the shift matrix. 

Remark 4. We have the isomorphism J(n) ---+ ( C[T]/(Tn) r by 

the obvious correspondence 

This identification motivates the definition of generalized Veronese map 
in Subsection 4.2. 

Lemma 5. There is an isomorphism J(n) ~ex X en-l given by 

h f---t (ho,(h(h), ... , On-r(h)), 

where Om(h) (m = 0, 1, ... ) is defined by 

n-1 

logh = log(hoi+hrA+ · +hn-lAn-l) = L Om(h)Am, Oo(h) = logho. 
m=O 

It is easily seen that Om(h),m::::: 1, are rational functions of h0 , ... , 

hn-1, with a pole of order m along h0 = 0, given explicitly by 

(}m(h) = '"'(-1)kl+··+krn-1 (kr + ... + km -1)! (hl)kl ... (hm)krn' 
~ · kr!···km! ho ho 

where the sum is taken over the indices (kr, ... , km) such that k1 +2k2 + 
· · · + mkm = m. For example, Or (h), 02 (h), (}3 (h) are written as 

hr 
Or(h) = ho, 

(1) h2 1 (hr) 2 
02 (h) = ho - 2 ho ' 

03 (h) = h3 _ ( hr ) ( h2 ) + ~ ( hr ) 3 

ho ho ho 3ho 

2.3. Definition of the integrals 

By virtue of Lemma 5, the characters of the universal covering group · 
if>. of H>.. are described as follows. First, the character Xn : J(n) ---+ex 
is given by 

Xn(h; a)= exp (aoOo(h) + · · · + Cl!n-l(}n-l(h)), 
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a= (ao, ... , an-dE en. 
Since H>-. is a product of J(nk)'s, the character X: fh .. ---+ ex is written 
as 

x(h;a) = g Xnk(h(kl;a(k)) = g exp c~: a~lem(h(k))), 

h = (h(l), ... , h(e)) 

with a= (a(ll, ... ,aCel),aCk) = (a~kl, ... ,a~kJ_1) E enk. 
We assume that the character X satisfies the condition 

e 
(2) L a~k) = -r- 1, a~k}_ 1 =1- 0 (nk ~ 2), if- Z (nk = 1) 

k=1 

and let us consider its Radon transform. Let u = ( u1, ... , Ur) be the 
coordinates of er, the variables of integration. Consider N polynomi-

als f?) = z~~) + u1z~~) + · · · + UrZ~~) of degree 1 in u which will be 

substituted into the character X· The coefficients off?) give a column 

vector zY) = (z6~l, ... ,z~~))t E er+1. Hence the polynomials f?) are 

given by specifying a matrix z = (z(l), ... , zUl) E Matr+l,N(<C) with 

z(k) = (z~k), ... , z~:)_ 1 ) E Matr+1,nk (<C). Note that the set of polynomi­

als f?) is written as 

( (1) (1) (e) (e) ) ~ 
fo , ... ,fnl-1, ... ,fo , ... ,fne-1 =uz, u= (1,u1, ... ,ur)· 

Let Zr,>-. C Matr+1,N(<C) be the Zariski open subset consisting of z = 
(z(1), ... , z(e)) satisfying the following condition. 

Condition(*): For any (m1, ... , me) E zto such that 0 :::; mk :::; 
nk (k = 1, ... , C), m 1 +···+me= r + 1, we have 

(1) (1) (e) (e) 
det(z0 , ... , Zm1 _ 1, ... , z0 , ... , zme- 1) =/:- 0. 

Definition 6. For a character of x(· ; a) of H>-. satisfying (2) and 
z E Zr,>-., the general hypergeometric integral (GHGI) is 

(3) I(z, a, c) = 1 x( uz; a)du, du = du1 1\ · · · 1\ dun 

where c is a cycle of some homology group defined by using x( uz; a). 
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Remark 7. From the explicit form of em, the integrand x(uz; a) 
of the integral I(z, a;c) is a multivalued holomorphic function of u E 

cr with the branch locus on the union of hyperplanes u£,=1 H(k), where 

H(k) = {u E cr I U· zak) = 0}. 

Remark 8. For an appropriate chosen cycle c, GHGI satisfies a 
holonomic system of differential equations on Zr,>.. 

2.4. Classical HGF 
We explain how the Gauss hypergeometric function and the associ­

ated functions of confluent type are related to the general hypergeomet­
ric integral. 

Gauss hypergeometric function is a holomorphic solution of 

(4) x(l- x)y" + {c- (a+ b + l)x}y'- aby = 0 

at x 0 with the condition y(O) = 1. Confluent type functions of 
2F 1 we know are solutions respectively of the following 2nd order linear 
differential equations on lP'1 : 

(Kummer) 

(Bessel) 

(Hermite) 

(Airy) 

xy" + (c- x)y'- ay = 0, 

x 2 y" + xy' + (x2 - a2 )y = 0, 

y" - xy' + ay = 0, 

y"- xy = 0. 

The solutions of these equations have the integral representations: 

(Kummer) 

(Bessel) 

(Hermite) 

(Airy) 

1F1(a, c; x) =A 11 exuua-1(1- u)c-a-1du, 

Ja(x) =A L ex(u-1/u)u-a-1du, 

Ai(x) =A L exu-iu3 du, 

where C in each integral is an appropriate chain (see [6]). We would like 
to explain these functions are all understood as GHGI for various parti­
tions ,\ of 4. The correspondence between the functions (or differential 
equations) and the partitions of 4 are 
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We discuss the correspondence in the cases of Gauss and Airy. 
2.4.1. Gauss case This is one of the simplest cases of general hy­

pergeometric function considered by K. Aomoto and I. M. Gelfand. For 
the partition)..= (1, 1, 1, 1) we associate the maximal abelian subgroup 
H = Hc1,1,l,l) consisting of diagonal matrices h = diag(h0 , ... , h3 ). 

Then the character x : fi --t C x has the form 

(5) 

Substitute into x the following linear functions: 

(6) ho(u) = 1, h1(u) = u, hz(u) = 1- u, h3(u) = 1- xu. 

Define the parameters a in X as a= (b- c, a -1, c- a -1, -b), then we 
have 

r(c) [ 1 

2 F1(a,b,c;x) = f(a)f(c-a) Jo x(h(u);a)du. 

As is well known, the right-hand side gives an analytic continuation 
of zH, which is defined in the unit disk lxl < 1, along any path in 
<C \ {0, 1}. Note that x = 0, 1, oo is the set of singular points of the 
Gauss hypergeometric equation (4). 

Let us explain the meaning of the choice of polynomials hj ( u) given 
in (6) and how far the Gauss hypergeometric integral is generalized by 
considering GHGI. As explained in Subsection 2.3, the polynomials (6) 
are determined by the matrix of the form 

(7) 

Note that the point x = 0,1 are excluded as values of x, which are 
singular points of (4). On the other hand, for GHGI (3), the polynomials 
fJ to be substituted into the character x are given by a 2 x 4 matrix 
z E Z(= Z1,c1,1 ,1 ,1))· Let X be the set of matrices of the form (7) with 
the condition x =/= 0, 1. Then the meaning of the subset X C Z is as 
follows. 

Define the left and right action of GL2 (<C) and H on Z by 

(8) GLz(<C) x Z x H 3 (g,z,h) H gzh E Z. 
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Proposition 9. For any z E Z, we can find g E GL2(C) and hE H 
such that 

(9) ( 1 0 1 
gzh = 0 1 -1 

and x E C \ {0, 1} is uniquely determined by z: 

(10) 
[1, 2][0,3] 

X= .o.......:.~___:_--:-

[0, 2][1,3]' 

This propsition implies that each orbit O(z) in Z by the above ac­
tion has the unique representative of the form (7). Thus we see that the 
quotient space G 12 (C) \Z / H has a realization by the global slice X C Z. 
On the level of integrals we can show that GHGI in this setting with ap­
propriately chosen cycle c is related to the Euler integral representation 
of Gauss hypergeometric function by 

I(z, a, c)= (detg)x(h; a)-1 11 ua- 1(1- uy-a-1 (1- xu)-bdu, 

where z and x are related by (9) and (10). Thus, not only the Gauss 
hypergeometric function is obtained by restricting the general hyperge­
ometric integral on X, but also it is essentially the same as GHGI on 

z1,(1,1,1,1J. 

2.4.2. Airy case We shall explain that Airy's integral Ai(x) = 
fc exu-u3 13 du is essentially the same as GHGI for the partition >. = (4). 
Recall that the maximal abelian subgroup of GL4 (C) in this case is 

Let X : fi(4) -+ ex be a character of the universal covering group of 
H(4 ). It is written as 

for some a = (ao, a 1 , a2, a3) E C4 , where (h, ()2 , ()3 are those given in 
(1). To realize Ai(x) as GHGI, take the character x with the parameter 

a=(-2,0,0,-1) 
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and substitute into x the polynomial of u: 

(11) ho(u) = 1, h1(u) = u, h2 (u) = 0, h3 (u) =-xu. 

And then consider the integral 

J x(h(u); a)du. 

That this integral coincides with Ai(x) is easily seen using the expression 
of fh(h) given in (1): 

As in Subsection 2.3, the polynomials hj(u) in (11) are determined by 
the matrix of the form 

(12) ( 1 0 0 0 ) 
0 1 0 -x · 

When we consider the Airy integral, there is no restriction on x and can 
take arbitrary complex number. This is related with the fact that Airy's 
differential equation has no singular point in C. So in the matrix (12), x 
is arbitrary complex number. In order to understand why the particular 
matrix (12) is chosen to obtain the Airy integral from GHGI of type 
).. = (4), we proceed in a similar way as in Gauss hypergeometric case. 
Let z(4) = {z = (zo, ... 'Z3) E Mat2,4(C); det(zo.zl) -=1- 0} and let x(4) 
be the subset of Zc4l consisting of the matrices of the form (12) with 
x E C. Define the left and right action of GL2(C) and Hc4l on Z(4)by 

(13) GL2(q X z(4) X H(4) 3 (g,z,h) f-7 gzh E z(4)· 

Proposition 10. For any z E Z(4), we can find g E GL2(C) and 
h E H(4 ) such that 

(14) 

and x E C is uniquely determined by z: 

1 2 
(15) X= [O, 1]2 {[0, 1][2, 1] + [0, 2] - [0, 1][0, 3]}, 
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This proposition implies that the quotient space GL2(C)\Z(4)/H(4) 

has a realization as the global slice X(4 ) c Z(4): 

On the level of integrals we can show that GHGI in this setting with 
appropriately chosen cycle c is related to the Airy integral by 

I(z,a,c) = (detg)x(h;a)-1 fc exu-~u3 du, 

where z and x are related by (14) and (15). This explains that GHGI 
for the partition (4) on Z(4) is essentially the same as the classical Airy 
integral. 

Remark 11. The reason for choosing the parameter a in X as 

a= (-2,0,0, -1) 

is explained by considering the group of symmetry for the generalized 
Airy function which is given by the analogue of Weyl group 
NGL4 (q(H(4))/H(4)· See [9]. 

§3. Twisted de Rham cohomology 

This section concerns the explicit computation of the twisted de 
Rham cohomology group associated with GHGI (3). 

Let x = x(uz; a) with z E Zr,>. and a E c_N satisfying (2) and let 
A = { H<1l, ... , H(t)} be the arrangement of hyperplanes in cr, where 

H(k) = {u E c_r;u· zbk) = 0} C cr. Put N(A) = U~=1 H(k). Then X 
is a multivalued holomorphic function on c_r \ N(A) whose logarithmic 
exterior derivative d log x has poles on H(l), ... , H(£) of order n 1 , . .. , nt, 
respectivley. 

Let DP( *A) be the set of rational p-forms having poles at most on 
N(A). Define the twisted differentiation \7: DP(*A) ~ np+l(*A) by 

'V(ry) = (x- 1 . d. x)(ry) =dry+ ( dlog x(uz; a)) A ry. 

Since dx has poles only on N(A), \7 really sends DP(*A) to DP+1 (*A). 
Note also \7 o \7 = x-1 · d2 ·X= 0. It follows that we have the twisted 
algebraic de Rham complex 
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We sometimes write Cz,a instead of Cz,a(*A). 

Definition 12. The twisted algebraic de Rham cohomology is 

We know the following cases about the computation of the cohomol­
ogy groups which will be described explicitly below. 

(1) r = 1, i.e. the case where GHGI is defined by !-dimensional 
integral. 

( 2) r is general and A = ( 1, ... , 1). This is the case of Aomoto­
Gelfand hypergeometric integral. 

( 3) r is general and A = ( N). The case of generalized Airy integral. 
(4) r is general and A= (q + 1, 1, ... , 1). 

3.1. !-dimensional case 

In the case the general hypergeometric integral is given by !-dimen­
sional integral, we have the following result. 

Proposition 13. Let A= (n1 , ... ,n£) be a partition of N. For any 
z E Z1 ,.>., we have 

(1) HP(Cz,a) = 0 for P "#1, 
(2) dime H 1 ( Cz,a) = N- 2, 

As a basis ofH1 (Cz,a) we can take the following 1-forms. In the case 
n 1 = 1, 

in the case n1 ;::: 2, 
(16) 
dfh ( uz(l))' ... 'd(}nl -2 ( uz(l))' d(}o ( uz(k))' ... 'd(}nk-1 ( uz(k))' (2 :::; k :::; £). 

3.2. Generalized Airy case 

The generalized Airy integral is the GHGI for the partition A= (N) 
of N. The generalized Airy integral is introduced by Gelfand, Retahk 
and Serganova in [4]. In this case the space of coefficients of polynomial 
of degree 1 is 

Zr,(N) = {z = (zo, ... , ZN-1) E Matr+1,N(C) I det(zo, ... , Zr) "I 0}. 
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We assume that 

(17) 

Then the integrand of the generalized Airy integral has the form 

N-1 

(18) x(itz;a) = ef(u), f(u) = L amBm(itz). 
m=l 

Note that by the assumption ( 17), f is a polynomial of u = ( u1, ... , Ur) 
of degree N - 1. 

Lemma 14. For any z E Zr,(N) satisfying {17), f is a polynomial 
having only isolated critical points with the Milnor number 

(N-2) JLU) = r . 

This fact can be seen as follows. Put z = (z', z") with z' = (z0 , ... , Zr)· 

Since det z' -1- 0 by the definition of Zr,(N), we can make the change 
of variables it = ( 1, v1 , ... , Vr) z'. If we define the weights of v k as 
wt(vk) = k, then the highest weight part off is aN-lBN-l(v(Ir+l, 0)) 
which is weighted homogeneous of weight N - 1 having isolated critical 
point at 0. Then Lemma 14 follows from this fact. 

Proposition 15. [7] For the r-dimensional generalized Airy inte-
gral, we assume the condition {17) . Then for any z E Zr,(N), we have 

(1) HP(Cz,a) = 0 for p -1- r, 
(2) dime Hr(Cz,a) = (N;2). 
To state the result on the choice of a basis of top cohomology group 

Hr(Cz,a), we prepare some notations. Let Y(r,l) be the set of Young 
diagrams contained in r x l box, namely Y E Y(r, l) if the length is 
t'(Y) ::::; r and any "parts of Y" is not greater than l. The number of 
boxes in the diagram Y is denoted by IYI· For any Y E Y(r, l), let 
sy ( v) be the Schur polynomial of v1, ... , Vr associated with Y which 
is a symmetric polynomial of degree IYI· Since sy(v) is a symmetric 
polynomial, we can write it as a polynomial of the elementary symmetric 
functions e1 (v), ... , er(v) of v. It is denoted as Sy(u): 

sy(v) = Sy(e(v)). 
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Proposition 16. [7] For the r-dimensional generalized Airy inte­
gral, the following r-form gives a basis of Hr(Cz,a): 

(19) Sy(u)du11\···l\dun YEY(r,N-r-2). 

Remark 17. (1) In the case r = 1, namely the integral is one 
dimensional, the basis ( 19) above is written as 

du, udu, ... , uN - 3 du. 

(2) Another choice of a basis is that given in Proposition 13: 

d(81(i1z)), ... , d(8N-2(i1z)). 

It is an analogue of flat basis of the Jacobi ring of singularity 
of AN-2 type [10]. 

3.3. A= (q + 1, 1, ... , 1) case 

In the case where the partition of N has the form A = ( q+ 1, 1, ... , 1), 
we can give an explicit form of a basis of the cohomology group. Recall 
that the space of coefficients of polynomials of degree 1 in the definition 
of GHGI is 

Zr,>-. = {z = (zo, ... , ZN-1) E Matr+1,N(C) I the condition (*)}, 

where the condition (*) is that, for any 0 :::; k :::; q + 1 and q < jk < 
ik+1 < · · · < Jr :::; N- 1, there holds 

In this case the integrand of the GHGI has the form x( uz; a) 
eg(u,z) rrN-1 f"'j where 

J=q+1 J ' 

q 

g(u, z) = L akek(Jo, ]1, ... , fq), fJ = uzj, (0:::; j < N). 
k=O 

We assume that 

(20) 

and 

(21) ao + L aj = -r- 1, aq #- 0, aj rt. Z, (j > q). 
j>q 
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As a consequence of the assumptions (20) and aq -=f. 0, we see that g( u, z) 
is a polynomial of u of degree q. Put Hj := ker /j (j = q + 1, ... , N -1) 
and A= {Hq+l, ... ,HN-d· Moreover from the assumption (21), the 
integrand x(uz; a) of GHGI is a multivalued holomorphic function on 
cr with the branch locus N(A) = uf=~~1 Hj. 

Proposition 18. [8] In the case A = (q + 1, 1, ... , 1), we assume 
for the GHGI the conditions {20} and {21). Then we have 

(1) HP(Cz,cv.) = 0 for p -=f. r, 
(2) dime Hr(Cz,cv.) = (N;2). 

Let us give a basis for the top cohomology group Hr(Cz,cv.)· To this 
end, we use the same notation as in the generalized Airy case for Y(r, l), 
sy(v), Sy(u). For 0 ~ k ~ r, take a Yang diagram Y E Y(k, q- 1- k) 
and J = (j k+ 1 , ... , Jr) satisfying 

q + 1 ~ jk+l < · · · < Jr < N 

and define the logarithmic r-form 

Wy,J := Sy(h, ... 'fk)dh 1\ ... 1\ dfk 1\ dflfJk+l 1\ ... 1\ dflf~r E rqA). 
Jk+l Jr 

Proposition 19. [8] Under the assumption {20} and {21}, we can 
take as a basis of Hr ( Cz,cv.) the following set of r-fiJrms: 

Ur { YEY(k,q-1-k), } 
k=O WY,J I J = (jl, ... ,Jr-k) such that q + 1 ~ j1 < · · · < Jr-k ~ N · 

§4. Exterior power structure 

In the case the partition A of N is general, we compute the cohomol­
ogy group for particular points z of the parameter space Zr,>.. which will 
be called the Veronese points. Combining this fact with the holonomic­
ity of the general hypergeometric system of type A, we can show the 
purity of the cohomology groups and give the rank of the top cohomol­
ogy group at any point z E Zr,>... Recall that, in the case of generalized 
Airy integral, we gave in Proposition 16 a basis of the r-th cohomology 
group expressed in terms of Schur functions: 

Y E Y(r,N- r- 2). 

This basis is related to the exterior product structure of the cohomology 
group at the Veronese points. 
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4.1. Veronese map for .>.. = (1, ... , 1) 
We first recall the Veronese embedding IP'1 <--+ IP'r in order to motivate 

the construction of generalized Veronese map given in Subsection 4.2. 
Consider the map 

(22) 

It induces the Veronese embedding if; : IP'1 3 [v0 , v1]r-+ [v[j, v~- 1v1 , ... , 
vrJ E IP'r. 

Using the map '¢, we define, in the case .>.. = (1, ... , 1), the map 
\lT (1, ... ,1) : Mat2,N(IC) -+ Matr+1,N(C) by (zo, z1, ... , ZN -d 1-t ( '1/J(zo), 
'¢(zl), ... ,'lj;(ZN-d) or by 

( zoo 
zw 

( 

(zooY 
zo,N -1) 1-t (zoo)~-1 zw 
Z1 N-1 · , . 

(zwY 

(zo,N-1Y ) 
(zo,N-d~- 1 z1,N-1 . 

(z1,N-1Y 

We see that it induces the map \lT c1, ... ,1) : Zl,(1, ... ,1) -+ Zr,(1, ... ,1) which 
we call the Veronese map. This fact is seen as follows. Note that z = 

(zo, ... , ZN-d E Z1,(1, ... ,1) if and only if det(zi, zj) -=/=- 0 for any i -=/=- j. 
Take any indices 0 :::; i 0 < i 1 < · · · < ir :::; N - 1. Then we see that 

det( '¢(zi0 ), '¢(zh ), ... , '1/J(ziJ) = IJ det(zik, Ziz) -=/=- 0. 
k<l 

We will define in the next subsection the map \[T >. : Z 1 ,>. -+ Zr,>. 
for any partition.>.. of N which coincides with Wc1, ... ,1) in the case .>.. = 
(1, ... , 1). To this end we restate the map '¢ as follows. Let V be a 
vector space of dime v = 2 and let srv be the r-th symmetric tensor 
product. Then we have dime srv = r + 1. Define the map 

r times .....----.-.... 
'1/J : V 3 v 1-t v 0 · · · Q9 v E SrV. 

Let e0 , e1 be a basis of V, and let e0 , ... , er be a basis of srv defined by 
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Then from 
T 

(voeo + v1el) 81 r = L v&-kv~ek, 
k=O 

we see that the map 'lj;, expressed in terms of the basis e0 , e1 of V and 
eo, ... leT Of srv, iS the Same aS the map (22). 

4.2. Veronese map for)..= (n1 , ... , n£) 
Let us generalize the Veronese map \[! (l, ... ,l) to the case where the 

partition ).. of N is general. To do this we at first generalize the map 
'ljJ given by (22). Let V be a vector space of dime V = 2 and let Rn = 
C[T]j(Tn) be the quotient of the polynomial ring C[T] by the ideal (Tn) 
generated by the n-th power Tn. Consider Vn := V0Rn, which is an Rn­
module, and its r-th symmetric tensor product srvn as an Rn-module. 
Define the map 

T 

(23) '1/Jn : Vn 3 v f--7 ~ E SrVn. 

Let us express '1/Jn using the basis of Vn as a vector space over C: 

(i = 0, 1, 0 ~ j < n) 

(0 ~ i ~ r, 0 ~ j < n). 

We identify an element v = Li,j Vijei 0 TJ E Vn with the matrix 

( Voo Vol Vo,n-l ) E Mat2,n(q 
VlQ Vn Vl,n-l 

and an element w = Li,j Wijei 0 TJ E srvn with 

wo1 
Wo n-l) 

': E Matr+l,n(C). 

Wr,n-1 Wr-1 

The map '1/Jn : Vn -+ srvn defined by (23) induces a map '1/Jn : 
Mat2,n(C)-+ Matr+l,n(C). 

Example 20. Let r = 2. Then the map 'l/;3 : Mat2,3 ( q -+ Mat3,3 ( q 
is given by 

2voovol 
voovn + Vol v10 

2volvll 
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Definition 21. For a partition>.= (n1, ... , nt) of N, define W.x : 
Mat2,N(C) ---+ Matr+l,N(C) by 

z= (zCll, ... ,z(R)) 1---+ ('¢n1 (z(ll), ... ,'¢ne(z(R))). 

We call this map the Veronese map of type>.. 

Lemma 22. W.x(Zl,.A) C Zr,>..· 

This fact can be shown as follows. For z E Z1,.x, put w = W.x(z) and 

write it as w = (w(l), ... , w(R)), w(k) = (wbk), ... , w~~)_ 1 ) E Matr+l,nk (C). 
Then for any J.t = (m1, ... , mt) such that 0 ~ mk ~ nk and m1 + · · · + 
mt = r + 1, we have 

with some nonzero constant C w The map \]! .x : Z1,>. ---+ Zr,.A is also called 
the Veronese map of type >.. The set W.x(Z1,.x) and its point are called 
respectively the Veronese image and a Veronese point. 

4.3. Exterior power structure of the cohomology group 

The following theorem asserts that the cohomology groups for the 
r-dimensional GHGI of type >. at Veronese points can be constructed 
from that for 1 dimensional GHGI of type>.. 

Theorem 23. Let z E Z1,>. be such that Zb1) = (1, O)t and let 

(24) z=W(z)EZr,N, a=a+(-r+1,0, ... ,0). 

Then we have 

(1) HP(Cz,&) = 0, (p -1- r), 
(2) · the top cohomology group has the exterior product structure: 

r 

(25) Hr(Cz,&) ~I\ H 1 (Cz,a), 

(3) dime Hr(cz,&) = (N;2). 

Example 24. [Generalized Airy case >. = (N)j 
Let z E Zl,(N) and z = \]! (N) (z). Theorem 23 says the following. 
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• If we take a basis of H 1(Cz,a) as 

'Pi=uidu, (O:::;i:::;N-3), 

then the isomorphism ( 25) gives the correspondence 

Here 0 denotes the exterior product in 1\r H 1(Cz,a), 

i1 > i2 > · · · > ir ;::: 0, Y = (il-r+1, i2-r+2, ... , ir) E Y(r, N -r-2) 

and 

v = (v1, ... , Vr), dv = dv11\ ···I\ dvr. 

• If one take a basis of H 1(Cz,a) as 

'Pi= d(Bi(uz)), (1:::; i:::; N- 2}, 

then the isomorphism (25) gives the correspondence 

Example 25. [>.. = (n1 , ... , n.e) case) 
Let z E Z1,>.· Then as a basis of H 1(Cz,a) we can take, for n1 ;::: 2 

for example, 

d(B1(ilz(1))), ... , d(Bn 1 -2(uz(l))) 

d(Bo(ilz(k))), d(B1(ilz(k))), ... , d(Bnk-l(uz(k))), (2:::; k:::; £). 

Put z = W.x(z). Then as a basis of Hr(Cz,&.) we can take the r-forms 
obtained by choosing r forms d(Bi(iJz(k))) and taking the exterior product 
of them. 

Combining Theorem 23 and the holonomicity of the general hyper­
geometric system, we can know the purity and the dimension of the 
cohomology group for any z E Zr,>.. 

Corollary 26. Let >.. = (n1 , ... , n.e) be a partition of N and let 

a= (a(l), ... , aU~)), o/k) = (a~k), ... , a~k2_ 1 ) E cnk satisfy the condition 

{2). Then for any point z of Zr,>. satisfying za1) = (1, 0, ... , o)t, we have 

(1) HP(Cz,a) = 0 for p =f. r, 
(2) dimcHr(Cz,a) = (N;2). 
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Question: In the case >. = (n1 , ... , ne), we consider the r-forms 
constructed in Example 25 at any point z E Zr,>.· Do these r-forms give 
a basis for Hr(Cz,a)? 
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