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Automorphisms of an irregular surface with low 
slope acting trivially in cohomology 

Jin-Xing Cai 

Abstract. 

Let S be a complex minimal nonsingular projective irregular sur­
face of general type with K~ ::; 4x(Os) and x(Os) > 12. Then the 
group of automorphisms of S acts faithfully on the cohomology ring 
H*(S,Q) with the exceptional case that Sis as in [Ca3, Theorem 2.5]. 

§1. Introduction 

LetS be a complex minimal nonsingular projective surface of general 
type. Let AutoS C AutS be the subgroup of automorphisms of S, 
inducing trivial action on the cohomology ring H*(S, <Ql). 

It is known that, if the canonical linear system IKsl of S is base­
point-free then Aut0 S is trivial, with the possible exceptional case that 
S satisfies either K'#; = 8x(Os) or K'#; = 9x(Os) [Petl]. 

When S has a fibration of genus 2, we have a classification for pairs 
(S, AutoS): 

Theorem 1. ([Ca2, Theorem 1.1]) Let S be a complex minimal 
nonsingular projective surface of general type with a genus 2 fibration 
f: S----. C and x(Os) 2: 5. Then IAutoSI ~ 2, and if IAutoSI = 2, then 
the generator of AutoS is a bi-elliptic involution off, the canonical map 
of S factors through f, and S has the following numerical invariants: 

K'f; = 4x(Os), q(S) = g(C) = 1. 

Example 1.1. If Sis as in Theorem 1 with Aut0 S being non-trivial, 
then S is birationally equivalent to a double cover of certain elliptic fiber 
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bundle. The configuration of the ramification divisor of this covering 
is determined (see [Ca3, Theorem 2.5] for precise statements). Such a 
surface can be explicitly constructed (see [Ca2, Example 3.3] for a special 
case of such a construction). 

To the author's knowledge, besides Example 1.1, there are no known 
examples of S with p9 (S) » 0 and AutoS being non-trivial. A natural 
question is whether it is the only one for minimal surfaces of general 
type with K~ ~ 4x(Os). 

In this note, we prove it is true for irregular surfaces S. Our main 
result is the following: 

Theorem 2. Let S be a complex minimal nonsingular projective 
irregular surface of general type with x(Os) > 12. If K~ ~ 4x(Os), 
then AutoS is trivial with the exceptional caseS is as in Example 1.1. 

The sketch of the proof of Theorem 2 is as follows. Thanks to 
Beauville's and Xiao's results on the canonical map of S [Be; Xi2], the 
problem reduces to excluding the case that S has a fibration f: S --t 

C of genus 3, and Aut0 S is of order two and acts freely on a general 
fiber of f. In this case, we estimate the number of ( -1 )-curves on the 
desingularation T of the quotient Sf Aut0 S, show that the numerical 
invariants of the minimal model T ofT satisfy Kf < 2x( Or) and q(T) = 
1, and get a contradiction by a result of of Debarre (cf. [De]). 

Acknowledgements. The author is grateful to the referee for an im­
provement on Proposition 2.1 and several valuable comments on the 
original form of the paper. This work has been supported by the NSFC 
(No. 10671003). 

Notations. In this paper we denote by= and"' the linear equiva­
lence and numerical equivalence of two divisors, respectively. 

§2. The canonical map is composite with a pencil 

Proposition 2.1. Let S be a complex minimal nonsingular projec­
tive surface of general type. Assume that the canonical map </Js of S 
is composite with a pencil of genus g ~ 3. If K~ < ~ (p9 (S)- 2) and 
p9 (S) ~ 5, then AutoS is trivial. 

Proof. If the moving part IMI of IKsl has a base point, then K~ ~ 
(p9 (S) -1)2 by [K, Lemma 3.3]. So IMI is free from base points, because 
(p9 (S) - 1)2 ~ \ 6 (p9 (S) - 2) when p9 (S) ~ 5. By taking the Stein 
factorization of the canonical map if necessary, we get a fibration f : 
S --t B of curves of genus g ~ 3. By a result of Xiao [Xil]; we have 



Automorphisms of an irregular surface 185 

either q(S) = b = 1 or q(S) ::; 2, b = 0, where b denotes the genus of B. 
The global sections in H 0 (B, f*ws) generate an invertible subsheaf £of 
f*ws satisfying h0 (B,£) = h0 (S,ws) and Os(M) ~ f*£ rv (deg£)F, 
where F is a general fiber of f. By the Riemann-Roch theorem and the 
fact that b::; 1, we get p9 (S) = h0 (B, £) = deg £ + 1- b. Thus 

K~?: KsM = (deg£)KsF = 2(g -1) deg£ = 2(g -l)(p9 (S) -1 +b). 

Hence g = 3 by the assumption. Note also that B is isomorphic to the 
image of the canonical map of S, because £ is very ample by deg £ = 
p9 (S)- 1 + b?: 2b + 1. 

Let Z be the fixed part of IKsl, and let H be the horizontal part of 
Z. We write H = n1r1 + n2r2 + · · · with n1 ?: n2 ?: · · ·, where ri (i = 
1, 2, · · ·) are the irreducible components of H, with ni the multiplicity of 
ri in H. Then n1 ::; 4 = ZF = KsF. By [K, Lemma 2.1), (n1 + l)Ks­
( deg £ + 2n1 (b- 1) )F is nef. Considering the intersection number with 
Z, one gets KsZ?: (n1~1 ) (deg£ + 2n1(b -1)), and hence 

2 4(n1 + 2) 8n1 
K 8 = K 8 M + K 8 Z ?: (n1 + l) (p9 (S) - 1 +b)+ (n1 + l) (b- 1). 

This gives us K~ ?: 1; (p9 (S) - 2) when n 1 ::; 2. 
Now we inay assume n 1 ?: 3. Let G = Aut0 S. Since H 0 (S,ws) is 

a direct factor of H 2 (S,IC), G acts trivially on H 0 (S,ws). This implies 
that G acts trivially on Im¢s and there is a homomorphism h of G into 
AutB. Since B is isomorphic to Im¢s, we have that Kerh = G, i.e., G 
induces the trivial action on B, and G <-+ AutF for a general fiber F of 
f. 

If n1 = 4, then H = 4r 1, and r 1 is a section of f. This implies 
F n r 1 E F is a G-fixed point, and hence G is cyclic. Consider the 
quotient map 1r: F -t FjG. Since p9 (S/G) = p9 (S) > 0, we have 
g(F/G) = 1. Since G is abelian, 1r has at least two branch points. Using 
the Hurwitz formula for 1r, we get IGI ::; 3. Now if IGI = 2 or 3, then 
there are at least two G-fixed points on F. Since F is a general fiber of 
f, this implies that there are G-fixed (multi-)sections. Since any G-fixed 
curve is contained in the fixed part of IKsl (see e.g. [Cal, 1.14)), we get 
a contradiction. So G must be trivial. 

If n1 = 3, then n2 = 1, H = 3r1 + r2, and r1. r2 are sections of 
f. This implies P1 := F n r1.P2 := F n r2 E F are G-fixed points, 
and hence G is cyclic. Consider the quotient map 1r: F -t FjG. By 
the same argument as above, we have g(F/G) = 1 and deg1r = 3. So 
Kp = 2p1 + 2P2· On the other hand, from Kp = {3r1 + r2 + V)IF, we 
get Kp = 3p1 + P2· This is a contradiction since P1 :I= P2 on F. Q.E.D. 
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§3. Proof of Theorem 2 

3.1. By Theorem 1 and Proposition 2.1, we may assume that the 
canonical map c/Js of Sis generically finite and that S has no pencil of 
curves of genus 2. 

Let G = Aut0 S. Since H 0 (S,ws) is a direct factor of H 2 (S, C), it 
follows that G induces trivial actions on Im¢s. So c/Js factors through 
the quotient map 

c/Js=aoq:S ~ 8/G E :=lm¢s. 

Thus deg¢s = IGidega. Recall that, by [Be, TMoreme 3.1], E is a 
canonical surface or satisfies p9 (E) = 0. 

If E is a canonical surface, then it satisfies the Castelnuovo's in­
equality deg E 2:: 3p9 (S) - 7 ( cf. [Be, 5.6]). We have 

4x(Vs) 2:: K~ 2:: (deg¢s)degE 2:: IGI(3p9 (S) -7). 

This implies thatG must be trivial when x(Vs) 2:: 8. 
So we can assume p9 (E) = 0. Then dega 2:: 2. We have 

4x( Os) 2:: K~ 2:: IGI deg a(p9 (S) - 2). 

This implies that, when x(Vs) 2:: 7, G is trivial with one possible exce~ 
tional case IGI = 2 and deg c/Js = 4. Note also that in the exceptional 
case K~ 2:: 4(p9 (S)- 2) > 40 and q(S) s 3. 

3.2. From now on we assume that the pair (S, G) is as in the ex­
ceptional case. By [Xi2, Theorem 1] and its proof, one has that, when 
x(Vs) > 12, S has a fibration f : S--+ C of genus 3, and c/Js separates 
fibers of f and maps them onto a pencil of straight lines on E. In par­
ticular, the degree of the map induced by c/Js on the general fiber is four. 
This implies that the fixed part of IKsl is vertical with respect to f. 
Since G induces trivial actions onE, and hence on C, G <--t AutF for a 
general fiber F of f. Since each G-fixed curve is contained in the fixed 
part of IKsl (see [Cal, 1.14]), we have each G-fixed curve is vertical with 
respect to f. So G acts freely on F and hence F f G is of genus two. This 
implies F is hyperelliptic and hence f is an hyperelliptic fibration. 

Also, we remark here that any irreducible curve on S with negative 
self-intersection is G-invariant, since G acts trivially on the cohomology. 
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3.3. Let a- be the generator of Aut0S. We have a commutative 
diagram 

- ;r s ----------+ i' := s;a 
lp lh 
s __!____. c 

where pis the blowup of all isolated fixed points of a-, and a the induced 
involution on S. Then p9 (T) = p9 (S), q(T) = q(S), and h: T----+ Cis 
a fibration of genus 2. Note also that T is of general type, because the 
canonical map ofT is generically finite by the assumption on ¢s and 
p9 (T) = p9 (S). 

Notation 3.4. For any irreducible curve r on S, if r is vertical 
w.r.t. f, we denote by mr the multiplicity of r in fiber f*(f(r)). 

We have the following simple observations. 

Lemma 3.5. (1) Each ( -2)-curve on S is contained in fibers 
of f. 

(2) Each (-1)-curve on Tis contained in fibers of h. 
(3) For each ( -2)-curve e on S, the number of isolated a--fixed 

points one is either 0 or 2. 
(4) For each a--fixed curveD on S, mD is even. 
(5) Let e be a (-2)-curve on S. If there are no isolated a--fixed 

points one, then me ;::: 2. 

Proof. (i) Suppose there is a horizontal (w.r.t. f) ( -2)-curve 9 on 
S. Then g(C) = 0 and d := GF > 0, where F is a fiber of f. We have 
(dKs;c- 49)F = 0, where Ks;c = Ks- f* Kc is the relative canonical 
divisor. Since F 2 = 0 and F rf 0, by the Hodge index theorem, we have 
(dKs;c- 49)2 :::; 0. This implies that K~;c :::; 48, and hence K~ :::; 32, 
a contradiction. 

(ii) Suppose there is a horizontal (w.r.t. h) (-1)-curve ron T. Let 
h' : T' ----+ C be the relatively minimal model of h. Since p9 (T) > 0, 
r does not meet any other ( -1 )-curve on T. So the image of r in T' 
is a (-1)-curve. By the same argument as in (i), we get K~'/C :::; 8. 
Note that, since h' : T' ----+ C is a relatively minimal fibration of curves 
of genus 2, one has K~, ;c ;::: 2(x( Or') + 1) by the slope inequality. We 
have x(Os) = x(Or'):::; 3, a contradiction. 

(iii) Suppose that a- has precisely one isolated fixed point on e. 
Then 8 2 = -3, where 8 be the strict transform of e inS. On the other 
hand, from 8 = if* D, where D = if( 8), we get 82 = 2D2 . This is a 
contradiction. 
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(iv) By (3.2), q := f(D) is a point. From (! o p)*(q) = 1T*(h*(q)), 
we have mD = multi>(! o p)*(q) = 2mult.iJh*(q), where iJ = p* D and 
fJ = n(D). 

(v) By (iv), we may assume 8 is not a-fixed. Then 8 meets some 
a-fixed curves, say D, D' (maybe D = D') in two points. By (3.2), we 
have D, D' < f*(q), where q = f(8). 

Let fJ and D' be the image of p* D and p* D' in t. Let e = p*8 
and r = 7T(G). Then r(fJ + D') ?: 2 (r fJ?: 2 if D = D'). This implies 
2 :S multrh*(q) = mult9(! o p)*(q) =me. Q.E.D. 

3.6. Let Dt, · · ·, Du (u ?: 0) be the a-fixed curves and let iJi = 
p* Di. Let Pt, · · ·, Pk be isolated a-fixed points, and let Ei = p*Pi· We 
have 

(1) 

(2) 

u k 

K 8 = 1T*Kr + LDi + LEj. 
i=l j=l 

k 

K 8 = p*Ks + LEj. 
j=l 

Lemma 3.7. For each (-1)-curve f' on T, we have 

(1) e := n*f' and 8 := p*(e) are ( -2)-curves. 
(2) Let 8 be as in (i). Among D 1 , · · ·, Du, either there are exactly 

two curves meet 8, or there is exactly one curve, which is not 
a ( -2)-curve, meeting 8 in two different points. 

Proof. (i) By (ii) of Lemma 3.5, q := h(f) is a point of C. Let F' = 
f*q and F' = (! o p)*q. We have that 7T*f is reduced and irreducible. 
Indeed, otherwise, we have either 7T*f = 8 1 + 8 2 or 7T*f = 283, where 
81, 82 and 83 are curves on S. In the former case, a maps 8 1 to 
82, which is absurd since any curve with negative self-intersection is 
a-invariant; In the latter case, from -2 = 7T*f2 = (283)2, we get a 
contradiction. 

Let e = 7T*f and 8 = p*e. Since e < F', we have Pa(G) < 3. 
Since 8 2 = -2, by the adjunction formula, we have KsG = 0, 2 or 4. 

We show that KsG = 2 or 4 does not occur. Otherwise, since 
G2 = -2, we have that 8 is not a (-2)-curve. Let m = multeF'. We 
have 

(3) mKs8 :S KsF' = 4. 
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Since e < F', we have e 2 < 0. This implies that there is at most one 
isolated a-fixed point on e. So e L7=1 Ej :::; 1. By {1), we have 

u 

{4) e L: .Di ~ K 8e + 1. 
i=1 

Let I be the subset of {1, · · · , u}, such that for each i E J, Di < F'. 
By Lemma 3.5, we have 2 LiE/ Di < F'. From eF' = 0, we get me2 + 
2e LiE/ Di :::; 0. Combining this with {4), {note that e LiE/ Di 

e L:=1 .Di,) we have 

{5) 2 -me :::; - 2K .se - 2 :::; -6. 

Note that e 2 = -1 or -2 and K 8 e = e 2 mod 2, combining {3) with 
{5), we get a contradiction. 

Now we may assume KsS = 0. Then e is a ( -2)-curve. We have 
SEi = 0 for each j. (Otherwise, e must be {-1)-curve, contrary to the 
minimality of 8.) This implies that there are no isolated a-fixed points 
on e and e is a ( -2)-curve. 

{ii) Since the intersection number of any two ( -2)-curves is less than 
two, {ii) follows from {i). Q.E.D. 

Let r1, ... , r n(f) (n(f) ~ 0) be all ( -1)-curves on T. Since Tis of 
general type, they do not meet each other. Let 'fJ : T--+ T be the map 
contracting r 1, ... , r n(f) . 

Lemma 3.8. T is a minimal nonsingular surface of general type 
with Kf = K~ + n(f). 

Proof. We prove that Tis minimal; the other part is clear. Suppose 
that there exists a ( -1 )-curve E on T. Let E C T be the strict transform 
of E. By the definition of 'TJ, Eisa smooth rational curve with E2 :::; -2, 
and among {r 1, ... , r n(f)}, there is at least one curve, say r 1, which 
meets E with r1E = 1. 

Let e = 7r*rl, A = 71"* E, and let e = p*e, A = p*A. By Lemma 
3.7, both e and e are {-2)-curves, and e meets some a-fixed curves, 
say D and D' (maybe D = D') in two points. 

We claim that A is irreducible and reduced. Indeed, by the argument 
as in the proof of Lemma 3.7, we may assume Ared is irreducible. If 
A= 2A1 for some curve A1, then A1 is a-fixed. Since r 1E = 1, we have 
SA1 = 1. This implies e is a-fixed, a contradiction. 

Let D and D' be the image of D and D' (the strict transform of D 
and D') in T. 
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If D and D' are ( -2)-curves, then both fJ and D' are rational with 
self-intersection not smaller than -3. Let rl' : T __, T' be the map 
contracting E. Then r/(15) and r/(15') are rational with self-intersection 
not smaller than -2 and they meet at r/ (E) with the same tangent 
direction. This is absurd since the induced fibration T' __, C is of genus 
2. 

Now we may assume one of them, say D, is not a ( -2)-curve. Since 
e is a ( -2)-curve and Ae = 2, we have that A is not a ( -2)-curve. 
From KsF' = 4, we have mA + mD ::; mAKsA + mDKsD ::; 4. Since 
mD is even ((iv) of Lemma 3.5), this implies 

(6) KsA = KsD = 1. 

Since E, fJ and fJ' pass through ry(rl), we have multEh*(c) ;:::: 2, where 
h : T __, C is the induced fibration and c = h(E). Since A is not 
a-fixed, we have mult,4(! o p)*(c) = mult_Eh*(c). So mA ;:::: 2. By 
(iv) of Lemma 3.5, mD and mD' are even. From AF' = 0, we have 
-2me + mD + mD' + 2mA ::; 0. So me ;:::: 4. 

From AF' = 0, we have mAA2 + 2me = mAA2 + meA8 ::; 0. So 
A 2 ::; -4. Combining this with (6), by the adjunction formula we get 
Pa(A) < 0, a contradiction. Q.E.D. 

Definition 3.1. For an effective divisor A on S, we let n(A) to be 
the number of ( -2)-curves e, such that 1) e < A, 2) e is not £T-fixed, 
and 3) there are no isolated £T-fixed points one, and we define 

1 
o(A) = n(A)- l)KsD- -D2 ), 

D 2 

where the sum LD is taken over all £T-fixed curves contained in A. 

By (i) of Lemma 3.5 and Lemma 3.7, we have 

(7) L n(F') = n(f), 
F' 

where the sum is taken over all singular fibers of f and n(f) is as in 
Lemma 3.8. 

Lemma 3.9. For any fiber F' off, we have o(F') ::; 0, and o(F') = 

0 holds if and only ifF' contains no O"-fixed curves. 

Proof. After suitable re-indexing, we may assume that D 1 , · · ·, Dt 
( t ;:::: 0) be the £T-fixed curves contained in F', K s D i > 0 for i ::; k 
(0::; k::; t) and Dk+1 , · · ·, Dt are ( -2)-curves. 
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Let n = n(F'), and let 81, · · · , 8n be (-2)-curves contained in F' 
such that there are no isolated a-fixed points on them. After suitable 
re-indexing, we may assume that E7=1 8jDi > 0 if and only if j :::; l 
(0 :::; l :::; n). 

Let A be the dual graph of divisor A:= E!=k+1 Di + LJ=l+l ej. 
Since A consists of ( -2)-curves, we have that every connected component 
of A is a tree. By (ii) of Lemma 3. 7 and by the definition of A, each 
boundary vertex (i.e., a vertex connected with other vertices by at most 
one edge) corresponds to a a-fixed curve. So we have that, if A -:f; 0, 
let v(A) be the number of connected components of A, then m- k ;:::: 
n- l + v(A), and hence 

(8) 8(A) = n- l- (t- k) :::; -v(A). 

Let H = E7=1 Di + E~=1 ej. Since mv; ;:::: 2 ((iv) of Lemma 3.5), from 

(9) 2KsD1 + · · · + 2KsDk :::; KsF' = 4, 

we have k:::; 2. SoH has at most two connected components. 
Case 1. k = 0. If t = 0, by (3.2) and (ii) of Lemma 3.7, we have 

n(F') = 0 and so 8(F') = 0. If t > 0, then 8(F') = 8(A) :::; -1 by (8). 
Case 2. k = 1. In this case His connected. From D1F' = 0, we get 

s 

(10) mv1 D~ + 2s:::; mv1 D~ + '2::: me;8iD1:::; 0. 
i=1 

. ) ( 1 2 Case 2.1. mv1 = 2. By (10 , 8 H):::; - 7,D1 - KsD1 < 0 with the 
exceptional cases: 

(a) H = D1 +81 +82+83, with KsD1 = 1, D~ = -3 and 8jD1 = 1 
for j = 1, 2, 3. 

(b) H = D1 +81 + · ·+84, with KsD1 = 2, D~ = -4 and 8jD1 = 1 
for j = 1, · · ·, 4. 

In each case above, we have 8(H) = ~' and by (iii) of Lemma 3.5, 
A # 0. So by (8), 8(F') = 8(A) + 8(H) < 0. 

Case 2.2. mv1 = 4. We have KsD1 = 1 and D~ = -1 or -3. 
If D~ = -1, then 8(H) < 0 and so 8(F') < 0, with the exceptional 

case H = D1 + 81 + 82, with KsD1 = 1, D~ = -1 and 8jD1 = 1 for 
j = 1, 2. In the exceptional case, we have F' = 4D1 + 281 + 282. This 
implies that a has precisely one isolated fixed point on ej. By (iii) of 
Lemma 3.5, we get a contradiction. 

Now we assume D~ = -3. If 8jD1 = 1 for all j, then s = 6 and 
F' = 4D1 +81 + · ·+86, with 8jD1 = 1 for allj. We get a contradiction 
as above. 
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If 8jD1 = 2 for some j, from 8jF' = 0, we have me; 2: 4. Combin­
ing this with (10), we have 8(H) < 0 (and hence 8(F') < 0), with the 
exceptional case H = D1 +81 +82+83, with 81D1 = 2, and 8jD1 = 1 
for j = 2, 3. In the exceptional case, we have 8(F') < 0 as in Case 2.1. 

Case 3. k = 2. By (9), we have KsDi = 1 and mD; = 2 for i = 1, 
2. By the adjunction formula, we have n; = -1 or -3. 

Since 2H < F' ((iv) and (v) of Lemma 3.5), from DiF' = 0, we get 

8 8 

2D7 + 2 L 8jDi:::; mDlDT + L me;8jDi:::; 0. 
j=1 j=1 

So among {8 1 , · · · , 8 8 }, there are at most -D7 curves meet Di fori= 1 
or 2. 

If H is connected, then s :::; - Di - D~ - 1, and hence 

with the exceptional case H = D1 + D2 + 8 1 + · · · + 8 5 , with KsDi = 1, 
n; = -3, 81Di = 1 for i = 1, 2, and among {82, · · · , 8 5 }, there are 
two curves that meet D 1 and do not meet D2 , and the others meet D2 

and do not meet D 1 . In the exceptional case we have 8(F') < 0 as in 
Case 2.1. 

If H is not connected, let H 1 , H 2 be connected components of H, 
by the argument above, we have 

with the exceptional cases: 
1) H1 is of type (a) as in Case 1, and H2 = D1 +81, with KsD1 = 1, 

Di = -1 and 81D1 = 1. 
2) Hi is of type (a) as in Case 1 fori= 1, 2. 
In case 1), we have 8(F') < 0 as in Case 2.1. 
In case 2), by (iii) of Lemma 3.5, the dual graph of A must have at 

least six boundary points. By the well known facts on the dual graph of 
connected component consisting ( -2)-curves (cf. e.g. [BPV]), we have 
v(A) 2: 2. So by (8), 8(F') = 8(A) + 8(H) < 0. Q.E.D. 

Now by (1) and (2), we have p* Ks = ir* Kr + 2::~= 1 p* Di. So 

u 

(11) 2Kf = K~ - L(2KsDi - DT)· 
i=1 
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Applying the topological and holomorphic Lefschetz formula to a ( cf. 
[AS, p. 566]), we have 

u 

K~ = Bx(Os) + z=n;, 
i=l 

where Di is as in (3.6). The assumption K~ ~ 4x(Os) implies u > 0. By 
Lemma 3.9, there is a singular fiber F' off with 8(F') < 0. Combining 
this with (11), (7), Lemma 3.8, and Lemma 3.9, we have 

2 12""' I 12 (12) KT = 2Ks + ~8(F) < 2Ks ~ 2x(Os) = 2x(OT)· 
F' 

On the other hand, since T is a minimal irregular surface of general 
type, by a theorem of De barre ( cf. [De]), one has K~ ::::0: 2x( OT), contrary 
to (12). This finishes the proof of Theorem 2. 
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