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On a problem of arrangements related to the
hypergeometric integrals of confluent type

Hironobu Kimura

Abstract.

The general hypergeometric integrals on the complex matrix space
are considered. We study the twisted algebraic de Rham cohomology
group associated with the integrand of the general hypergeometric inte-
grals. After reviewing some fundamental facts, we discuss the exterior
product structure of the cohomology group.

§1. Introduction

Let fo, f1,--., fn be polynomial functions of degree 1 on C"and let

H; = ker f; be the hyperplane in C"defined as zeros of f; = 0. Then

= {Ho,...,H,} defines an arrangement in C". Many authors are

interested in the topology of the complement of these hyperplanes. One

of the important topics related to this topological problem is the theory

of hypergeometric functions on the Grassmannian manifold initiated by
K. Aomoto [1] and I.M. Gelfand [3]. It is given by the integral

F=/ fo0 - famdug A -+ - A duy,
C

where «; are complex constants and C is some r-dimensional chain. The
integral gives a function on the space of coefficients of the polynomials

i

The typical example is the Gauss hypergeometric function

1
oFi(a,b, c; x) Z (@ (B)m ™ = A/ w (1—u)* 9 (1 —zu) "bdu,
0

mm'
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where the polynnomials are fo = 1,f1 =u, fo=1—1u, f3 =1 —zu and
the chain C is an open segment (0,1) C R € C and A is a constant.

Let £ be the local system on X = C"\ U?_q H; defined by the func-
tion f, *®--- f %, Then to investigate the hypergeometric function it
is important to study and compute the cohomology group H*(X, £) and
the homology group H,.(X,LY). Note that elements of the cohomology
group H*(X, L) are represented by rational differential forms by virtue
of algebraic de Rham theory due to Deligne and Grothendieck.

This paper concerns an analogous problem of arragements of hy-
perplanes in the complex affine space C" related to the hypergeometric
integrals of confluent type. We focus on the computation of the twisted
algebraic de Rham cohomology group.

§2. - General hypergeometric integrals

2.1. Regular elements of GLy(C)

To define the general hypergeometric integrals, we use a class of max-
imal abelian subgroups of GLx (C) which are obtained as centralizers of
regular elements. We start with explaining about regular elements.

Definition 1. An element a € GLy(C) is a regular element when
the orbit O(a) = {gag™" | g € GLn(C)} under the adjoint action is of
mazimum dimension.

One can see that a € GLy(C) is regular if any two Jordan cells
of the Jordan normal form of a have different eigenvalues and in this
case dimc O(a) = dimg GLy(C) — N. Then the centralizer Z(a) of a
is a maximal abelian subgroup of GLy (C) of dimension N. The size of
Jordan cells gives a partition of V.

Example 2. If a € GL4(C) is a regular element, then a is similar
to the following Jordan normal form. Partitions of 4 mean possible
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structure of Jordan normal forms.

ai
a2 — (1,1,1,1)
as
ay
al 1
“ +— (2,1,1)
asg
a4
aq 1
ay
a1 — (2,2)
ag
ay 1
aq 1
— (3,1)
a1
a4
a1 1
", — @
al 1
ai

where a; # a; (1 # j).

2.2. Maximal abelian groups

We shall describe the centralizer more explicitly. Assume that a
regular element q is of Jordan normal form and that the Jordan cells of
a have the size nq, ..., ng and arrayed in non increasing order: ny > ng >
-+ > ng > 0. Hence the partition A = (n1,...,n¢) of N is associated
with a. The centralizer Z(a) depends on the partition A but not on the
Jordan normal form. So we denote the centralizer by H).

Lemma 3. The centralizer Hy is written as
H), = J(?’Ll) X X J(TL@) C GLN(C>,

where
ho h1 ... hp_1
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An element h € H) is denoted as
h=AD, .. h®), h® =hPT+hPA 4+ b A € J(ny),
where A = (0;41,;) € Mat,(C) is the shift matrix.

X
Remark 4. We have the isomorphism J(n) — ((C[T]/(T”)) by
the obvious correspondence

hol + A+ +hp A" s hg+ T+ +hy T (modT™).

This identification motivates the definition of generalized Veronese map
in Subsection 4.2.

Lemma 5. There is an isomorphism J(n) =~ C* x C"~! given by
h— (ho,01(h),...,0,_1(R)),
where 0, (h) (m=0,1,...) is defined by

logh = log(hol+hiA++ - +hy y A1) = D" 0, (R)A™,  8y(h) = log ho.

It is easily seen that 6,,(h),m > 1, are rational functions of hq, ...,
hn—1, with a pole of order m along hy = 0, given explicitly by

kl km
= _ k1+-..+km—1(k1+"'+km_1)! ﬁ .. ﬁ"ﬂ
O, (k) Z( 1) kol k) ho ho 7

where the sum is taken over the indices (k, .. ., kn, ) such that k; +2ko+
-+ + mk,, = m. For example, 8;(h),02(h),03(h) are written as

b1(h) = Z—;;
) nw =121 (B),

Chs [l (R 1
=52 - (i) () +3

I 3
ho
2.3. Definition of the integrals

By virtue of Lemma 5, the characters of the universal covering group -
Hy, of Hy are described as follows. First, the character X, : J (n) —» C*
is given by

Xn(h;a) = exp (apbo(h) + - - + an—16n—1(h)),
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a=(ag,...,an—1) € C".

Since H) is a product of J(ny)’s, the character x : Hy — C* is written
as

¢ 14 neg—1
= [ xne (h®50®) = T exp < > a%mm(h(k))) :
k=1 k=1

m=0
h=(hM,.. .  1h®)
with a = (@®,...,a®),a® = (a{P,... o)) e .

nk -1
We assume that the character y satlsﬁes the condition

J4
@ Yeaf?=-r-1, o’ #0(m>2), ¢Z (e =1)

and let us consider its Radon transform. Let u = (uy,...,u,) be the
coordinates of C”, the variables of integration. Consider N polynomi-

als f(k) = ) 4 Uy z<k) Uz 25 of degree 1 in w which will be
J 0j rj

substituted into the character x. The coefficients of f;k) give a column

vector z(k) (zél;),..., ﬁ’;)) Cm*+1. Hence the polynomials f](k) are
given by specifying a matrix z = (2(,...,2)) € Mat, 1, y(C) with

2() = (z(()k), 2 ) € Mat,41,n, (C). Note that the set of polynomi-

nk -1
als f;k) is written as

(fo(l)a' (1) . (£) )-—'ZIZ, ’[z—_—(l,U1,.--7ur)-

BN A PR , o1
Let Z,x C MatrH,N(C) be the Zariski open subset consisting of z =
(2] ..., 2(9) satisfying the following condition.
Condition(*): For any (my,...,my) € Zezo such that 0 < my <
ng (k=1,...,0), mi+---+mg=r+1, we have
det(zg (1) A . z(()z), 29 ) # 0.

m1 -1 Y “mp—1

Definition 6. For a character of x(- ;o) of Hy satisfying (2) and
z € Zy x, the general hypergeometric integral (GHGI) is

3) I(z,a,¢c) = /x(ﬂ'z; a)du, du=duj A---A\du,,

c

where ¢ is a cycle of some homology group defined by using x(@z; ).
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Remark 7. From the explicil form -of 6., the integrand x(Uz; «)
of the integral I(z,a;c) is a multivalued holomorphic function of u €
C" with the branch locus on the union of hyperplanes Uf;:lH(k), where

H® ={ueC | i 2" =0}

Remark 8. For an appropriate chosen cycle ¢, GHGI satisfies a
holonomic system of differential equations on Z; .

2.4. Classical HGF

We explain how the Gauss hypergeometric function and the associ-
ated functions of confluent type are related to the general hypergeomet-
ric integral.

Gauss hypergeometric function is a holomorphic solution of

(4) z(l—z)y" +{c—(a+b+ 1)a}y —aby =0

at x = 0 with the condition y(0) = 1. Confluent type functions of
o F} we know are solutions respectively of the following 2nd order linear
differential equations on P*:

(Kummer) zy’ + (¢ —x)y —ay =0,
(Bessel) o2y + zy + (2 — az)y =0,
(Hermite) Yy’ —zy +ay =0,

(Airy) Yy’ —ay=0.

The solutions of these equations have the integral representations:

(Kummer) 1Fi(a,c;z) = A/Ol eyt (1 — u)* " du,
(Bessel) Jo(z) = A/Cez(ufl/”)u—a_ldu,

(Hermite) H,(x)=A ; e gy a1y,

(Airy) Ai(z) = A/Oemféuadu,

where C in each integral is an appropriate chain (see [6]). We would like
to explain these functions are all understood as GHGI for various parti-
tions A of 4. The correspondence between the functions (or differential
equations) and the partitions of 4 are
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Gauss  Kummer Bessel Hermite Airy

!

! !
(1,1,1,1) (2,1,1) (2,20  (3,1) (4

We discuss the correspondence in the cases of Gauss and Airy.

2.4.1. Gauss case This is one of the simplest cases of general hy-
pergeometric function considered by K. Aomoto and I. M. Gelfand. For
the partition A = (1,1,1,1) we associate the maximal abelian subgroup
H = H1,1,1) consisting of diagonal matrices h = diag(ho,...,hs).
Then the character x : H — C* has the form

(5) x(h; o) = hg®hT hg? h3®.
Substitute into x the following linear functions:
6) holw)=1, hi(u)=u, ha(u)=1-—w, hzu)=1-zu

Define the parameters ain x as a = (b—c¢,a—1,c—a—1,—b), then we
have
I'(c)

( ! .
C{a)T(c—a) /0 X (h(w); a)du.

As is well known, the right-hand side gives an analytic continuation
of oFy, which is defined in the unit disk |z| < 1, along any path in
C\ {0,1}. Note that x = 0,1,00 is the set of singular points of the
Gauss hypergeometric equation (4).

Let us explain the meaning of the choice of polynomials h;(u) given
in (6) and how far the Gauss hypergeometric integral is generalized by
considering GHGI. As explained in Subsection 2.3, the polynomials (6)
are determined by the matrix of the form

© o1 4 L)

Note that the point z = 0,1 are excluded as values of z, which are
singular points of (4). On the other hand, for GHGI (3), the polynomials
f; to be substituted into the character x are given by a 2 x 4 matrix
z € Z(= Zy (1,1,1,1))- Let X be the set of matrices of the form (7) with
the condition x # 0,1. Then the meaning of the subset X C Z is as
follows.

Define the left and right action of GL2(C) and H on Z by

2F1(a) bv &) $) =

(8) GLo(C)x Z x H 3 (g,2,h) — gzh € Z.
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Proposition 9. For any z € Z, we can find g € GLy(C) and h € H
such that

10 1 1
©) gzh_(o 1 -1 —x)’

and x € C\ {0,1} is uniquely determined by z:

[1,2][0, 3]

10) = 0,213

[t, 7] = det(z;, 2;).

This propsition implies that each orbit O(z) in Z by the above ac-
tion has the unique representative of the form (7). Thus we see that the
quotient space GLo(C)\Z/H has a realization by the global slice X C Z.
On the level of integrals we can show that GHGI in this setting with ap-
propriately chosen cycle ¢ is related to the Euler integral representation
of Gauss hypergeometric function by

1
I(z,0,¢) = (det g)x(h; ) ! /0 w1 —w)e (1 — zu) Pdu,

where z and z are related by (9) and (10). Thus, not only the Gauss
hypergeometric function is obtained by restricting the general hyperge-
ometric integral on X, but also it is essentially the same as GHGI on
Z1,01,1,1,1)-

2.4.2. Airy case We shall explain that Airy’s integral Ai(z) =
f emu=v/3qy s essentially the same as GHGI for the partition A = (4).
Recall that the maximal abelian subgroup of GL4(C) in this case is

ho h1 ha hs

ho hit h
ho

Let x : ﬁ(4) — C* be a character of the universal covering group of
Hy. It is written as

X(h; Oé) = hgo eXp(a191(h) + Oéggz(h) + a393(h))

for some o = (g, a1, az,a3) € C, where 6;,0,,05 are those given in
(1). To realize Ai(z) as GHGI, take the character x with the parameter

=(-2,0,0,-1)
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and substitute into x the polynomial of u:
(11) ho(u) =1, hi(u) = u, ho(u) =0, hg(u) = —zu.

And then consider the integral

/x(h(U); a)du.

That this integral coincides with Ai(z) is easily seen using the expression
of 03(h) given in (1):

©(h(w); ) = ho(w)exp(—Bs(h(£))) = exp (xu - éu) .

As in Subsection 2.3, the polynomials h;(u) in (11) are determined by
the matrix of the form

1) (010 %)

When we consider the Airy integral, there is no restriction on x and can
take arbitrary complex number. This is related with the fact that Airy’s
differential equation has no singular point in C. So in the matrix (12), =
is arbitrary complex number. In order to understand why the particular
matrix (12) is chosen to obtain the Airy integral from GHGI of type
A = (4), we proceed in a similar way as in Gauss hypergeometric case.
Let Zyy = {2z = (20, ..., 23) € Maty 4(C);det(z0.21) # 0} and let X4
be the subset of Z4) consisting of the matrices of the form (12) with
x € C. Define the left and right action of GL2(C) and H4) on Zby

(13) GL2(C) X Zgy x Hgy > (g,2,h) — gzh € Z(g)-

Proposition 10. For any 2z € Z(), we can find g € GL2(C) and
h € Hy such that

100 0
(14) 9zh:<0 10 —:p)’

and z € C is uniquely determined by z:
(15) = = [0—11]—2{[0, 12,1]+[0,2°[0,1][0,3]},  [i»J] = det(zi, 29).
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This proposition implies that the quotient space GL2(C)\Z(4)/H4)
has a realization as the global slice X4y C Z(4):

1 0 0 O
GL2(C\Z(4)/Hay = X4y = {( 01 0 —z > jx € C}-

On the level of integrals we can show that GHGI in this setting with
appropriately chosen cycle ¢ is related to the Airy integral by

I(z,0.0) = (etg)(hia) ™ [ e iau,
C

where z and z are related by (14) and (15). This explains that GHGI
for the partition (4) on Z(4 is essentially the same as the classical Airy
integral.

Remark 11. The reason for choosing the parameter o in x as
a=(-2,0,0,-1)

is explained by considering the group of symmetry for the generalized
Airy  function which is given by the analogue of Weyl group

Naryc)(Hy)/Ha)- See [9].

§3. Twisted de Rham cohomology

This section concerns the explicit computation of the twisted de
Rham cohomology group associated with GHGI (3).

Let x = x(#iz;a) with 2z € Z,, and a € CV satisfying (2) and let
A={H® ... H®} be the arrangement of hyperplanes in C”, where
H® = {uy e Cii- 2" =0} c €. Put N(A) = Ui, H®. Then x
is a multivalued holomorphic function on C” \ N(A) whose logarithmic
exterior derivative dlog x has poles on H ... H® of order ny, ..., ny,
respectivley.

Let QP(xA) be the set of rational p-forms having poles at most on
N(A). Define the twisted differentiation V : QP(xA) — QPF1(xA) by

Vin) =Kx"-d-x)(n) = dn+ (dlog x(Uz; a)) An.

Since dy has poles only on N(A), V really sends QP(xA) to QPT1(xA).
Note also VoV = x~!-d? .- x = 0. It follows that we have the twisted
algebraic de Rham complex

Coa(xA) 1 QO(xA) L QM (xA) L -+ 5 QT (xA) = 0.
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We sometimes write C, , instead of C, o(*.A).

Definition 12. The twisted algebraic de Rham cohomology is

_ Ker{V:0r(xA) = QP (xA)}

AP (CraxA)) 1= Im{V : Qp—1(xA) = QP(xA)} (p>0).

We know the following cases about the computation of the cohomol-
ogy groups which will be described explicitly below.

(1) r =1, i.e. the case where GHGI is defined by 1-dimensional
integral.

(2) r is general and A = (1,...,1). This is the case of Aomoto—
Gelfand hypergeometric integral.

(3) ris general and A = (N). The case of generalized Airy integral.

(4) 7 is general and A = (¢ +1,1,...,1).

3.1. 1-dimensional case

In the case the general hypergeometric integral is given by 1-dimen-
sional integral, we have the following result.

Proposition 13. Let A = (nq,:..,ng) be a partition of N. For any
z € Z1,x, we have
(1) HP(C.a) =0 forp#1,
(2) dimc HY(C,,o) =N —2,
As a basis of H'(C, o) we can take the following 1-forms. In the case
ny = 1,
dOo(@z®)) — dbo(azFY), (2< k<N —1);

in the case nq > 2,
(16)
do, (@2M), ..., dby, _o(@z D), dOo(Gz®), ..., dby, _1(@2®), (2<k<E).

3.2. Generalized Airy case

The generalized Airy integral is the GHGI for the partition A = (N)
of N. The generalized Airy integral is introduced by Gelfand, Retahk
and Serganova in [4]. In this case the space of coefficients of polynomial
of degree 1 is

Zp Ny = {2 = (20,--.,2n-1) € Mat, 1 n(C) | det(z0, .-, 2-) # 0}
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We assume that

O =

(17) 20 = : ) aN-—1 7& 0.
0
Then the integrand of the generalized Airy integral has the form

N-1
(18) x(i@z;a) = /@, flu) = Z OO (UZ).

=1

Note that by the assumption (17), f is a polynomial of u = (uq, ..., u,)
of degree N — 1.

Lemma 14. For any z € Z, (n) satisfying (17), f is a polynomial
having only isolated critical points with the Milnor number

pu(f) = (N_2>~

7

This fact can be seen as follows. Put z = (¢, 2) with 2’ = (20,. .., 2»).
Since det 2z’ # 0 by the definition of Z, (), we can make the change
of variables 4 = (1,v1,...,v.)2’. If we define the weights of vy as
wt(vg) = k, then the highest weight part of f is any—_10n-1(0(Ir41,0))
which is weighted homogeneous of weight N — 1 having isolated critical
point at 0. Then Lemma 14 follows from this fact.

Proposition 15. [7] For the r-dimensional generalized Airy inte-
gral, we assume the condition (17) . Then for any z € Z, (ny, we have

(1) HP(C.a)=0 forp#r,

(2) dimc H™(C.0) = (V3.

T

To state the result on the choice of a basis of top cohomology group
H"(C..), we prepare some notations. Let Y(r,l) be the set of Young
diagrams contained in r x [ box, namely Y € Y(r,l) if the length is
UY) < r and any “parts of Y is not greater than [. The number of
boxes in the diagram Y is denoted by |Y]. For any ¥ € Y(r,1), let
sy (v) be the Schur polynomial of vy,...,v, associated with ¥ which
is a symmetric polynomial of degree |Y|. Since sy (v) is a symmetric
polynomial, we can write it as a polynomial of the elementary symmetric
functions e1(v),...,e-(v) of v. It is denoted as Sy (u):

sy (v) = Sy (e(v)).
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Proposition 16. [7] For the r-dimensional generalized Airy inte-
gral, the following r-form gives a basis of H™(C, o):

(19) Sy (u)dus A+ ANduy, Y eV, N—r—2).

Remark 17. (1) In the case r = 1, namely the integral is one
dimensional, the basis (19) above is written as

du, udu, . .., v “3du.
(2) Another choice of a basis is that given in Proposition 13:
d(al(ﬁz))’ s ,d(GN-Z(ﬂ:z))'

It is an analogue of flat basis of the Jacobi ring of singularity
of An_qo type [10].
3.3. A=(¢+1,1,...,1) case
In the case where the partition of N has the form A = (¢+1,1,...,1),
we can give an explicit form of a basis of the cohomology group. Recall

that the space of coefficients of polynomials of degree 1 in the definition
of GHGI is

Zrx={2=(20,...,2n-1) € Mat,1,~(C) | the condition (*)},

where the condition (*) is that, for any 0 < k < ¢+ 1 and q < ji <
Jk41 < - < Jr < N —1, there holds
det(Z(), ey k=15 %G e ,er) 75 0.

In this case the integrand of the GHGI has the form x(iz;a) =
e9(®:2) HJ —qt1/; > where

u Z) Zakak(fmfh "7fq)) f] :ﬁzjv (OS] < N)

k=0

We assume that

1
0
(20) Zo= | .
0
and
(21) Olo+zaj=—r—1, O‘q#07 Oéj¢Z7 (.j>Q)'

Ji>q
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As a consequence of the assumptions (20) and a4 # 0, we see that g(u, 2)
is a polynomial of u of degree ¢. Put H; :=ker f; (j =q+1,...,N—1)
and A = {Hy11,...,Hy_1}. Moreover from the assumption (21), the
integrand x(@z; o) of GHGI is a multivalued holomorphic function on
C” with the branch locus N(A) = U} H;.

Proposition 18. [8] In the case A = (¢+ 1,1,...,1), we assume
for the GHGI the conditions (20) and (21). Then we have

(1) HP(Co) =0 forp#r,

(2) dime H(C,0) = (V73).

T

Let us give a basis for the top cohomology group H"(C ). To this
end, we use the same notation as in the generalized Airy case for Y(r,1),
sy (v), Sy (u). For 0 < k < r, take a Yang diagram Y € Y(k,q—1—k)
and J = (jrt1,-..,Jr) satisfying

g+1< g1 <+ <jr <N

and define the logarithmic r-form

df .
(AJY)JI:SY(fl,...,fk)dfl/\"'/\dfk/\m/\"'/\%‘GQT(A).

Jk+1 fjr

Proposition 19. [8] Under the assumption (20) and (21), we can
take as a basis of H"(C,,q) the following set of r-forms:

O{WJI Y eY(k,g—1-k), }

k=0 J:(j17"'7j7‘—k) such th@tq+1§]1<<]r_kSN

§4. Exterior power structure

In the case the partition A of IV is general, we compute the cohomol-
ogy group for particular points z of the parameter space Z, ywhich will
be called the Veronese points. Combining this fact with the holonomic-
ity of the general hypergeometric system of type A, we can show the
purity of the cohomology groups and give the rank of the top cohomol-
ogy group at any point z € Z, x. Recall that, in the case of generalized
Airy integral, we gave in Proposition 16 a basis of the r-th cohomology
group expressed in terms of Schur functions:

Sy(w)dui A---ANdup, Y €Y(r,N—r—2).

This basis is related to the exterior product structure of the cohomology
group at the Veronese points.
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4.1. Veronese map for A= (1,...,1)

We first recall the Veronese embedding P! < P in order to motivate
the construction of generalized Veronese map given in Subsection 4.2.
Consider the map

vy
,Ur—l,Ul
(22) P:C?3 (20) e eCrtt,
1 .
v1

It induces the Veronese embedding 9 : P! 3 [vg, v1] — [v ,vg_lvl, ey

vj] € P.

Using the map ¢, we define, in the case A = (1,...,1), the map
Ui,..1) : Maty nv(C) — Mat,11 ~(C) by (20,21,...,28-1) — (¥(20),
¥(21), ... ¥(2n-1)) or by

(Zoo)r - (ZO’N_l)T
200 . ZoN-1 (200)"'210 o (20,8-1)" 21N
, o
210 -.- Z1,N—-1 .

(z10)" ... (an1)"

We see that it induces the map Wy 1y : Z1,1,...,1) = Zp(1,...,1) Which
we call the Veronese map. This fact is seen as follows. Note that z =
(20,-+-,2N-1) € Z1,(1,...,1) if and only if det(z;, z;) # O for any i # j.
Take any indices 0 < ig < i1 < --- < i, < N — 1. Then we see that

det(¢(zi0)a¢(zi1)7 s 7¢(z'lr)) = Hdet(zik’ Zil) # 0.

k<l

We will define in the next subsection the map Wy : Z; 5 — Z,
for any partition A of N which coincides with W(; ;) in the case A =
(1,...,1). To this end we restate the map 1 as follows. Let V be a
vector space of dimc V' = 2 and let SV be the r-th symmetric tensor
product. Then we have dimc S™V = r + 1. Define the map

r times
———
Y:Vo3v—uv---QuesV.
Let eg, 1 be a basis of V, and let ey, ..., e, be a basis of SV defined by

e = E e, Qe
i1t+ig+-+ir=k
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Then from

r
r—k, k
(voeo +vie)®" = E vy "vier,
k=0

we see that the map 1, expressed in terms of the basis eg,e; of V and
€p, .. .,e, of STV, is the same as the map (22).

4.2. Veronese map for A = (ni,...,ng)

Let us generalize the Veronese map W(; 1y to the case where the
partition A of N is general. To do this we at first generalize the map
¥ given by (22). Let V be a vector space of dim¢ V' = 2 and let R,, =
C[T]/(T™) be the quotient of the polynomial ring C[T] by the ideal (T™)
generated by the n-th power T™. Consider V,, := V®R,,, which is an R,,-
module, and its r-th symmetric tensor product S"V,, as an R,,-module.
Define the map

T

(23) Un Vo302 0® - Qv € SV,

Let us express v, using the basis of V,, as a vector space over C:

e®T?  (i=0,1,0<j<n)
and that of S™V,,:

e®T! (0<i<r 0<j<n).
We identify an element v = Z” Vi€ @ T7 € V,, with the matrix

UOO /001 v rUO,nfl 6 Ma.tQ (C)
,n
Yio V11 .- VUin-1

and an element w = )=, ; w;;&; ® T € 87V, with

Woo Wo1 .- wo,n—1
€ Matr+1,n (C)
Wro We1 e wT,n_l
The map v, : V,, = S™V,, defined by (23) induces a map ¥, :
Mats ,,(C) — Mat,11.,(C).
Example 20. Letr = 2. Then the map 13 : Maty 3(C) — Mats 3(C)
s given by
Vg0 2vg0v01 2v00v02 + V3

v — | YooVo1 VooV1i1 + VoiVio  Voo¥12 + Vo2vio + Vo1vil
2 2
V61 2ug1v11 2v19v12 + V14



Hypergeometric integrals of confluent type 153

Definition 21. For a partition A = (n1,...,n¢) of N, define ¥ :
Mate n(C) — Mat, 1 n(C) by

z=(zM,.. ., 29Y 5 (¢, (z1), . .. s Un, (D).
We call this map the Veronese map of type \.
Lemma 22. U,(Z1,) C Z; .

This fact can be shown as follows. For z € Z; , put w = ¥,(z) and

writeit asw = (w®, ..., w®), wk) = (wék), .. ,wr(i)_l) € Mat1,n, (C).

Then for any p = (mq,...,my) such that 0 < my < np and my +--- +
myg =1 + 1, we have :

1 1 ¢ ¢
det(w(() ), .. ,winz_l, ... ,w((] ), .. ,wr(ni_l)
=C, H det(z(()k), zik))"’”’“(m’“_l)/2 H det(z(gk)7 z(()l))m’“ml.
k k<l

with some nonzero constant C\,. The map ¥y : Z; x — Z,,» is also called
the Veronese map of type A. The set ¥x(Z; 5) and its point are called
respectively the Veronese image and a Veronese point.

4.3. Exterior power structure of the cohomology group

The following theorem asserts that the cohomology groups for the
r-dimensional GHGI of type A at Veronese points can be constructed
from that for 1 dimensional GHGI of type .

Theorem 23. Let z € Zy 5 be such that z(gl) = (1,0)* and let
(24) 5=0(2) € Zry, G=a+(—r+1,0,...,0).

Then we have

(1) HP(C:a)=0, (p#7),
(2) * the top cohomology group has the exterior product structure:

(25) H"(Cza) ~ [\ H'(Cs.0),

(3) dimg H"(Csa) = (V7).

r

Example 24. [Generalized Airy case A = (N)]
Let z € Zy vy and Z = Y n)(z). Theorem 23 says the following.
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e If we take a basis of HY(C, ) as
i =u'du, (0<i<N-3),
then the isomorphism (25) gives the correspondence
i, O Op;,. — Sy (v)dv.
Here [0 denotes the exterior product in A" H'(C, q),
ip>dg > >0 >0, Y =_(1-r+1lia—7+2,...,i) € Y(r,N=r—2)
and
v={(v1,...,0r), dv=dviA---Adv,.
o If one take a basis of H'(C,,) as
pi =d(0i(iz)), (1<i<N-=2)
then the isomorphism (2‘5 ) gives the correspondence
@i, 0 Ops, = d(0:, (0F)) A -+ A d(8;,(0Z)).

Example 25. A = (n1,...,n.) case/
 Let z € Zy,5. Then as a basis of H*(C, ) we can take, for ny > 2
for example,

d(61(@zM)), ..., d(On, o (@zV))
d(0o(@z®)), d(01 (@z™)), ..., d(Op, —1(@2®)), (2<k<¥).

Put Z = Ux(z). Then as a basis of H"(Csa) we can take the r-forms
obtained by choosing r forms d(0; (#2®))) and taking the exterior product
of them.

Combining Theorem 23 and the holonomicity of the general hyper-
geometric system, we can know the purity and the dimension of the
cohomology group for any z € Z; .

Corollary 26. Let A = (n1,...,n¢) be a partition of N and let

a=(W,.. . a®),a® =P, .. ,ag?_l) € C™ satisfy the condition

(2). Then for any point z of Z, x satisfying zél) = (1,0,...,0)t, we have
(1) HP(C.o)=0forp#r,
(2) dimc H™(C.0) = (V?).

T
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Question: In the case A = (ni,...,ny), we consider the r-forms
constructed in Example 25 at any point z € Z,. 5. Do these r-forms give
a basis for H"(C,,4)?
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