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Couplings of the Brownian motion via discrete 
approximation under lower Ricci curvature bounds 

Kazumasa Kuwada 

Abstract. 

Along an idea of von Renesse, couplings of the Brownian motion on 
a Riemannian manifold and their extensions are studied. We construct 
couplings as a limit of coupled geodesic random walks whose com
ponents approximate the Brownian motion respectively. We recover 
Kendall and Cranston's result under lower Ricci curvature bounds in
stead of sectional curvature bounds imposed by von Renesse. Our 
method provides applications of coupling methods on spaces admitting 
a sort of singularity. 

§1. Introduction 

In stochastic analysis on Riemannian manifolds, coupling methods 
are effectively used for deriving several analytic estimates from geometric 
conditions of the space. Among them, a coupling of Brownian motions 
by reflection given by Kendall [8] was used by Cranston [6] to derive L 00-

gradient estimates for harmonic functions. von Renesse [19] attempted 
to extend their argument on more singular spaces. By a technical reason 
as explained below, his method needs a stronger assumption on the un
derlying space even when it is a Riemannian manifold. In this paper, we 
consider applications of coupling methods along the idea of von Renesse. 

Let X be a complete Riemannian manifold and (W(t), lP' x) the Brow
nian motion on X. Let Z(t) = (Z1 (t), Z2 (t)) be a coupling of the Brown
ian motion starting from (x1 , x2 ) EX x X defined on a probability space 
(D, §, lP'). That is, the law of Zi equals lP'xi o w~1 fori= 1, 2. Let us de
fine a coupling timeT by T := inf {t 2:: 0; Z 1 (s) = Z2 (s) for all s 2:: t}. 
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We are interested in constructing a coupling Z which provides a use
ful upper estimate of lP' [T > t]. When Z is a coupling by reflection in 
[6], it enjoys a domination of the distance d(Z(t)) between Z1(t) and 
Z2 (t) by a semimartingale. Since the bounded variation part of the 
semimartingale is dominated in terms of the Ricci curvature of X, a 
lower bound of the Ricci curvature yields an estimate of lP' [T > t] by the 
hitting probability to 0 of the semimartingale. In [6, 8], they consid
ered an SDE on M x M to construct such a coupling. Unfortunately 
its coefficient becomes singular if Z2 (t) is in the cut locus of Z1(t) and 
we somehow need to overcome this difficulty (see [20] for another ap
proach than [6, 8]). von Renesse's approach is to consider a sequence of 
couplings {Z"(n)}e:>O of geodesic random walks which approximate the 
Brownian motion. He constructed a coupling by reflection by taking a 
scaling limit. As a result, he does not only succeed in avoiding the tech
nical obstruction, but also in extending Cranston's coupling method on 
more singular spaces where we no longer use SDE theory directly. But, 
in his argument, a domination of d(Z(t)) comes from the corresponding 
estimate for d(Z"(n)). To obtain a suitable estimate, it seems to need 
a convergence of the dominant. For this purpose, he assumed a lower 
sectional curvature bound instead of the corresponding Ricci curvature 
bound (see remark 7 for details). As we will see in section 3, in fact, his 
stronger assumption is not necessary. We will show that the event of the 
suitable domination of d(Z(t)) occurs with an arbitrary high probabil
ity, instead of showing the convergence of dominants. Actually, we are 
interested in the probability of the event { T > t}, not in a domination 
of d(Z(t)) itself. 

The organization of this paper is as follows. In the next section, we 
construct couplings via approximating geodesic random walks. Some 
basic estimates are also gathered there. The estimate of lP'[T > t] for 
a coupling by reflection is given in section 3 under a nonpositive Ricci 
curvature bound. In sections 4 and 5, we will derive two well-known 
applications of coupling methods from our approach. First we show the 
Lichnerowicz bound for the first nonzero eigenvalue of the Laplacian 
on a positively curved space. As the second application, we use a so
called synchronous coupling constructed in section 2 to derive a gradient 
estimate of the heat semigroup under a lower Ricci curvature bound. All 
these applications are extended in section 6 on spaces admitting a sort 
of singularities. Here we allow the underlying space to have mutually 
isolated singular points where the space of directions has a degenerate 
diameter. Recently, geometric analysis of metric spaces having a sort of 
lower Ricci curvature bounds are extensively studied (see [18] and the 
references therein). Our spaces are included in such a class. 
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Before closing this section, we mention that there are some related 
works in analysis on singular spaces. For the Lichnerowicz bound, Shioya 
[14] derived a stronger result when X is an orbifold. Ohta [12] derived 
the contraction estimate of the heat distribution with respect to the 
Wasserstein metric on a nonnegatively curved Alexandrov space. It is 
closely related to the gradient estimate of the heat semigroup (see [17]). 
It should be remarked that our methods are different from either of 
theirs. Though our spaces have a strong restriction, some of our re
sults, for example the consequence of an estimate of the coupling time 
(Theorem 16 (i)), are not treated in their work. 

§2. Preliminaries 

2.1. Construction of coupling 
As in section 1, let X be a complete Riemannian manifold and 

( {W(t)}t;:::o, {IP'x}xEX) the Brownian motion on X. Here, the Brown
ian motion stands for the diffusion process associated with 6../2, where 
Ll. is the Laplacian on X. Set m := dimX. We always assume m ;::: 2 
and that X has no boundary. 

Let D(X) := {(x,x) EX x X; x EX}. For each x,y EX with 
(x, y) rt D(X), we choose a minimal geodesic ixy : [0, 1] ---*X of constant 
speed with ixy(O) = x and ixy(1) =yin a symmetric way, i.e.ixy(t) = 
iyx(1 - t). For a smooth curve 1' in X from x to y, we denote the 
parallel transport along 1' with respect to the Levi-Civita connection 
by//"'~ : TxX---* TyX. Let us define mxy : TyX---* TyX by mxyv := 
v- 2(v,~xy(1))~xy(1). This is a reflection with respect to a hyperplane 
which is perpendicular to ~xy(1). Set mxy := mxy 0 II'Yxy" Clearly 
mxy is an isometry. Take a measurable section <I> : X ---* O'(X) of the 
orthonormal frame bundle O'(X) of X. Let us define maps <I>i :X xX---* 
O'(X) for i = 1, 2 by 

<I>1(x, y) := <I>(x), 

<I> ( ) ·= {mxy<lh(x, y), 
2 x, y . <I>(x), 

(x, y) EX x X\ D(X), 
(x, y) E D(X). 

Here we have extended mxy to a map from O'x(X) to O'y(X). Note that 
we can choose ixy in a measurable way in an appropriate sense (see [19]). 
Thus we may assume <I>2 to be measurable without loss of generality. Let 
us denote the unit-speed geodesic obtained from are-parametrization of 
ixy by '/'xy : [0, d(x, y)] ---*X. 

Take a sequence of independent, identically distributed random vari
ables {~n}nEN where 6 is uniformly distributed on the unit disk in JR.m. 
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Let us define a continuously-interpolated coupled geodesic random walk 
Z"'(t) = (Zf(t), Z~(t)) on X x X with a step size E > 0 and a starting 
point (x1 ,x2 ) EX x X inductively by Z"'(O) := (x 1 ,xz) and fort> 0 

(2.1) {Z'f(t) 
ZHt) 

:= expzf(LtJ) ((t- ltJ) (cJm + 2<lh(Z"'(ltJ))~LtJ+l)), 
:= expzi(LtJ) ((t- ltJ) (cJm + 2il>2(Z"'(ltJ))~LtJ+l)), 

where ltJ := sup {n EN U {0}; n < t}. Note that our choice of ~n is 
a bit different from that in [19], where ~n is uniformly distributed on 
the unit sphere. However, the same argument still works. Set Z"'(t) := 

Z"'(c2t). As in [19], we can show that {Z"'}e>O is tight in the joint 
path space C([O, oo) ----+ X x X) and each Zf weakly converges to the 
Brownian motion as E ----+ 0. Let us denote a (subsequential) limit of 
{Z"'}00 by Z(t) = (Z1 (t), Z2(t)). LetT be the first hitting time of Z to 
D(X). We define Z(t) by 

(2_2) z(t) := {zst) _ if t < T, 

(Zl(t), Zl(t)) if t 2: T. 

We call Z(t) a coupling by reflection, or a Kendall-Cranston coupling. 
This is indeed a coupling of two Brownian motions starting at x1 and 
x2 respectively. Intuitively speaking, an infinitesimal motion dZ2 (t) of 
Zz(t) is determined by a reflection mz1 (t)z2 (t) of dZ1 (t) until they meet. 

Even when we replace mxy with an identity map in the definition of 
mxy, the same construction still works. In this case, we denote the cou
pling of geodesic random walks by Y"' ( t) = (Y{ ( t), Y2"' ( t)). As above, we 
denote time-scaled random walks Y"'(c 2t) by Y"'(t) = (Y{(t), Y2"'(t)) 
and its subsequential limit by Y = (Y1 , Y2 ). Finally we define a cou
pling Y(t) = (Y1 (t), Y2 (t)) from Yin the same way as (2.2). Intuitively 
speaking, an infinitesimal motion dY2 (t) is parallel to dY1 (t). We call it 
a coupling by parallel transport, or a synchronous coupling. 

Throughout this paper, we use the term "c ----+ 0" as a fixed subse
quential limit so that ze and ye converge. 

2.2. Variations of coupled geodesic random walks 

From now to the end of section 5, we assume that the Ricci curvature 
Ric(-,·) of X is bounded from below by (m-1)k fork E JR;.. When k > 0, 
we assume in addition that the diameter of X is strictly less than rr / Vk. 

Remark 1. Our assumption on the diameter of X in the case k > 0 
is not so restrictive. In fact, by the Bonnet-Myers theorem (see [4] for 
example), the diameter is dominated by rr/Vk and the equality holds 
only when X is the sphere of the constant sectional curvature k. When 
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X is a sphere, we can choose k strictly less than its sectional curvature 
to apply our result. By taking an increasing limit of k to the sectional 
curvature, the sharp estimate follows since we can take such a limit 
without changing the choice of couplings. 

Fix a reference point o E X. Let us define a functional a R on 
C([O,oo)---+ X) by aR(w) := inf{t ~ 0; d(o,w(t)) ~ R}. For w1,w2 E 

C([O, oo)---+ X), set aR(w1, w2) := a-R(wl) 1\ a-R(w2)· We begin with the 
following auxiliary lemma, which allows us to localize the state space X. 

Lemma 2. For any T > 0, 

lim lim lP'[aR(Z") < T] = lim lim lP'[aR(Y") < T] = 0. 
R-ooe-o R-ooe-o 

Proof. We only show the assertion for ze since the other can be 
shown in the same way. By the definition of aR, 

Note that {w; a-R(w) ~ T} is closed in C([O,oo)---+ X). As c---+ 0, Zf 
converges in law to the Brownian motion W starting from Xi for i = 1, 2. 
Thus 

Since W is conservative under a lower Ricci curvature bound (see [15] 
for example), limR-oo IP'x; [aR(W) ~ T] = 0 holds. By combining it with 
(2.3), the conclusion follows. Q.E.D. 

Next we review a basic estimate for geodesic variations of arclength 
introduced in [19] (Lemma 3 below). It makes a basis of estimates for 
variations of coupled geodesic random walks. We define two functions 
Ck and Sk by 

{
cos(Vks) 

ck(s) := 1 

cosh(Hs) 

(k > 0), 

(k = 0), 

(k < 0), 

{
sin(Vks) 

sk(s) := s 
sinh(Hs) 

(k > 0), 

(k = 0), 

(k < 0). 

Let V' be the Levi-Civita connection and ~ the curvature tensor associ
ated with V'. For a smooth curve 'Y and smooth vector fields U, V along 
'Y, the index form L.r(U, V) is given by 

Ly(U, V) := i ( (V' -yU, V' -y V) - (~(U, ')t)i', V)) ds. 

For simplicity, we write Ly(U, U) =: Ly(U). 



278 K. Kuwada 

Lemma 3 (Lemma 5 in [19]). Let Y1.Y2 E X. Take (i E Ty;X 
with l(il :::; Cc fori = 1, 2 for some constant C > 0. We write 'Y := 
"/y1 y2· Take an orthonormal frame {ei}~ 1 along 'Y with e1(s) = i'(s) 
and V7-yei = 0. Set (f := ((l,ei(O)) and(~:= (//:/(2,ei(O)). Let us 
define a vector field V }- r along 'Y by 

~1 ,~2 

Then, 

d(expy1 ((1), expy2 ((2)) :S d(y1, Y2) + (i- (i + ~Ly(V(~,(2 ) + o(c2). 

Moreover, the following uniformity holds for the error term: Take con
stants 0 < 8 < R. Then we can control o( c2) uniformly in Y1, Y2 E X, 
(i E Ty;X (i = 1,2}, 'Y and {ei}~1 as long as d(o,y1)Vd(o,y2):::; Rand 
d(yl, Y2) ?: 8 hold. 

Here we give only a brief sketch of the proof of Lemma 3. If Y2 
is not a conjugate point of y1 , the conclusion follows from the second 
variational formula and the index lemma. The error term is given as 
smooth functions and hence we can control it locally uniformly. The 
assumption d(y1, y2) ?: 8 is imposed for realizing a regular geodesic 
variation uniformly in small enough c > 0. Even if Y2 is conjugate to 
Yb we can apply the second variational formula by dividing "(y1 y2 into 
small geodesic segments. Such a division may grow the error term, but 
the number of necessary division is uniformly bounded above under the 
conditions on Y1, Y2 since the injectivity radius is locally uniformly away 
from 0. 

For (y1, Y2) = ze(n- 1) and (i = cv'm + 2<Pi(ze(n- 1))~n, we will 
apply Lemma 3. To describe it, we define An and A~Z") by 

An:= v'm+2(<Pl(ze(n-1))~n,i'Zf(n-l)Zi{n-1)(0)), 

(2.4) A~Z") := (m + 2)J"YZf(n-l)Z~(n-1) ( v.t(z•(n-1))~n,<1>2(Z•(n-l))~n) 
when ze(n- 1) ~ D(X). For a technical reason, we also define An and 
A~z·) when ze(n- 1) E D(X) by An := y'm + 2(~n, v) and A~Z") := 0, 
where v E ~m is a fixed vector with lvl = 1. Note that {An}nEN are 
independent, identically distributed random variables with lEA1 = 0 and 
Var(Al) = 1. By using An and A~"), we have 

(2.5) 
c2 

d(Ze(n)) :::; d(ze(n- 1))- 2cAn + 2A~Z") + o(c2) 



Couplings via discrete approximation 279 

if d( ze; ( n- 1)) > 0. Moreover, given 0 < 6 < R, o( c:2 ) is uniformly small 
as long as d(ZE(n- 1)) > 6 and d(Zf(n- 1), o) V d(ZHn- 1), o) < R 

hold. To apply the same argument to YE(n), we define A~Y') by replacing 
ze; = (Zf, Z~) in (2.4) with YE = (Y{, Y{). Then we obtain 

(2.6) 

For later use, we introduce two additional difference inequalities such 
as (2.5) and (2.6). Set ft(u) := exp ((m- 1)kt/2) sk(u/2). 

Lemma 4. TakeR> 6 > 0 .. (i} The following inequality holds: 

fo(d(ZE(n)))- fo(d(ZE(n- 1))) 

S: -2c:fMd(ZE(n- 1))),\n + 2c:2 f~'(d(ZE(n- 1))),\; 
2 

+ c2 f~(d(ZE(n- 1)))A~Z') + o(c:2). 

Here o(c:2) is controlled uniformly inn as long as d(ZE(n- 1)) > 6 and 
d(o, Zl(n- 1)) V d(o, ZHn- 1)) < R hold. 
(ii} The following inequality holds: 

fe;2n(d(YE(n)))- fe;2(n-l)(d(YE(n- 1))) 
2 

S: c2 v~2(n-1) (d(YE (n- 1)))A~Y') + (m- 1)kfe;2(n-1) (d(YE (n- 1)))) 

+ o(c:2). 

Here o(c:2) is controlled uniformly inn as long as d(YE(n- 1)) > 6 and 
d(o, Y{(n- 1)) V d(o, Y2E(n- 1)) < R hold. 

Proof (i) From the first variational formula for arclength, we have 

(2.7) d(ZE(n))- d(ZE(n- 1)) = -2EAn + o(c:). 

Thus the Taylor expansion of fo up to second order yields 

(2.8) fo(d(ZE(n)))- fo(d(ZE(n- 1))) 

= fMZE(n- 1)) (d(ZE(n))- d(ZE(n- 1))) 

+ f6'(d(ZE(n- 1))) (d(ZE(n))- d(Z"(n- 1)))2 + o(c:2) 2 . 

We can replace (d(ZE(n))- d(ZE(n -1))) 2 in (2.8) with 4c:2 ,\; by using 
(2.7) because An is bounded. Since f6(d(Z"(n -1))) 2': 0, (2.8) together 
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with (2.5) yields the desired inequality. The uniformity follows from the 
remark after (2.5) and the uniformity in (2. 7). 
(ii) The first variational formula implies d(Yc:(n))- d(Yc:(n -1)) = o(c:). 
Thus, as we obtained (2.8), 

fc:2n(d(YE(n)))- fc:2(n-l)(d(YE(n- 1))) 

(~- 1)kc:2 c: 
= 2 fc:2(n-1)(d(Y (n- 1))) 

+ f~2(n-l)(d(Yc:(n- 1))) (d(Yc:(n))- d(Yc:(n- 1))) + o(c:2 ). 

Then the conclusion follows from (2.6) as we did above. Q.E.D. 

In order to control our couplings by the lower bound of the Ricci 
curvature, we show some properties of A~Q) ( Q = zc: or yc:). For Q = zc: 
or yc:, we define J(Q),n: [O,d(Q(n -1))]----+ lR by 

1- ck(d(Q(n- 1))) 
J(Q),n(s) := ck(s) + sk(d(Q(n _ 1))) sk(s). 

Note that J(Q),n satisfies J(Q),n(O) = J(Q),n(d(Q(n- 1))) = 1 and 
J(Q),n(s) + kJ(Q),n(s) = 0. 

Lemma 5. For R > 0 and Q = zc: or yc:, there is a constant 
K = K(R) such that IA~Q)I < K ifn < O"R(Q). 

Proof. Take K > 0 so that the absolute value of a sectional curva
ture at x EX is bounded by K whenever d(x, o) :::; 2R. By the definition 
of A~Ql, ifn < O"R(Q), then 

rd(Q(n-1)) 
IA~Q)I :::; (~ + 2)l~nl 2 Jo (IJ(Q),n(sW + K J(Q),n(s)) ds. 

Note that J(Q),n and J(Q),n are bounded on [O,d(Q(n-1))] in terms of 
R. Since l~nl :::; 1, the conclusion follows. Q.E.D. 

Set A~Q) := JE[A~Q)IQ(n- 1)], where Q = zc: or yc:. Combining the 

computation of A~Q) with the Ricci curvature bound yields the following 
estimate: 

rd(Q(n-1)) 
(2.9) j\~Q):::; (~ -1) Jo (J(Q),n(s) 2 - kJ(Q),n(s) 2 ) ds 

2(~- 1)k sk (d(Q(n- 1))/2) 
JikT . ck (d(Q(n- 1))/2) · 

Let {S?"n}nEN be a filtration given by S?"n := 0"(6, ... ,~n)· 
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Lemma 6. Let Q = Z 10 or Y 10 and {an}nEN an {§n}-predictable 
process, which may depend on E:. Assume 

Cr,R := lim sup lanl < oo 
c---+0 os;ns; Lc-2Tj II( Lo-R ( Q)J+ 1) 

for R, T > 0. Set Mn := I-:.7=1 aj(AjQ)- AjQl). Then (i) {Mn}nEN is 
an { §n}-local martingale. (ii) For any b > 0 and T > 0, 

lim lP' [ sup IMnl > 6
2 ] = 0. 

c---+0 os;ns; Lc-2Tj E: 

Proof. (i) Set &R := lo-R(Q)J + 1. Then &R is an {§n}-Markov 
time. Lemma 5 implies that MnllltR has a bounded increment and hence 
it is integrable. The martingale property of MnMtR directly follows from 
the definition of Mn. Since limR---+oo o-R(Q) = limR---+oo &R = oo, the 
conclusion follows. 
(ii) By the Doob inequality and Lemma 5, there is a constant K 0 > 0 
depending on R, Cr,R and K(R) in Lemma 5 such that 

Note that we have 

Set Q(t) := Q(c2t). Since lP' [&R::::; E:- 2T] ::::; lP' [o-R(Q)::::; T] holds, 
Lemma 2 and (2.10) imply the assertion by letting R----+ oo after E: ----+ 0 
in (2.11). Q.E.D. 

Remark 7. From (2.5), a domination of d(Z 10 (t)) can be obtained 

as a sum of EAn and that of E:2A~Z") (see (3.3)). As E:----+ 0, the former 
one enjoys the invariance principle. For a domination of the second, we 
can apply Lemma 6 for replacing A~Z") with A~z"), which is estimated in 
(2.9). Thus, in order to derive a domination of d(Z(t)) as E:----+ 0, it seems 
necessary to consider these two different limit theorems at the same time 

though An and A~Z") are not independent. To avoid this difficulty, von 
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Renesse [19] assumed lower sectional curvature bounds instead of Ricci 
curvature bounds. In such a case, A~Z') itself can be dominated in terms 
of the sectional curvature bound. 

§3. Non-successful probability 

The goal in this section is to show the following theorem. 

Theorem 8. Assume k::::::; 0. Then we have 

The following is a well-known consequence of Theorem 8: 

Corollary 9. For any bounded measurable function 't/J on X, 

In particular, if 't/J is harmonic, then II\7'1/JIIoo ::::::; (m- l)HII't/JIIoo· 

Proof of Corollary 9. By the definition of Z = (Z1, Z2) and T, 

1Ex1 ['t/J(W(t))]-1Ex2 ['t/J(W(t))] = lE['IjJ(Z1(t))- 'ljJ(Z2(t))] 

= JE['IjJ(Z1(t))- 'ljJ(Z2(t)); T > t]::::::; 211'1/JIIooiP'[T > t]. 

Thus Theorem 8 implies the conclusion. When 't/J is harmonic, we have 
IEx['t/J(WtMR(W)))] = 't/J(x) for any x EX and R > 0 by the Ito formula. 
Since W is conservative and 't/J is bounded, the dominated convergence 
theorem implies IEx['t/J(Wt)] = limR-+oo IEx['t/J(WtMR(w))] = 't/J(x). Hence 
the desired result follows by letting t----. oo and x2 ----. x1. Q.E.D. 

Remark 10. When X is compact and 't/J is an eigenfunction of 
.6., the inequality (3.2) gives a quantitative uniform upper bound of its 
Lipschitz constant. This fact is used in section 6. 

For the proof of Theorem 8, we define a functional To on a joint path 
space C([O, oo)----. X x X) by 
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Proof of Theorem 8 . . Take R > 8 > 0. By applying (2.5) iteratively, 

Le-2tJ 
(3.3) d(Ze(t))::; d(x1,x2)- 2c- L Ai- 2c (c--2t- lc--2tJ) ALe-2tJ+l 

i=l 

for sufficiently small c > 0 if t < aR(ze) 1\ r8 (ze). The remark after 
(2.5) together with Lemma 5 and the boundedness of An yields 

(3.4) :~lP'[Ixt(c-)1 > ~ forsomet:s;TI\aR(ze)l\r8(Ze)] =0 

for any T > 0. Let Ee be an event that 

Le-2tJ 2 Le-2tJ 8 
d(Ze(t))::; d(xl,X2)- 2c L Ai + €2 L x~ze) + 2 

i=l i=l 

occurs for all 0 ::; t ::; T 1\ aR(ze) 1\ Tc5(ze). Lemma 6 for an = 1 and 
(3.4) imply that lime: ....... o lP'(E~] = o. Note that A~ze) ::; 2(m - l)H 
follows from (2.9). Hence, on Ee:, 

(3.5) 
Le:-2tJ 8 

d(Z"'(t))::; d(x1, x2)- 2c- L Ai + ( (m- l)N) t + 2 
i=l 

holds for each 0 ::; t ::; T 1\ aR(Z"') 1\ Tc5(Z"'). Let us denote the right 
hand side of (3.5) by r"' (t) + 8/2. Let us define At c C([O, oo) --; ~) by 
At:= {u; info:'Os::;tu(s) ~ 8/2}. Then 

(3.6) lim lP' [rc5(Z"') > T] = lim lP' [ { rc5(Z"') > T} nEe:] 
e:->0 e:->0 

::; lim lP' [ { r"' E ATMR(ze)} nEe:] 
e:-->0 

= lim lP' [r"' E ATMR(ze)] · 
e:-->0 

Note that lP'(r"' E ATMR(Z•)] ::; lP'[aR(Z"') ::; T] + lP'[r"' EAT]· Let f3 be 
the standard !-dimensional Brownian motion and r 0 (t) := d(x1 , x2 ) + 
2f3(t) + (m-l)Ht. The invariance principle asserts that r"' converges 
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in law to r 0 as €---+ 0. Thus lime--+0 lP'[re EAT] :::; lP'[r0 E AT] holds since 
AT is closed. By combining these observations with Lemma 2 and the 
fact that {w; T0 (w) > T} is open, lP' [roO~)> T] :::; lP' [r0 EAT] follows 
as R ---+ oo in (3.6). By taking a limit 8 ---+ 0, we obtain 

lP' [ro(Z) > T] :::; lim lP' [ro(Z) > T] :::; lP' [ inf r0 (t) > o] . 
o-+O o::;t:::;T 

Since To ( Z) = T, the conclusion follows from a computation of the right 
hand side of the above inequality (see [1] for example). Q.E.D. 

§4. Eigenvalue estimate 

Our goal in this section is to show the Lichnerowicz bound (Theorem 
12 below) from our coupling method. We refer to [4] for the Lichenerow
icz bound; see [5] also for a proof based on coupling methods. Note that 
(2.9) implies 

(4.1) J;(d(Q(n- 1)))A~Q):::; -(m- 1)kft(d(Q(n -1))), 

where Q = ze or ye. 

Lemma 11. Assume k > 0. Then we have 

lE[fo(d(Z(t)))]:::; !o(d(x1,x2))- ~k lot JE[fo(d(Z(s)))]ds. 

Proof. Note that X is compact by the Bonnet-Myers theorem. 
Hence aR(ze-) = oo holds for sufficiently large R. Fix such an R > 0. 
Set To := lro(ze-)J + 1. Then To becomes an {§n}-Markov time. As we 
did in (3.3), an iteration of Lemma 4 (i) yields 

Le-- 2 tj/\fo 

+ L -2€f~(d(Ze(n -1)))-\n + 2c2f~(d(Ze(n -1)))-\~ 
n=l 

2 Le- 2 tj/\fo 

+ 62 L f~(d(Ze(n- 1)))A~Z") + o(1). 
n=l 

By using the martingale property, for any N E. N, 

lE [};" fMd(Ze(n -1)))-\n] = lE [};" f~'(d(Ze(n -1)))(-\~ -1)] 

=0. 
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Thus, taking an expectation in (4.2), applying Lemma 6 (i) for an := 
fMd(Zr;;(n- 1))) and using (4.1), we obtain 

Lc- 2 tJAi'o tAr" 

c:2 L fo(d(Zr;;(c:2 (n- 1)))) = 1 6 fo(d(Zr;;(s)))ds + o(c:). 
n=l 0 

Here the remainder term is uniform in zr;;. Thus we obtain 

(4.3) E [fo(d(Zr;;(t 1\ (c:2f,))))] + ";k lot lE [fo(d(Zr;;(s))) ; r% > s] ds 

:::; fo(d(xl, x2)) + o(1). 

Since {w; r,(w) > s} is open and fo ~ 0, we have 

E [fo(d(Z(s 1\ rf)))] = E [fo(d(Z(s))); rf > s] + fo(8)1P'[rf:::; s] 

:::; limE [fo(d(Zr;;(s))); r% > s] + fo(8) 
r;;-+0 

:::; limE [fo(d(Zr;;(s 1\ rg)))] + fo(8) 
r;;-+0 

= limE [fo(d(Zr;;(s 1\ (c:2f,))))] + fo(8) 
r;;-+0 

for small 8 > 0. Thus, by applying the Fatou lemma in (4.3) as c:--+ 0, 

(4.4) lE [fo(d(Z(t 1\ rf)))] + ";k lot E [fo(d(Z(s 1\ rf)))] ds 

:::; fo(d(xl, x2)) + ( 1 + m2kt) fo(8). 

Note that we have E [fo(d(Z(s 1\ rf)))] = E [fo(d(Z(s 1\ r,(Z))))]. Since 
fo(O) = 0, we obtain 

limE [!o(d(Z(s 1\ rf)))] = E [fo(d(Z(s 1\ r)))] = E [fo(d(Z(s)))]. 
8-+0 

Hence the conclusion follows by letting 8--+ 0 in (4.4). Q.E.D. 
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Theorem 12. Assume k > 0. Let).. be the first nonzero eigenvalue 
of -D.. Then ).. ~ mk. 

Proof. Multiplying exp(mkt/2) on both sides of the inequality in 
Lemma 11 and taking an integration, we obtain 

rt 2(1 - e-mkt/2) 
(4.5) Jo lE [fo(d(Z(s)))] ds::; mk fo(d(xl, x2)). 

Let cp be an eigenfunction of -D. corresponding to>.. Then JE[cp(Zi(t))] = 
e->.tf2cp(xi) holds for i = 1, 2 since Z1(t) and Z2(t) are both diffusion 
processes generated by D./2. Let us defip.e a constant CL > 0 by 

Note that CL < oo holds because cp is continuously differentiable and 
fMO+) :f: 0. Thus ( 4.5) implies 

2(1 - e->.t/2) rt 
).. (cp(xl)- cp(x2)) = Jo lE [cp(Z1(s))- cp(Z2(s))] ds 

rt 2(1 - e-mkt/2) 
::; CL Jo lE [fo(d(Z(s)))] ds::; CLfo(d(xb x2)) mk . 

Hence, dividing both sides by f 0 (d(x1,x2)) and taking supremum with 
respect to XI, x2, we obtain the desired result. Q.E.D. 

§5. Gradient estimate for heat semigroups 

For a bounded measurable function 'ljJ : X -7 ~, we define Tt'I/J by 
Tt'I/J(x) = JE, ['1/J(Wt)]. We show the following gradient estimate (see [21] 
for example, as well as for possible applications). 

Theorem 13. For '1/J E C2(X) with supxEX 1'1/J(x)l V I\7'1/J(x)l < oo 
and z EX, IV(Tt'I/J)I (z) ::; e-(m-l)ktf2Tt(I\7'1/JI)(z) holds. 

Proof. TakeR > 8 > 0. As in the proof of Lemma 11, we write 
T0(Y"') =: Tg and T0(Y) =: Tf, An iteration of Lemma 4 (ii) from n = 1 
ton= lc2tj together with (4.1) yields 

(5.1) !c2Lc-2tj(d(Y"'(t)))::; Jo(d(x1,x2)) 

2 Lc-2tj 
+ €2 L J;2(n-l)(d(Y"'(n -1)))(A~Y'J----' A~Y")) + o(1). 

n=l 
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In the same way as we remarked in section 3, the remainder term is 
controlled uniformly in Y" as long as t < O"R(Y") 1\ r[. Let E" C n be 
an event defined by 

EE: := {fg2 Lc2tJ (d(Y"(t))) ::; fo(d(xl, X2)) + 8} n { t < O"R(Y")}. 

By virtue of Lemma 6 (ii) for an := f~2 (n-l)(d(Y"(n- 1))), (5.1) and 
the remark after that imply 

lim lP' [!"2 Lt:-2tJ (d(Y" (t))) > fo( d(x1, x2)) + 8, t < O"R(Y") 1\ r%] = 0. 
t:->0 

Thus Lemma 2 yields limR_,oo limt:_,o lP'[E; n {t < r[}] = 0. Take rJ > 0 
arbitrary. By the Taylor expansion, there exists 8 > 0 such that, for 
q, q' EX with d(o, q) < Rand d(q, q') < 8, we have 

l'!j;(q)- 'lj;(q')l ::; (IV'7j;l(q) + rJ) d(q, q'). 

Choose x2 and 8 so that f~Lc2 tJ (fo( d(x1, x2)) + 8) < 8 holds for suffi
ciently small r:: > 0. Then we have 

(5.2) lE [17j;(:Yt(t 1\ rt))- 7j;(Y{(t 1\ rtJ)I] 

::; lE [17j;(:Yt(t))- 'lj;(Y2"(t))l ; t < r8] + IIV'7j;lloo 8 

::; lE [i'!j;(Yt(t))- 7j;(Y2"(t))l ; E" n {t < r8}] 

+ 2ll7j;lloo lP'[E~ n {t < r8}] + IIV'7j;lloo 8 

::; (lE [IV''!j;l (:Yt(t))] + rJ) f~Lc-2tJ (fo(d(xi, x2)) + 8) 

+ 2ll7j;lloolP'[E~ n {t < r8}] + IIV''!j;lloo 8. 

Since {w; r0 (w) > t} is open, 

IJE [7j;(Y1(t 1\ r~))- 'lj;(Y2(t 1\ r~))] I 

::; lE [l'!j;(Yl(t))- 'lj;(Y2(t))l ; T~ > t] + IIV'7j;lloo 8 

::; lim lE [17j;(:Y{(t))- 'lj;(Yi(t))l ; r8> t] + IIV''!j;lloo 8 
t:->0 

::; lim lE [17j;(:Y{(t A r8))- 7j;(Y2"(t A r8J)I] + IIV'7j;ll= 8. 
t:->0 

By combining this inequality with the fact Y(t 1\ r~) = Y(t 1\ r0 (Y)), 

(5.3) llE [7j;(Y1(t))- 7j;(Y2(t))JI 

= IJE['Ij;(Y1(t/\r)) -7j;(Y2(t/\r))]l 

= lim IJE [7j;(Y1 (t 1\ ro(Y))) - 7j;(Y2(t 1\ ro(Y)))]I 
0->0 

::; lim lim lE [17j;(:Y{ (t 1\ r8)) - 7j;(Y2"(t 1\ r8)) I] . 
8->0t:->0 
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Thus, by letting e -+ 0, R -+ oo and 8 -+ 0 in (5.2) and by applying 
(5.3), 

Dividing both sides by d(x1 , x2) and letting x2 -+ x1, we obtain 

Since 'T/ is arbitrary, the conclusion follows. Q.E.D. 

§6. Spaces admitting singularities 

We extend our argument when the underlying space X has some 
singularity. In what follows, we state some notions of metric geometry 
including the definition and some basic properties of Alexandrov spaces. 
For details, refer to [2, 3] for example. 

Let us suppose that X is a complete metric space. We also suppose 
that X is a geodesic space, that is, for any x, y E X there is a length
minimizing curve whose length realizes the distance between x and y. 
We call the curve a minimal geodesic and denote it by xy. Note that 
a minimal geodesic for x, y E X is not unique in general. A triangle 
~xyz in X means a set of three points x, y, z E X with a set of three 
minimal geodesics xy, yz and zx. For "' E lR?. and a triangle ~xyz, a 
11,-comparison triangle means a triangle ~xfjz in a complete simply con
nected space form of sectional curvature "' satisfying d(x, jj) = d(x, y), 
d(jj,z) = d(y,z) and d(z,x) = d(z,x). We call X an Alexandrov space 
if for each relatively compact open set 0 C X there exists"'= "'(0) E 1R?. 

which satisfies the following property: For any triangle D.xyz c 0, there 
exists a 11,-comparison triangle ~xi}z such that, for any p E yz and jj E i}z 
with d(jj, jj) = d(p, y), we have d(x,p) 2 d(x,jj). Note that any complete 
Riemannian manifold is an Alexandrov space. Let x E X and 'Yl ( s) 
and 'Y2(s) minimal geodesics satisfying 'Y1(0) = 'Y2(0) = x. We denote 
the angle of the comparison triangle ~1'1 (s)x1'2 (t) at x by L'Y1(s)x'Y2(t). 
When X is an Alexandrov space, limt,slO L'Y1(s)x'Y2(t) exists. We call it 
the angle between 'Y1 and 'Y2 at x. For a triangle D.xy z, we denote the 
angle at x between xy and xz by L.yxz E [0, n]. Note that Lyxz::; L.yxz 
always holds. 

Let us state the assumption on X. Let X be an Alexandrov space 
with a Hausdo:df dimension mE [2, oo). It is known that m < oo implies 
m E N and local compactness of X. Assume that there exists an at most 
countable subset {zjhEJ c X such that X 0 :=X\ {zj}jEJ becomes a 
(non-complete) m-dimensional Riemannian manifold without boundary. 
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Its metric is assumed to be compatible with the original distance and 
the Ricci curvature of X 0 is bounded from below by (m- 1)k for some 
k E R We assume two additional conditions on {zj}jEJ· First we 
assume that there exist constants Bj < 1r such that each angle between 
geodesics emanating from Zj is smaller than Bj. Second we assume that 
there exists 50 > 0 such that d(zi, Zj) > 50 for any i =/= j E J. The 
existence of such Bj means that the diameter of the space of directions 
at Zj is strictly less than 1r. We can easily show that this singularity 
prevents Zj from being on a minimal geodesic xy if Zj =/= x, y. It also 
follows from more general result in [13]. Under these assumptions, X is 
included in a larger class of spaces studied in [10]. In particular, there 
is a canonical strongly local regular Dirichlet form on X (see [9, 10]). 
Thus we have the corresponding diffusion process on X (see [7]). We 
call it the Brownian motion and denote by W. 

Let us turn to construct coupled geodesic random walks on X. We 
need a little modification on the construction in (2.1) because the ex
ponential map cannot be defined beyond singular points {zj}JEJ· We 
can choose <1? 1 and <1? 2 on X 0 x X 0 in the same way as in section 2.1. 
To define a coupling by reflection zc of geodesic random walks starting 
from (x1,x2) E Xo x Xo, we use (2.1) when d(Zi(n),zj) > vm+2s 
holds fori= 1, 2 and j E J. When d(Zi(n), Zj) :::; vm + 2c holds for 
i = 1 or i = 2 and some j E J, we choose Zf(n + 1) (i = 1, 2) as being 
uniformly distributed on the ball of radius vm + 2s centered at Zi(n) 
respectively. In this case, we take Zf(n + 1) and ZHn + 1) indepen
dently and we define Zf(t) fortE (n, n + 1) by a geodesic interpolation 
of Zf ( n) and Zf ( n + 1). Such a geodesic interpolation can be chosen 
in a measurable way as we choose <Pi. The geodesic random walk in 
each component converges and its limit is identified with the Brownian 
motion on X 0 . It follows from a similar argument as in the proof of 
Proposition 1 in [19] since {zj ho is polar (see [9]) and isolated from 
each other. Hence we obtain a coupling by reflection Z = (Z1, Z2) of 
the Brownian motion on X. The same argument also yields a coupling 
by parallel transport Y = (Y1, Y2). 

In what follows, we will show two auxiliary lemmas for proving the 
main theorem (Theorem 16 below). Take a reference point o EX. We 
denote an open metric ball of radius r centered at x EX by B(x, r). 

Lemma 14. Fix j E J. Let R > 0 and Zj E B(o, 2R). Then, 
for any 'f) > 0, there is a constant Cj(r], R) > 0 such that it satisfies 
the following: If B(zj, 'f)) n xy =/= 0 for a minimal geodesic xy joining 
x, y E B(o, R), then x E B(zj, Cj(r], R)) or y E B(zj, Cj(r], R)) holds. 
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In addition, we can choose Cj ( rJ, R) so that lim11Lo Cj ( rJ, R) = 0 holds 
for each fixed R > 0. 

Proof. We write"':= "'(B(o, 2R)), which appeared in the definition 
of Alexandrov space. We may assume "' < 0 without loss of generality. 
Take p E xy so that d(ZJ,P) < 'fl. Take a K,-comparison triangle f:::..xZJY 
of 6.xZJY· Take p E xfj satisfying d(x,p) = d(x,p). Then the definition 
of Alexandrov space yields d(zJ,P) :::; d(zJ,P) < 'fl· Seth = d(x, ZJ) and 
b = d(y, ZJ)· By the triangular inequality, 

d(x, y) = d(x,fJ) + dtfJ, y) ;::: h + l2- 2d(P, zJ) ;::: h + b- 2"'. 

Suppose h 1\ b ;::: 'f/· Then h + b - 2'f/ ~ 0 and thus the cosine formula 
on K,-space form implies 

Note that cosL.xzjfj ;::: cos()j > -1 holds. From the above inequality, 
we obtain 

0 () 1 cK,(h+b)-cK,(h+b-2'fJ) 
<cos j + :::; sK,(h)sK,(l2) 

< 2~'f/ sK,(h + l2) = 2~'f/ (cK,(b) + cK,(h)). 
- sK,(h)sK,(b) sK,(b) sK,(h) 

Note that tK,(t) := sK,(t)jcK,(t) is increasing. Hence the conclusion follows 
by taking CJ('fJ, R) := 'fJ V t-;; 1 (5~rJ/(1 +cos OJ)). Q.E.D. 

Let us define S11 ,R : 0([0, oo)--+ X)--+ [0, oo] by 

s1),R(w) := aR(w) 1\ j~} inf {t;::: 0; d(w(t), Zj):::; Cj('fJ, R)}. 
d(zj,o)<2R 

For w1, w2 E 0([0, oo)--+ X), set S17 ,R(wl, w2) := S11 ,R(wl) 1\ S11 ,R(w2)· 

Lemma 15. limR--.oo li~-o lime-+0 JP'[S11 ,R(ze) < T] = 0 holds for 
T > 0. The same is also true for ye. 

Proof. Note that lim11-o lP'x [811 ,R(W) < T] = lP'x[aR(W) < T] 
holds for all x E Xo since {zJhEJ is polar. Note that X satisfies the 
(m, k)-measure contraction property (see [11, 16]). Thus we obtain the 
Bishop-Gromov theorem which controls volume of metric balls. Since 
our framework satisfies all assumptions in [15] (see [9]), the Brownian 
motion on X is conservative by the Bishop-Gromov theorem. Hence the 
conclusion follows from a similar argument as in the proof of Lemma 2. 

Q.E.D. 
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Theorem 16. 

(i) Suppose k :::; 0. Then, for a coupling by reflection Z starting 
at (x1, x2) E Xo x Xo, we have (3.1) and therefore (3.2). 

(ii) Suppose k > 0. Then the first nonzero eigenvalue A. of -D. 
satisfies A. ~ mk. 

(iii) Let Tt be the semigroup corresponding to the Brownian motion 
on X. For '1/J E C 2 (Xo) with supxEXo 1'1/J(x)l V I\7'1/J(x)l < oo 
and z E Xo, IV'(Tt'l/J)I (z):::; e-(m-l)kt/2Tt(IV''l/JI)(z) holds. 

Proof. (i) Take Yl, Y2 E Xo. Since /'y1 y2 n(X\Xo) = 0, we can apply 
the second variational formula. Given R, 8, 7] > 0, suppose d(y1 , o) V 
d(y2, o) < R, d(y1, Y2) > 8 and d(y1, Zj) 1\ d(y2, Zj) > Cj('T], R) for every 
j E J with d(zj, o) < 2R. Then Lemma 14 yields that the distance from 
Zj to /'y1 y 2 is bounded below by 7]. In this case, the injectivity radius is 
uniformly bounded below on B(o, 2R) \ UjEJ B(zj, ry). Thus, the proof 
of Lemma 3 also works with a uniform control (depending on R,o,ry) of 
the error term under the above-mentioned conditions. Once we obtain 
it, we can verify that the same argument as in subsection 2.2 and section 
3 works by replacing CJR with s,,R by virtue of Lemma 15. 

(ii) Note that the measure contraction property implies the Bonnet
Myers theorem and hence X is compact. We obtain the same estimate 
as Lemma 11 by using To 1\ s1),R instead of To. The compactness of X 
implies that D. has a discrete spectrum and its eigenfunctions are locally 
Holder continuous (see [9]). Take an eigenfunction r.p corresponding to 
the first nonzero eigenvalue A.. By applying the first assertion with k = 0, 
Remark 10 yields that r.p is globally Lipschitz continuous. Hence we 
obtain the desired result by extending the argument in Theorem 12. 

(iii) The conclusion follows in the same way as (i) and (ii). Q.E.D. 
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