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Complexes, duality and Chern classes of logarithmic 
forms along hyperplane arrangements 

Graham Denham and Mathias Schulze 

Abstract. 

We describe dualities and complexes of logarithmic forms and dif­
ferentials for central affine and corresponding projective arrangements. 
We generalize the Borel-Serre formula from vector bundles to sheaves 
on lP'd with locally free resolutions of length one. Combining these 
results we present a generalization of a formula due to Mustata and 
Schenck, relating the Poincare polynomial of an arrangement in lP'3 (or 
a locally tame arrangement in JP'd with zero-dimensional non-free locus) 
to the total Chern polynomial of its sheaf of logarithmic 1-forms. 

CONTENTS 

1. Introduction 
2. Log forms 
3. Dualities 
4. Complexes 
5. Chern classes 

§1. Introduction 

27 
29 
35 
39 
44 

The study of logarithmic differentials and differential forms in the 
context of hyperplane arrangement singularities now has a thirty-year 
history that begins with Saito [Sai80]. For a comprehensive survey, we 
refer to the forthcoming book [CDF+]. This paper collects together 
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some results about complexes of logarithmic forms: some known, others 
folklore, and some new. In particular, we attempt to clarify the rela­
tionship between forms on the complements of central, non-central and 
projective arrangements, respectively. 

In order to be more precise, let QP(d) denote the module of loga­
rithmic p-forms (defined in (2.2)), for a central arrangement d of rank 
£. Following [Dol82, Dol07, Dim92], we consider the submodule ng(d') 
(Definition 2.4) of forms which vanish when contracted along the Euler 
differential. We show that the coherent sheaf on this submodule coin­
cides with the usual sheaf of logarithmic forms on the projectivization of 
d, Definition 2.10. We also consider a quotient of QP(d) which we call 
the module of relative logarithmic forms, denoted n~(d') and defined in 
Definition 2. 7. This was introduced in slightly different terms by Terao 
and Yuzvinsky [TY95], and discussed more generally in [dGMS09]. We 
note that this module is isomorphic to ng(d'), which gives a noncanoni­
cal splitting of the inclusion ng(d') ~ QP(d). We note that the choice 
involved amounts to choosing an affine chart. In this way, we understand 
logarithmic forms for affine, non-central arrangements in terms of their 
cone. 

The modules of logarithmic forms are reflexive, which was observed 
first in [Sai80, (1.7) Cor.] for 0 1 (d'). The exterior product gives a map 
j: /'{ 0 1 (d') -t QP(d), which we see is an isomorphism exactly when 
Ap 0 1 (d') is also reflexive (Proposition 2.2.) We note that, if dis tame, 
(Definition 2.3), then j is an isomorphism for values of p less than the 
codimension of the non-free locus of d (Proposition 2.9). In the case 
where d is free, this is part of Saito's criterion for freeness, from [Sai80, 
(1.8) Thm.]; in the case where dis locally free, it was noted by Mustata 
and Schenck [MS01]. The same is true for the variations above. 

In §3, we examine the duals of the modules of logarithmic forms, 
which are modules (or sheaves) of multilinear logarithmic differentials. 
In the dual setting, the natural construction is a quotient of the module 
of logarithmic forms Dp(d'), denoted by D~(d) and defined in Def­
inition (3.4). Our work with forms allows us to replace the quotient 
with a submodule, n;(d), again by choosing a chart. The modules 
of forms are also self-dual, which gives some useful symmetry. We note 
some equivalent formulations of the homological notions offree and tame 
arrangements. 

Multiplication by a degree-0 logarithmic 1-form W>. gives a cochain 
complex (n•(d),w>.), as well as for the projective constructions. Orlik 
and Terao [OT95b] show that this complex is exact, and (O~(d),w>.) 
has a single non-zero cohomology group, both for suitably "generic" 
choices of>., which we discuss below. Their main application is to show 
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that, under the same hypotheses on .A, the function 

(1.1) <P >. = IT o/;t 
HEo1 

has isolated, nondegenerate critical points. (Here, .91 is a non-central 
arrangement defined by affine-linear forms {a H : H E .91}.) Recent gen­
eralizations of this result in [CDFV] make use of a parameterized version 
of this complex, which we discuss in §4.1. We clarify the relationship 
between the various complexes and, in doing so, improve slightly on a 
main result of [CDFV]. 

As further applications, we give some formulas for the Chern classes 
of the sheaf of logarithmic 1-forms in §5. Mustata and Schenck [MSOl] 
showed that, for locally free arrangements, the total Chern polynomial is 
given by the arrangement's characteristic polynomial. We see in Propo­
sition 5.18 that the coefficients of the two polynomials always agree up 
to degree k, for any arrangement, if its non-free locus has codimension 
> k. For certain projective arrangements with zero-dimensional non-free 
locus (including all arrangements of rank ::::; 4), we compute the total 
Chern polynomial in Theorem 5.13. Our expression is combinatorial if 
the non-free locus consists of generic closed subarrangements; however, 
we exhibit two arrangements with the same matroid and different Chern 
polynomials in Example 5.20. 

§2. Log forms 

2.1. Normal and reflexive sheaves 

Let .91 be a central (simple) arrangement of n hyperplanes in an 
£-dimensional ((>vector space V =A/-. 

We denote by L(.fll) the intersection lattice of .91, and by Lc(.fll) s;;; 
L(.Jll) the subset of codimension-c flats. For X E L(d), let .fllx = 

{ H E .91 I X s;;; H} be the localization of .91 at X; for H E .91 let 
.JliH = {H' n HI H' E .91\ {H}} be the restriction of .91 to H. 

We abbreviate lP'd = lP'V, d := £-1, and denote by lP'd := n(.Jll) the 
corresponding projective arrangement, where 

(2.1) n: V \ {0}-+ lP'V 

is the canonical projection. For H E .91 we denote by aH E V* its 
defining equation. We can assume that for some {H1 , ... , Hi} c .91, 
Xi := aH; are coordinates on V. Then f = I1HEo1 aH is the (reduced) 
defining equation of .91 in the coordinate ring R = Sym(V*) of V. 
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We shall readily identify R-modules with the associated sheaves on 
the affine space V, and denote - v = HomR (-, R). We identify d 
with Spec( R/ f) C V and denote by i: U := V\ Sing d '-+ V the in­
clusion of the complement of the singular locus of d in V. Following 
Barth [Bar77], we say an R-module M is d-normal if M-+ i*i* M is an 
isomorphism. Note that R itself is normal. The following easy facts are 
particularly useful for our purpose. 

Lemma 2.1. 

(1) Any reflexive module has depth 2 2. 
(2) Two d -normal modules are dual if they are dual on U. 
(3) A torsion-freed-normal module that is reflexive on U is re­

flexive. 
(4) Moreover, d -normality is a consequence of reflexivity. 

Proof. 
1.6]. 

2.2. 

The non-obvious statements follow from [Har80, Props. 1.1, 
Q.E.D. 

Relative logarithmic forms 

The modules Ov form a graded R-module Ov closed under exterior 
product such that the natural map R-+ nt, has degree 0. In particular, 
the localization Ov,f has a natural Z-grading. The module of logarithmic 
differential p-forms along dis the graded R-module 

(2.2) OP(d) = {wE ]nt 1 VH Ed: d:: 1\w E ]nt+1 } c nv,t· 

It is easy to check that n•(d) is closed under exterior product. 
As the modules ]nv and ]nv+1 are free, QP(d) is d-normal, and 

(2.3) 

for primes p supported on the non-singular locus U. Both sides are free 
over Rp, so QP(d) is reflexive by Lemma 2.1.(3). 

The exterior product gives a map ]p: ft 0 1 (d) -+ QP (d), which 
is easily seen to be a monomorphism. Under some hypotheses, j is an 
isomorphism, as we will see in Proposition 2.9. However, exterior powers 
of a reflexive module need not be reflexive, and in general one has: 

Proposition 2.2. For any d, we have (1\P 0 1(d)tv ~ QP(d) 
for 0::;, p::;, e. 



Complexes of logarithmic forms along arrangements 31 

Proof. Let EP = EP(Jil) denote the cokernel of ]p· By (2.3), the 
module EP is supported on Sing d, which has codimension ;::: 2. There­
fore Ext'k(EP, R) = 0 fori= 0, 1. It follows that 

(2.4) 

is an isomorphism. We apply - v. again and note f!P(Jil) is reflexive. 
Q.E.D. 

By Lemma 2.1.(1), pdR f!P(Jil) ::::; f_- 2 for all p. The following 
definition first appeared in [OT95a]: 

Definition 2.3. An arrangement dis tame if pdR f!P(Jil) ::::; p, for 
o :::;p::::; e. 

Since 0° ( .91) = R is free, the condition is vacuous except for 1 ::::; 
p ::::; f_ - 3. Accordingly, all arrangements of rank ::::; 3 are tame. 

The graded R-dual of 0 1 (.91) is the graded R-module of logarithmic 
differentials along d 

where Dv = Derc(R, R) is the module of polynomial vector fields on V. 
Note that the standard Euler differential x = 2::;=1 xi8i is an ele­

ment of D(d). Recall from [OT92, Prop. 4.86] that contraction ~8 with 
8 E D(.YI) defines a graded map 

~8 : f!P(Jil) -+ w-1 (.Yt). 

By .91-normality of o•(Jil), it suffices to check this on U, where it is 
clear. 

Definition 2.4. We call Ob(d) := ker ~x C f!P(Jil) be the module 
of relative logarithmic differential p-forms along d. 

Clearly, 0 0(.91) is closed under exterior product, and locally free on 
U. As above, freeness of }Ov and }OF1 implies that Ob(d) is .91-
normal and torsion free. Then Lemma 2.1.(3) and the same argument 
as Proposition 2.2 gives the following. 

Proposition 2.5. 0 0(.91) is closed under exterior product and re­
flexive. Moreover, 0 0(.91) ~ (/\ • Ofi(.YI))vv. 

We note also the following simple fact (cf. [OT92, Exa. 4.122]). 

Proposition 2.6. d 1--t Ob(d) is a local functor. That is, for any 
graded prime ideal p of R, Ob(d)p ~ Ob(dx(p))p, where X(p) denotes 
the set-theoretically smallest subspace in the intersection lattice L(.YI) 
containing the zeroes of p. 
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The term "relative" in Definition 2.4 does not refer to a specific map 
here. It turns out that the so defined differential forms are "relative" to 
many maps simultaneously. This can be seen as follows: As in [CDFV], 
we denote 

(2.5) ( a) '"""' daH Wa = d log a = ~ aH --

REd aH 

for independent variables a= (aH)HEd E ucszt)v. We write 

(2.6) lal = L aH = Lx(wa)· 
HEd 

Now for any u E cszt with lui f. 0, (O•(Ji1),w"") is split exact (see [OT92, 
Prop. 4.86]), since 

Definition 2. 7. We define the module of logarithmic differential 
p-forms relative to a"" to be the graded R-module 

For any>. E cszt with 1>-1 = 0, we can identify the complexes 

(2.7) 

via the map [w] r--t w- w"" A Lx(w). In particular, we can identify 

Then the notion of tameness, Definition 2.3, is unaffected by working 
with relative logarithmic forms: 

Proposition 2.8. d is tame if and only if pdR Ob(d) ::; p for 
1 ::; p ::; I!- 3. 

Proof. If pdR Ob(d) ::; p for all p, then the same is true for f2P(Ji1') 
by (2.8). Conversely, if d is tame, argue by induction on p using (2.8) 
that Ext'k(Ob(d), R) = 0 for all q > p. Q.E.D. 

The following generalizes a result ofMustata-Schenck [MSOl, Thm. 5.3]. 

Proposition 2.9. If d is a tame arrangement whose non-free lo­
cus has codimension > k, then 1\P Ob(d) = Ob(d), and hence also 
1\P 0 1 (d) = f2P(Ji1'), for p < k. 
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Proof. By the argument from the proof of [MSOl, Lem. 5.2], the 
hypotheses imply that Dfi(d) is a (k- I)-syzygy. Then, by [Leb77, 
Satz 3.1], pdR 1\P Dfi(d) = p for p ::; k. Applying Ext'h( -, R) to the 
exact sequence 

shows that Ext'h(El{, R) = 0 for q > p + 1 and hence for q > k > p. 
But by assumption the El{ are supported in codimension > k only, so 
Ext'h(El{, R) = 0 for q::; k as well, so El{ = 0 for all p < k. Q.E.D. 

2.3. Projective logarithmic forms 

Geometrically, D0 (d) can be considered as an affine version of the 
sheaf n• (JP' d) defined following the original definition of K. Saito [Sai80], 
as we will see in Proposition 2.12. Recall that JP'd is the image of d 
under the natural projection (2.1). 

Definition 2.10. Consider JP'd as a principal divisor D = (!) on 
lP'V. Then we call 

is the sheaf of logarithmic differential p-forms along JP'd. 

In other words, n• (JP' d) is the sheaf of rational differential forms w 
on lP'V for which both w itself and dw have at most a simple pole along 
lP'd. Note that in any chart {xi= 1}, n•(JP'd) restricts to n•(d{x;=lJ). 

In order to see the claimed relation with D0(d), first fix a chart with 
index i E {1, ... ,£}. Then flv,J/we; 1\ flv,J is the module of differential 
forms with poles along d \ {Hi} relative to the map Xi on {Xi =/= 0}. Us­
ing the definition of n• (d), one checks that the composition of canonical 
maps 

n•(d)x; Y flv,J-» flv,J/We; 1\ flv,J 

factors through an inclusion 

n:;(d)x; Y flv,t/We; 1\ flv,J• 

and it follows that we can identify 

(2.9) n:;(d) ®RR/(xi -1) = n•(d{x;=l}), and 

n:i (d)x; = n•(d{x;=l}) ®c C[xr1]. 

This immediately implies the following (see [TY95]): 
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Proposition 2.11. This correspondence (2.9) combined with (2.7) 
identifies (D0(d)xi,w>-) and (D•(d{x;=l}),w>-J where Ai is obtained by 
deleting the ith component from >.. 

In order to understand the global relation of D(j(d) and n•(JP'd), 
we follow the approach in the proof of [Har77, Ch. II, Thm. 8.13]. We 
obtain a logarithmic version of the well-known description of logarithmic 
differential forms on projective space as the kernel of contraction with 
the Euler differential, cf. [Dim92, Ch. 6, §1] and [Dol82, §2.1]. For 1-
forms along a generic a', this result can be found in [MS01, p. 702-703]. 

Proposition 2.12. As sheaves on lP'V, 

ng(d) = W(lP'd). 

Proof. Analogous to the logarithmic version in Definition 2.4, de­
fine 

Consider the sequence 

0 nl nl ~x nO 
------7 ~ 'v, o ------7 ~ 'v ------7 ~ 'v ------7 0, 

which corresponds to the sequence 0 -+ M -+ E -+ S in the proof of 
[Har77, Ch. II, Thm. 8.13]. This sequence is exact away from the origin. 
Applying - v, 1\P, and then - v again, yields a sequence 

(2.11) 

which is exact away from the origin. By [Har77, Thm. 8.4], Oif,o = D~v' 
and hence 

(2.12) 

It follows from (2.10), (2.11), and (2.12) that fig= D~v' and then 

Comparison of the subsheaves ng(d) c ng(*d) and DP(JP'd) c 
D~v ( *lP' d) can now be done in charts. So the claim follows from Propo­
sition 2.11. Q.E.D. 
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Definition 2.13. We calllP'd locally tame if f2P(JP'd) has a locally 
free resolution of length p, for 0 ::; p ::; f! - 1. 

All arrangements in lP'3 are locally tame by reflexivity of 0 1 (lP' .!41') and 
[Har80, Prop. 1.3]. Proposition 2.9 applied in charts gives the following: 

Proposition 2.14. IflP'd is a locally tame arrangement whose non­
free locUS has codimension > k, then 1\ p f2 1 (JP' d) = f2P (JP' d) for p < k. 

Recall that d is called locally free if 0 1 (dx) is free for all X E 

L<c(d). 

Definition 2.15. We calllP'd locally free if the sheaf 0 1 (lP'd) is a 
vector bundle. 

From Proposition 2.12, using that d r--+ 0 1 (.!41') is a local functor, 
we deduce the following equivalence. 

Lemma 2.16. lP'd is locally free if and only if d is locally free. 
More precisely, 0 1 (lP' .!41') is free on an open set U e.;; lP'V if and only if, 
whenever X e.;; U for some X E L(lP'd), the closed subarrangement dx 
is free. 

§3. Dualities 

3.1. Duality with relative log differentials 

We define the module of logarithmic differentials relative to au to 
be the graded R-module 

(3.1) Du(d) :={bE D(d) I b(au) = 0}. 

Then clearly 

(3.2) 

Applying - v to the exact sequence 

where ¢(6) = 8<;::) = (wu, b), shows that ¢v = Wu hence 

Lemma 3.1. Du(d)v = n;;.(d). 

The higher R-modules of logarithmic differentials are defined by 

(3.3) Dv(d) ={bE 1\PDv I \:IH E d,g2 , .•. ,gP E R 

: b(aH,g2, ... ,gp) E aHR}. 
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As in (2.3), we have 

(3.4) 

for primes !J supported on U Generalizing (3.1), we introduce higher 
relative logarithmic differentials. 

Definition 3.2. We define the module of logarithmic p-differentials 
relative to au to be the graded R-module 

Both D.(d) and D~(d) are clearly closed under exterior product. 
As in the case of forms, both are d-normal and torsion free, and using 
Lemma 2.1 we obtain 

Proposition 3.3. D~ (d) is closed under exterior product and re­
flexive. 

By [MS01, Prop. 2.2], there is a non-degenerate pairing 

(3.5) 

By d-normality of the three modules involved, it is sufficient to check 
this on U where it is clear. 

Under duality such as in (3.5), subspaces of one factor correspond 
to quotient spaces of the other factor. Therefore we need also a quotient 
representation of D~ (d) independent of u. 

Definition 3.4. We define the module of relative logarithmic p­
differentials along d to be the graded R-module 

As we can check on U, (D.(d),x) is exact and is splits by twa· We 
can thus, as in (2.7) and (2.8), identify 

D;(d) = D~(d), 

Dp(d) =X 1\ D~_ 1 (d) EB D~(d) ~ D~_ 1 (d) EB D~(d). 

Proposition 3.5. The pairing (3.5) induces a non-degenerate pair-
ing 
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Proof. To show (3.6) is well~defined, we need to show that (w,. 1\ 

QP-1 (d)) x D~(d) and ng(d) x (xAD~_ 1 (d)) are mapped to zero by 
(3.5), using the sub and quotient representations the two factors. This 
can be checked on U, and we show only the first statement. By (2.3) 
and (3.4), locally at points in U, QP- 1(d) and Dp(d) are generated by 

_ daH2 daHp d ,. _ 5: 5: 5: D( -A) · 1 w - 1\ · · · 1\ an u - u1 1\ ... , /\up, ui E .<a , respective y. 
O!H2 O!Hp 

Using (2.5), 

( ) det( 8i( a") l8i( aH.)) 8( a", aHw .. , aH ) 
w,. 1\ w, 8 = J = p ' 

a" aH2 • • • aHP a" aH2 • • • aHp 

so the pairing is well-defined. 
Conversely, we need to verify that any w E QP (d) with ( w, D~ (d)) = 

0 must be in w,./\OP- 1(d), and that any 8 E Dp(d) with (ng(d), 8) = 0 
must be in x 1\ Dp- 1 (d). Again we show only the first statement, and 
we can restrict ourselves to local considerations on U: By exactness of 
(n•(d),w,.), it suffices to show that w,. 1\w = 0. From (3.2) and (3.4) 
we derive that 

Dp+1(d) = (Rx E9 D"(d)) 1\ f\P D"(d). 

As ( w,. 1\ w, /\P+1 D"(d)) = 0 and, for 8 E D~(d), 

(w,. 1\ w, X 1\ 8) = Ia I (w, 8) = 0 

by hypothesis, we find that (w,. l\w,Dp+1(d)) = 0. Using (3.4) and 
local coordinates one shows that w,. 1\ w = 0 and hence that w E w,. 1\ 

QP-1 (d) = ng- 1 (d) using (2.8). The claim follows by d-normality of 
the latter module. Q.E.D. 

From Propositions 2.12 and 3.5 we deduce the following dual version 
of Propositions 2.12. As in Definition 2.10, we define the sheaf D.(lP'd) 
on lP'V by (3.3) in charts. 

Proposition 3.6. As sheaves on lP'V, 

3.2. Self-duality of the relative log complex 
Let dx = dx 1 1\ · · · 1\ dxt. Then nt(d) = RJdx S:! R(n -C) as 

a graded R-module. On the other hand, contraction on dxj f gives a 
graded map 

(3.7) D(d) --t n£-1 (d)(n- C), 8 ~ Lo(dxjf), 
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and this can easily be seen to be an isomorphism. Let v denote the 
image of the Euler differential: 

(3.8) V = Lx(dxjf) = £dxjdj E 0~- 1 (JZI). 

By split exactness of (n•(JZI),w"), or by (2.7) and (2.8), 

(3.9) 

is an isomorphism with inverse Lx, and hence n~-l(JZI) is a free rank-one 
R-module generated by v. For the same reason, 

For 8 E D"(d), L8(w") = 8(a")/a" = 0 and hence 

Thus, L8 (0e(JZI)) lies in the first summand of (3.10). By definition of 
the generator v of n~- 1 (JZI), Lx(n.e(JZI)) lies in the second summand of 
(3.10). Thus, composing (3.9) with L8, the isomorphism (3.7), induces 
an isomorphism 

(3.11) D"(JZI)--+ n~-2 (JZI)(£- n), 

This proves, using Proposition 3.5 for the last part, 

Proposition 3. 7. 

(1) n~(JZ~) = o 
(2) n~- 1 (JZI) = Rv 2:! R(n- £) 
(3) n~-2 (JZI) 2:! D"(d)(n- £) 2:! (n;(JZI)(£- n))Y 

Generalizing this result, consider the non-degenerate pairing 

-A-: OV,J X O~,f--+ nt,J = Rt, p + q = £, 

defined by the exterior product. It induces a non~degenerate pairing 

(3.12) -A-: OF(JZI) x Oq(JZI) --+ O.e(JZI) 2:! R(n- £), p + q = £. 

On U this is easy to check in local coordinates using (2.3), then it follows 
on V by reflexivity. It is immediate from the definition of the pairing 
that it turns (n•(JZI),w) into a self-dual complex for any wE 0 1(JZI). 
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Proposition 3.8~ The pairing (3.12) induces a non-degenerate pair-
ing 

(3.13) -/\-:Og(d)xf!6(d)--+06- 1 (d)~R(n-C), p+q=C-1 

which makes the complex (f!0(d), W>.) self-dual. 

Proof. Similar to (3.11), (3.13) is induced by (3.12) by identifying 
f!b(d) = Wu /\ f!i(Jd) c f!i+1 (d) fori= q,C, and ng(d) = n~(d). 
Then the pairing is clearly well-defined. We have to show that for w E 

f!6(J.1') with f!P(J-1') /\ Wu /\ W = 0 We have Wu /\ W = 0, Or equivalently 
w E Wu /\ [!P-1($'). But this hypothesis implies Wu /\ w = 0 on u and 
hence on V by $'-normality of nq+1 (d), so the claim follows. Q.E.D. 

§4. Complexes 

4.1. The parametric relative log complex 
The variety 

(4.1) I:(d) = {(x, >.) E (v \ u H) X <Cd I W>.(x) = o} c v X <Cd, 
HE .of 

was used in [CDFV] to study critical sets of master functions associated 
with the arrangement d. In [CDFV, Thm 2.9], it was shown that its 
closure 

(4.2) ~(d)= Spec(S/I), 

where the ideal 

I= I(d) := (D(d),wa) C S := R0c C, C := Sym((<Cd)v) = C[a], 

was defined in [CDFV, §2.5] using the pairing (3.5). For the moment, 
we ignore the grading in C and continue to refer only to the /E.-grading 
on R. Note that 

(4.3) HR(f!8;c(d),wa) = (S/I(d))dx/f ~ (S/I(d))(C- n), 

where f!8;c(d) = n•(Jd) 0c C. In the spirit of this paper, let 

fu = fu(d) := (Du(d),wa) C S, 

(4.4) Io = Io(d) := (D0 (d),wa) C So:= R0c Co, Co:= C/(lal). 

Note that, by (2.6), 

(4.5) S/I = S/(Iu + (lal)) ~ So/Io. 
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To obtain the analogue of (4.3) for I 0 satisfying the parametric version 
of (2.7), we need to work with parameters in C0 . We use the notations 

Os;c,O'(d) = n~(d) ®c C, Oso/Co,o(d) = O~(d) ®c Co. 

Since Wa 1\ L.5(v) = L<l(wa)v, it follows from (3.11) that 

(4.6) HR- 1(0s;c,O'(d),wa) = (S/IO')v .~ (S/IO')(n- £), 

(4.7) HR- 1 (08o/Co,0 (d),wa) = (So/Io)v ~ (So/Io)(n- £). 

Now assume that dis tame, so that (08; 0 (#'), wa) has cohomology 
concentrated in degree£ by [CDFV, Thm. 3.5]. For the next argument, 
we need a second grading for which the natural map R ---+ n~ has degree 
-1 and the coefficients a have degree 1. Degree shifts with respect to this 
grading are denoted by square brackets [ -]. While Wa is still of degree 
0, wO' has degree -1 for the second grading. For the remainder of this 
paragraph, the differential in each complex is given by multiplication by 
Wa. Consider now the exact sequence of second-graded complexes, 

and that the second-degrees of wO' 1\ 08;c(d) have a lower bound, one 
sees that the cohomology of wO' 1\ 08;c(d) is concentrated in degree 
£- 1. From the exact sequences of S-modules 

o--+ wO' 1\ O~jb(d)--+ 081c(d)--+ 08;c,O'(d)--+ o, 

0--+ 08;c,O'(d) ~ 08;c,O'(d) --+ nBo/Co,o(d) --+ 0, 

we see nBo/Co,o(d) has cohomology at most in degrees£- 2 and£- 1. 
In fact there is no cohomology in degree £ - 2 since lal is a non-zero 
divisor on (4.6). To see this, choose a = e1 , so that IO' has generators 
independent of a1 . By a linear change of coordinates in C, we may hence 
replace Ia I by the coordinate a1, which is then clearly a non-zero divisor 
on S /I 0'. Together with ( 4. 7), this proves the following: 

Proposition 4.1. For tamed, the complex (OBo/Co,o(d), wa) re­
solves (So/Io(d))(n- £). 

In order to give this result a projective interpretation, let r .­
Spec C0 , consider the image lP'rd of lP' d under the projection 

nr: lP'r V := Proj So -» lP'V, 
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and use Proposition 2.12 to identify 

Consider also the preimage dr of d under affine projecti~ := V x 

r-+ V. As in Proposition 2.11, we can now identify (Oso/Co,o(d),wa) 

and (Ovr;r(dix,=l}), wa;) where ai is obtained by deleting the ith com­

ponent from a. Setting ci := CC[aj I j # i] ~Co and ri :=Spec ci, the 

latter can then be identified with (Ovr,;r,(dix,=l}),waJ· 

Similarly, ! 0 can be related to ' 

(4.8) I(IP'd) := (D(IP'd), WaJ C O'IP'rV· 

Namely, by Proposition 3.6, we have that 

(4.9) Io(d) = I(IP'd). 

A dual version of (2.9) serves to identify Io(d)x, = Ie, (d)x, and 
I(d{x;=l}), where the latter is the restriction of the ideal sheaf I(IP'd) 
to the chart {Xi = 1}. Then we can also relate I; (d) to 

I;(!P'd) := Proj(S0 /I(IP'd)). 

Recall from (4.1) that I;(d) is a subvariety of V x Cd; let !P'I;(d) 
denote its projectivization in the first factor. By (4.2), (4.5), and (4.9), 
I;(!P'd) = !P'I;(d) via the natural inclusion IP'rV '--t IP'V X c.<zt. 

Finally, the projective version of Proposition 4.1 reads 

Proposition 4.2. For tame d, the complex ( 1rro• (IP' d), wa) re­
solves O'r;(IP'd)(n- £). 

4.2. The log complex in tame and generic cases 

Specializing (4.4) and (4.8) to a = A # 0, IAI = 0, we set (as in 
[OT95b, Prop. 2.7]): 

Io,>-. = Io,>-.(d) := (D0 (d), W>-.) C R, 

f>-.(IP'd) := (D(IP'd), W>-.J c O'IP'v, 

such that (4.9) gives 

(4.10) 

We denote by 2;>-.(d) and I;>-.(IP'd) the specializations of I;(d) and 
I;(!P'd) to a= A respectively. 
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Proposition 4.1 has the following application, which improves [CDFV, 
Prop. 3.9]: 

Proposition 4.3. If dis tame, then HP(f20(d),w;..) =1- 0 implies 
that the codimension o{E;..(d) is at most p, provided that either d has 
rank at most 4, d is free, or p :S 2. 

Proof. For A E Cot', let R;.. = Sj({ai- Ai}). Arguing as in [CDFV, 
Prop. 3.9], Proposition 4.1 implies the hyper-Ext spectral sequence 

(4.11) Ep,q = Extq (n£-1-p (d) R;..) ~ Extq (n£-1-P(.fll) R) 
1 So S 0 fC0 ,0 ' R 0 ' 

converges to Ext~~q(S0ji0 (d),R;..), and Ef'0 ~ D.{;(d) by Proposi­

tion 3.8. Since E~0 receives no nonzero differentials for p :S 2, we see 
that, if HP(D.~o/Co,o(d), w;..) is nonzero, then so is Ext~0 (So/ Io(d), R;..) 
for p :S 2, as well as for p = 3 when£- 1 = 3. This implies that the 
codimension of 'E;..(d) is at most p. Q.E.D. 

The projective version of this result based on Proposition 4.2 reads: 

Proposition 4.4. If dis a tame arrangement and HP(7rfD.•(JP>d), 
w;..) is nonzero, then the codimension of'E;..(!Pd) is at most p, provided 
that either d has rank at most 4, d is free, or p :S 2. 

In [OT95b], Orlik and Terao show that there is a Zariski-open subset 
Y ~ Cot' with the property that, for A E Y, the function (1.1) has 
non-degenerate, isolated critical points. We will call such A generic. 
Part of their argument shows that, for a noncentral, affine arrangement 
d, the cohomology of the complex (D.•(.fll),w;..) is concentrated in top 
dimension, for A E Y: see [OT95b, Prop 4.6]. We can prove a projective 
version of this result, which is a slightly stronger statement, but requires 
a tameness hypothesis. 

Definition 4.5. We call d almost tame if pdf2P(.fll) :S p + 1 for 
p = 1, ... ,£. 

As in Definition 2.3, the condition is vacuous except for 1 :S p :S 
£ - 4. For the sake of stating some results as generally as possible, we 
have now introduced two new homological boundedness conditions on an 
arrangement. For the reader's convenience, we summarize their relative 
strength as follows: 

3 
1 tame =:? almost tame 
~, free 2 

~ 5 
locally free ===? locally tame 

2 3 4 
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The properties in the column labeled g hold for all arrangements of rank 
~ £. [CDFV, Example 5.3] gives an arrangement of rank 4 which is 
locally free but not tame, showing implications 2, 3 and 4 cannot be 
reversed in general. The rank-4 arrangements of Example 5.20 are tame 
but not locally free, so implications 1 and 5 also cannot be reversed. 

Proposition 4.6. If !71 is almost tame and,\ is generic (with 1>-1 = 

0), then 

(4.12) HP(D~(d), W)J ~ {0 for pi= g- 1, 
(R/Io,,>..(d))(n-£) forp=£-1. 

Proof. Denote by D0(d) the complex obtained from (D0(d),w,>..) 
by replacing n~- 1 (!71) by W).. A n~-2 (!71). Consider the two hyperhomol­
ogy spectral sequences of the complex D0(d): 

By Proposition 2.11 and [OT95b], it follows that D0(d) is exact away 
from the origin. So I E;,-q is non-zero only for q = g and p < g- 1, con­
tributing to degrees p- q < -1 in the abutment. But by hypothesis and 
(2.8), II E~.-q is non-zero only if q ~ p + 1, contributing to degrees com­
plementary to those of I E;,q. This shows that both sequences converge 
to zero. But the first sequence degenerates on the E 2-page, and hence 
I E;,q = 0. This proves the first claim; the second follows by specializing 
(4.7) to a=.\. Q.E.D. 

The projective version of this result does not require tameness, as 
we can apply [OT95b] in charts. 

Proposition 4.7. If,\ is generic (with 1>-1 = 0), then 

(4.14) 

In special cases, a more detailed understanding is possible. For 
example, from [CHKS06, Thm. 5] we see that if !71 is a generic ar­
rangement, the critical set of the master function (1.1) in IP'V is zero­
dimensional, for all nonzero ,\ with 1>-1 = 0. From this we note the 
following: 

Proposition 4.8. If !71 is a generic arrangement, then ( 4.12) holds 
for all.\ i= 0 (with 1>-1 = 0). 
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Proof. In [DSS+lQ], we show for generic J21' that Extk(Og(d), R) = 
0 except for q = 0 and q = p. Then the E2-page of the spectral 
sequence (4.11) is zero except for p + q = £ - 1 and q > 0, while 
E~,o = HP(Ob(d),w>.) by Proposition 3.8. 

However, by [CHKS06, Thm. 5], the codimension of ~>.(lP'd), and 
hence of ~>.(d), is£- 1, so Ef,;} = 0 for p + q:::; £- 1. It follows that 
E~'0 = 0 for 0 :::; p :::; £- 2. Q.E.D. 

Passing to coherent sheaves, we obtain the projective analogue of 
Proposition 4. 7 as well. 

Corollary 4.9. If J21' is a generic arrangement, then (4.14) holds 
for all .A -=/:- 0 {with I .AI = 0 ). 

§5. Chern classes 

In this section, we prove an analogue of the Borel-Serre formula for 
sheaves on lP'd with projective resolution of length one (see Theorem 5. 7). 
Then we apply this formula and the theory developed in the preceding 
sections to prove a generalized Musta~a-Schenck formula for tame ar­
rangements with zero-dimensional non-free locus (see Theorem 5.13). 

5.1. Polynomial identities 

We begin with some technical preparations for the following sections. 
First, we work in the ring Q[[u, t]]. Consider the power series 

n 

(5.1) Fy(t, u) =II (1 + ue';t) E Q[[u, t]], 
i=1 

with parameters in the ring of symmetric functions in a set of vari­
ables{, for which we refer to [Mac95]. Let a= {a1 , ... ,an} and 
(3 = {(31, ... , f3n-r} denote two sets of variables, and let 

(5.2) C(t,u) = Fa(t,u)/F(3(t,u) E Q[[u,t]]. 

Let 

n 

E,(t) = II (1 +{it) E Q[t], 
i=1 

n 

H,(t) =II (1 -{it)-1 E Q[[t]] 
i=1 



Complexes of logarithmic forms along arrangements 45 

denote the generating function for the elementary symmetric and com­
plete symmetric functions respectively, where the variables are 'Y = a or 
'Y = (3. 

Denote by 9 C Q[[u, t]] the subset of power series in u and t, for 
which the coefficient of tk is a polynomial in u of degree at most k. It 
is easy to see that 9 is closed under taking products and multiplicative 
inverses (whenever defined). 

Lemma 5.1. § 1 ((1 + u)t,u)/(1+ u)n E 9 for any variables 'Y = 
{'Yl, ... , 'Yn}, and 

F1 ((1+u)t,u)l =E (-t). 
(1 + u)n u=-1 1 

Proof. We expand F1 ((1 +u)t, u) as a power series in t. Note that, 
for any i, 

1 + ue1 ;(l+u)t = 1 + u + 'Yiu(1 + u)t + u(1 + u) 2t2 Pi((1 + u)t) 

= (1 + u)(1 + 'Yiut + u(1 + u)t2 Pi((1 + u)t)), 

for some power series Pi ( t), and hence 

n 

F1 ((1 + u)t, u)/(1 + u)n = IJ (1 + 'YiUt + u(u + 1)t2 Pi((u + 1)t)), 
i=l 

from which we see the coefficient of tk is a polynomial of degree k in u, 
so we may evaluate to obtain 

as required. 

Proposition 5.2. One can write 

C(t, u) = 2:)1 + u)r-kak(u)tk, 
k~O 

where ak(u) are polynomials in u of degree at most k, such that 

(5.3) L:>k( -1)tk = Ea( -t)Hf3(t). 
k~O 

Q.E.D. 
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Proof. By Lemma 5.1, Fa((1 + u)t, u)/(1 + u)n and F13((1 + u)t, 
u)j(1+u)n-r are both in Y, so 0((1 +u)t, u)j(1+uY is too. Moreover, 

0((1 + u)t, u) I 
(1 + u)r u=-1 

Ea( -t)j E13( -t) 

The claim follows. Q.E.D. 

Now we switch to the ring A[[u]], where 

A:= Q[t]/\td+1), 

and consider the image C(t, u) in A[[u]] of C(t, u) from (5.2). If r :;::: d, 
then, by Proposition 5.2, C(t, u) becomes a polynomial in u of degree r, 
which motivates the following. 

Definition 5.3. For 0 ~ p ~ r:;::: d, we call L~,13 (t) E Q[t]/\td+1) 
defined by 

r 

(5.4) L L~,13 (t)uP := C(t, u). 
p=O 

the pth Lebelt polynomial. 

For anyvariables "(,let I'YJ = 2::~= 1 "fi· 

Lemma 5.4. For r = d, 

U = e(lal-lf31)t and 
a,/3 ' 

L:~J = e(iai-lf3i)t (t e-a,t _ ~ e-f3,t) . 

Proof. As C(t, u) is a polynomial in u of degree r, we may change 
variables to get 

as required. For the second claim, 

Q.E.D. 
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5.2. Lebelt resolutions 

We shall now consider a coherent sheaf of rank r on IP'd having a 
projective resolution of length one, 

(5.5) 

For such sheaves we shall prove a Borel-Serre formula in Theorem 5. 7. 
We will compute in the extended rational Chow ring 

Let a and (3 denote by the Chern roots of ~0 and ~1 . 

Proposition 5.5. Assume that A is locally a (k - l)st syzygy. 
Then 

cht (\P A = L~,f3 

for 0::; p::; k. In particular, this holds vacuously for p = 1. 

Proof. By the hypothesis on A, we may use the Lebelt resolu­
tion [Leb77] 

to resolve 1\P A, for all p ::; k. Here we are using the fact that local 
resolutions glue, by the uniqueness of the Lebelt's differential proved in 
[Leb77, (2.2) Satz]. Then 

cht((\8 A)u8 = L (-l)qcht(Sq~l)cht(/\P ~o)u2 
p+q=s 

= L (-l)q L ue"''1t · · ·ue"''Pt 
p+q=s h<···<ip 

L uef311 t ... uef31q t' 

]1"5,···"5,jq 

using the splitting principle for symmetric and exterior powers of vector 
bundles. The claim now follows by expanding the expression (5.2) as a 
power series in u, and noting that the expression above is the u 8 -term, 
which is L~,{3 by Definition 5.3. Q.E.D. 

The equation (5.3) gives the Chern polynomial of A: 
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Lemma 5.6. 
d 

Ct(-4') = ~=>k( -1)( -t)k. 
k=O 

Proof. By (5.5) and the multiplicativity of Chern polynomials, 

and the result follows by (5.3). Q.E.D. 

For r = d, we can prove an analogue of the Borel-Serre formula 
for vector bundles, by expressing the top Chern class of .4 in terms of 
Lebelt polynomials. 

Theorem 5. 7. For .4 of rank r = d, 

r 

Cr(-4') = (-1(~)-1)PL~,W 
p=O 

Proof. Since C(t, u) is a polynomial in u, we may set u = -1 in 
(5.4) to get 

d 

~)-1)PL~,f:J = C(t,-1) = ad(-1). 
p=O 

Now by Lemma 5.6, our Euler characteristic is obtained as the coefficient 
oftd. Q.E.D. 

We can mimic another formula for vector bundles: If .4 was lo­
cally free ofrank r = d, then we would have an isomorphism /\r- 1 .4 ~ 
1\r .4'$.4v, andhencecht(/\r .4)·ch_t.4 = cht(/\r-1 .4). Lemma5.4 
proves the following analogue of this formula: 

Proposition 5.8. For .4 of rank r = d, 

ec1(At')t = Lr 
a,{:J, 

ecl(At')t ch_t(-4') = L~~~· 

5.3. Mustata-Schenck formulas 

We recall a result of Mustata and Schenck [MS01, Thm. 4.1], which 
we formulate projectively here. Due to a different grading convention, 
0 1 (m') in loc. cit. translates to 
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and its associated total Chern polynomial in the Chow ring A(lP'£- 1) ~ 
Z[t]j(tl) to 

using Proposition 2.12 and multiplicativity of Ct· Denote by 1r(d, t) 
and 1r(lP'd, t) the Poincare polynomials of the complements V \ d and 
lP'V\lP'd respectively. By [OT92, Prop. 2.51] (see also [OT92, Prop. 5.1, 
Thm. 5.90]) they are related by 

7r(d, t) = (1 + t)7r(lP'd, t). 

Now the projective version of [MSOl, Thm. 4.1] reads 

Theorem 5.9 ([MS01]). Let lP'd be a locally free arrangement in 
lP'V. Then 

(5.6) 

in the Chow ring A(lP'V) ~ Z[t]j(ti) where 1r(lP'd, t) is the Poincare 
polynomial of the complement lP'V \ lP' d, and Ct denotes the total Chern 
polynomial. 

In the following, we generalize this result for locally tame arrange­
ments in lP'£-1 with zero-dimensional non-free locus. Using that d H 

0 1 (..91) is a local functor, we have 
(5.7) 

{ 
EB Extkx(01 (dx),Rx), ifp=1, 

0"xt~ll'v(01 (JP'J?I), O'JP>d) = XEL£-l(d) 

0, if p 2: 2, 

where we consider dx as an arrangement in an affine chart A_£- 1 of lP'V 
with origin X and coordinate ring Rx. 

Definition 5.10. For a central arrangement d in V with zero­
dimensional non-free locus, let 

N(d) = length(Extk(01(d), R)), 

a non-negative integer. For an arrangement lP' d in lP'V with zero­
dimensional non-free locus, let 

(5.8) N(dx), 

using (5.7). 
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Note that N (d) = 0 if and only if d is free, and that N (IP' d) = 0 
if and only if lP' d is locally free. 

Recall that a rank-£ arrangement d is called k-generic if #dx = k 
for all X E Lk(a'), and dis called generic if it is (£-I)-generic. 

By [DSS+lO], N(a') = (n£ 1) for a generic, rank-£ arrangement d of 
n hyperplanes. This gives the following explicit combinatorial formula: 

Theorem 5.11. IflP'd is a £-2-generic arrangement in IP'£- 1 , then 

N(IP'a') = L (#d~ -1). 
XELc(d) 

If d is tame, one can compute N(a') by comparing the Hilbert 
series of logarithmic forms and differentials: 

Proposition 5.12. For a central arrangement d with a zero-dimen­
sional non-free locus, 

(5.9) 

where h(M, t) denotes the Hilbert series of a graded module M. 

Proof. By the tame hypothesis, pd n 1 ( $") ~ 1, so we have a graded 
free resolution of the form 

Dualizing gives 

Then h(Fv, t) = h(F, r 1 )/( -t)e ifF is a free module over a graded ring 
of dimension£, so 

h(Extk(n1 (a'), R), t) = h(F1v, t)- h(F0v, t) + h(D1 (a'), t) 

= -h(n1 (a'), c 1 )/( -tl + h(D1 (a'), t). 

The right-hand side, then, reduces to a polynomial in t, so we may 
compute N(a') by evaluating at t = 1, giving (5.9). Q.E.D. 

We can now measure the extent to which the formula of Theorem 5.9 
fails for locally tame arrangements with zero-dimensional non-free locus. 

Theorem 5.13. If IP'd is a locally tame arrangement in IP'V with 
zero-dimensional non-free locus, then 

(5.10) 
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For R = 4, both hypotheses of Theorem 5.13 are trivially fulfilled by 
reflexivity of 0 1 (IP' d) and [Har80, Prop. 1.3, Cor. 1.4]. 

Corollary 5.14. If!P'd is an arrangement in !P'3 , then 

Corollary 5.15. If!P'd is an arrangement in IP'3 , or a locally tame 
arrangement in IP'V with zero-dimensional non-free locus, the Mustafa­
Schenck formula (5.6) holds if and only if$" is locally free. 

For an arrangement IP' $" in IP'V, we denote 

(5.11) 

(5.12) 

Ct(01(JP'$')(1)) = 1 + c1t + Czt2 + · · · + C£-1t£-I, and 

7r(IP'd, t) = 1 + b1t + b2t2 + · · · + be_ 1te- 1. 

Since c1 c2 = c3 mod 2 for Chern classes of coherent sheaves on !P'3 (see, 
e.g., [Har80, Cor. 2.4]), we observe: 

Corollary 5.16. If!P'd is an arrangement in IP'3 , then 

where the b1 , b2 , and b3 are the coefficients of the Poincare polynomial 
(5.12). In particular, if!P'd is locally free, then b1b2 = b3 mod 2. 

The proof will follow some preliminary observations for general £: 
Let H 0 be a hyperplane in a rank-£ arrangement a', and let a'' = 
$" \ {H0 }. Recall that a'Ho = {H n H 0 I HE a''}, an arrangement in 
H 0 . The inclusion of H 0 c V gives a map i: IP'H0 -+ IP'V. By [Zie89, 
Cor. 4.5], restriction gives an exact sequence: 

(5.13) 

The hyperplane H0 E $" is called generic if codimHo H 0 n X = codim X 
for all X E L<e(d'). Ziegler notes in [Zie89, Ex. 8.7.(iii)] that i* need 
not be surjective, even when H 0 is generic. 

However, this subtlety happens at the origin and therefore disap­
pears if one passes to projective space. Note that taking the kernel 
of Lx in (5.13) and then sheafifying yields, using Proposition 2.12, the 
sequence (5.14) below, and its exactness except at the right. 

Proposition 5.17. Let IP'd be a projective arrangement, and H 0 E 

$" generic. Then there are exact sequences of sheaves on IP'V and IP'H0 
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respectively, 

(5.14) 

0------7 f1P(J1Dd)( -1) ~ f1P(J1Dd') ~ i*DP(JIDa'Ha) ------7 0, 

(5.15) 

for 0 :S: p :S: £ - 1. 

Proof. Genericity of H 0 implies that, for any closed point x E 

JIDHo n JIDd', X = nxEIP'HEIP'd' JIDH is at least !-dimensional, and JIDd 
is, locally at x, a product of JID d_.k with the hyperplane JID H0 . Thus, 

DP(JIDd')x = 7T*f1P(J1Da'Ha)x EB daHa 1\ 7r*DP- 1 (J1Da'Ho)x, 

f1P(J1Dd)x = 7T*f1P(J1Da'Ha)x EB daHa 1\ 7T*f1P-l(J1Da'Ha)x, 
aHa 

where 7r: JIDV \ {aHa = oo} -+ JID H0 is a projection. The claim follows. 
Q.E.D. 

Proposition 5.18. Let JIDd be a projective arrangement whose non­
free locus has codimension > k. Then the polynomials (5.11) and (5.12) 
agree through degree k, that is, ci = bi for i = 1, ... , k. In particular, 
this holds for k = 2 without any hypothesis. 

Proof. We argue by induction on£, and we may assume that k 2 2 
by reflexivity of D1 (J1Dd) and [Har77, Cor. 1.4]. If£ ::; k + 1 then 
d is locally free, and the result follows by Theorem 5.9. Otherwise, 
let H 0 C V be a linear hyperplane that meets d generically. Then 
L~e-2(d) = L~e-2(s(Ha), hence 

7r(JIDa'Ha, t) = 1 + b1t + · · · + bz-2t1- 2 . 

We obtain a short exact sequence from (5.15) of Proposition 5.17: 

from which we see that Ct(i*D1 (J1Dd)(l)) = Ct(D1 (J1Ds(Ha)(l)). 
Now the codimension of the non-free locus in s(Ha is at least as 

large as that in a', so by induction, 
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Now let i: lP' H 0 '---+ lP'V denote the inclusion map; the induced map 
on Chow rings agrees with the canonical map 

i*: Z[t]/t£ ---+ Z[t]jt£- 1 . 

Using the functoriality of Chern classes (see, e.g., [Har77, §A.3]) for the 
third equality, we deduce 

1 + b1t + · · · + bktk = Ct(01(J!DsdH0 )(1)) 

= Ct(i*01(J!Dd)(1)) 

= i*ct(01(J!Do0")(1)) 

= 1 + c1t + · · · + cktk mod tk+1. 

Q.E.D. 

Lemma 5.19. The Chern character of a reduced point in J!Dd is td. 

Proof. The point has a Koszul resolution 1\ • g where g = O'JP'd ( ~ 1 )d. 
By [Ful98, Ex. 3.2.5], its Chern character equals cd(gv)td / td(gv) = 

(1 ~e-t)d = td in the rational Chow ring A(J!Dd)IQ! ~ Q[t]/ \ td+1). Q.E.D. 

Proof of Theorem 5.13. Proposition 4. 7 gives an exact sequence 
(5.16) 

0------+ 0°(J!Dd) ~ 0 1(J!Dd) ~ ... ~ ne-1(J!Dd) ~ §------+ 0 

for generic>. with 1>-1 = 0. By [OT95b] and using (4.10), 

is a coherent sheaf supported on points of length equal to the (3 -invariant 
ofd, 

£-1 
(5.17) B = B(d) := (~1)£- 1 1T'(lP'd, ~1) = 2:.)~1)£- 1 -ibi. 

i=O 

Using Lemma 5.19, then 

(5.18) ch(.f/) = Bt£- 1 

in A(JP'V)IQ!· 
Recall from Propositions 3.7.(3), 2.12, and 3.6, that 
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Since lP' tzl is assumed to be locally tame, D1 (JP' d') has a resolution of the 
form (5.5). Let a and f3 be the Chern roots of § 0 and § 1, respectively. 
Using the argument from the proof of Proposition 5.12 (or from the 
proof of [Har80, Prop. 2.6]), and Lemma 5.19, we compute the Chern 
character 

(5.19) cht(n£-2 (lP'd')) = (ch_t(D1(lP'd')) + Nt£- 1 )e(n-£)t 

= ch_t(D1(lP'd'))eCn-£)t + Nt£-1' 

where we set N := N(JP'tzl). Similarly nc-1(lP'd') ~ O'll'v(n- £)gives 

(5.20) 

By restriction to a generic hyperplane and [Ful98, Rem. 3.2.3.(c)] this 
gives 

(5.21) 

Now the two equalities of Proposition 5.8 give 

(5.22) 

(5.23) 

By Proposition 2.14 and (5.23), 

(5.24) 

by (5.19), and 

by (5.21), (5.20). 

Now we can compute an Euler characteristic of (5.16), using (5.24). 
Proposition 5.5 together with Theorem 5.7 yields 

£-1 

(5.25) cht(Y:) = (-1/- 1 L(-1)Pcht(DP(JP'd')) 
p=O 

£-1 

= ( -1)£-1 "'( -1)P LP + L£- 2 -,- cht(n£-2 (lP'd')) 
~ a,j3 a,j3 
p=O 

Now take the coefficient of t£-1 in (5.18) and (5.25) and use [Ful98, 
Exa. 3.2.2] to find 

£-1 

B = L(-1/-1-ici- N. 
i=O 
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Finally, use Proposition 5.18 for k = £-2 to see ci = bi for 0 <::: i <::: £-2. 
It follows from the definition of Bin (5.17) that cg_ 1 = bg_ 1 + N, which 
completes the proof. Q.E.D. 

Example 5.20. Let ~ and .2'2 be the two arrangements of 9 lines 
in JP2 introduced in [Zie89, Ex. 8. 7] and independently in [Yuz93, Ex. 2.2]. 
The two arrangements have isomorphic intersection lattices; however, as 
Schenck notes in [Sch], they are distinguished by the property that the 
six triple points in .2'2 lie on a conic in JP2 , while the triple points in ~ 
do not. By formula (5.6), we see Ct(01 (1P2;)(1)) = 1 + 8t + 22t2 , the 
Poincare polynomial, for i = 1, 2. On the other hand, the Hilbert series 
of 06(.01') is not combinatorially determined, for arrangements of rank 
at least 3: h(06(2;), t) differs fori= 1, 2, as noted in [Zie89]. 

Add a generic hyperplane to each arrangement above, to obtain two 
combinatorially equivalent arrangements ~+ and .2;+ of 10 planes in 
JP3 • Then 1rC~+;t) = (1 + st + 22t2 )(1 + t) = 1 + 9t + 30t2 + 22t3 , 

and ~+ has a single non-free closed subarrangement of rank 3, which 
is 2;. Computing with Macaulay 2 [GS] shows N(~) = 20, while 
N(-2'2) = 22. By Theorem 5.13, we find 

fori= 1, 

fori= 2. 

So we see that, for arrangements of rank at least 4, the Chern polynomial 
of 0 1 (JP .01') is not combinatorially determined, either. 
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