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Abstract. 

Let A be an affine hyperplane arrangement in ct with complement 
U. Let ft, ... , f n be linear polynomials defining the hyperplanes of A, 
and A the algebra of differential forms generated by the one-forms 
d log ft , ... , d log f n. To each .\ E en we associate the master function 
<I> = TI~=l J/'; on U and the closed logarithmic one-form w = d log <I>. 
We assume w is a general element of a rational linear subspace D of 
A1 of dimension q > 1 such that the map 1\k(D) --+ Ak given by 
multiplication in A is zero for all p < k .:::; q, and is nonzero for 
k = p. With this assumption, we prove the critical locus crit( <I>) of <I> 
has components of codimension at most p, and these are intersections 
of level sets of p rational master functions. We give conditions that 
guarantee crit(<I>) is nonempty and every component has codimension 
equal to p, in terms of syzygies among polynomial master functions. 

If A is p-generic, then D is contained in the degree p resonance 
variety 'R.P(A)-in this sense the present work complements previous 
work on resonance and critical loci of master functions. Any arrange­
ment is 1-generic; we give a precise description of crit( <I>.x.) in case.\ lies 
in an isotropic subspace D of A 1 , using the multinet structure on A cor­
responding to D <;;; R 1 (A). This is carried out in detail for the Hessian 
arrangement. Finally, for arbitrary p and A, we establish necessary 
and sufficient conditions for a set of integral one-forms to span such a 
subspace, in terms of nested sets of A, using tropical implicitization. 
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§1. Introduction 

Let A = { H 1, ... , Hn} be an arrangement of distinct affine hyper­
planes in ce, with complement U = ce - U~=l Hi. Choose a linear 
polynomial fi with zero locus Hi, for each i. Let A.= (A.1 ... , A.n) E en, 
and consider the master function 

n 

~~>>. = II 1i>.i. 
i=l 

The multi-valued function I!>>. has a well-defined critical locus 

crit(ll>>.) = {x E U I dll>>.(x) = 0}. 

Indeed, crit(ll>>.) coincides with the zero locus V(w>.) of the single-valued 
closed logarithmic one-form 

n 

W>. = dlog(ll>>.) = L A.idlog(fi)· 
i=l 

In particular, crit(ll>>.) is unchanged if A. is multiplied by a non-zero 
scalar. We are interested in the relation between crit(ll>>.) and algebraic 
properties of the cohomology class represented by W>. in H 1 (U, C). 

For certain arrangements A and weights A., the critical points of Ill>. 
yield a complete system of eigenfunctions for the commuting hamilito­
nians of the s[n(IC)-Gaudin model, via the Bethe Ansatz [23, 25, 17]. 
That application was the origin of the term master function, introduced 
in [28]. Much of that theory depends only on combinatorial properties of 
arrangements, and can be formulated in that general setting-see [29]. 

Let A denote the graded C-algebra of holomorphic differential forms 
on U generated by {dlog(fi) 11 ::::; i::::; n}. By a well-known result of 
Brieskorn, the inclusion of A' into the de Rham complex of U induces 
anisomorphism in cohomology, and thus A~ H'(U,IC), see [1, 4]. In 
particular A 1 ~ en. Since W>. 1\ W>. = 0, left-multiplication by W>. makes 
A' into a cochain complex (A', W>.)· For generic A., HP(A, W>.) = 0 
for p < £, and dimHe(A,w>.) = lx(U)I, see [24, 30]. At the same 
time, for generic A.,~~>>. has lx(U)I isolated, nondegenerate critical points 
[27, 20, 26]. Here we are concerned with HP(A ,w>.) and crit(ll>>.) when 
A. is not generic. 

For p < £, the w for which HP (A, w) =1- 0 comprise the pth resonance 
variety RP(A) of A, a well-studied invariant of A. On the other hand, 
precise conditions on A. guaranteeing that I!>>. has lx(U) I isolated critical 
points are not known. There are also examples where the critical points 
of I!>>. are isolated but degenerate. 
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In some cases crit(<P>.) is positive-dimensional. If A is a discrim­
inantal arrangement, in the sense of (24], then for certain choices of 
integral weights A arising from a simple Lie algebra g, crit(<P>.) has com­
ponents of the same positive dimension [25, 16, 18]. In the particular 
case g = .s12 (C) of this situation, the codimension of crit( <1?>.) is£ -1. In 
this case, it was shown in [6] that W>. E R/·-1 (A) for these A, with the 
rank of the skew-symmetric part of H£- 1 (A, W>.) equal to the number 
of components of crit( <1?>.). 

Our work in [5] provides a weak generalization of these results. 
There we study the universal critical set, the set E of pairs (x, a) such 
that x E V(wa)· For fixed A, crit(<P>.) is the a= A slice of E. Let E be 
the Zariski closure of E in e£ X en' and E>. the a = A slice of E. In [5] 
we show, if W>. E R.P(A), then E>. has codimension at most p, provided 
A is tame and either p ~ 2 or A is free. See [5] for definitions of free and 
tame arrangements; any affine arrangement in e2 is tame. It is not true 
in general that E>. is the closure of E>.. Indeed, E>. may be empty under 
the given hypotheses-that is, E>. ~ e£ X en may lie over u~=1 Hi. 

In this paper, we obtain somewhat more precise information on 
crit( <1?>.}, for more general arrangements, but impose a different hypoth­
esis on W>.. Namely, we assume that W>. has a decomposable cocycle, that 
is, there exists '1/J E AP such that W>. 1\ '1/J = 0, and '1/J is a product of p 
elements of A\ whose linear span does not include W>.. 

We say a subspace D of A 1 is singular if the multiplication map 
1\ q(D) -+ Aq is zero, where q = dim D. Let p be maximal such that 
1\P(D)-+ AP is not the zero map. If w = dlog(<P) ED- {0}, then w can 
be included in a basis of D, and any p-fold product of the other basis 
elements is a decomposable p-cocycle for w. 

We assume that D is a rational subspace of A 1 , that is, D has a 
basis A = { w6 , ... , we.} with each wei an integer linear combination 
of dlog(JI), ... , dlog(fn)· Associated to A is a rational mapping <PA = 
(<Pel' ... ' <Pe.) : e£ >---+ eq' whose image is a quasi-affine subvariety y = 
YA of eq. The dimension of Y is p. If w = dlog(<P) E D, then the 
critical locus crit( <1?) is consists of fibers of <1? A and singular points of 
<PA. In particular, for generic wED, crit(<P) has codimension at most 
dim(Y) = p. We obtain more precise conclusions in case the projective 
closure Y is a curve (p = 1) or a hypersurface (p = q - 1), or Y is 
nonsingular and meets the coordinate hyperplanes transversely. If Y is 
linear, of any codimension, withY = Y n (e*)q and <PA nonsingular, 
we get a complete description of the crit(<P) for dlog(<P) ED, in terms 
of critical loci of master functions on the complement of the rank-p 
arrangement cut out on Y by the coordinate hyperplanes. 
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Every component of R I (A) is a rationally-defined and isotropic lin­
ear subspace [14], and every element of RI(A) has a decomposable co­
cycle. Moreover, by the theory of multinets and Ceva pencils [10], we 
can choose A so that the variety YA corresponding to a component of 
RI(A) is linear. We carry out the entire analysis in detail in this case, 
with special attention to the Hessian arrangement, the one case we know 
for which YA is not a hypersurface. 

Our approach lends itself to tropicalization, using the main result of 
[7]. Using the nested set subdivison of the Bergman fan [11], we derive 
a rank condition for a product of integral one-forms w6 1\ · · · 1\ Wt;q to 
vanish. The rank condition can be used in case A is p-generic to give 
a combinatorial description of the (p + 1)-tuples of integral forms in AI 
whose product vanishes, analogous to the description of ni (A) in terms 
of neighborly partitions-see [2]. 

The outline of this paper is as follows. In Section 2 we introduce 
Orlik-Solomon algebras and resonance varieties, prove a general result 
about zero loci of differential forms, and compute critical loci directly 
for some examples, including the Hessian arrangement. In Section 3 we 
consider logarithmic one-forms with decomposable p-cocycles satisfying 
the rationality criterion above, obtaining a precise description of their 
zero loci, especially in case <I> A is nonsingular and Y A is a hypersurface 
meeting the coordinate hyperplanes transversely. We revisit the exam­
ples from Section 2. In Section 4 we treat the case where Y A is linear, 
returning to the example of the Hessian arrangement. In Section 5 we 
formulate a test for existence of decomposable cocycles using tropical 
implicitization. 

§2. Resonance, vanishing products, and zeros of one-forms 

It will be more convenient for us to consider arrangements of pro­
jective hyperplanes in complex projective space we. Let [x0 : · · · : xe] 
be homogeneous coordinates on We, and let O!i: CHI -+ C be a nonzero 
homogeneous linear form, for 0 ::; i ::; n. Assume without loss that 
a 0 (x) = x 0 . Let Hi = ker(ai), considered as a projective hyper­
plane in we, and let A = {H0 , ... , Hn}· We will denote the corre­
sponding linear hyperplanes in CHI by cHi, comprising the central ar­
rangement cA = { cHo, ... , cHn}· Let U = we - U~=o Hi. We identify 
[1: XI: ... : x£] E JPlf- Ho with (xi, ... ,xe) E c£, and set 

fi(xi, ... , xe) = ai(1, XI, ... , xe) 

for 1 ::; i ::; n. Then we recover the affine arrangement A of the Intro­
duction, with the same complement U. In w£, U is the complement of 
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the singular projective hypersurface defined by 

n 

the (homogeneous) defining polynomial of A. 

2.1. The projective Orlik-Solomon algebra 

Let 0; (U) be the complex of holomorphic differential forms on U. 
The Orlik~Solomon algebra of A is the subalgebra A(A) of n·(U) gen­
erated by d log(fi), 1 :::; i :::; n, as in the Introduction. 

We will also study A (A) in homogeneous coordinates. Let wi = 

dlog(ai) for 0:::; i:::; n, and let A(cA) be the algebra of holomorphic 
forms on c£+ 1 generated by Wo' ... ' Wn. Define a: A ( cA) -+ A ( cA) by 

k 

a(w A···Aw·) = "'(-1)j~ 1w· A···Aw· A···Aw ~1 'Lk L.......t 'l..t 1-j 2k 

j=1 

and extending linearly. Then a is a graded derivation of degree -1, and 

n n 

i=O i=O 

In general, a holomorphic p-form on c£+ 1 - { 0} descends to a well­
defined form on lP'£ if and only if it is C*-invariant and its contraction 
along the Euler vector field L:::~=O Xi 8~i vanishes, see [8]. This contrac­
tion, on A (cA), is given by a, and A (cA) consists of C* -invariant forms. 
Then we may identify A(A) with the subalgebra ker(a) of A(cA). This 
is easily seen to coincide with the subalgebra of A ( cA) generated by 
ker(a) n A 1 (cA). 

With our choice of coordinates, d log(fi) = Wi- w0 under this iden­
tification. { w1 - w0 , ... , Wn - w0 } generates A by the remark above. 
Also, (A(cA),a) is an exact complex, so that im(a) = ker(a) = A(A), 
see [19]. 

There is a well-known presentation of A ( cA) as a quotient of the 
exterior algebra E" =A (eo, ... , en)· For C = {i1, ... , ik} <:;;: {0, ... , n }, 
write eo = ei1 · · · eik E Ek. Say C is a circuit of cA if C is minimal with 
the property that 

codim n Hj < ICI. 
jEC 

Then A(cA) is isomorphic to E) I, where 

I = ( aec I C is a circuit of cA) . 
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2.2. Resonance varieties 

Let w = l:~=O AiWi, where ).. = (Ao, ... , An) E cn+1. Assume that 
8w = I:Z:o Ai = 0. Since dlog(fi) = Wi- wo, w = 2:~=1 Ai dlog(fi). 

Then w E A 1 , and w 1\ w = 0, so we obtain a cochain complex 

Let 

Then 

ZP(w) = {'lP E AP I w 1\ 'lj; = 0}, 

BP(w) = {'lP E AP I 'lj; = w 1\ cp for some cp E AP- 1 }, and 

HP(A ,w) = ZP(w)fBP(w). 

"RF(A) ={wE A1 I HP(A,w) f= 0} 

is, by definition, the pth resonance variety of A. 
As observed in the Introduction, 

d<I> 
w = dlog(<I>) = ~' 

where <I>= Ilj=1 fj>.j, and crit(<I>) coincides with the zero locus of w. In 

homogeneOUS COOrdinates, <J> is given by rr;=O a~j. 

2.3. Zeros of forms 

We start with an elementary observation about products and zeros 
of differential forms. If 'lj; E Ok(U), for some k, 0::::; k::::; C, let 

V('lj;) = {x E U I 'lj;(x) = 0}, 

a quasi-affine subvariety of c£. Let U('lj;) = U- V('lj;). 

Proposition 2.1. Suppose w E 0 1 (U) and 'lj; E f!P(U) satisfy w 1\ 

'lj; = 0. Then every component of V(w)- V('lj;) has codimension less 
than or equal to p. 

Proof. We may write w = I:f=1 bidxi for some holomorphic func­
tions b1, ... bg on U. Then 

£ 

V(w) = n V(bi)· 
i=1 
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Similarly, 'lj; = Lr Ardxr for some holomorphic functions Ar, where 
I ranges over all subsets I= {i1 , ... ,ip}< of {1,2, ... ,£}, and dxr = 

dxi1 1\ · · · 1\ dxiv. (The subscript "<" is meant to indicate that the 
elements of I are listed in increasing order.) Set U I = U (A I), and let 
Sr denote the coordinate ring of U1 , i.e., Sr is C[x1 , ... ,xe], localized at 
Ar. Then 

U('lj;) = U Ur. 
I 

The equation w 1\ 'lj; = 0 says, for each subset J of {1, ... , £} of size 
p+1, 

(2.1) L:cr(i, J)biAJ-{i} = 0. 
iEJ 

Here cr(i, J) = ±1 depending on the position of i in J. 
We have 

V(w) n U('lj;) = U V(w) n Ur. 
I 

Fix I= {i1 , · · · ,ip}<· For each i r:J_ I, set J =I U {i} in equation 
(2.1). Since Ar -=1- 0 on Ur, one can solve for bi in terms of bip ... , biv. 
This means bi lies in the ideal (bip ... , biv) of S1 . Since this holds 
for every i r:J_ I, the defining ideal of V(w) n Ur in Sr is contained in 
(bi1 , ••• , biv). Then each irreducible component of V(w) n Ur has codi­
mension less than or equal to the codimension of (bi1 , ••• , bip), which is 
at most p. Since the Ur cover U('lj;), the result follows. Q.E.D. 

Corollary 2;2. If 

then every component V(w) has codimension less than or equal top. 

Corollary 2.3. Suppose X is a component ofV(w) of codimension 
c. If 'lj; is a p-form satisfying w 1\ 'lj; = 0 and p < c, then X ~ V ( 'lj;). 

Remark 2.4. The preceding results go through without change for 
any smooth complex analytic variety U, interpreting x1 , ... , xe as local 
holomorphic coordinates on U. 

A p-form 'lj; satisfying w 1\ 'lj; = 0 will be called a p-cocycle for w. We 
say 'lj; is trivial if 'lj; = w 1\ r.p for some r.p E f!P- 1 (U). If 'lj; is a trivial 
cocycle for w, then V(w) ~ V('lj;). 

The trivial cocycle condition 'lj; = w 1\ r.p is generally difficult to 
characterize. We propose the following conjecture, the converse to the 
observation above. 
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Conjecture 2.5. If 'ljJ E AP, then 'ljJ = w A cp for some cp E AP-1 if 
and only if w A 'ljJ = 0 and V(w) t::;;; V(¢). 

The conjecture is not hard to prove directly in case p = 1, and the 
statement for any p follows from results of [29] if w E A 1 is generic. 

2.4. Examples 
Our first example is linearly equivalent to the rank-three braid ar­

rangement. 

Example 2.6. Let A = {H0 , .•. , H5 } be the arrangement with 
defining polynomial 

Q = xyz(x- y)(x- z)(y- z), 

with the hyperplanes labelled according to the order of factors in Q. 
For a, b, c E C, not all zero, with a + b + c = 0, let 

<I>abc = [x(y- zW[y(x- z)]b[z(x- YW· 

Then Wabc := dlog(<I>abc) = a(wo + w5) + b(w1 + w4) + c(w2 + wa). 
One computes 

W 0 b< ~ [dxdydz] [ ~ ] 

[ 
1/x 

= [dxdydz] 1/(y- z) 
1/(z -y) 

1/(x-z) 1/(x-y) l [a l 
1/y 1/(y-x) b . 

1/(z- x) 1/z c 

The zero locus V(wabc) is given by the vanishing of b17 b2, and b3 . The 
kernel of the matrix is spanned by (x(y- z), y(z - x), z(x - y)), so 
[x: y: z] E V(wabc) ifandonlyif[x(y-z): y(z-x): z(x-y)] =[a: b: c]. 
Since a+ b + c = 0, this is equivalent to [x(y- z) : y(z- x)] = [a : b], 
i.e., 

or, more symmetrically, 

x(y ~ z) a 
y(z-x) b 

a b c - +- +- = 0. 
X y Z 

If any of a, b, or care zero, then crit(<I>abc) = V(wabc) is empty. Otherwise 
crit(<I>abc) has codimension 1. Moreover, crit(<I>>.) is a level set of the 
master function xty-z)). 

y z-x 
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Fig. 1. The braid arrangement with crit(<P1 ,1 ,- 2 ) 

Let D = {wabc I a+ b + c = 0}. Then D ~ A1 and, for any wED, 
Z1 (w) = D. Thus 7/J E Z 1 (wabc) if and only if 7/J = dlog<Pa'b'c' with 
a' + b' + c' = 0. Then 7/J has zero locus given by 

a' b' c' - +- +- =0, 
X y Z 

which one can see is disjoint from V(wabc) if and only if 7/J <t B 1 (wabc)· 
The Zariski closure of every nonempty critical set contains the four 
points [0: 0: 1], [1 : 1 : 1], [1 : 0: OJ, and [0: 1 : O]~see Figure 1. 

Here is a rank-four example. 

Example 2. 7. Let A= { H 0 , ... , H 7 } be the arrangement of eight 
planes in 1P'3 with defining polynomial 

Q = xyzw(x + y + z)(x + y + w)(x + z + w)(y + z + w). 

The dual point configuration consists of the four vertices and four face­
centers of the 3-simplex. Fix a, b, c, d E C and let 

The one-form w = d log <P belongs to a 4-dimensional component of 
R 2 (A). If none of a,b,c,d are zero, then H 1 (A,w) = 0 and H 2 (A,w) ~ 
C. A nontrivial 2-cocycle for w is given by 
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One sees that w is equal to the product 

[ ' 
-=.!....__ -=.!....__ ----=.l._ 

l [;] X x+z+w x+y+w x+y+z 
-1 .! -1 -1 

[dxdydzdw] y+z+w 
..!'1 

x+y+w x+y+z 
-=.!....__ .! -1 
y+z+w x+z+w z x+~+z 
-=.!....__ -=.!....__ -=.!....__ 
y+z+w x+z+w x+y+w w 

Computing the kernel of the matrix, we see that [x: y: z: w] E V(w) if 
and only if the vector (x(y+z+w), y(x+z+w), z(x+y+w), w(x+y+z)) 
is proportional to (a, b, c, d), giving the equations 

x(y+z+w) 

w(x + y + z) 
a y(x+z+w) 
d' w(x+y+z) 

b z(x+y+w) 
d' w(x+y+z) 

V(w) has a component of codimension two, given by 

x+y+z+w = 0, 
a b c d - +- +- +- = 0. 
X y Z W 

c 
d" 

For general a, b, c, d, the remaining components of V(w) consist of four 
additional points in lP'3 . It follows from Corollary 2.3 that the cocycle '1/J 

vanishes on the isolated points of V ( w). This can also be verified here 
by direct computation. 

Example 2.8. The Hessian arrangement consists of the 12 lines 
through the inflection points of a nonsingular cubic in lP'2 . It is the only 
known arrangement of rank greater than two that supports a global 
component of R1 (A) of dimension greater than two. That is, there is 
an element w E A 1 which has poles along every hyperplane of A, and 
satisfies dim H 1 (A, w) > 1. 

Any nonsingular cubic is equivalent to 

(2.2) 

up to projective transformation, for some t E C. These cubics have 
the same inflection points. Then, up to projective transformation, the 
Hessian arrangement A is defined by 

Q = xyz(x+y+z)(x+y+(z)(x+y+(2 z)(x+(y+z)(x+(y+(z) 

· (x + (y + (2 z)(x + (2 y + z)(x + (2 y + (z)(x + (2 y + (2 z), 

where ( = e 2 ~i. The 12 lines of A are the irreducible components of the 
four singular cubics in the family 2.2, corresponding to t = oo, 1, (, and 
( 2 . See [19, Example 6.30]. 
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Numbering the hyperplanes in order, these singular cubics are given 
by 

Po = aoa1a2 = xyz, 

P1 = a3asa10 = x3 + y3 + z3 - 3xyz, 

P2 = a4a5au = x3 + y3 + z3 - 3(xyz, and 

P3 = a5a7a9 = x3 + y3 + z3 - 3(2xyz. 

Let D ~ A1 be the space of all such forms. Then H 1(A,w) ~ D/Cw 
has dimension two. 

As in the previous examples, we write 

w ~ [dx,dy,dz] M [::] , 

where M is a 3 x 3 matrix of rational functions, the Jacobian of 

(log( PI/ Po), log(P2/ Po), log(P3/ Po)). 

Then w(x) = 0 for x E U if and only if a= (a1,a2,a3) lies in the kernel 
of M(x). 

The matrix M has rank 1. In fact one finds that M = vwT where 

The critical equation becomes vwT a = 0, which is satisfied if and 
only if wT a = 0 or all components of v vanish. The latter occurs at the 
points given by x3 = y3 = z3, which are the common inflection points of 
the cubics (2.2). In particular those points do not lie in the complement 
U. Thus crit(ci>) is defined by the single equation 

(2.3) 
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Then crit( <I>) is empty or has codimension one and degree six. Work­
ing in the torus xyz #- 0, set 

x3 + y3 + z3 T=-____::_ __ 
xyz 

Then equation (2.3) is equivalent to 

a1 a2 a3 
+ + =0, 

T - 3 T - 3( T - 3(2 
(2.4) 

which becomes a quadratic AT2 + BT + C = 0 in T. 
Then, if a= (a1 , a 2 , a3 ) is generic, crit(<I>) has two irreducible com­

ponents. Each component is the intersection with U of a level set T = 3t 
of T. These are nonsingular fibers in the pencil (2.2), meeting each 
other and A at their nine common inflection points. So crit( <I>) <;;; U has 
two connected components. Every pair of nonsingular fibers appears as 
crit( <I>) for some a. The discriminant B 2 - 4AC defines a hypersurface in 
( a 1 , a 2 , a3 )-space for which the corresponding critical locus crit( <I>) has a 
single nonreduced component, and every nonsingular fiber can appear. 

For some values of a, crit( <I>) is empty or has only one reduced 
component. This is easiest to see by clearing fractions in (2.3), to obtain 

(2.5) 

When one component of the variety defined by (2.5) is Pi = 0 or P0 = 

xyz = 0, then crit( <I>) has one reduced component. This occurs if a is 
a generic point on ai = 0 or a 1 + a 2 + a3 = 0. If ai = 0 for some i 
and a 1 + a 2 + a3 = 0, or if ai #- 0 for only one i, then (2.5) becomes 
PiPj = 0, and crit( <I>) = 0. If a is a cyclic permutation of (0, (, 1) or 
equals (1, (, ( 2 ), up to scalar multiple, then (2.5) becomes Pl = 0, and 
crit(<I>) = 0. 

Each cocycle of w = Wa 1 a 2 a 3 has the form 1/J = Wb 1 b2 b3 for some 
b1 , b2 , b3 . So we see that V ( 'ljJ) and V ( w) can have a component in 
common, but if w and 1/J are not proportional, then V ( w) - V ( 'ljJ) is 
nonempty and has codimension one. 

§3. Decomposable cocycles 

We will now assume 'ljJ is a cocycle for w E A 1 and 'ljJ is a product of 
logarithmic one-forms. Then w is a factor in a vanishing product of p + 1 
one-forms in A'. To carry out our geometric analysis it is necessary to 
work initially over the integers, although eventually the results extend to 
C-linear combinations of the original integral weights. For that reason 
we state the result in terms of subspaces of A 1 . 
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We will be dealing with rational functions parametrizing affine or 
projective algebraic varieties. For that reason we formulate and prove 
our results algebraically. For any quasi-projective variety X, write C[X] 
for the ring of regular functions on X, and C(X) for the field of rational 
functions on X. If X is a subvariety of projective space, then elements 
of C[X] are represented by homogeneous polynomials and elements of 
C(X) by homogeneous rational functions of degree zero. If cp: R -+ S is 
a homomorphism of ((>algebras, denote by nSIR the S-module of Kahler 
differentials of S over R. Write D[X] = Dqx]IIC and D(X) = Dqx)IIC· 
Elements of D[X] (resp. D(X)) are polynomial (resp. rational) one­
forms on X. 

3.1. Singular subspaces of A1 

Let D be a subspace of A 1. We call D a singular subspace if the 
multiplication map 1\ q(D)-+ Aq is the zero map, where q =dim D. The 
rank of Dis the largest p such that 1\P(D)-+ AP is not trivial. We say D 
is rational if D has a basis {w6, ... , we0 }, with ~i = (~iO, ... , ~in) E zn+l 

for 1 ~ i ~ q. Then <I>e; = Tij=1 fr; = TI}=o o:};; is a single-valued 

rational function on JP>f, regular on U. (Recall LJ=O ~ij = 0.) 
We apply the following general result. It is an easy consequence of 

the implicit function theorem, but we give an algebraic proof that holds 
over any algebraically-closed field of characteristic zero. See [13] and [9] 
for the relevant background on Kahler differentials. 

Proposition 3.1. Suppose F 1 , ... , Fq are rational functions on C£, 
and 

Then the image ofF has dimension less than k if and only if 

for all1 ~ i1 < · · · < ik ~ q. 

Proof. The image of F is a quasi-affine variety, whose function 
field is isomorphic to C(F1 , ... , Fq)· Then the dimension p of im(F) 
is equal to the transcendence degree of C(F1 , ... , Fq) over C. With­
out loss of generality, suppose { F 1 , ... , Fp} is a transcendence base for 
C(F1 , ... ,Fq) over C. Then the set {dF1 , ... ,dFp} forms a basis for 
D(C(F1 , ... , Fq)), a vector space over C(F1 , ... , Fq), see [9, Theorem 
16.14]. Then 

dF1 1\ · · · 1\ dFp i= 0. 



88 D. C. Cohen, G. Denham, M. Falk and A. Varchenko 

If {Fi1 , ... , Fik} c;;; {F1, ... , Fq} with k > p, then {dFi1 , •.• , dFik} is 
linearly dependent over ce(F1, ... , Fq), hence 

Q.E.D. 

If A= (6, ... , ~q) with ~i E zn+l satisfying 'L7=o ~ij = 0, set 

<I> A := ( <I>~ll ••. , <I>~q): JP,c ,_.., ceq. 

Proposition 3.1 applies as follows. 

Corollary 3.2. Suppose D is a rational singular subspace of A1 , 

and <I> A is the rational mapping associated to an ordered integral basis A 
of D. Then dim <I> A (U) is equal to the rank of D. In particular, <I> A (U) 
has positive codimension in ceq. 

Let [z0 : · · · : Zq] be homogeneous coordinates on lP'q, and identify 
ceq with the lP'q - { Zo = 0} as above. Let y be the Zariski closure of 
Y = <I> A ( U) in lP'q. In homogeneous coordinates, <I> A is given by 

Clearing fractions, we have 

where the master functions <f>v; are homogeneous polynomials of the 
same degree d. Moreover we may assume the <f>v; have no common 
factors. Equivalently, the weights Vi = (vio, ... , Vin) are non-negative 
integer vectors with L,~=o Vij = d for 0 ::; i ::; q, whose supports have 
empty intersection. Then 

<f>v. 
<f>~i = <I> ', ~i =Vi-Vo, and W~i = Wv;- Wvo· 

vo 

Definition 3.3. A is essential if every hyperplane H E A appears 
as a component of V(<I>vJ for some i, 0::; i::; q. 

Henceforth we will tacitly assume A is essential. We have Y c;;; 
Y n (ce*)q in any case. If A is not essential, the inclusion is proper, and 
may be proper otherwise-see Example 3.16. 

The defining ideal I = h of Y is generated by homogeneous polyno­
mials P(zo, ... , Zq) for which P( <f>v0 , ••• , <f>vq) vanishes identically on U, 
or, equivalently, P(1, <I>6 , ... , <I>~q) = 0. We will sometimes refer to h 
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as the syzygy ideal of A. The mapping zi f----1 <I>v; induces an isomorphism 
of rings 

In particular Y is irreducible. Identifying CC[Y] with CC[<I>v0 , ••. , <l>v0 J, 
the dominant rational mapping <I> A: JPf >-----> Y corresponds to the field 
extension 

iC( <I>~l, ... , <I>~J <;;; IC(x1, ... , xe). 

The affine ring CC[Y] is isomorphic to a localization of the ring of Laurent 
polynomials q <1'>;01, ... , <t>;q1]. 

If w E D - {0}, we write w = Wa = "2:,i=o aiwv, = "2:,~=l aiw~, with 
a = (ao, ... aq) E Cq+l - {0}, satisfying "2:,i=o ai = 0. Note that any 
p-fold wedge product 1jJ = w~, 1 1\ · · · 1\ w~ip is a cocycle for w. 

The one-form "2:,i=o aid log(zi) E O(Cq+l) is C* -invariant, and con­
tracts trivially along the Euler vector field, so it descends to a well­
defined rational one-form on lP'q. This form restricts to a one-form in 
O(Y) which we denote by Ta. Since Y <;;; (C*)q, Ta is regular on Y. 
Note that "2:,i=o aid log(zi) = d log fLa, where tLa = Tii=o zf' is a master 
function for the arrangement of coordinate hyperplanes in lP'q. 

We show that the zeros of Ta pull back to zeros of Wa· 

Lemma 3.4. Let x E U andy= <I>A(x) E Y. Then wa(x) = 0 if 
and only if Ta(Y) E ker(<I>pJy· 

Proof. We have 

q q q 

Wa = Laid log <I>v; = d log IT <I>~;,= <I> A. ( d log IT zfi) = <I> A. ( Ta)· 
i=O i=O i=O 

The result follows upon localization at y. Q.E.D. 

Note that 

Then Ta (y) E ker( <I>A_)y if and only if [ ~~ ~: J lies in the left null 

space of the Jacobian of <I> A. 
Let Sing( <I> A) denote the singular locus of <I> A, and Sing(Y) the sin­

gular locus of Y. Let SA= Sing( <I> A) U <I>;\ 1(Sing(Y)) <;;; U. 

Theorem 3.5. V(wa) contains <I>;\ 1(V(Ta)), and V(wa)-<I>- 1 (V(Ta)) 
is a subset of SA. 
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Proof. The first statement is immediate from Lemma 3.4. If <P A 
is nonsingular at x E U then the Jacobian of <PA attains its maximal 
rank p = dim(Y) at x. If in addition Y is nonsingular at y = <P A ( x), 
then dim(O(Y)y) = p. Then ker(<P.fJy = 0. The second statement then 
follows from Lemma 3.4. Q.E.D. 

Corollary 3.6. Suppose D is a rational singular subspace of A 1 , 

with integral basis A. Let p be the rank of D. If d log( <P) E D then 
crit(<P) ~SA or codim(crit(<P)):::; p. 

Proof. Write w = d log( <P) = 2::{=1 aiw~;. The hypothesis implies 
dimY = p, so V(Ta) is empty or has codimension at most pinY. 
In the first case V(w) ~ SA by the preceding theorem. Otherwise, 
V(w) ;2 <PA: 1 (V(Ta)) has codimension at most p. Q.E.D. 

Corollary 3. 7. Suppose D is a rational singular subspace of A 1, 

with integral basis A. If dlog(<P) ED, then crit(<P)- SA is a union of 
fibers of <PA. 

The fibers of <P A are intersections oflevel sets of the rational master 
functions <P~;, for 1 :::; i :::; q. 

We have not used the assumption that { 6, ... , ~q} is linearly inde­
pendent, i.e., that the dimension of D is strictly greater than p. This 
hypothesis rules out a trivial case. 

Proposition 3.8. Suppose a -=/=- 0. Then Ta is not identically zero 
on Y. 

Proof. If Ta is zero on Y, then 

q q q 

<P.f..( Ta) = Laid log( <PvJ = L aiWv; = L aiw~; 
i=O i=O i=1 

is zero on U. This contradicts the assumption that { w~1 , • •• , w~q} is a 
basis for D. Q.E.D. 

A singular subspace of rank 1 is called an isotropic subspace of A 1 . 

Corollary 3.9. Suppose A is an integral basis of an isotropic sub­
space of A 1 . Then 

(i) if w = dlog(<P) ED then Sing(<PA) ~ crit(<P). 
(ii) ifO-=/=- w = dlog(<P) ED, then the components of crit(<P)- SA 

are disjoint hypersurfaces in U. 

Proof. Since dim(Y) = 1, the Jacobian of <P A vanishes identically 
at points of Sing(<PA)· Then Sing(<PA) ~ V(w) = crit(<P) by Lemma 3.4. 
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If a =F 0, then Ta doesn't vanish identically on Y by Proposition 3.8. 
Then V( Ta) is zero-dimensional. Assertion (ii) follows from Theorem 3.5. 

Q.E.D. 

Corollary 3.9(i) can be used to locate singular fibers in Ceva pencils 
[10, Def. 4.5]-see Example 3.17. 

3.2. Zeros of Ta 

We apply the method of Lagrange multipliers to find the zeros of Ta. 

The argument applies even if Y is singular. Fix a set of homogeneous 
generators {P1 , ... , Pr} of the defining ideal I= h <;;; S of Y. Write Oj 

a 
for az:· Let 

J 

JA = [ojPi] 

be the Jacobian of ( P1, ... , Pr). The rank of J A at a nonsingular point 
y E Y is equal to q- p, the codimension of Y. 

Lemma 3.10. Let y E Y. Then y E V(Ta) if and only if[~~···~; J 
is an element of the mw space of h(y). 

Proof. The one-form d log JLa = L,{=o aid log(zi) E O(IP'q) restricts 
to Ta E O(Y). There is an exact sequence of C[Y]-modules 

where dis given by right multiplication by h [9, Sec. 16.1]. Localiza­
tion at the maximal ideal corresponding to y preserves exactness of this 
sequence, so Ta (y) E O(Y)y vanishes if and only if Ta (y) is in the image 
of d. Q.E.D. 

For each i ~ 0, let Fitti (a, I) be the variety in IP'q defined by the 
(q + 1- i) x (q + 1- i) minors of the (r + 1) x (q + 1) matrix 

(3.1) 

aqjzql oqPl 
. . 

oqPr 

The ideal Fitti (a, I) is independent of the choice of generating set for 
I. Similarly, let Fitti(h) denote the variety in IP'q defined by the (q + 
1- i) X (q + 1- i) minors of JA. Let Yreg = Y- Sing Y. Then Yreg = 
Y n Fittp(JA)- Fittp+l(h), where p =dim Y. 

If Y is smooth, then V(Ta) is a Fitting variety. More generally: 

Corollary 3.11. V(Ta) n Yreg = Fittp(a,J) n Yreg· 
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Proof. At any point of Yreg the rank of h is equal to q- p = 

codim Y, so the rank of matrix (3.1) is at least q-p. Then [ ~ ~ J 
is in the row space of J (y) if and only if ( 3.1) has rank q - p, if and only 
if all (q- p + 1) x (q -p + 1) minors vanish. Q.E.D. 

Remark 3.12. In fact, the intersections Y n Fitti(h), p::::; i ::::; q 
determine a stratification of Y by locally-closed subvarieties, and V(Ta) 

coincides with Fitti(a, I) on the stratum Fitti(h)- Fitti+l(h), by the 
same argument. 

In view of Proposition 2.1 we study the zeros of cocycles for Ta. 

Since dim Y = p, every 'ljJ E DP(Y) is a cocycle for Ta. For 0::::; i::::; q, set 

Ti = ;_.',so that Ta = 'Li=o aiTi = 'Li=l ai(Ti -To)= 'Li=l dlog(yi/yo). 

Proposition 3.13. The intersection 

n{v(~) I~ E Dt(Y), Ta (\ ~ = 0} 

is contained in Sing(Y). 

Proof. For I= {i1 < · · · < ip}< s;;; {1, ... , q}, consider the p-form 

6 = (Ti1 -To)(\ ... (\ (Tip -To). 

Then Ta 1\6 = 0. But dim Y = p, so at each point of Yreg, ~j must be 
nonzero for some I. Q.E.D. 

3.3. The case q = p + 1 

SupposeD is a singular subspace of rank dim(D)- 1, with integral 
basis A = { w6 , ... , wr;,q}. Then Y is defined by a single homogeneous 
polynomial P(z0 , ... , zq)· This hypothesis holds for all the examples we 
know, with one exception: the Hessian arrangement, which supports a 
rational singular subspace of dimension three and rank one-see Exam­
ples 2.8 and 4.11. 

Consider the rational mapping 

(3.2) 

This map has poles along Sing(Y) and Sing(Y n C1 ) where C1 is the 
coordinate subspace Zi = 0, i E I. It is regular on Yreg n (C*)q. By 
Euler's formula, LJ=o Zj8jP = deg(P)P, so the image of Y under pis 
contained in the hyperplane LJ=o Zj = 0. 

Proposition 3.14. Suppose Y is the hypersurface given by P = 0, 
and p is as given in (3.2). Then 
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(i) V(Ta) # 0 if and only if a E p(Y). 
(ii) If a E p(Y) then V(Ta) = p- 1 (a). 

93 

(iii) For generic a E p(Y), V(Ta) is nonempty and every compo­
nent has codimension equal to dim p(Y). 

Proof. The first two assertions follow from Lemma 3.10, and the 
third follows from the second. Q.E.D. 

Corollary 3.15. Suppose 

(i) ii>A is nonsingular on U, 
(ii) Y is nonsingular and intersects the coordinate hyperplanes 

transversely, 
(iii) dimp(Y) = dimY, and 
(iv) <I>A(U) = Y n (C*)q. 

If d log( <I>) = l:::I=l aiw~i and ai # 0 for all i, then crit( <I>) is nonempty 
and every component has codimension q - 1. 

Proof. We have observed that p(Y) is contained in the hyperplane 
~ defined by l:::I=o zi = 0. The second hypothesis ensures that Sing(Y n 
C1 ) is empty for every I <;;; {0, ... , q}. Then pis regular on Y. By the 
third condition, dim p(Y) = q - 1 = dim~. Since ~ is irreducible, we 
conclude p(Y) = ~. Since Y = Y n (C*)q by (iii), ~ n (C*)q = p(Y). 
The result then follows from Proposition 3.14 and Theorem 3.5, since 
(i) and (ii) imply SA = 0 and the fibers of ii>A all have codimension 
q -1. Q.E.D. 

The hypotheses in Corollary 3.15 are satisfied in many examples. 
The third condition is automatic in case q = 2. The last two conditions 
hold in every example we know where (i) and (ii) hold. 

3.4. Examples 

Example 3.16 (Example 2.6, continued). Let D be the rational 
singular subspace of A 1 c::::' C5 with basis A = {wow - Wwo, wool - wwo}. 

We have 

if> A= [<I>wo: <I>ow: <I>o01J = [x(y- z): y(x- z): z(x- y)]. 

<I>A is nonsingular on U, andY = Y n (C*) 5 . The components of <I> A 
satisfy the homogeneous relation <I>10o - <I>ow + <I>oo1 = 0, so Y is the line 
z0 - z 1 + z2 = 0 in IP'2 . Corollary 3.15 implies crit(<I>abc) is nonempty if 
and only if a+ b + c = 0 and a, band care nonzero. In this case, 
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that is, crit( <I> abc) is given by 

[x(y- z): y(x- z): z(x- y)] =[a: -b: c], or, equivalently 

[x(y- z) : y(z- x)] = [a: b] 

as we found earlier. It has codimension one in JID2. In this example the 
map <I>A has connected generic fiber, hence crit(<I>abc) is connected. If 
a, b, or cis zero, and a+ b + c = 0, then crit(<I>abc) is empty. 

The basis A above has special properties that resulted in the linear 
syzygy of master functions: we will revisit this in the next section. By 
way of comparison, consider the basis A' = { w120 - wo12, W3oo - wo12}. 
Then 

<I>A' = [<I>ow<I>6m : <I>wo<I>6w : <I>~ool 
= [yz2(x- Y?(x- z) : xy2(x- z)2(y- z) : x3(y- z)3]. 

A Macaulay 2calculation [12] shows that <I> A' is nonsingular on U. Using 
the identity <I>wo - <I>ow + <I>om = 0, one finds that the Zariski closure 
Y' of Y' = <I> A' (U) is defined by 

zf- z6z2- 4zozlz2- 2ziz2 + z1z~ = 0. 

Then Y' is an irreducible cubic with a node at [zo : z1 : z2] = [-2 : 
1 : -1]. This is a point of Y'. It is also in if?A'(E), where if?A' is the 
lift of <I> A' to the blow-up of JID2 at the four base points, and E is the 
exceptional divisor over [0 : 1 : 0]. 

The image of Y' under p misses the three points [0 : -1 : 1], [-2 : 
1 : 1], and [-2 : 3 : -1] , corresponding to the three one-forms wwo -
wow, wwo- Wom, and Wow- Wom in D that have empty zero locus. In 
particular Y' f. Y' n (C*)5. 

Example 3.17. Let A be the arrangement with defining equation 
Q = QoQl Q2 where 

Qo = (x + z)(2x- y- z)(2x + y- z) 

Q1 = (x- z)(2x + y + z)(2x- y + z), and 

Q2 = (y+z)(y-z)z 

The image of <I> A= [Qo : Q1 : Q2]: JID2 >---+ JID2 is the line z0 -z1 +2z2 = 
0. The fibers are the cubics passing through nine points, three on each of 
three concurrent lines-A is a specialization of the Pappus arrangement. 
One of these cubics is x( 4x2 - y2 - 3z2) = 0. Although Y is smooth, <I> A 
is singular at two points of U, given by x = y2 + 3z2 = 0. These two 
points lie in crit(QgQ~Q~) for every a, b, c with a+ b + c = 0. 
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Similarly, if A the subarrangement of the Hessian arrangement (2.8) 
defined by P1P2P3 = 0, then every critical set crit(Pf P~Pf), a+b+c = 0, 
contains the three points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] of U where 
the fourth special fiber xyz = 0 is singular. The map <I> A = [P1 : 
P2 : P3] is singular at these points, although Y is smooth, given by 
(P1 + (2 P2 + P3 = 0. (See also Example 4.11.) 

Remark 3.18. In fact, Corollary 3.9 can be used to detect Ceva 
pencils [10] (see 4.4). For instance the master function 

<I>=x(y-z) 
y(x-z) 

has critical points [0 : 1 : 0] and [1 : 1 : 0], the singular points of the 
third completely decomposable fiber in Example 2.6. 

Example 3.19 (Example 2.7, continued). In this example, the one­
form w has no decomposable 2-cocycle. Indeed there are no singular 
subspaces of A 1 of rank p = 1 or p = 2. For p = 1 this holds because 
A is 2-generic. For p = 2 one can verify the statement computationally 
using the approach of [15]; in [2] we give a combinatorial argument based 
on Theorem 5.4. Setting 

'lf-[ X 

y+z+w 

y 

x+z+w 

z 

x+y+w 

we have w = d log( <I>) = 'lf* ( T) where 

T = adlog(yo) + bdlog(y1) + cdlog(y2) + ddlog(y3). 

The map 'l1 is dominant. The one-dimensional critical locus of <I> is a 
fiber of a different map 

[x(y + z + w): y(x + z + w): z(x + y + w): w(x + y + z)]. 

§4. Linear dependence among master functions 

In this section we consider a singular subspace D with an integral 
basis A such that YA is linear, i.e., the syzygy ideal h is generated by 
homogeneous linear forms. We saw this phenomenon in Example 3.16. 
We start with a trivial example that will be useful for what follows. 

4.1. Example: equations for the critical locus 

Suppose A is an essential arrangement of n + 1 hyperplanes in JID£, 
with n > e. Then D = A 1 is a singular subspace, with integral basis 
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{ Wi - wo I 1 S i S n}. The corresponding rational mapping is 

<I> = <I> A = [ ao : · · · : an] : IP'£ >----> IP'n, 

and Y = Y A is a linear subvariety of ]pm. The reader will recognize 
that this is the usual identification of a labelled vector configuration, 
(a0 , ... ,an), with a point in the Grassmannian of {?-planes in lPm. Let 
us denote Y A by LA. (This is an abuse of notation; Y A depends on the 
choice of defining forms ai.) 

Most of the results of the previous section are vacuous in this situ­
ation, but Lemma 3.10 tells us something: 

Theorem 4.1. Let B = [biJ] be an (e + 1) x (n + 1) matrix such 
that LA is the kernel of B. Then, for any A E en, the critical locus of 
<I>>- is defined by the G:i) equations 

Ldi,I)bi-{i} aA(~) = 0 
iEJ " 

where I ranges over the subsets of {0, ... , n} of size g + 1, the coefficient 
bJ is given by bJ = det [bij I j E J], and a(i,I) = ±1, depending on the 
position of i in I. 

Proof. The linear forms defined by the rows of B generate the 
syzygy ideal h. Then the Jacobian his equal to B. With the observa­
tion that SA= 0, setting a= A in Lemma 3.10 and applying Theorem 3.5 
yields the claim. Q.E.D. 

The columns of the matrix B above define a realization of the ma­
troid dual to the matroid of A. In Example 2.6, 

B = [~1 
-1 

-1 
0 
1 

1 0 0 1] 
1 0 1 0 
0 1 0 0 

(The matroid of A is self-dual.) Theorem 4.1 says that crit(<l>abc) is 
defined by the 4 x 4 minors of 

[Jl 
!!. '"-
y z 

-1 1 
0 1 

-1 1 0 

_c_ 
x-y 

0 
0 
1 

_b_ 
x-z 

0 
1 
0 

yiz] 
0 . 

0 

These 15 equations reduce to the single equation found in Example 2.6. 
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4.2. Linear hypersurfaces 

Suppose Y is a linear and p = rank(D) = q- 1, i.e., Y is a linear 
hyperplane in !Pq. Let P(z) = 2:3=o bjZj be a generator for the syzygy 

ideal. It is no loss to assume bj =/= 0 for all j, or equivalently, Y is not 
contained in any coordinate hyperplane. Otherwise some proper subset 
of { <I>v0 , ••• , <I>vq} is linearly dependent. 

Proposition 4.2. Suppose Y is a hyperplane not contained in any 
coordinate hyperplane in pq. Let A = l::f=o aivi. Then for generic a 
satisfying l:i=o ai = 0, crit(<I>>.)- SA is nonempty and every component 
ofcrit(<I>>.)- SA has codimension equal to the rank of D. 

Proof. The syzygy ideal h is generated by a linear polynomial 
P(z) = i:3=o bjzj, and bj =/= 0 for 0 ::; j ::; q by hypothesis. The map 
p = [bozo : · · · : bqzq] of (3.2) is an automorphism of pq since all of the bj 
are nonzero. Consequently, p maps the hyperplane Y isomorphically to 
the hyperplane ~ defined by l::f=o Zi = 0. The result then follows from 
Proposition 3.14. Q.E.D. 

4.3. The general case 

Suppose the singular subspace D ~ A 1 has an integral basis A for 
which Y = Y A is a linear variety in !Pq. Choose a linear isomorphism 
'P: JPP--+ Y, given by a (q + 1) x (p + 1) matrix B = [bii]. AssumeD 
is not contained in any coordinate hyperplane. Then the intersections 
of Y with the coordinate hyperplanes in pq determine an essential ar­
rangement B of q + 1 not necessarily distinct hyperplanes in JPP, with 
defining forms f3i(x) = l::f=o bijXj, for 0 ::; i ::; q. By construction, the 
subspace LB of !Pq, as described in Section 4.1, is equal toY. 

Theorem 4.3. Suppose Y A = LB is a linear subspace not con­
tained in any coordinate hyperplane in pq, and Y = Y n (C*)q. Let 

A = l::f=o aivi with l:i=o ai = 0. Let Wa = IJi=o (3[; be the master 
function on the complement of the arrangement B in JPP corresponding 
to a. Then 

(i) crit(<I>.>-)- SA=/= 0 if and only ifcrit(Wa) =/= 0, 
(ii) crit(<I>.>-)- SA= <l>A: 1 (p(crit(Wa))), and 

(iii) codim(crit(<I>.>-)- SA)::; codimcrit(Wa)· 

Proof. Just as in Section 4.1, the one-form Ta on Y pulls back 
to d log(W a) under the isomorphism tp, and the assertions follow from 
Proposition 3.14. Q.E.D. 

Example 4.4 (Example 2.6, continued). We saw in Example 3.16 
that the variety y is given by Zo - Zl + Z2 = 0 in IP2 ' and y = y n ( C*)2 . 
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We can take cp: JID1 ~ Y to be given by the matrix 

B~ [i :] 
Then associated arrangement B consists of three points [1 : 0], [1 : 1], 
[0 : 1] in JID1 . The complement of B has Euler characteristic -1, so a 
generic B-master function \If abc has a single nondegenerate critical point. 
A computation shows that this holds if a, b, and c are nonzero. We reach 
the same conclusion as before, that crit(<I>abc) has codimension one. 

4.4. Multinets and codimension-one critical sets 

Next we use the main result of [10] to give a complete description 
of crit(<I>) for any w = dlog(<I>) E R 1(A). As we observed earlier, if 
w E R 1(A), then w has a nontrivial decomposable 1-cocycle '¢. The 
statement that w 1\ '¢ = 0 means, for each x E U, {w(x), 'lj;(x)} is linearly 
dependent. Then there are functions a and bon U such that a(x)w(x) + 
b(x)'lj;(x) = 0 for all x E U. This implies V(w) contains V(b)- V(a), 
which is a hypersurface unless it is empty. It was this observation that 
led to the current research. 

According to [14], the maximal isotropic subspaces D of A 1 of di­
mension at least two are the components of R 1(A), and they intersect 
trivially. By [10, Theorem 3.11], such a component has an integral basis 
A = ( w6 , ... , we0 ), with the property that the corresponding polynomial 
master functions <l>..,0 , ••• , <l>..,0 are all collinear in the space of degree d 
polynomials. Then Y = Y A is a line in pq. The homogenized basis 
{ w..,0 , ••• , w..,0 } corresponds to the characteristic vectors vi of the blocks 
in a multinet structure on a subarrangement of A, as defined below. 

For X~ JIDf, write Ax= {HE A I X~ H}. A rank-two flat of A 
is a subspace X of the form H n K for some H, K E A, H-=/=- K. If P 
is a partition of A, the base locus of P is the set of rank-two flats of A 
obtained by intersecting hyperplanes from different blocks of P. 

Definition 4.5. A (q + 1, d)-multinet on A is a pair (P, m) where 
Pis a partition {Ao, ... ,Aq} of A into q+ 1 blocks, with base locus X, 
and m: A -+ Z>o is a multiplicity function, satisfying 

(i) L.::HEA; m(H) = d for every i. 
(ii) For each X E X, L.::HEA;nAx m(H) = nx for some integer 

nx, independent of i. 
(iii) For each i, U A - U X is connected. 

The third condition says that P cannot be refined to a ( q', d)­
multinet with the same multiplicity function, with q' > q + 1. Given a 
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multinet on A, let vi= LH;EA; m(Hi)ei, for 0::::; i::::; q, and ~i =vi- v0 

for 1 ::::; i::::; q. We call vo, ... , Vq the characteristic vectors of (P, m). We 
have the following results from [10]. 

Theorem 4.6 ([10, Corollary 3.12]). SupposeD is a maximal iso­
tropic subspace of A1 of dimension q 2:: 2. Then there is a subarrange­
ment A' of A and a (q+ 1, d)-multinet on A' whose characteristic vectors 
v0 , . .. , Vq yield an integral basis w6, .. . , weq of D. 

Theorem 4.7 ([10, Theorem 3.11]). Suppose v0 , ... ,vq are the 
characteristic vectors of a (q+ 1, d)-multinet structure on A. Then each 
of the master functions <I>v;, i 2:: 2, is a linear combination of <l>v0 and 
<I>v1 • Moreover every fiber of the mapping [<I>v0 : <I>v1 ]: lP'£ >----> lP'1 is con­
nected. 

Given this result, the analysis of critical sets proceeds exactly as in 
the Example 4.4. First, we need a lemma about isolated critical points. 

Lemma 4.8. Suppose A is an affine arrangement of n hyperplanes 
in e£, and W is a nonempty Zariski-open subset of e£. Then there is a 
nonempty Zariski-open subset L of en such that W n crit(<I>>.) consists 
of lx(U)I points, for each .A E L. 

Proof. By [20, Theorem 1.1], there is a nonempty Zariski-open sub­
set L' of en for which crit(<I>>.) is isolated and consists of lx(U)I points, 
for .A E L'. Let 

~={(.A, v) E en XU: W;>.(v) = 0}, 

an n-dimensional smooth complex variety by [20, Prop. 4.1]. Let 'lri 

for i = 1, 2 denote its projections onto en and U, respectively. Then 
n21 (U n W) and n1 1 (L') are each nonempty Zariski-open subsets of~' 
as is their intersection Z. Then n1 ( Z) is a finite union of locally-closed 
subsets of en~see [13, Exercise 3.19]. Since Z is dense in ~' n1 ( Z) is 
dense in en. Hence n 1 (Z) contains a Zariski-open subset L, which has 
the required property. Q.E.D. 

Theorem 4.9. Suppose w = dlog(<I>) E R 1 (A), and D is the max­
imal isotropic subspace of A 1 containing w. Let A be the integral basis 
of D arising from the associated multinet. Then 

(i) For every wED, Sing( <I> A) s;; crit(<I>), and, 
(ii) For generic wED, crit(<I>)-Sing(<I>A) is a union ofdim(D)-1 

connected smooth hypersurfaces of the same degree. 

Proof. Write q = dim( D) and let v0 , . .. , Vq be the characteris­
tic vectors of the (q + 1, d)-multinet corresponding to D. Write w = 
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L.i=o aiWvi. By the preceding theorem, for each 2 :::; k :::; q, there is a 
linear relation <Pvk = bk<Pv0 + ck<Pv1 • Then Y is a line in lP'q. The first 
assertion follows from Corollary 3.9. 

We can choose the isomorphism r.p: lP'1 ~ Y C lP'q to be given by 
the matrix 

bq Cq 

The corresponding arrangement B consists of q + 1 distinct points in 
lP'1 . The Euler characteristic of the complement of B is 1- q. Then for 
generic a the B-master function \[T a has q - 1 isolated, nondegenerate 
critical points in Y n (C*)q. In fact, since Y is dense in Y n (C*)q, we 
apply Lemma 4.8 to see that, for generic a, \[T a has q - 1 critical points 
in Y. Then Corollary 3.7 implies crit(<P) is the union of q- 1 fibers of 
<]?A· 

The projection lP'q >--> lP'1 along z0 = z1 = 0 restricts to an isomor­
phism on Y. Then the last statement of Theorem 4.7 implies the fibers 
of <PA are connected. These fibers are given by [<Pv0 : <PvJ = [ao : a1]. 
Since the <Pvi have degree d, crit(<PA) is a union of q- 1 connected hy­
persurfaces of degree d. The generic fiber of <P A is smooth by Bertini's 
Theorem [13, Corollary III.10.9]. Q.E.D. 

Corollary 4.10. For generic w = dlog(<P) E R 1 (A), the number of 
connected components of crit( <P .>.) is equal to the dimension of H 1 (A, w). 

Example 3.17 shows that crit( <P) need not be smooth or irreducible 
for all w = dlog(<P) E R 1(A). 

Example 4.11. By [22, 31], the maximum number of blocks in a 
multinet is equal to four. The only known example with four blocks is the 
multinet on the Hessian arrangement corresponding to the Hesse pencil, 
Example 2.8. The factors of the polynomial master functions Po = 
xyz, P1, P2, P3 define the blocks of a multinet on A with all multiplicities 
equal to one. These master functions satisfy two linear syzygies: 

P2 = 3(1 - ()Po + P1 

P3 = 3(1- ( 2)Po + P1. 

Then the variety Y A corresponding to the basis 

A= {wwo,wow,Wool} 
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w-x_._ ______ ,_. z-w 

x-y y-z 

W+X 

y+z x+y 

Fig. 2. A rank-four matroid with a linear syzygy of master functions 

is the line given by z2 = 3(1 - ()z0 + z1 , z3 = 3(1 - ( 2)z0 + z1 in lP'3 , 

which meets the coordinate hyperplanes in the four points corresponding 
to the singular fibers. The corresponding arrangement B consists of four 
points in general position in lP'1 , given by the rows of the matrix 

The complement of B has Euler characteristic -2, hence a generic 
B-master function has two isolated critical points. Then, for generic 
a= (a1, a2, a3), the critical locus of the A-master function I]>= l]>a 1 a 2 a 3 

has two components and codimension one, as found by direct calculation 
in Example 2.8. This example shows that Theorem 4.8(ii) and Corollary 
4.9 may not hold under the weaker hypothesis that ai-=/=- 0 for all i. 

Here is a rank-four example, that has appeared in different form in 
the lecture of A. Libgober in this volume. 

Example 4.12. Let A be the arrangement with defining polynomial 

Q = (x + y)(x- y)(y + z)(y- z)(z + w)(z- w)(w + x)(w- x), 

with the hyperplanes numbered according to the order of factors in Q. 
Then A is a 2-generic subarrangement of the Coxeter arrangement of 
type D4 . Up to lattice-isotopy, the dual projective point configuration 
consists of the eight vertices of a cube--see Figure 2. Let D be the 
subspace of A 1 with basis 

A= {(wo +w1)- (w6 +w7 ), (w2 +w3)- (w6 +w7 ), (w4 +w5)- (w6 +w7 )}. 
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Then D is a rational singular subspace of rank two; if w E D, then 
H 1 (A,w) = 0 and H 2 (A,w) ~ DjCw has dimension 2. YA is the 
linear hyperplane in IP'3 defined by z0 + z 1 + z2 + z3 = 0, reflecting the 
linear syzygy of polynomial master functions 

(x + y)(x- y) + (y + z)(y- z) + (z + w)(z- w) + (w + x)(w- x) = 0. 

From Proposition 4.2 we see that 

has nonempty critical set of codimension two in IP'3 , for generic ( a 1 , a 2 , a3 ). 

§5. The rank condition 

We are left with the problem of finding rational singular subspaces 
of A 1 . The theory of multinets gives a method to find such subspaces of 
rank one. In this section we give a combinatorial condition for a set A 
of linearly independent integral one-forms to span a singular subspace 
of A 1 of arbitrary rank, using tropical implicitization and nested sets. 

5.1. Tropicalization 

The tropicalization of a projective variety V in IP'q is a polyhedral fan 
trop(V) in tropical projective space 'll'IP'q = JR.q+1 /lR.(1, ... , 1), associated 
to a homogeneous defining ideal I of V. If V is a hypersurface with 
defining equation f = 0, then trop(V) is the image in 'll'IP'q of the union 
of the cones of codimension at least one in the normal fan of the Newton 
polytope of f. In general, trop(V) is the image of the union of the cones 
of codimension at least one in the Gri::ibner fan of I. The set trop(V) 
arises geometrically from the lowest-degree terms in Puiseux expansions 
of curves lying in V. See [7] and the references therein for background 
on tropical varieties. See [21 J for matroid terminology. 

We will need several results from tropical geometry. The first is a 
theorem of Bieri and Groves [3]. 

Theorem 5.1. The maximal cones in trop(V) have dimension equal 
to dim(V). 

If V is an £-dimensionallinear subvariety of IP'n, given as the column 
space of a matrix R, then the tropicalization trop(V) depends only on 
the dependence matroid <5 on the rows of R. In our setting the rows of 
R give the defining forms of a hyperplane arrangement .A. The matroid 
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polytope ~(QJ) of(!) is the convex hull of the set 

c~=ei I B is a basis of (!)} 0 

iEB 
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The tropicalization trop(V), called the Bergman fanof (!),is the image in 
']['JP'n of the union of the cones of codimension at least one in the normal 
fan of ~(QJ). We denote it by B(QJ). 

In [11] the Bergman fan is described in terms of nested set cones. Let 
Q be the set of proper connected (i.e., irreducible) flats of QJ. These are 
the flats corresponding to the dense edges of the projective arrangement 
A. A collection S = {X 1 , ... , Xp} of subsets of Q is a nested set if, for 
every set 7 of pairwise incomparable elements of S, the join V 7 is not 
an element of Q. The nested sets form a simplicial complex~= ~(QJ), 
the nested set complex, which is pure of dimension r = £ - 1. It is the 
coarsest of a family of nested set complexes, obtained by replacing Q 
with larger "building sets." All of these complexes are subdivided by 
the order complex of the poset of nonempty flats of (!). 

If S ~A, set es = l:H;ES ei. The nested set fan N(QJ) is the image 
in ']['JP'n of the union of the cones generated by 

{es IS E S} 

for S E ~(QJ). From [11] we have the following result. 

Theorem 5.2. The nested set fan N(QJ) subdivides the Bergman 
fan B(QJ). 

5.2. Singular subspaces 

Let A be an arrangement in lP'£ with homogeneous defining linear 
forms a0 , ... , an. Let(!) be the underlying matroid of A, the dependence 
matroid on { a0 , •.. , an}. Suppose D is a rational subspace of A 1 (A), 
with integral basis A = {well ... , weo}. We identify A with the q x ( n+ 1) 
matrix of integers [ ~ij], and recall that 2:7=o ~ij = 0 for 1 ::::; i ::::; q. Let 
Y A be the Zariski closure of the image of the associated rational map 
<PA = [1: <Pet:···: <Peol: lP'£ >----+ lP'q. 

The main observation is that <1? A can be factored as a linear map 
followed by a monomial map. Assume A is essential, and let 

Let 11 = ItA: lP'n >----+ lP'q be given by 
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where we use the usual vector notation for monomials: t(ia, ... ,in) 

tb0 • • • t~n. Then the following diagram commutes. 

In this situation the diagram tropicalizes faithfully, in the following 
sense. 

Theorem 5.3 ([7, Theoreni 3.1]). The tropicalization trop(Y A) is 
equal to the image of the Bergman fan B((!)) under the linear map 

']['JP'n --t ']['JP'q 

with matrix A. 

We obtain the following characterization. Write A = [ Ao I 
with Ai E zq for each j. For S = {Hj1 , ••• ,Hik} ~A, 

2::;=1 Ajr· 

I An] 
let As = 

Theorem 5.4. The subspace D is singular if and only if the rank 
of the matrix 

is less than q, for each maximal nested setS E N((!J). In this case the 
rank of D is the maximal rank of As for S E N((!J). 

Proof. The subspace D is singular if and only if dim Y A < q. By 
Theorem 5.1, this occurs if and only if dim trop(Y A) < q. The cones 
of trop(Y A) are images of the cones of B((!)) under A, by Theorem 5.3. 
The linear hulls of the cones in B ( (!)) are the images in ']['JP'n oft he linear 
spans of the sets {es I S E S}, for S E N((!J), by Theorem 5.2. Since 
A(es) = As, the result follows. The last statement holds because the 
rank of D is equal to dim Y A· Q.E.D. 

Example 5.5. Consider the arrangement of rank four with defining 
polynomial 

Q = xyz(x + y + z)w(x + y + w), 

with hyperplanes ordered according to the given factorization of Q. The 
dual point configuration consists of the six vertices of a triangular prism 
in IP'3 . 

For generic (a, b, c), the master function <[> = xay-azb(x + y + 
z)-bwc(x+y+w)-c has critical set of codimension two, and H 2 (A, w) ~ 
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C for w = dlog(<I>). Based on our other examples, one might suspect 
that the subspace D with basis A = {wo- w1, w2- w3, W4- w5} is 
singular. Among the nested sets of A is the setS= {0, 02, 024}, and 

As~ [~ ~ :] 

does not have rank two. Then by Theorem 5.4, D is not singular. In 
fact, '¢ = a· 8(wow1w5 ) + b · 8(w2w3w5 ) is the unique 2-cocycle for w. 
'¢ is trivial if a or b is zero, and our argument shows that '¢ is not 
decomposable if a and b are both nonzero. 

In the forthcoming paper [2], Theorem 5.4 is used to derive combi­
natorial conditions for p-generic arrangements to support singular sub­
spaces of rank p. Using that approach one can show by combinatorial 
means that there are no singular subspaces of A 1 of rank two in Exam­
ple 5.5. 

Theorem 5.4 also has the following corollary. 

Corollary 5.6. If l!'i1 and l!'i2 are loop-free matroids on the ground 
set {1, ... , n} and B(l!'i1) = B(l!'i2), then l!'i1 = l!'i2. 

Proof. Let l!'i be a loop-free matroid on {1, ... , n }, with Orlik­
Solomon algebra A = A ( l!'i). Let e1, ... , en E A 1 denote the canonical 
generators. Then S = {i1, ... ,ik} ~ {1, ... ,n} is dependent in l!'i if 
and only if ei1 1\ · · · 1\ eik = 0 in A k. (This statement holds even if l!'i 
has multiple points.) Equivalently, S is dependent if and only if the 
coordinate subspace D ~ A 1 spanned· by { ei1 , ... , eik} is singular. By 
Theorem 5.3, Dis singular if and only if the image of the Bergman fan 
B(l!'i) ~ 'flP'n under the projection 'flP'n -+ 'flP'8 ~ 'flP'k-1 has dimension 
less thank- 1. Thus B(l!'i) determines l!'i. Q.E.D. 
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