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Hyperplane arrangements with large average 
diameter: a computational approach 

Abstract. 

Antoine Deza, Hiroyuki Miyata, 
Sonoko Moriyama and Feng Xie 

We consider. the average diameter of a bounded cell of a simple 
arrangement defined by n hyperplanes in dimension d. In particu­
lar, we investigate the conjecture stating that the average diameter is 
no more than the dimension d. Previous results in dimensions 2 and 
3 suggested that specific extensions of the cyclic arrangement might 
achieve the largest average diameter. We show that the suggested ar­
rangements do not always achieve the largest diameter and disprove 
a related conjecture dealing with the minimum number of facets be­
longing to exactly one bounded cell. In addition, we computationally 
determine the largest possible average diameter in dimensions 3 and 4 
for arrangements defined by no more than 8 hyperplanes via the as­
sociated uniform oriented matroids. These new entries substantiate 
the hypothesis that the largest average diameter is achieved by an ar­
rangement minimizing the number of facets belonging to exactly one 
bounded cell. The computational framework to generate specific ar­
rangements, and to compute the average diameter and the number of 
facets belonging to exactly one bounded cell is presented. 

§1. Introduction 

Let Ad,n be a simple arrangement formed by n hyperplanes in di­
mension d. We recall that an arrangement is called simple if n 2: d + 1 
and any d hyperplanes intersect at a unique distinct point. The num­
ber of bounded cells (closures of the bounded connected components of 
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the complement) of Ad,n is I= (n;t1). Let b'(Ad,n) denote the average 
diameter of a bounded cell Pi of Ad,ni that is, 

b'(A ) = 2:!:i b'(Pi) 
d,n I 

where b'(Pi) denotes the diameter of Pi, i.e., the smallest number such 
that any two vertices of Pi can be connected by a path with at most 
b'(Pi) edges. Let .6.A(d, n) denote the largest possible average diameter 
of a bounded cell of a simple arrangement defined by n inequalities 
in dimension d. We consider the following conjecture stating that the 
average diameter is no more than the dimension d. 

Conjecture 1. [7] The average diameter of a bounded cell of a sim­
ple arrangement defined by n inequalities in dimension d is not greater 
than d, i.e., .6.A(d, n) :::; d. 

1.1. Conjecture 1 as a discrete analogue of a result of 
Dedieu, Malajovich, and Shub 

Conjecture 1 can be regarded as a discrete analogue of a result of 
Dedieu, Malajovich, and Shub [6] on the average total curvature of the 
central path associated to a bounded cell of a simple arrangement. We 
first recall the definitions of the central path and of the total curva­
ture. For a polytope, i.e. bounded polyhedron, P = { x : Ax ::::: b} 
with A E Rnxd, the central path corresponding to min{cTx: x E P} 
is a set of minimizers of min{cTx + !-Lf(x) : x E P} for f-L E (O,oo) 
where f(x) = - 2:~=1 ln(Aix - bi)-the standard logarithmic barrier 
function [19]. Intuitively, the total curvature [21] is a measure of how 
far off a certain curve is from being a straight line. Let 'lj; : [a, ,8] --+ lJ?d 
be a C2 ( (a - c, ,8 +c)) map for some c > 0 with a non-zero derivative in 

[a,,B]. Denote its arc length by l(t) = J~ II~(T)IIdT, its parametrization 
by the arc length by 'l/Jarc = 'lj; o l-1 : [0, l(,B)] --+ lJ?d, and its curva­
ture at the point t by K,(t) = '¢arc(t). The total curvature is defined as 

J~(f3) 11/'i,(t)lldt. The requirement~-=/= 0 insures that any given segment 
of the curve is traversed only once and allows to define a curvature at 
any point on the curve. Let >.c(Ad,n) denote the average associated total 
curvature of a bounded cell Pi of a simple arrangement Ad,ni that is, 

>.c(A ) = ~ >.c(Pi) 
d,n ~ I 

i=l 

where >. c ( P) denotes the total curvature of the central path correspond­
ing to the linear optimization problem min{cTx : x E P}. Dedieu, 
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Malajovich and Shub [6] demonstrated that A.c(Al,n) :::; 2nd for any 
fixed c. Keeping the linear optimization approach but replacing central 
path following interior point methods by simplex methods, Haimovich's 
probabilistic analysis of the shadow-vertex simplex algorithm, see [3, 
Section 0. 7], showed that the expected number of pivots is bounded 
by d. Note that while Dedieu, Malajovich and Shub consider only the 
bounded cells (the central path may not be defined over some unbounded 
ones), Haimovich considers the average over bounded and unbounded 
cells. The result of Haimovich and Conjecture 1 are similar in nature 
but differ in some aspects as, while the diameter is a lower bound for 
the number of pivots in the worst case, the number of pivots could be 
smaller than the diameter for some cells. 

Considering the largest A.c(P) over all possible c, we obtain the quan­
tity A.(P), referred to as the curvature of a polytope. Following the ap­
proach regarding the curvature A.(P) as a continuous analogue of the 
diameter c5(P), analogues of the results of Holt and Klee [14], and Klee 
and Walkup [15] were given in [7, 8]. Namely, a family of polytopes 
which attain the conjectured order of the largest curvature was given, 
and it was proved that if the order of the curvature is less than the di­
mension d for all polytopes defined by 2d inequalities and for all d, then 
the order of the curvature is less than the number of inequalities for all 
polytopes. 

As pointed out by an anonymous referee, it would be interesting to 
consider the average diameter over all cells, bounded and unbounded. 
The following property, see [12], illustrates the mathematical appeal of 
this approach. For an oriented matroid of rank d + 1, fk :::; (~)fd where 
fk denotes the number of k-faces. Setting k = d- 1 yields fd-1 :::; d fd; 
that is, since any facet belongs to exactly 2 cells, the average number of 
facets of a cell 21t 1 is no more than 2d. Note that the inequality holds 
without the simplicity assumption. 

1.2. Conjecture 1 and the conjecture of Hirsch 

The conjecture of Hirsch formulated in 1957 and reported in [5] 
states that the diameter of a polyhedron defined by n inequalities in 
dimension d is not greater than n - d. The conjecture holds for d :::; 3 
and for n- d :::; 6, but it had been speculated to be false for large enough 
n and d, and was recently disproved by Santos [20]. It was noticed in [7] 
that Conjecture 1 is nearly implied by the conjecture of Hirsch using the 
following straightforward argument. If we assume that the diameter of a 
bounded cell Pi defined by ni hyperplanes of Ad,n is bounded by ni - d, 
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then: 

"\'i=l( ) "\'i=l 2 (n-2) ~""-(A ) 8(A ) < L...li-1 ni - d = L..<i-1 ni - d = n d-1 'f' d,n - d 
d,n - I I I 

where <f;(Ad,n) denotes the number of external facets of Ad,n; that is, the 
number of facets belonging to exactly one bounded cell. This inequality 
yields ~A(d, n) ~ d + n2! 1 as <f;(Ad,n) 2: 0, and suggests that arrange­
ments minimizing <f;(Ad,n) might be good candidates for achieving a 
large 8(Ad,n)· Let <PA(d,n) denote the minimum number of external 
facets for any simple arrangement defined by n hyperplanes in dimen­
sion d. It was hypothesized in [7] that: <PA(d,n) 2: d(~=D· While the 
conjecture of Hirsch turned out to be false, we speculate that the weaker 
Conjecture 1 could still hold. 

We recall previous results concerning Conjecture 1 in Section 2. In 
Section 3 we consider specific single element extensions of the cyclic 
arrangements. The computational framework to generate such arrange­
ments, as well as to compute the average diameter and the number of 
external facets, is presented in Section 4. Finally, in Section 5 we show 
that, while providing a promising lower bound, the specific single ele­
ment extensions of the cyclic arrangements do not always achieve the 
largest diameter and disprove the hypothesized lower bo].lnd for the num­
ber of external facets. We also substantiate Conjecture 1 by determining 
new entries for the largest possible average diameter in dimensions 3 and 
4 for arrangements defined by no more than 8 hyperplanes. We provide 
computational evidence that maximizing the average diameter and min­
imizing the number external facets might be achieved simultaneously. 

We refer to the books of Griinbaum [13] and Ziegler [25] for poly­
topes and arrangements, to the books of Renegar [18] and Roos et 
al. [19] for linear programming and the central path, and to the books 
of Bakowski [1] and Bjoner et al. [4] for oriented matroids. 

§2. Previous results 

Let A *d n denote a simple arrangement combinatorially equivalent to 
the cyclic hyperplane arrangement which is dual to the cyclic polytope. 
Proposition 2 recalls that, since the bounded cells of A *d are mainly ,n 
combinatorial cubes, the dimension d is an asymptotic lower bound for 
~A ( d, n) for fixed d. Additional results for small d and n - d are re­
called in Proposition 3. See Figure 1 and Figure 2 for an illustration of 
arrangements maximizing the average diameter for (d, n) = (2, 7) and 
(3, 6). 
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Fig. 1. An arrangement formed by 7 lines maximizing the 
average diameter 

Proposition 2. [9] For n ~ 2d, we have 
A (d ) > (d-IW;;-d)+(n;;- 1 )+(n-d)(n-d-l) 
UA ,n _ (ndl) 

Proposition 3. [9] We have 

(a) 
(b) 
(c) 
(d) 

One can easily check that the arrangement resulting from the ad­
dition of one hyperplane to A2 n-l such that all the vertices are on 
one side of the added hyperplan~, simultaneously maximizes the aver­
age diameter and minimizes the number of external facets. Noticing 
that the arrangement given in Figure 2 maximizing the average diame­
ter for (d, n) = (3, 6) is obtained by adding a hyperplane to A3 5 such 
that all the vertices of A *3 5 are on one side of the added hyperpl~ne, we 
investigate extensions of A*d n-l as potential candidates to achieve the 
largest average diameter ~A ( d, n) and minimize the number of external 
facets <I> A( d, n ). 
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Fig. 2. An arrangement formed by 6 planes maximizing the 
average diameter 

§3. Covering extensions of cyclic arrangements 

3.1. Covering extensions of cyclic arrangements 

The alternating oriented matroid M;'l+ 1 ,n of rank d+ 1 and with n el­
ements can be realized as a cyclic arrangement A;'l,n_ 1 . Let (M;'l+ 1,n, k) 
be the corresponding affine alternating oriented matroid where k is 
the infinity element. The combinatorics of the addition of a pseudo­
hyperplane to the cyclic hyperplane arrangement, and its relationship 
with higher Bruhat orders, is studied in detail in [24]. Note that since 
the combinatorial type of an arrangement defined by d + 2 hyperplanes 
is unique, all arrangements defined by d + 3 hyperplanes are extensions 
of A'd,d+2 . In order to avoid the NP-hard realizability problem [23], 
we focus on single element extensions of (M;'l+ 1,n, k) for which all the 
cocircuits are on one side of the added pseudo-hyperplane. These affine 
oriented matroids are, by definition, realizable. Let us call covering 
extensions of A;'l n-1 arrangements whose underlying affine oriented ma­
troid is a single ~lement extension of (M;'l+ 1,n, k) for which all the cocir­
cuits are on one side of the added pseudo-hyperplane. In other words, 
covering extensions of cyclic arrangements are obtained by adding one 
hyperplane to A*d,n-1 such that all the vertices are on one side of the 
added hyperplane. For example, the cyclic arrangement A *d n and the 
arrangements given in Figures 1 and 2 are covering extensions' of a cyclic 
arrangement. 
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3.2. Generating covering extensions of cyclic arrangements 

One can generate covering extensions of cyclic arrangements via 
single element extensions of the alternating oriented matroid Md+l,n' 
see [1, 4], and selecting one element as the infinity element. 

We recall that the alternating oriented matroid Md+l,n can be rep­
resented as an arrangement of n hemispheres on the d-sphere. We 
generate the covering extensions by adding one hemisphere resulting 
from a proper perturbation of the infinity hemisphere. Let C* be the 
set of cocircuits of Md+l,n. Each cocircuit X E C* corresponds to a 
vertex on the hemisphere arrangement representing Md+ 1,n. A single 
element extension of Md+ 1,n is determined by the cocircuit signature 
a : C* -+ { +, -, 0}, see [4]. We obtain the cocircuit signature ac corre­
sponding to the covering extension via a series of sphere rotations. Let 
Hk with 1 ~ k ~ n be the infinity hemisphere to be perturbed, and 
Hn+ 1 denote the resulting new hemisphere. Regardless of the directions 
of the rotations, we can keep it small enough so that the vertices which 
are on the positive, respectively negative, side of Hk are also on the 
positive, respectively negative, side of Hn+ 1 , i.e., we have ac(X) = Xk if 
Xk i= 0, where Xk is the kth sign of X. The signature of the remaining 
cocircuits {X E C* : xk = 0} is determined by the rotations in the fol­
lowing way. Let us choose a pair of antipodal vertices Y and - Y both 
on the hemisphere Hk, i.e. which have, besides the kth sign, (d-1) zero­
signs. Let the ordered index set of zeros in Y, except the one at index 
k, be (i1 , i2 , ... , id_ 1). We use a sign vector 0 E { +,-}d-1 to represent 
the rotations, where 0 1 records the direction of rotation of the d-sphere 
around the axis defined by the intersection of the hemispheres H k and 
Hii for j = 1, ... , d- 1. The signature of any cocircuit X, except for 
the antipodal pair Y and - Y, is therefore given by: 

if xk i= o; 
if xk = 0, j : smallest index such that xij i= 0. 

Finally, for computational purposes, we set the signature of the antipo­
dal pair Y and - Y by extending the length of the orientation vector 0 
by 1 and use Od to record the chosen orientation of the antipodal pair. 
Thus, the signature of any cocircuit X is given by: 

if X= Y; 
if X= -Y; 
if xk i= o; 
if xk = 0, j : smallest index such that xij i= 0. 

See Figure 3 for an illustration of a covering extension of M3 4 • The 
covering hemisphere, colored in red, is obtained as a perturb~tion of 
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hemisphere H 4 corresponding to the choice Y =0++0 and - Y =0--0 
as antipodal pair, rotating the sphere around the intersection of hemi­
spheres H 4 and H 1 towards the reader, and then perturbing the antipo­
dal pairs clockwise, that is, od = {-}. 

i1~--~------~~~--~~~0++0-
-++00 

2 
---+ 

Fig. 3. A covering extension of M3,4 , the alternating ori­
ented matroid of rank 3 with 4 elements 

We haven choices for the infinity hemisphere, (~=D possible pairs of 
antipodal vertices, ( d -1)! different ways of ordering the ( d -1) rotations, 
2 directions per rotation, and finally 2 choices for the signature of the 
antipodal pair. Therefore, the total number of potential perturbations is 
n(~=i)2d- 1 (d-1)! 2 = nC=i)2d(d-1)!. Note that some affine oriented 
matroids obtained by the operation described above might belong to 
the same dissection type [10], i.e., the equivalence class of a realizable 
oriented matroid defined by combinations of relabeling and reorientation 
that map infinity element to infinity element. 

§4. Computational framework 

The developed C++ package for computing the average diameter 
and the number of external facets of an affine oriented matroid can be 
found at [22]. All computations are performed in a combinatorial way 
which allows us to avoid numerical errors. The code was run on a 32-core 
server with each core running at a clock rate of 2.3 GHz. Realizability is 
checked only for the few affine oriented matroids which either maximize 
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the average diameter or minimize the number of external facets. The 
realizability checking was done on a 64-core server with each core running 
at a clock rate 2.2 GHz. 

4.1. Uniform oriented matroids enumeration 

The list of all (uniform) oriented matroids Md+l,n+l for d + 1 :::; 5 
and n + 1 :::; 8 as well as for (d + 1, n + 1) = (3, 9) can be found on the 
online database [11]. The enumeration of all uniform oriented matroids 
for ( d + 1, n + 1) = ( 4, 9) and ( 5, 9) was recently performed by Finschi, 
Fukuda, and Moriyama and will be uploaded on the online database [11] 
soon. 

4.2. Computing the average diameter of a simple arrange­
ment 

An affine uniform oriented can be represented as a simple affine 
pseudo-sphere arrangement. One can easily check if a cell is bounded by 
verifying that any vertex on the infinity pseudo-sphere is not conformal 
to the sign vector of the cell. Recall that the sign vector of a cell does 
not contain any 0. Given the sign vector of a bounded cell, we compute 
its diameter by constructing its skeleton graph. Two vertices X and Y 
are adjacent if X can be pivoted toY, or vice versa, i.e. if there exists a 
pair of indices (i,j) with 1:::; i,j:::; n, i # j such that: (i) Xk = Yk for all 
k # i,j, (ii) Xi= 0, Yi # 0, and (iii) Xj # 0, Yi = 0. The diameter of 
the cell is obtained by computing the diameter of the resulting skeleton 
graph. 

4.3. Computing the number of external facets of a simple 
arrangement 

One can check if a facet is bounded by verifying that the sign vector 
of any vertex at infinity is not conformal to the sign vector of the facet. 
Recall that the sign vector of a facet contains exactly one 0. A bounded 
facet is external facet if its sign vector is conformal to the sign vector of 
some unbounded cell. 

4.4. Realizability of uniform oriented matroids 

Deciding the realizability of an oriented matroid is known to be 
NP-hard [16] in general but could be tractable for small instances. In 
particular, following the approach used in [17] for M4,8, M3,9, and 
M 6 ,9, a software was developed to check the realizability for M4,9 and 

Ms,9· 
Let ( {1, ... , n + 1 }, x) be a uniform oriented matroid where x is the 

associated chirotope, and (v1, ... , Vn+d E ~(d+l)x(n+l) the correspond­
ing vector configuration if realizable. The realizability of ( {1, ... , n + 
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1 }, x) is equivalent to the feasibility of the following polynomial system: 

for 1 ::; ii < · · · < id+I ::; n + 1. 

This system contains many redundancies which can be exploited to solve 
it efficiently for small instances. First, since the feasibility of this sys­
tem is invariant under linear transformations A, with det(A) > 0, of 
the configuration (VI, ... , Vn+d and positive scalar multiplications of 
VI, ... Vn+ I, we can assume the submatrix ( Vi 1 , ••• , Vid+l) to be an iden­
tity matrix for some (d + 1)-tuple (ii, ... , id+I), and the 1st coordinate 
of VI, ... , Vn+l to be 1 or -1 according to the sign constraints. In addi­
tion, square-free variables can be regarded as redundant in the following 
case: 

{
y < R,(xi, ... , Xn+I) fori.:. 1, ... , l 

y > L1(xi, ... ,Xn+d for J -1, ... ,m 

where Ri, Lj are rational functions fori= 1, ... , l, j = 1, ... , m. In this 
case, we can eliminate the variable y: 

The solvability sequence method applies this rule to special polynomial 
systems consisting of determinants under the bipartiteness condition [2]. 
This elimination rule can be combined with the following branching rule. 

Proposition 4. Let AI(xl, ... ,xn), ... ,Ap(xl,···,xn),Bl(xl,···, 
Xn), ... ,Bp(x1, ... , xn) be real polynomials. Then the following system 

is feasible if and only if, for at least one s : { 1, ... , p} ---+ { +, -}, the 
following system is feasible 

We search a square-free variable y, and then apply the branching 
and elimination rules. If we can eliminate all variables by successive ap­
plications of the branching and elimination rules, and obtain consistent 
inequalities of rationals at some branch of the tree, the oriented ma­
troid is realizable. If we have a polynomial system without a square-free 
variable at some branch, we try random assignments to the remaining 
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variables. If the random assignments at some branch are successful, 
the oriented matroid is realizable. Thus, we transform the realizabil­
ity problem into a tree search problem for which an iterative deepening 
depth-first search can be used. 

§5. Computational results 

5.1. Maximal average diameter 

For d :::; 4 and n :::; 8, in order to determine the entries for D.A ( d, n), 
we consider the set Md+l,n+l of uniform oriented matroids. For each 
uniform oriented matroid, we consider the n+ 1 choices of setting one ele­
ment as the infinity element, and compute the average diameter of there­
sulting affine oriented matroid .. Finally, we check the realizability of the 
oriented matroids maximizing the average diameter. Note that all ori­
ented matroids maximizing the average diameter turned out to be realiz­
able which leads to the following question: Can an affine non-realizable 
oriented matroid achieve the maximal average diameter? The entries for 
D.A(d, n), including the four new entries for (d, n) = (3, 7), (3, 8), (4, 7) 
and (4, 8), are listed in Table 1. The list of hyperplane arrangements 
satisfying o(Ad,n) = D.A(d, n) can be found in [22] where arrangements 
are represented by the chirotope of its corresponding affine oriented ma­
troid. The signs of the chirotope are ordered reverse lexicographically 
and the infinity element is always the last one. To avoid redundancy, 
affine oriented matroids with equivalent dissection types were removed. 

(d, n) IIMd+l,n+III D.A(d,n) 
(2,5) 4 1.5 
(2,6) 11 1.7 
(2,7) 135 1.73 ... 
(2,8) 4,382 1.80 ... 
(3,6) 11 2 
(3,7) 2,628 2.25 
(3,8) 9,276,595 2.42 ... 
(4,7) 135 2.2 
(4,8) 9,276,595 2.71. .. 

Table 1. Entries for .6.A ( d, n) for d :::; 4 and n :::; 8 

One can easily check, by removing a hyperplane and checking if 
the associated oriented matroid is alternating, if an arrangement sat­
isfying o(Ad,n) = D.A(d,n) corresponds to a single element extension 
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of A;'; n-1. Similarly, one can easily check if an arrangement satisfying 
8(Ad,:) = D.A(d, n) corresponds to a covering extension. As stated in 
Proposition 5, the computational results disprove the hypothesis that 
D. A ( d, n) is always achieved by an (covering) extension of A;'; n-1 . , 

Proposition 5. While a single element extension of A3 6 achieves 
D.A(3, 7), none of the arrangements achieving D.A(3, 8) and b.A(4, 8) is 
a single element extension of the cyclic arrangement. In addition, the 
single element extension of A3 6 achieving D.A(3, 7) is not a covering , 
extension. 

Remark 6. For line arrangements, D.A(2, n) is always achieved by 
covering extensions of A2 n-1 . The largest average diameter D.A(2, n) 
is achieved only by coveri~g extensions for n :::; 6, by covering and non­
covering extensions as well as non-extensions of A2 6 fQr n = 7, and by 
covering extensions as well as non-extensions of A2'7 for n = 8. , 

While the extensions of A;'; n-1 fail to always reach D.A ( d, n), the 
covering extensions of A;'; n-1 c~uld provide a good lower bound. See 
Table 2 where the value of D.A(d, n) is compared with the maximal av­
erage diameter D.A(d,n) over all covering extensions of A:f,n-1 as well 
as with 8(A:f,n), the average diameter of the cyclic arrangement A:f,n· 
In particular, we obtain a new lower bound for D.A(3, 9). It was showed 
in [9] that D.A(2,n) = D.A(2,n) and D.A(3,6) = D.A(3,6). The compu­
tation shows that D.A ( 4, 7) = D. A ( 4, 7), and all arrangements achieving 
D.A(3, 6) and D.A(4, 7) are covering arrangements. 

(d,n) D.A(d,n) D.A(d, n) 8(A;'; n) 
(3,6) 2 2 1.8 
(3,7) 2.25 2.1 2 
(3,8) 2.42 2.34 ... 2.14 ... 
(3,9) ? 2.39 ... 2.25 
(4,7) 2.2 2.2 2 
(4,8) 2.71 ... 2.45 ... 2.28 ... 

Table 2. Covering extensions of as a lower bound for 
~A(d,n) 

5.2. Minimal number of external facets 

While computing entries for D.A ( d, n), one can also obtain <I> A ( d, n), 
the minimum number of external facets, i.e. facets belonging to exactly 
one bounced cell, over all arrangements formed by n hyperplanes in 
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dimension d. It was showed in [9] that il>A(2,n) = 2(n- 1). The 
computed entries for ii> A ( d, n) are listed in Table 3. In particular, as 
stated in Proposition 7, the entry for (d, n) = (3, 8) is a counterexample 
for the hypothesized lower bound. Similarly to Section 5.1, all affine 
oriented matroids minimizing the number of external facets turned out to 
be realizable. The list of hyperplane arrangements satisfying <P(Ad,n) = 
il>A(d,n) can be found in [22]. 

(d,n) 11Md+l,n+111 il>A(d, n) 
(2,5) 4 8 
(2,6) 11 10 
(2,7) 135 12 
(2,8) 4,382 14 
(3,6) 11 22 
(3,7) 2,628 32 
(3,8) 9,276,595 44 
(4,7) 135 47 
(4,8) 9,276,595 84 

Table 3. Entries for ci> A ( d, n) for d S: 4 and n S: 8 

Proposition 7. The entry for for (d, n) = (3, 8) disproves the hy­
pothesized inequality il>A(d, n) 2: d(~:::-;) as we have il>A(3, 8) = 44 < 
45 = 3(~). 

In addition of providing a promising lower bound for 6.A{ d, n), the 
covering extensions of Ad n-1 might provide a good upper bound for 
ii> A ( d, n). See Table 4 whe~e the value of ii> A ( d, n) is compared with the 
minimum number of external facets <I> A ( d, n) over all covering extensions 
of Ad n-1 as well as with ¢(Ad n), the number of external facets of 
the cyclic arrangement Ad n, and with the hypothesized lower bound 

dC:::-D. In particular, weobtain an upper bound for il>A(3,9). We have 
il>A(3, 6) = il>A(3, 6) and il>A(4, 7) = il>A(4, 7), and all arrangements 
achieving ii> A(3, 6) and ii> A(4, 7) are covering arrangements. 



72 A. Deza, H. Miyata, S. Moriyama and F. Xie 

(d, n) <I>A(d, n) <I>A(d,n) ¢(Ad n) d(n -:l) 
d-1 

(3,6) 22 22 24 18 
(3,7) 32 34 40 30 
(3,8) 44 48 60 45 
(3,9) ? 64 84 63 
(4,7) 47 47 50 40 
(4,8) 84 88 100 80 

Table 4. Covering extensions as an upper bound for <I> A ( d, n) 

Remark 8. While the covering extensions turn out to provide only 
lower, respectively upper, bound for b. A ( d, n), respectively <I> A ( d, n), the 
hypothesized relation between maximizing b.A(d, n) and minimizing 
<I> A ( d, n) is computationally substantiated by the existence for d ~ 4 and 
n ~ 8 of at least one simple arrangement simultaneously maximizing 
b.A ( d, n) and minimizing <I> A ( d, n). 

The known entries for b.A(d, n) are summarized in Table 5. 

2 3 4 5 6 n-d 

2 4 3 17 26 38 2- 21-E-l 
3 2 10 15 21 (n-1)(n-2) 

3 3 2 9 17 > 67 
2 4 7 - 28 

4 8 11 19 
5 5 7 

d 2d 
d+1 

Table 5. Known entries for tlA ( d, n) 
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