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Optimal transport and Ricci curvature 
m Finsler geometry 

Shin-ichi Ohta 

Abstract. 

This is a survey article on recent progress (in [Oh3], [OS]) of the 
theory of weighted Ricci curvature in Finsler geometry. Optimal trans­
port theory plays an impressive role as is developed in the Riemannian 
case by Lott, Sturm and Villani. 

§1. Introduction 

A Finsler manifold is a generalization of a Riemannian manifold 
admitting its tangent spaces being Banach spaces or, more generally, 
Minkowski spaces. Then a natural question is: Is there a canonical 
measure associated with each Finsler manifold? Generally speaking, 
the answer is no. There are several constructive measures, such as 
the Busemann-Hausdorff measure and the Holmes-Thompson measure, 
each of which is canonical in some sense (see [AT]). One strategy for 
dealing with this difficulty is not to choose one specific measure and 
to consider an arbitrary measure in the first place, like the theory of 
weighted Riemannian manifolds. 

In weighted Riemannian geometry, we decompose given a measure m 
on a Riemannian manifold Minto m = e-1/J volM using the Riemannian 
volume element volM. Then the weight function 'ljJ plays an important 
role, for instance, the Bakry-Emery tensor Ric+ Hess 'ljJ is known to 
behave like the (infinite dimensional) Ricci curvature of this weighted 
space. In order to follow this line in our Finsler setting, we need a 
reference measure like volM. Our idea is that the reference measure 
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does not live in the manifold, but in the unit sphere bundle. More 
precisely, we do not fix one reference measure, but choose a reference 
measure for each given unit tangent vector. At this point we are indebted 
to Sherr's extremely useful interpretation of flag and Ricci curvatures. 
Then it turns out that many results in (weighted) Riemannian geometry 
involving Ricci curvature can be translated into Finsler geometry. 

One of the highlights stems from the connection with optimal trans­
port theory. The curvature-dimension condition and the N-Ricci curva­
ture bound are equivalent to the lower weighted Ricci curvature bound 
(Theorem 4.2) as is established in the Riemannian case by Lott, Sturm 
and Villani. This theorem has fruitful applications in interpolation in­
equalities, functional inequalities and the concentration of measure phe­
nomenon. 

Moreover, beyond just a generalization of the Riemannian case, this 
result has potential applications in at least two directions. One direction 
is the approximation of new kinds of spaces. The curvature-dimension 
condition is stable under the measured Gromov-Hausdorff convergence, 
but even Banach spaces can not be approximated by Riemannian man­
ifolds with a uniform lower Ricci· curvature bound. Therefore the limit 
of Finsler manifolds covers much wider class of spaces than that of Rie­
mannian manifolds. For instance, Cordero-Erausquin's result on the 
curvature-dimension condition of Banach spaces (see (Vi2, Theorem in 
page 908]) is an immediate consequence of Theorem 4.2. The other di­
rection is the connection with Banach space theory. Finsler geometry 
stands at the intersection of Riemannian geometry and the geometry of 
Banach spaces, and our results make it possible to study Banach spaces 
in a differential geometric way. 

The article is organized as follows. In Sections 2 and 3, we briefly re­
view the basics of Finsler geometry and optimal transport theory; Then 
Section 4 is devoted to Lott, Sturm and Villani's curvature-dimension 
condition (and N-Ricci curvature bound) and its applications. Finally, 
we discuss heat flow on Finsler manifolds in Section 5. 

Throughout the article, without otherwise indicated, (M, F) is a 
connected, forward complete, n-dimensional C 00-Finsler manifold with 
n ~ 2, and m is an arbitrary positive G 00-measure on M. 

§2. Finsler geometry 

We first review the basics of Finsler geometry as well as recently 
introduced weighted Ricci curvature. We refer to (BCS], (Sh2], (Oh3] 
and (OS] for further reading. 
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2.1. Finsler structures 

Let M be a connected, n-dimensional c=-manifold and denote by 
1r: TM--+ M the natural projection. Given a localcoordinate system 
(xi)r=l : U --+ Rn on an open set U c M, we will always denote by 
(xi,vi)r=l the local coordinate system on 1r-1(U) c TM given by, for 
v E 1r-1 (U), 

n . a 
v = L v' 8xi l?r(v). 

•=1 

Definition 2.1. (Finsler structures) A C 00 -Finsler structure of a 
C 00-manifold M is a function F : T M --+ [0, oo) satisfying the following 
conditions: 

(1) (Regularity) The function F is c= on T M \ 0, where 0 stands for 
the zero section. 

(2) (Positive homogeneity of degree 1) For any v E TM and positive 
number>.> 0, we have F(>.v) = >.F(v). 

(3) (Strong convexity) Given a local coordinate system (xi)r=l on U c 
M, then x n matrix 

(2.1) 

is positive-definite at every v E 1r-1 (U) \0. 

In other words, each tangent space (TxM, F) is a Minkowski space 
and F varies smoothly in the horizontal direction. We emphasize that, 
however, F is not necessarily absolutely homogeneous (or reversible), 
namely F(v) I= F( -v) may happen. It is sometimes helpful to consider 

+-
the reverse ofF, F(v) := F(-v), which turns everything around (e.g., 
distance and geodesics). 

For each v E TxM \ 0, the strong convexity gives the inner product 

on TxM. This 9v approximates Fin the sense that the unit sphere of 
the norm Fv(w) := Jgv(w,w) tangents to that ofF at v/F(v) up to the 
second order. Note that, ifF is coming from a Riemannian structure, 
then 9v always coincides with the original Riemannian structure. 

The Legendre transform .C* : T* M --+ T M associates each co­
vector o: E r;M with a unique vector v = .C*(o:) E TxM such that 
F( v) = F* ( o:) and o: · v = F* ( o: )2 , where F* stands for the dual 
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Minkowski norm of F on r; M and a · v is the canonical pairing be­
tween TxM and T;M. We remark that L*lr;M is linear only if Flr.,M 
is an inner product, and £* is not differentiable at the origin. For a 0 1-

function f : M - JR., we define the gradient vector of f at x E M as the 
Legendre transform of its differential, i.e., '\1 f(x) := £*(D f(x)) E TxM. 
By definition, '\1 f(x) points into the direction in which f increases the 
most. Observe that 

f(11(l))- f(17(0)) ~ 11 
F('\lf(17(t))) dt 

holds for any unit speed 0 1-curve 17: [0, Z] - M. Note the difference 
between '\1 (-f) and - '\1 f. 

For a 0 1-curve 17: [0, Z] - M, we define its arclength in a natural 
way by 

L(17) := 1l F(i](t)) dt, i](t) := ~~ (t). 
Then the corresponding distance function d : M x M - [0, oo) is 
given by d(x, y) := inf'IJ £(17), where the infimum is taken over all 0 1-

curves 17 from x to y. Unreversibility ofF causes nonsymmetry of d, 
that is, d(x,y) =f. d(y,x). We also remark that the squared distance 
function d(x, ·)2 is 0 2 at x if and only if Flr.,M is an inner product 
([Sh1, Proposition 2.2]). Given x EM and r > 0, we define the forward 
open ball of center x E M and radius r > 0 by 

B+(x,r) := {y E Mld(x,y) < r}. 

We also define the open ball in TxM by 

B:};.,M(O,r) := {v E TxMIF(v) < r}. 

We say that a c=-curve 17 : [0, l] - M is a geodesic if it is lo­
cally minimizing and has constant speed. Define the exponential map 
by expx(v) := 17(1) for v E TxM if there is a geodesic 17 : [0, 1] - M 
with i](O) = v. We say that (M, F) is forward complete if every geodesic 
17 : [0, l] - M is extended to a geodesic on [0, oo), in other words, if 
expx is defined on entire TxM. Then it follows from the Hopf-Rinow 
theorem (cf. [BCS, Theorem 6.6.1]) that every pair of two points in M 
can be joined by a minimal geodesic. 

For each unit vector v E TxM, let l(v) E (0, oo] be the supremum of 
l > 0 such that the geodesic expx tv is minimal fortE [0, Z]. If l(v) < oo, 
then the point expx(l(v)v) is called a cut point of x, and the cut locus 
Cut(x) of xis defined as the set of all cut points of x. 
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2.2. Flag and Ricci curvatures 

Flag curvature is a substitute of sectional curvature in Riemannian 
geometry. We follow the heuristic introduction due to Shen (see [Sh2, 
Chapter 6]). 

Fix a unit vector v E TxM and extend it to a 0 00-vector field on an 
open neighborhood U of x such that V(x) = v and every integral curve of 
Vis a geodesic. A typical example is V = V[d(17( -s), ·)] for sufficiently 
small s > 0, where 17 : [-s, s] ---+ M is the geodesic with 7](0) = v. 
The vector field V induces the Riemannian structure gv of U through 
(2.2). Then the flag curvature K(v,w) of v and a linearly independent 
vector w E TxM is the sectional curvature with respect to gv of the 
plane spanned by v and w. (We mean that K(v,w) is independent of 
the choice of the vector field V.) Similarly, the (Finsler) Ricci curvature 
Ric(v) of vis the (Riemannian) Ricci curvature of v with respect to gv. 
We remark that the flag curvature K( v, w) depends not only on the flag 
(the plane spanned by v and w), but also on the flagpole v. 

In this setting, for instance, the Bonnet-Myers theorem and the 
Cart an-Hadamard theorem are extended verbatim ( cf. [BCS, Theorems 
7.7.1, 9.4.1]). We recall several fundamental examples of Finsler mani­
folds. 

Example 2.2. (a) Every Minkowski space (lRn, F) has flat flag cur­
vature. Here F : JR.n ---+ [0, oo) is a positively homogeneous, strongly 
convex function and all tangent spaces are canonically identified with 
(JR.n' F). 

(b) Unit spheres of Minkowski spaces form an interesting family of 
Finsler manifolds, although the author does not know any good refer­
ence. There should be a connection with the geometry of Banach spaces. 

(c) The Hilbert metric on a bounded, open convex domain D C JR.n 
with smooth boundary such that D U 8D is strictly convex is known to 
arise from a Finsler metric of constant negative flag curvature. 

(d) The Teichmiiller metric on Teichmiiller space is arguably the 
most famous Finsler metric in differential geometry. 

(e) If a connected, simply-connected, forward complete Finsler man­
ifold of Berwald type has nonpositive flag curvature, then it is nonposi­
tively curved in the sense of Busemann (due to [KVK, Theorem 7] com­
bined with the Cartan-Hadamard theorem, see also [KK]). Roughly 
speaking, a Finsler manifold of Berwald type is modeled by a single 
Minkowski space (all tangent spaces are isometric to each other). Such 
Finsler manifolds form a reasonable class including both Riemannian 
manifolds and Banach spaces. 
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2.3. Weighted Ricci curvature 

We fix an arbitrary positive c=-measure m on M. Given a unit 
vector v E TxM, recall that v induces the inner product 9v on TxM 
through (2.1) and (2.2). Define the function Won the unit sphere bundle 
F-1(1) c TM by 

•T•( ) ·-l ( Wv(Rf.,M(O, 1))) "'v .- og + , 
mx(Br.,M(O, 1)) 

where Wv and mx stands for the Lebesgue measures on TxM induced 
from 9v and m, respectively. We can rewrite this as mx = e-w(v)wv, so 
that W is a weight function which lives in F-1 (1), not in M. For brevity, 
we set 

OvW := dd I w(r](t)), 
t t=O 

where rJ: (-c-,c-)---+ M is the geodesic with r](O) = v. Inspired by the 
theory of weighted Riemannian manifolds ([BE], [Qi], [Loll), we have 
introduced the following weighted Ricci curvature in [Oh3]. 

Definition 2.3. (Weighted Ricci curvature) Let (M, F) be ann­
dimensional C00-Finsler manifold (n ~ 2) and m be a positive c=­
measure on M. Given a unit vector v E TxM, we define 

(i) Ric (v) := { Ric(v) + a;w if 8vw ~ 0, 
n -oo otherwise, 

(ii) RicN(v) := Ric(v) + a;w- (ovW) 2 for N E (n, oo), 
N-n 

(iii) Ricoo(v) := Ric(v) + a;w. 
Note that Ric00 corresponds to the Bakry-Emery tensor and RicN 

is an analogue of Qian's generalized one. We also remark that bounding 
Ricn from below makes sense only when Ov W = 0 for all v. This is 
the case of the Busemann-Hausdorff measure on a Finsler manifold of 
Berwald type. However, the existence of such a measure seems a strong 
constraint among general Finsler manifolds. 

We define some functions for later convenience. For K E IR, N E 
(1,oo) andrE (O,oo) (r E (0,1fJ(N -1)/K) if K > 0), we define 

{ 
J(N -1)/Ksin(rJKj(N -1)) 

SK,N(r) := r 

J-(N -1)/Ksinh(rJ-Kj(N -1)) 

if K > 0, 

if K = 0, 

if K < 0. 
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In addition, fortE (0, 1), we define 

(2.3) (3t (r) := (SK,N(tr))N-1 

K,N ts (r) ' K,N 

Arguing as in weighted Riemannian manifolds (using the Riemannian 
structure gv induced from V = \ld(x, ·)),we immediately obtain a gen­
eralized Bishop-Gromov volume comparison theorem. 

Theorem 2.4. ([Oh3]) Assume that there are constants K E JR. and 
N E [n,oo) such that RicN(v) :::>: K holds for all unit vectors v E TM. 
Then we have diamM::; nJ(N -1)/K if K > 0 and, for any x EM 
and 0 < r < R (::; nJ(N- 1)/ K if K > 0), it holds that 

m(B+(x, R)) foR SK,N(t)N- 1 dt 
( ( < r . 

m B+ x, r)) - f0 SK,N(t)N- 1 dt 

Theorem 2.4 should be compared with Sherr's volume comparison 
theorem. 

Theorem 2.5. ([Sh1, Theorem 1.1], [Sh2, Theorem 16.1.1]) Assume 
that there are constants K E JR. and H :::>: 0 such that we have Ric( v) :::>: K 
and &v \1! :::>: - H for all unit vectors v E T M. Then we have, for any 
x EM and 0 < r < R (:S: nJ(n- 1)/ K if K > 0), 

m(B+(x, R)) foR etHSK,n(t)n-1 dt 
--~~~~< r . 
m(B+(x, r)) - f0 etHsK,n(t)n- 1 dt 

Sherr's theorem has a number of topological applications, however, 
its exponential term etH is troublesome relative to the estimate in The­
orem 2.4. 

§3. Optimal transport in Finsler manifolds 

In this section, we very briefly recall some basic knowledge of optimal 
transport theory for later use. We refer to [Vil] and recent comprehen­
sive [Vi2] for further reading. 

3.1. The Monge-Kantorovich problem and the Wasser­
stein distance 

Let (M, F) be a c=-Finsler manifold and denote by P(M) the set 
of Borel probability measures on M. For simplicity, we will restrict 
our attention to the subset Pc(M) C P(M) consisting of compactly 
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supported measures. Given f-L, v E Pc(M), the Monge problem asks how 
to find and characterize a map T : M ----+ M attaining the infimum of 

(3.1) 

among all maps pushing f-L forward to v (we will write it as T~f-L = v). The 
quantity (3.1) can regarded as the cost of transporting f-L to v according 
to the map T. 

Much later on, Kantorovich extended the Monge problem in a sym­
metric way. Define II(J.L, v) C P(M x M) as the set of couplings of (J.L, v), 
that is to say, n E IT(J.L, v) if n(A x M) = J.L(A) and n(M x A) = v(A) hold 
for any measurable set A C M (in other words, marginals of n are f-L and 
v). Then the Monge-Kantorovich problem is to find and characterize 
an optimal coupling n E II(J.L, v) attaining 

(3.2) inf r d(x,y) 2 dn(x,y). 
7rEll(!L,v) lMxM 

The square root of the infimum (3.2) is called the (L2 -) Wasserstein 
distance d'f (J.L, v) from f-L to v. Note that d'f (J.L, v) is not greater than 
the infimum of (3.1) in the Monge problem. 

It is known that (Pc(M), d'f) is an Alexandrov space of nonnega­
tive curvature if M is a Riemannian manifold of nonnegative sectional 
curvature. This relation can be generalized to Finsler manifolds by in­
troducing the notion of 2-uniform smoothness (see [Oh1], [Oh2], [Sa]). 

3.2. Optimal transport/coupling via (d2 /2)-convex func­
tions 

A function ifJ : M ----+ ffi. is said to be (d2 /2)-concave if there is a 
function 1/J : M ----+ ffi. such that 

VJ(x) = inf {d2 (x,y)j2- 1/J(y)} 
yEM 

holds for all x E M. Any (d2 /2)-concave function is Lipschitz contin­
uous and twice differentiable a.e. ([Oh2, Theorem 7.4]). We say that 
ifJ is (d2 /2)-convex if -VJ is (d2 /2)-concave. Then the Brenier-McCann 
characterization of optimal transport states the following. See [Br], [Me] 
for original work in Euclidean spaces and Riemannian manifolds. 

Theorem 3.1. ([Oh3]) For any f-L, v E Pc(M) such that f-L is ab­
solutely continuous, there exists a (d2 /2)-convex function ifJ : M ----+ ffi. 
such that the map T(x) := expx('VVJ(x)) is a unique optimal transport 
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from f-l to v in the sense that 1r := (IdM xT)~f-l is a unique optimal cou­
pling of (f-l, v). Furthermore, the curve (f..lt)tE[0,1] given by f-lt = (Tthf-l 
with Tt(x) = expx(tVcp(x)) is a unique minimal geodesic from f-l to v in 
(Pc(M), df). 

Thus the map T1 is a unique optimal tarisport from f-l to v. 

§4. The curvature-dimension condition and ·its applications 

This section is devoted to a main topic of the article, the equiva­
lence between the lower weighted Ricci curvature bound and Lott, Sturm 
and Villani's curvature-dimension condition as well as N-Ricci curvature 
bound. See [Oh3] for more details. 

4.1. The curvature-dimension condition 
In order to define the N-Ricci curvature bound, we recall the im­

portant classes of displacement convex functions (see [LV1], [LV2] for 
details). For N E [1, oo), denote by DC N the set of continuous convex 
functions U : [0, oo) ---+ lR such that U(O) = 0 and that the function 
cp(s) := sNU(s-N) is convex on (0, oo). We similarly define DC00 as the 
set of continuous convex functions U : [0, oo) ---+ lR such that U(O) = 0 
and that cp(s) := e8 U(e-s) is convex on JR. For an absolutely continuous 
measure f-l = pm E P(M), we define Um(f-l) := JM U(p) dm. We remark 
that DCN' C DCN if N < N'. 

The most important element ofDCN is U(r) = Nr(1-r- 11N) which 
derives the Renyi entropy Um(pm) = N- N JMp1- 11N dm. Letting N 
go to infinity provides U(r) = rlogr E DC00 as well as the relative 
entropy Entm(pm) := Um(pm) = JM plogpdm. 

By Theorem 3.1, given two absolutely continuous measures f-lo, /-l1 E 

Pc(M), there is a unique minimal geodesic (f..lt)tE[o,1] frompo to f-l1 in the 
Wasserstein space (Pc(M), df). Moreover, every f-lt is absolutely con­
tinuous (see [Oh3]). Recall (2.3) for the definition of the function /3kN· 

Definition 4.1. (N-Ricci curvature bounds, [LV1], [LV2]) ForK E 
lR and N E (1, oo], we say that (M, F, m) has N -Ricci curvature bounded 
below by K if, for any two absolutely continuous probability measures 
f-lo= pom,f-l1 = p1m E Pc(M), U E DCN and for any t E (0, 1), it holds 
that 

Um(f-lt) :::_; (l- t) { f3i<,Jv(d(x, y)) u( 1_:o(x) ) d1r(x, y) 
JMxM Po(x) f3KN(d(x,y)) 

' 1 f3k,N(d(x,y)) ( P1(Y) ) 
+ t ( ) U (3t (d( )) d1r(x, y), MxM P1 Y K,N x,y 
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where (Mt)tE[O,l] is the unique minimal geodesic from Mo to Ill and 1r is 
the unique optimal coupling of (Mo, /-ll)· 

In the particular case of K = 0, the above inequality reduces to the 
convexity of U m (M.). We usually require only the existence of a minimal 
geodesic (Mt)tE[O,l] satisfying the above inequality in order to ensure 
the stability under the (measured Gromov-Hausdorff) convergence of 
spaces. Thus we implicitly took advantage of the unique existence of 
minimal geodesics in the above definition. 

Sturm's curvature-dimension condition CD(K, N) uses the same in­
equality as Definition 4.I, but only for the Renyi and the relative en­
tropies ([St2], [St3]). These cases are indeed essential in the sense that 
an n-dimensional Riemannian manifold (M, volM) equipped with the 
Riemannian volume element satisfies CD(K, N) if and only if Ric 2: K 
and n::::; N. The K-convexity of the relative entropy considered in [vRS] 
amounts to CD(K, oo). 

Lott, von Renesse, Sturm and Villani's characterization of weighted 
Ricci curvature bounds ([vRS], [Sti], [St2], [St3], [LVI], [LV2]) is suc­
cessfully generalized to our Finsler setting. 

Theorem 4.2. ([Oh3]) For K E ~ and N E [n, oo], the following 
conditions are equivalent: 

(i) RicN(v) 2: K holds for any unit vector v E TM. 
(ii) (M, F, m) satisfies the curvature-dimension condition CD(K, N). 

(iii) (M, F, m) has N -Ricci curvature bounded below by K. 

The proof of the above theorem heavily depends on careful analysis 
of optimal transport maps developed in [CMS]. Roughly speaking, as an 
optimal transport Tt goes along the gradient vector field of some ( d2 /2)­
convex function (Theorem 3.I) which is twice differentiable a.e., we can 
differentiate Tt in the space variable. Then we obtain Jacobi fields and 
it is natural to control their behavior using the Ricci curvature. 

As was briefly mentioned, the N-Ricci curvature bound as well as 
the curvature-dimension condition are preserved under the measured 
Gromov-Hausdorff convergence ([St2], [St3], [LVI], [LV2]). Therefore 
the N-Ricci curvature bound is useful in the investigation of limit spaces 
ofFinsler manifolds with uniform lower (weighted) Ricci curvature bounds. 
We refer to [CC] for related, celebrated work in the Riemannian case, 
and remark that even Banach spaces can not be approximated by Rie­
mannian spaces with a uniform lower Ricci curvature bound. 
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4.2. Interpolation inequalities 
The technique used in the implication (i) ==? (ii) of Theorem 4.2 

has been established in Cordero-Erausquin, McCann and Schmucken­
schHiger's remarkable work [CMS]. They used it to study several inter­
polation inequalities on Riemannian manifolds. We refer to [Ga], [Le] 
for basics and further reading in the Euclidean setting. 

The classical Brunn-Minkowski inequality in the Euclidean space 
ffi_n asserts the concavity of the function t ~ voln((1- t)A + tB) 1fn 
oft E [0, 1] for any (nonempty) bounded, measurable sets A, B c ffi.n, 
where voln stands for the Lebesgue measure and 

(1 - t)A + tB := { (1 - t)x + ty I x E A, y E B}. 

The following nonlinear version is introduced in [St3] (see also [vRS] for 
the infinite dimensional case) and used to establish the implication (ii) 
==? (i) of Theorem 4.2 in the Riemannian case. Given subsets A, B E M 
and t E (0, 1), we denote by Zt(A, B) the set of points ry(t) such that 
rJ: [0, 1] ---+ M is a minimal geodesic with ry(O) E A and ry(1) E B. 

Theorem 4.3. (Brunn-Minkowski inequality, [St3], [Oh3]) Suppose 
that there are constants K E ffi. and N E [n, oo] such that Ric N ( v) 2:: K 
holds for all unit vectors v E T M. 

(i) If N < oo, for any nonempty measurable sets A, B C M and 
t E (0, 1), we have 

m( Zt(A, B)) 1/N 2:: (1 - t) inf f31:-flv ( d(x, y)) 1/N · m(A) 11N 
:z:EA,yEB ' 

+t inf f3kN(d(x,y)) 1/N ·m(B)1fN. 
:z:EA,yEB ' 

(ii) If N = oo, for any bounded measurable sets A, B C M with 
m(A), m(B) > 0 and t E (0, 1), we have 

logm(Zt(A, B)) ;::: (1- t) logm(A) + tlogm(B) 

K w 2 + 2(1- t)td2 (p,, v) , 

where p, = m(A)- 1miA and v = m(B)-1miB· 

The classical Brunn-Minkowski inequality in ffi.n admits a functional 
version called the Prt3kopa-Leindler inequality. It is also extended to the 
nonlinear setting. 

Theorem 4.4. (Prekopa-Leindler inequality, [CMS], [Oh3]) Sup­
pose that there are constants K E ffi. and N E [n, oo] such that RicN ( v) 2:: 
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K holds for all unit vectors v E T M. Take t E (0, 1), three nonnegative 
measurable functions f, g, h : M ---t [0, oo) and nonempty measurable 
setsA,BcM withJAfdm=JMfdm andJBgdm=JMgdm. If 

h(z) > ( f(x) )1-t( g(y) )t 
- f3}<,Jv(d(x,y)) f3k,N(d(x,y)) 

holds for all x E A, y E Band z E Zt(x,y), then we have JMhdm ~ 
(JM f dm)l-t(JM gdm)t. 

The above Prekopa-Leindler inequality (with N < oo) is the special 
case (p = 0) of the p-mean inequality studied in [CMS]. The follow­
ing (Borell-)Brascamp-Lieb inequality is also the special as well as the 
strongest case (p = -1/N) of the p-mean inequality. See [CMS], [Ga] 
for more details. 

Theorem 4.5. (Brascamp-Lieb inequality, [CMSJ, [Oh3]) Assume 
that there are constants K E JR. and N E [n,oo) such that RicN(v) ~ K 
holds for all unit vectors v E T M. Take three nonnegative measurable 
functions f, g, h : M ---t [0, oo) and measurable sets A, B c M with 
fA f dm = JB gdm = 1. If there is t E (0, 1) such that 

1 (f3}<,Jv(d(x, y))) 1/N (f3k,N(d(x, y))) 1/N 

h(z)l/N :::; (1- t) f(x) + t g(y) 

holds for all x E A, y E Band z E Zt(x,y), then we have JMhdm ~ 1. 

4.3. Functional inequalities and concentration of measures 

Connection between the condition like N-Ricci curvature bound and 
several functional inequalities is first indicated in Otto and Villani's 
influencial paper [OV], and then systematically investigated by Lott and 
Villani [LV1], [LV2]. We first recall results in the infinite dimensional 
case. 

Theorem 4.6. ([LV1], [Oh3]) Let (M, F, m) be a compact Finsler 
manifold satisfying m(M) = 1 and Ric=(v) ~ K for some K E JR. and 
all unit vectors v E T M. Then the following hold. 

(i) (Talagrand inequality /Transport cost inequality) For any abso­
lutely continuous measure f.J- E P(M), we have 
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(ii) (Logarithmic Sobolev inequality) For any Lipschitz continuous 
function f : M -----+ lR with J M P dm = 1, we have 

(iii) 

where we set /1 = f 2m. In particular, if K > 0, then it holds that 

Entm(f..l):::; ~ JM F('\lf)2dm. 

(Global Poincare inequality) If K > 0, then we have, for any 
Lipschitz continuous function f: M-----+ lR with JM f dm = 0, 

JM / 2 dm :::; ~ JM F('\1 !)2 dm. 

The above global Poincare inequality can be sharpended in the finite 
dimensional case as follows. 

Theorem 4.7. (Lichnerowicz inequality, [LV2], [Oh3]) Suppose that 
there are constants K > 0 and N E [n, oo) such that RicN(v) :2: K holds 
for all unit vectors v E T M. Then we have, for any Lipschitz continuous 
function f: M-----+ lR with JM f dm == 0, 

jMJ2dm:::; ~~1 JM F('\lf)2dm. 

Interpolation and functional inequalities are closely related to the 
concentration of measure phenomenon (see [Le]). For instance, we can 
generalize Gromov and Milman's Gaussian (normal) concentration re­
sult of Riemannian manifolds of positive Ricci curvature ([GM]). For a 
(symmetric or nonsymmetric) metric space (X, d) equipped with a Borel 
probability measure /1 on X, we define the concentration function by 

a(x,d,~<)(r) :=sup {1- f..L(B+(A, r)) I A c X, f..L(A) :2: 1/2} 

for r > 0. Here we set B+(A, r) := {y EX I infxEA d(x, y) < r }. 

Proposition 4.8. ([Oh3]) If there is a positive constant K > 0 
such that Ric00 ( v) :2: K holds for all unit vectors v E T M, then we have 
a(M,F,m)(r):::; 2e-Kr2

/ 4 for all r > 0. 

§5. Laplacian and the heat equation 

In this final section, we briefly review the contents of [OS]. For 
simplicity, we will treat only compact Finsler manifolds. 
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5.1. Finsler Laplacian 
For a vector field Von M differentiable a.e., we define its divergence 

div V : M ---+ ~ through the identity 

JM </JdivV dm =- JM V</Jdm =- JM D</J · V dm 

for all </J E C00 (M), where D</J(x) · V(x) denotes the canonical paring 
between TxM and T;M. We remark that divV depends on the choice 
of the measure m. If V is differentiable in a local coordinate system 
(xi)i=1 , then we have the explicit formula 

n {avi . aw } 
div V(x) = ~ Bxi (x) - V'(x) Bxi (x) , 

where V = 2::7=1 Vi(8j8xi) and m(dx) = e-w(x)dx1 · · • dxn in this co­
ordinate. The energy functional £ : H 1 (M) ---+ [0, oo) is defined by 

£(u) := ~ JM F*(Du)2 dm = ~ JM F('Vu)2 dm. 

For later use, we also set 

>. := inf { 2£(u) I u E H 1 (M), JM udm = 0, /luJJ£2 = 1 }· 

It is immediate by virtue of the compactness of M that >. > 0. Using 
the inner product gv in (2.2), we also introduce the constant "" E (0, 1] 
by 

. f . f F(w)2 
K, := ln In . 

xEM v,wEF-l(l)nT.,M gv(w, w) 

Note that 1/ ..jK, coincides with the 2-uniform smoothness constant stud­
ied in [Oh2], and that ""= 1 holds if and only if (M, F) is Riemannian. 
We observe by definition that the functional£ is ("'>.)-convex on the set 
{ u E L2(M; m) I JM u dm = C} for each constant C E R 

Definition 5.1. (Finsler Laplacian) We define the Finlser Lapla­
cian ~ acting on functions u E H 1(M) formally as ~u := div('Vu). 
To be precise, ~u is the distributional Laplacian defined through the 
identity 

JM </JD..udm =- JM D</J · 'Vudm 

for all </J E C00 (M). 
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Recall that, even when u is coo, the gradient vector field V'u is not 
differentiable at points x with \lu(x) = 0. Our Finsler Laplacian is a 
nonlinear operator because the Legendre transform is not linear. Note 
also that our Laplacian is a negative operator, that is, JM u.6.u dm::; 0 
holds for all u E H 1 (M). The same idea as Theorem 2.4 (using gv with 
V = \ld(x, ·)) leads us to the Laplacian comparison theorem. 

Theorem 5.2. (Laplacian comparison, [OS]) Assume that there are 
constants K E lR and N E [ n, oo) such that Ric N ( v) 2': K holds for 
all unit vectors v E T M. Then the Laplacian of the distance function 
u = d(x, ·) from any fixed point x EM satisfies 

.6.u(z) < (N- 1) skN(d(x, z)) 
- SK,N(d(x, z)) 

pointwise on M \ ({x} U Cut(x)) and in the sense of distribution on 
M\{x}. 

5.2. The heat equation 
We formulate the heat equation associated with our Finsler Lapla­

cian and show the unique existence of its solution as gradient flow of the 
energy functional on £ 2 ( M; m). 

Definition 5.3. We say that a function u is a (globa0 solution to 
the heat equation OtU = flu on [0, T] x M if u E L2 ([0, T], H 1(M)) n 
H 1 ([0, T], H-1 (M)) and if, for every t E [0, T] and 1> E C 00 (M), it holds 
that 

JM 1>8tUt dm =- JM D¢> · V'ut dm, 

where Ut(x) := u(t, x). 

The compactness of M ensures that every solution u to the heat 
equation is mass preserving, i.e., J M Ut dm = J M u 0 dm holds for all t > 0. 

We can construct a solution to the heat equation starting from an 
arbitrary initial point u 0 E H 1 (M) as gradient flow of the energy func­
tional£ on L2 (M; m). As L2 (M; m) is a Hilbert space, we can certainly 
apply Crandall and Liggett's classical technique ([CL], see also [AGS]). 

Theorem 5.4. ([OS]) For each u 0 E H 1 (M) and T > 0, there ex­
ists a unique solution u to the heat equation lying in L2 ([0, T], H 1(M)) n 
H 1 ([0, T], L 2(M)). Moreover, for each t E (0, T), the distributional 
Laplacian .6.ut is absolutely continuous with respect to m and we have 
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for all t > 0. 

Uniqueness in Theorem 5.4 is a consequence of the L2-contraction 
property which asserts that, given two solutions u, v to the heat equation 
with JMudm = JMvdm, 

llut- Vtll£2 :::; e-tiiO.AIIuo- voll£2 

holds for all t > 0. Note that the L2-contraction property follows from 
the (A;..\)-convexity of£, for a solution to the heat equation is gradient 
flow of£ in L2 (M; m). 

As for regularity, we can show that every solution to the heat equa­
tion admits a Holder continuous version and it is H 2 in the space variable 
x as well as C 1'"' in both variables t and x for some o: > 0. However, u 
is not C2 in general. The typical (noncompact) example is a Gaussian 
kernel of a Minkowski space, which is C2 at the origin if and only if the 
Minkowski space happens to be a Hilbert space. 

5.3. The Finsler structure of the Wasserstein space 

We next present another characterization of heat flow as gradient 
flow of the relative entropy in the reverse Wasserstein space (i.e., the 
Wasserstein space with respect to the reverse Finsler structure). To do 
so, we introduce a Finsler structure of the Wasserstein space in accor­
dance with Otto's formulation in [Ot] (see also [AGS], [Lo2]). 

Given arbitrary tp E C2 (M), the function Etp is (d2 /2)-convex for 
sufficiently small E > 0. This observation (together with Theorem 3.1) 
leads us to the following notion of tangent space: 

Tf.'P := {V = 'Vtp I 'P E C00 (M)}, 

where the closure is taken with respect to the Minkowski norm 

Fw(f.l, V) := (JM F(V(x)) 2 df.L(x)) 
112 

Note the dependence of Fw(f.l, ·) on the base point f.L, which generates 
the nontrivial geometric structure of (P(M), Fw ). 

Every locally Lipschitz continuous curve (f.lt)tE(o,1) is accompanied 
with the unique Borel vector field Wt(x) = w(t,x) E TxM on (0, 1) x M 
with F(w) E Lk:c((O, 1) x M; df.ltdt) satisfying the continuity equation 

8tf.lt + div(Wtf.Lt) = 0 

in the weak sense that 

11 JM {8tCfJt + Dc/Jt ·Wt} df.lt dt = 0 



Optimal transport and Ricci curvature in Finsler geometry 339 

holds for all¢ E C~((O, 1) x M). We consider Was the tangent vector 
field of the curve (JLt)tE(O,l) and denote it by Mt = Wt E Tp.;P. 

Given p,, v E P(M), we have 

d'f (p,, v) = inf f Fw(JLt, Mt) dt , ( 
1 ) 1/2 

(J-Lt)tE[O,lj lo 
where (JLt)tE[o,1] runs over all Lipschitz continuous curves in P(M) with 
p,0 = p, and p,1 = v. Thus our Finsler structure realizes the Wasserstein 
distance. 

5.4. Heat flow as gradient flow in the Wasserstein space 

We define the cotangent space at given p, E P(M) in a similar man­
ner to the tangent space as 

r;p :={a= D<p 1 'P E c=(M)}, 

( ) 1~ Fw(JL,a) := JM F*(a(x)) 2 dp,(x) , 

where the closure is taken with respect to Fiv(JL, ·). Then the associated 
Legendre transform .Cw (p,, ·) : r;P ----+ Tp. P at p, is defined in the point­
wise way by .Ci:v(p,,a)(x) := .C*(a(x)). We also define the exponential 
map expp.: Tp.P----+ P(M) by expp.(V) := (exp V)~JL· 

Given a functionS on (a subset of) P(M), we say that Sis differ­
entiable at p, E P(M) if there is a E r;p such that 

f a . V dm = lim _S_( e_xp-'-p._( t_V_)_) _-_S_(JL_) 
}M tiO t 

holds for all V = '\l<p E Tp.P with <p E C 00 (M). Then we denote a by 
DS(p,) and call it the derivative of S at p,, and the gradient vector of S 
at p, is defined as '\lwS(p,) := .Cw(JL, DS(p,)). 

Definition 5.5. (Gradient flow) A continuous curve (JLt)t?:.O c 
P(M) which is locally Lipschitz continuous on (0, oo) is called a gra­
dient flow of S if Mt = '\lw( -S)(JLt) holds at a.e. t E (0, oo). 

Note the difference between '\lw(-8) and -'\lwS. The gradient 
vector of ~ Entm can be described explicitly. 

Proposition 5.6. ([OS]) Take absolutely continuous p, = pm E 

P(M) with p E H 1(M). If -logp tf. H 1 (M;p,), then -Entm is not 
differentiable at p,. If -logp E .H1(M; p,), then - Entm is differentiable 
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at f-l and the gradient vector is given by 

1 
Y'w(- Entm)(f-l) = - Y'( -p) E Tp,P· 

p 

In particular, its norm squared Fw(f-l, Y'w(- Entm)(!-l)) 2 coincides with 
+-­

the Fisher information with respect to the reverse Finster structure F : 

I(f-L):= r F(Vp) 2 ~dm= r F(\7(-p)) 2 ~dm. 
jM P jM p 

We finally obtain a characterization of heat flow as gradient flow of 
the relative entropy in the reverse Wasserstein space. Compare this with 
the Euclidean and Riemannian cases in [JKO], [Ohl] and [Sa]. 

Theorem 5. 7. ([OS]) Let (!-lt)t?:.O C P(M) be a continuous curve 
which is locally Lipschitz continuous on (0, oo), and assume that f-lt = 

Ptm with Pt E H 1(M) a. e. t E (0, oo). Then (!-lt)t?:.O is a gradient flow 
of the relative entropy if and only if (Pt)t>O is a heat flow with respect 

+--- -
to the reverse Finster structure F ofF. 
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