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A limit theorem m singular regression problem 

Sumio Watanabe 

Abstract. 

In statistical problems, a set of parameterized probability distri­
butions is often used to estimate the true probability distribution. If 
the Fisher information matrix at the true distribution is singular, then 
it has been left unknown what we can estimate about the true dis­
tribution from random samples. In this paper, we study a singular 
regression problem and prove a limit theorem which shows the relation 
between the accuracy of singular regression and two birational invari­
ants, a real log canonical threshold and a singular fluctuation. The 
obtained theorem has an important application to statistics, because it 
enables us to estimate the generalization error from the training error 
without any knowledge of the true probability distribution. 

§1. Introduction 

Let M and N be natural numbers, and JRM and JRN be M and N 
dimensional real Euclidean spaces respectively. Assume that (D, B, P) 
is a probability space and that (X, Y) is an JRM x JRN -valued random 
variable which is subject to a simultaneous probability density function, 

q(x) ( 
q(x, y) = (21T0"2)N/2 exp 

where q(x) is a probability density function on JRM, O" > 0 is a constant, 
r0(x) is a measurable function from JRM to JR.N, and 1·1 is the Euclidean 
norm ofJRN. The function r 0 (x) is called a regression function of q(x, y). 
Assume that {(Xi, Yi); i = 1, 2, ... , n} is a set of random variables which 
are independently subject to the same probability distribution as (X, Y). 
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Let W be a subset of ~d. Let r(x, w) be a function from ~M x W to 
~N. The square error H(w) is a real function on W, 

1 n 

H(w) = 2 L IYi- r(Xi, w)l 2 . 

i=l 

An expectation operator Ew [ ] on W is defined by 

(1) 
J F(w) exp( -(3H(w))cp(w)dw 

Ew[F(w)] = J , 
exp( -(3H( w))cp( w)dw 

where F( w) is a measurable function, cp( w) is a probability density func­
tion on W, and (3 > 0 is a constant called an inverse temperature. 
Note that Ew[F(w)] is not a constant but a random variable because 
H(w) depends on random variables. Two random variables G and Tare 
defined by 

G 
1 2 
2ExEy[IY- Ew[r(X,w)]l ], 

T = 
1 n 

2n L IYi- Ew[r(Xi,w)W, 
•=1 

where ExEy[ ] shows the expectation value over the random variable 
(X, Y). These random variables G and Tare called the generalization 
and training errors respectively. Since Ex,Y[IY- r0 (X)I 2] = NiJ2 , it is 
expected on some natural conditions that both E[G] and E[T] converge 
to S = N IJ2 /2 when n tends to infinity if there exists w0 E W such that 
r(x, w0 ) = r0 (x). In this paper, we ask how fast such convergences are, 
in other words, our study concerns with a limit theorem which shows 
the convergences n(E[G] - S) and n(E[T] - S), when n ----+ oo. If the 
Fisher information matrix 

where Oi = (8/owi) and · shows the inner product of ~N, is positive 
definite for arbitrary w E W, then this problem is well known as a regu­
lar regression problem. In fact, in a regular regression problem, conver­
gences n(E[G]- S) ----+ d1J2 /2 and n(E[T]- S) ----+ -d!J2 /2 hold. However, 
if I( wo) = { Iij ( wo)} is singular, that is to say, if det I( w0 ) = 0, then 
the problem is called a singular regression problem and convergences of 
n(E[G]- S) and n(E[T]- S) have been left unknown. 
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In general, it has been difficult to study a limit theorem for the case 
when the Fisher information matrix is singular. However, recently, we 
have shown that a limit theorem can be established based on resolution 
of singularities, and that there are mathematical relations between the 
limit theorem and two birational invariants in singular density estima­
tion (16, 17, 18]. 

In this paper, we prove a new limit theorem for the singular regres­
sion problem, which enables us to estimate birational invariants from 
random samples. The limit theorem proved in this paper has an im­
portant application to statistics, because the expectation value of the 
generalization error E(G] can be estimated from that of the training 
error E[T] without any knowledge of the true probability distribution. 

Example. Let M = N = 1, d = 4, w = (a,b,c,d), and W ={wE 
IR4 ; lwl:::; 1}. If the function r(x,w) is defined by 

r(x, w) = asin(bx) + csin(dx), 

and r0 (x) = 0, then the set {wE W;r(x,w) = r0 (x)} consists of not 
one point but of an analytic set, and the Fisher information matrix at 
(a, b, c, d) = (0, 0, 0, 0) is singular. A lot of functions used in statistics, 
information science, brain informatics, and bio-informatics are singu­
lar, for example, artificial neural networks, radial basis functions, and 
wavelet functions. 

§2. Main results 

We prove the main theorems based on the following assumptions. 
Lets 2: 4 be a natural number which is equal to 4 times of some integer. 
Each theorem or lemma in this paper depends on the natural numbers. 

Basic assumptions. 
(A1) The set of parameters W is defined by 

W ={wE :!Rd; ?Tj(w) 2: 0 (j = 1, 2, ... , J)}, 

where ?Tj(w) is a real analytic function. It is assumed that W is a com­
pact set in JRd whose open kernel is not the empty set. The probability 
density function cp( w) on W is given by 

where cp1 ( w) 2: 0 is a real analytic function and cp2 ( w) > 0 is a function 
of class coo. 
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(A2) There exists an open set W* ~ W such that r(x, w) - ro(x) is an 
L 8 (q)-valued analytic function on W*, where L 8 (q) is a Banach space 
defined by using its norm I Is, 

U(q) = {!; lfls = (j lf(xWq(x)dx) l/s < oo}. 

(A3) There exists a parameter w0 in the open kernel of W such that 
r(x, wo) = ro(x). 

If these basic assumptions are satisfied, then 

(2) K(w) = ~ J lr(x, w)- ro(xWq(x)dx 

is a real analytic function on W*. A subset Wa C W is defined by 

Wa = { w E W ; K ( w) ::; a}. 

Note that W0 is the set of all points that satisfy K(w) = 0. In general, 
W0 is not one point and it contains singularities. This paper gives a 
limit theorem for such a case. Proofs of lemmas and theorems in this 
section are given in section 6. 

Remarks. (1) If s' > s, then by the Holder inequality, l!ls' 2': lfls· 
Hence if the assumption (A2) with s' holds, then (A2) with s also holds. 
(2) The set of the assumptions (Al), (A2), and (A3) is a sufficient con­
dition for Theorems. It is an important future study to generalize as­
sumptions. 

Lemma 1. Assume (A1), (A2), and (A3) with s 2': 4. Then 

((z) = fw K(w)zrp(w)dw 

is a holomorphic function on Re(z) > 0 which can be analytically con­
tinued to the unique meromorphic function on the entire complex plane 
whose poles are all real, negative, and rational numbers. 

Lemma 2. Assume (A1), (A2), and (A3) with s 2': 8. Then there 
exists a constant v = v((3) 2': 0 such that 

n 

V = L(Ew[ lr(Xi,w)l 2 ] -I Ew[r(Xi,w)J 12 ) 

i=l 
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satisfies 

(3) lim E[V] = 2v. 
n---+oo j3 

Based on Lemma 1 and 2, we define two important values .X, v > 0. 

Definition 2.1. Let the largest pole of ((z) be (-.X) and its order 
m. The constant .X > 0 is called a real log canonical threshold. The 
constant v = v((3) is referred to as a singular fluctuation. 

The real log canonical threshold is an important invariant of an an­
alytic set K ( w) = 0. For its relation to algebraic geometry and algebraic 
analysis, see [4, 5, 6, 9, 10, 11]. The value .X is also important in statisti­
cal learning theory, which can be calculated by resolution of singularities 
[16, 3]. The singular fluctuation is an invariant of K(w) = 0 which is 
found in statistical learning theory [15, 18], whose relation to singularity 
theory is still unknown. The followings are main theorems of this paper. 

Theorem 1. Assume the basic assumptions {A1), {A2), and {A3) 
with s 2:: 8. LetS= N u 2 /2. Then 

.X- v 2 
--+vu 

(3 ' 
(4) lim n(E[G] - S) 

n->oo 

(5) lim n(E[T] - S) 
n->oo 

.X- v 2 
-(3- -VO". 

This theorem shows that both the real log canonical threshold .X and 
singular fluctuation v determine the singular regression problem. 

Theorem 2. Assume the basic assumptions {A1), {A2), and {A3) 
with s 2:: 12. Then 

E[ G] = E [ ( 1 + ~:) T] + On, 

where On is a function of n which satisfies non --+ 0. 

This theorem shows the following fact. The values V and T can be 
calculated from random samples (X1, Yl), · · · , (Xn, Yn) and the statis­
tical model r(x, w) without any direct knowledge of the true regression 
function r 0 (x). The generalization error E[G] can be estimated from T 
and V, resulting that we can find the optimal model or hyperparame­
ter for the smallest generalization error. If the model is regular, then 
.X = v = d/2 for arbitrary 0 < (3 ::; oo, resulting that Theorem 2 coin­
cides with AIC [1] of a regular statistical model. Therefore, Theorem 2 
is a widely applicable information criterion, which we can apply to both 
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regular and singular problems. In other words, we can use Theorem 2 
without checking that the true distribution is a singularity or not. Note 
that Theorem 2 holds even if the true distribution is not contained in 
the statistical models [19]. 

§3. Preparation of Proof 

We use notations, S = N a 2 /2 and 

Si = Yi - ro(Xi), 

f(x,w) = r(x,w)-ro(x). 

Then {Si} are independent random variables which are subject to the 
normal distribution with average zero and covariance matrix a 2 I where 
I is the d x d identity matrix. It is immediately derived that 

1 n 

E[T] = S- E[; LSi· Ew[f(Xi,w)J] 

E[G] 

E[V] 

•=1 
1 n 

+E[2 L IEw[f(Xi, w)W], 
n i=1 

1 
S + 2E[Ex[IEw[f(X, w)WJJ, 

n 

= E[L{Ew[lf(Xi,wWJ-IEw[f(Xi,w)W}]. 
i=1 

The function f(x,w) is an U(q)-valued analytic function on W*. In 
eq.(1), we can define Ew[ ] by replacing H(w) by Ho(w), 

1 n n 

Ho(w) = 2 L lf(Xi,w)l 2 - LSi· f(Xi,w). 
i=1 i=1 

Moreover, H 0 (w) can be rewritten as 

Ho(w) = nK(w)- v'n 'fln(w), 

where K(w) is given in eq.(2), and 

ry~1)(w) + ry~)(w), 
1 n 

yn 8 Si · f(Xi, w), 

Jn t(K(w)- ~lf(Xi,w)l2 ). 
•=1 
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We define a norm II II of a function ofF on W by 

IIFII = sup IF(w)l. 
wEW 

Since W is a compact set of JR?.d, the set B(W) that is a set of all con­

tinuous and bounded function on W is a Polish space, and both 77~1 ) ( w) 
and 77~2)(w) are B(W)-valued random variables. Because f(X,w) is an 

L 8 ( q)-valued analytic function, { 77~1)} and { 77~2)} are uniformly tight 
random processes. Let 77( 1) and 77( 2) be respectively the tight gaussian 
processes which have the same expectations and the same covariance 
matrices as 77~1 ) and 77~2). It is well known in empirical process the­
ory that 77~1 ) and 77~2) weakly converge to 17(1) and 77(2) respectively, as 
n ---+ oo [13, 17, 18]. 

Lemma 3. Assume (A1), (A2), and (A3) with s 2: 8. Then 

E[ll77~1 ) 11 8
] < oo, 

E[ll77~2) lls/2 ] < 00, 

Proof. Since f(x, w) is an U(q)-valued analytic function, it is rep­
resented by the absolutely convergent power series f(x, w) = Lj aj(x)wi 
which satisfies lai(x)l ::::; M(x)jri for some function M(x) E L 8 (q) where 
r = (r1 , .. , rd) is the associative convergence radii. By using this fact, 
the former inequality is proved [17, 18]. Also K(w)- (1/2)f(x,w) 2 

is an £BI2 (q)-valued analytic function, the latter inequality is proved. 
Q.E.D. 

Lemma 4. Assume (A1), (A2), and (A3) with s > 4. For an 
arbitrary natural number n, 

E[Ew[Vn 77~1l(w)]] 

E[Ew[vn 77~2) (w)]] 

0"2,6E[V], 
1 n 

E[Ew[nK(w)- 2 L lf(Xi, wWJJ. 
i=1 

Proof. The second equation is trivial. Let us prove the first equa­
tion. Since { Si; i = 1, 2, · · · , n} are independently subject to the normal 
distribution with the average 0 and the covariance matrix 0"2 I, it follows 
that 
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where F(x) is a function of x E IRN which satisfies 

lim e-lxi 2
/ 2 1F(x)l = 0, 

lxl-+oo 

J e-lxi 2
/ 2 IV'F(x)ldx < oo, 

and \7 S; is defined by 

Let the left hand side of the first equation be A. Because H 0 (w) is a 
function of si, it follows that, 

n 

A = E[Lsi · Ew[f(Xi,w)J] 
i=l 

n 

0" 2E[LY's; · Ew[f(Xi,w)J] 
i=l 

0"2 E[t \7 S· . (f f(Xi, w) exp( -{3Ho(w))cp(w)dw )] 
i=l ' J exp( -{3Ho(w))cp(w)dw 

n 

{30"2E[LEw[lf(Xi,w)I 2]-IEw[f(Xi,w)W], 
i=l 

which is equal to the right hand side of the first equation. Q.E.D. 

Definition 3.1. Let us define five random variables. 

D1 nEw[ Ex[ lf(X, w)l 2 ]], 

D2 nEx[ I Ew[f(X, w)]l 2 ], 

n 
D3 LEw[ lf(Xi, w)l 2 ], 

i=l 
n 

D4 L I Ew[f(Xi,w)]l 2 , 

i=l 
D5 = Ew[Vn 1Jn(w)]. 



(6) 

(7) 

(8) 

(9) 
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Then, by using Lemma 4, it follows that 

E[G] 

E[T] 
E[V] 

E[D5] 

1 
S + -E[D2], 

2n 
(3cr2 1 

S- -E[D3- D4] + -E[D4], 
n 2n 

E[D3- D4], 

(3cr 2 E[D3- D4] + (1/2)E[D1- D3]. 

481 

We show that five expectation values E[D1] (j = 1, 2, 3, 4, 5) con­
verge to constants. To show such convergences, it is sufficient to prove 
that each Dj weakly converges to some random variable and that E[(Dj ) 1+8] < 
C for some o > 0 and constant C > 0 [13]. 

Definition 3.2. For a given constant E > 0, a localized expectation 
operator E:V [ ] is defined by 

(10) 

{ F(w) exp( -(3H0 (w))cp(w)dw 
E~ [F( w)] = ---'} K-'('--,wf-=-)<=-E ________ _ 

{ exp(-(3H0 ( w) )cp( w )dw 
JK(w)~E 

Let D'f (i = 1, 2, 3, 4, 5) be random variables that are defined by replacing 
Ew[ ] by E:V[ ]. 

Lemma 5. Assume (A1), (A2), and (A3) with s 2: 8. Let 0 < o < 
s/4- 1. For arbitrary E > 0, j = 1, 2, 3, 4, 5, 

lim E[[Dj- Dj[l+8] = 0. 
n->oo 

Proof. We can prove five equations by the same way. Let us prove 
the case j = 3. Let L(w) = 2:::~= 1 [!(Xi, w)[ 2 . Because f(x, w) is U(q)­
valued analytic function, E[([[L[[/n) 1+8] < oo. 

{ L(w) exp( -f3Ho(w))cp(w)dw 
JK(w)>E 

f exp( -f3Ho(w))cp(w)dw 
JK(w)~E 

< 
[[L[[ e-n,i3E+2J3vnll'7nll 

JK(w)~E exp( -(JnK(w))cp(w)dw 

::;:; C1 n>-[[L[[ exp( -n(JE/2 + (2(3/E)[[77n[[ 2 ) 
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where we used 2foll17nll :S (m/2 + (2/t)ll17nll 2) and a lower bound, 

{ exp(-f3nK(w))cp(w)dw;::: 0
1 >. 

JK(w)'S,E 1n 

with a constant C1 > 0 [16]. From Lemma 3, E[ll17nlls/2] = C2 < oo, 
hence by using c3 = (8t:2)8 14 C2, 

Let E[F]A be the expectation value of F(x)IA(x) where IA(x) is the 
defining function of a set A, in other words, IA(x) = 1 if x E A or 0 if 
otherwise. 

E[ID3- D31 1+<'] = E[ID3- D31 1+<']{11'17nll2~n/(8E2)} 

+E[ID3- D311+8]{11'17nll2<n/(sE2)}· 

The first term of the right hand side is not larger than C3E[IILII 1+<']/n8 / 4 

and the second term is not larger than E[(C1IILII)1+<']nd/2 exp( -n/3t/4). 
Both of them converge to zero. Q.E.D. 

§4. Resolution of singularities 

To study the expectation on the region WE we need resolution of 
singularities because W0 contains singularities in general. Let E > 0 be a 
sufficiently small constant. Then by applying Hironaka's theorem [7] to 
the real analytic function K ( w) Tif=1 1r'j ( w )'PI ( w), all functions K ( w), 
nj(w), and cp1 (w) are made normal crossing. In fact, there exist an open 
set WE* C W* which contains WE, a manifold U*, and a proper analytic 
map g : U* --+ WE* such that in each local coordinate of U*, 

K(g(u)) 

cp(g(u))lg(u)'l 

where k = (k1, ... , kd) and h = (h1, ... , hd) are multi-indices (kk and h1 
are nonnegative integers) and 

d 

U 2k IT 2kj 
uj , 

j=l 

d 

uh IT u7i. 
j=l 
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Here lg(u)'l is the absolute value of Jacobian determinant of w = g(u), 
and ¢(u) > 0 is a function of class c=. Let U = g-1(W,). Since g is 
a proper map and W, is compact, U is also compact. Moreover, it is 
covered by a finite sum 

U = UaUc., 

where each Ua can be taken to be [0, b]d in each local coordinate using 
some b > 0, and 

r F(w)cp(w)dw = L 1 F(g(u))¢a(u)iuhidu, 
Jvv. a Ua 

where ¢a ( u) 2:: 0 is a function of class coo. In this paper, we apply 
these facts to analyzing the singular regression problem. For resolution 
of singularities and its applications, see [7] and [4],[16]. Lemma 1 is 
directly proved by these facts [4, 8, 16]. Moreover, the following lemma 
is simultaneously obtained. 

Lemma 6. Assume (A1}; (A2}, and (A3} with s 2:: 4. The largest 
pole (-.A) and its order m of ((z) are given by 

(11) 

(12) m = 

where, if kj = 0, (hJ+ 1 + 1)/2kj is defined to be +oo and # shows 
the number of elements of the set. Let {Ua•} be the set of all local 
coordinates that attain both mina in eq.(11} and maxa in eq.(12}. Such 
coordinates are referred to as the essential coordinates. 

For a given real analytic function K(w), there are infinitely many 
different resolutions of singularities. Although the multi-indices k and h 
depend on the choise of resolution, the constants .A and m do not depend 
on the pair (U*, g). Such values are called birational invariants. By the 
definition of K(w) in eq.(2), 

(13) K(g(u)) = ~ j lf(x,g(u))l 2q(x)dx. 

Because K(g(u)) = u2k and f(x,g(u)) is an L8 (q)-valued analytic func­
tion with s 2:: 4, there exists an U(q)-valued analytic function a(x,u) 
on each local coordinate in U* such that 

f(x, u) = a(x, u)uk 
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and Ex[la(X,u)J2] = 2. Therefore, 

Ho(g(u)) = n u2k- vn uk ~.;,(u), 

where 

(14) 1 ~ 1 ~ k( a(Xi,u)2 ) 
~n(u)= vn£;tSi·a(Xi,u)+ .Jii£;tu 1- 2 . 

Then E[ll~nlls/2 ] < oo and E[ll\7~nllsf2] < oo, because both a(x,u) and 
\7a(x,u) are U(q)-valued analytic function, where ll\7~nll 
maxi supu l8j~n(u)l. The function ~n(u) is defined on each local co­
ordinate in U, which is an empirical process on each local coordinate. 
By the same way as Lemma 3, it converges in law to the tight gaussian 
process which is denoted by ~(u). The expectation operator Eu[ ] on U 
is defined so that it satisfies E:V[F(w)] = Eu[F(g(u))]. Then 

D€ 1 nEu[2u2k], 
D€ 2 nEx[IEu[a(X, u)ukWJ, 

n 
D3 ~Eu[la(Xi,uWu2k], 

i=1 
n 

D€ 
4 = ~ IEu[a(Xi,u)ukW, 

i=1 
D€ 

5 Eu[Vn~n(u)uk]. 

Lemma 7. Assume {A1}, {A2}, and {A3} with s 2: 12 and 0 < 8 < 
s/6 - 1. For i = 1, 2, 3, 4, 5, there exists a constant C > 0 such that 
E[(Di)1+<'] < C holds. 

Proof. Since 0 ~ D4 ~ D§, 0 ~ D~ ~ Di, and ID~I ~ (ll~nll 2 + 
2Di) /2, it is sufficient to prove j = 1, 3. The proof for j = 1, 3 can be 
done by the same way. Let us prove the case j = 3. In l = 1, 2, .. , d, at 
least one of kz 2: 1. By using partial integration for duz, we can show 
that there exists c1 > 0 such that 

(15) 

Therefore by using L = (1/n) 2:.:~= 1 lla(Xi)ll2 and Holder's inequality 
with 1/3 + 1/(3/2) = 1, 

E[(D3)1+8] ~ E[(c1L(1 + ll~nll 2 + ll\7~nll 2)) 1+8] 
~ E[(c1£)3+3opf3E[(1 + ll~nll2 + ll\7~nll2)(3+38)/2p/2. 
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Since E[lla(X)I/ 8 ] < oo, E[ll~nlls/2] < oo, and E[IIV~nl/ 812 ] < oo, this 
expectation is finite. Q.E.D. 

§5. Renormalized distribution 

Definition 5.1. For a given function h(u) on U, the renormalized 
expectation operator E~,t[ lh] is defined by 

where D(du) is a measure which is defined in eq.(20} and La• shows 
the sum of all essential coordinates. Also we define 

Di(h) 

DHh) 

D5(h) 

E~,t[2tih], 

Ex[IE~ tfa(X, u)v'tWih], 
' 

E~ tfh(u)Vtih]. , 

Lemma 8. Assume (A1}, (A2}, and (A3} with s ~ 12. The follow­
ing convergences in probability hold. 

D~- Di(~n) -+ 0, 

D2- D2(~n) -+ 0, 

D3- Di(~n) -+ 0, 

D4- D2(~n) -+ 0, 

D~- D5(~n) -+ 0. 

Proof. These five convergences can be proved by the same way. 
We show D3- Di(~n)-+ 0. Let L(u) = (1/n) L~=1 ia(Xi,u)i 2 • Since 
Ex[la(X,u)i 2 ] = 2, 

ID3- Di(~n)l < IEu[nL(u)u2k]- Eu[Ex[a(X,u)2 ]u2k]l 

+1Eu[2u2k]- E~,t[2tl~n]l. 

Let the first and second terms of the left hand side of this inequality be 
D6 and D7 respectively. Then 
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By the convergence in probability IlL - a(X)II -+ 0 and eq.(15), D6 
converges to zero in probability. From Lemma 10 and 11 in Appendix, 
it is derived that 

(16) 

which shows D 7 -+ 0 in probability. Q.E.D. 

Lemma 9. Assume (A1}, (A2}, and (A3} with s;:: 12. For arbi­
trary function h( u), the following equality holds. 

Proof. Let Fp(u) be a function defined by 

Then by using the partial integration of dt, 

1 >.. 
H(u) = 2h(u)F1;2 (u) + {iFo(u). 

By the definition of Di(h) = E~ tl2tlh] and Df,(h) = E~ t[h(u)vtlh], we 
obtain the lemma. ' ' Q.E.D. 

§6. Proof of Main Theorems 

6.1. Proof of Lemma 1 

Proof. Lemma 1 is already proved in section 4. Q.E.D. 

6.2. Proof of Lemma 2 

Proof. By the definition, V = D3 - D4 . By Lemma 5 and 7, 
E[V1+8] < oo. Reali that the convergence in law ~n -+ ~ holds. The 
random variable Di(~n)- D2,(~n) is a continuous function of ~n, hence 
it converges to a random variable Di(~)- D2,(~) in law. Therefore, by 
Lemma 5 and 8, D 3 - D 4 converges to the same random variable in law. 
Hence E[V] converges to a constant when n tends to infinity. Q.E.D. 
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6.3. Proof of Theorem 1 

Proof. By the same way as proof of Lemma 2, both E[D1] and 
E[D3] converge to E[Di(~)] whereas both E[D2] and E[D4] converge to 
E[D2(~)]. From eqs.(6), (7), and (8) 

E[n(G- S)] -+ ~E[D2(~)], 

E[n(T- S)] -+ -2u2v + ~E[D2(~)], 
E[V] -+ E[Di(~)] - E[D2(~)], 

where we used the definition of v, that is to say, E[Di(~) - D2(~)] = 
2vj(3. From Lemma 9, 

resulting that 

[ * ( )] 2 2>. - 2v E D 2 ~ = 2u v + (3 , 

which completes the theorem. 

(17) 

(18) 

6.4. Proof of Theorem 2 

Proof. From Theorem 1, 

E[G] Nu2 (>.-v 2)1 
- 2- + - 13- + VO" n +On, 

E[T] Nu2 (>.-v 2)1 - 2- + - 13- - VO" n +On, 

where non -+ 0. Therefore 

E[G] 
2vu2 

E[T]+-+on 
n 

E[T] (1 + 213!lV]) +On. 

Q.E.D. 

To prove Theorem 2, it is sufficient to show E[VT]- E[V]E[T]-+ 0. 

Since s/4- 1 ~ 2, 
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Let 8(n) = ~ I:7=ll8il2/2, 8 = CT2Nj2. Then 

E[(T- E[T])2] ~ 3E[(T- 3Cnl)2 + (8(n) - 8)2 + (8- E[T])2]. 

Firstly, from 

we obtain 
E[(T _ 8 (n))2] ~ 2E[I!17nil 2] + E[D~], 

n n 
which converges to zero. Secondly, {8i} are independently subject to 
the normal distribution, hence E[(8(n)- 8)2] ---+ 0. And lastly, by using 
eq.(18), E[(E[T]-8)2] = (E[T]-8) 2 converges to zero, which completes 
the proof. Q.E.D. 

§7. Discussion 

In this paper, we proved a limit theorem in a singular regression 
problem. In general statistical estimation problems, a true probabil­
ity density function q(x) on IRN is estimated by a parametric density 
function p(xiw), where wE JRd. Also in such problems, there are math­
ematical issues caused by the singular Fisher information m~trix. There 
are some mathematical results for general statistical estimation problems 
[14, 18]. 

From the statistical point of view, the regression problem might be 
understood as a special one contained in the general statistical estima­
tion problems. In fact, in a regression problem, it seems that the true 
probability density function q(x, y) is estimated by using the parametric 
probability density function, 

q(x) ( iy-r(x,w)i2) 
p(x, yiw) = (27ra2)N/2 exp 2a2 . 

However, there are some mathematical differences between the general 
statistical estimation problems and a regression problem. 

Firstly, in the regression problem of this paper, the standard de­
viation O" of the true distribution is not directly estimated. Strictly 
speaking, the Kullback-Leibler distance between q(x, y) and the Bayes 
predictive distribution Ew [p(x, yiw )] is not equal to the generalization 
error defined by the square error G in this paper. The formula in The­
orem 2 are given only in the regression problem. 

Secondly, in general statistical estimation problems, K(w) is not 
equal to the square error of the log density ratio function, hence eq.(13) 
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does not hold, resulting that we need the different assumptions and 
proofs to obtain theorems. Therefore the results of the general statstical 
estimation does not contain the results of this paper mathematically. 

And lastly, in general statistical estimation problems, Lemma 4 does 
not hold, because, in the proof of this lemma, we used the fact that { si} 
are subject to the normal distribution. In general statistical estimation 
problems, we need the different assumptions and proofs in stead of this 
lemma. 

By these reasons, although a regression problem has a strong re­
lation to the general statistical estimation problems, the former is not 
contained in the latter. In this paper, we mainly studied a regression 
problem, and proved a limit theorem in a regression problem. 

§8. Conclusion 

In this paper, we proved that a singular regression problem is mathe­
matically determined by two birational invariants, the real log canonical 
threshold and the singular fluctuation. Moreover, there is a universal re­
lation between the generalization error and the training error, by which 
we can estimate two birational invariants from random samples. 

§ Appendix 

In the proof of eq.(16), we used the following lemmas. 
Let~ and c.p are functions of C 1 class from [0, b]d toR Assume that 

c.p(u) > 0, u = (x,y) E [O,b]d. The partition function of~' c.p, n > 1, and 
p :::: 0 is defined by 

ZP(n, ~' c.p) r dx r dy K(x, y)P xhyh' c.p(x, y) 
J[O,b]'"' J[O,b]d-rn 

(19) x exp( -n;J K(x, y) 2 + ,fii;J K(x, y) ~(x, y)). 

where K(x, y) = xkyk'. Let us use 

11~11 

IIV~II 

max l~(x, y)l, 
(x,y)E[O,b]d 

max max 1 a~ 1· 
l~j~m (x,y)E[O,b]d 8Xj 

Without loss of generality, we can assume that four multi-indices k, k', h, 
h' satisfy 

h1 + 1 hr + 1 , hj + 1 -- = ··· = -- = /\ < --1- (j = m+ 1,m+2, ... ,d). 
2kl 2km 2kj 
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In this appendix, we define a( n, p) = (log n) m-l / n .>.+p. 

Lemma 10. There exist constants c1 , c2 > 0 such that for arbitrary 
~and cp (cp(x) > 0 E [O,b]d) and an arbitrary natural number n > 1, 

cl a(n,p) e-~11~112/2min(rp):::; ZP(n,~,cp):::; c2 a(n,p) e~ll~ll2/2 llrpll 

holds, where min(rp) = min rp(u). 
uE[O,b]d 

Let ~ and cp be functions of class C1 . We define 

YP(n, ~' rp) = 'Y a(n,p) r)() dt r dy e-.+p-lyve-~t+~Vi~o(Y)tpo(y), 
Jo J[o,b]d-rn 

where we use notations, 'Y = blhl+m- 21kl>-/(2m(m-1)! IJ~=m+l k1), ~0 (y) = 
~(0, y), rp0 (y) = rp(O, y), p, = h'-2>.k'. A measure D(du) on JRI.d is defined 
by 

(20) D(du) = "fb(x)y~-Ldy. 

Lemma 11. There exists a constant c3 > 0 such that, for arbitrary 
n > 1, ~' cp, and p 2: 0, 

IZP(n,~,cp)- YP(n,~,rp)l 

:::; c1 a(n,p) e~ 11 ~ 11212 {;311V~IIIIrpll + IIVrpll + llrpll}. 
logn 

Moreover, there exist constant c4 , c5 > 0 such that, for arbitrary ~' cp, 
n > 1, 

Proof. Lemmas 10 and 11 are proved by direct but rather compli­
cated calculations. They are shown by applying Theorems 28 and 29 in 
[17] or directly in Theorems 4.8 and 4.9 in [18]. 

Let us introduce the outline of the proof. Let Fp(x, y) be the inte­
grated function in eq.(19) and ZP = ZP(n, ~' ¢). 

ZP = j dx j dyFp(x, y), 

which is equal to 

(21) ZP = roo dt r dx dy 6(t- K(x, y) 2 ) Fp(x, y). 
lo J[o,b]d 
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Therefore, the problem results in o(t- K(x, y)2). For arbitrary function 
w(x, y) of class coo' the function 

((z) = { K(x, y)2zw(x, y) dxdy 
J[o,b]d 

is the meromorphic function whose poles are (-Aj) and its order mi, 
hence it has Laurent expansion, 

~ cj(w) 
((z) = (o(z) + ~ (z + >. ·)mi, 

J=l J 

where (o(z) is a holomorphic function and Cj(W) is a Schwartz distribu­
tion. Since I o(t- K(x, y) 2 )w(x, y)dxdy is the Mellin transform of ((z), 
we have an asymptotic expansion of o(t- K(x, y) 2) fort--> +0, 

00 ffij 

o(t- K(x, y)2 ) = L L t>·i-1 ( -logt)m-lCjm(x, y), 
j=l m=l 

where Cjm(x,y) is a Schwartz distribution. By applying this expansion 
to eq.(21), we obtain two lemmas. Q.E.D. 
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