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Abstract. 

We are concerned with dynamic optimization processes from a 
viewpoint of Golden optimality. A path is called Golden if any state 
moves to the next state repeating the same Golden section in each 
transition. A policy is called Golden if it, together with a relevant 
dynamics, yields a Golden path. The probelm is whether an optimal 
path/policy is Golden or not. This paper minimizes a quadratic cri­
terion and maximizes a square-root criterion over an infinite horizon. 
We show that a Golden path is optimal in both optimizations. The 
Golden optimal path is obtained by solving a corresponding Bellman 
equation for dynamic programming. This in turn admits a Golden 
optimal policy. 

§1. Introduction 

Recently the Golden optimal solution, its duality, and its equivalence 
have been discussed in static optimization problems [4, 5, 6]. In this 
paper we consider the Golden optimal solution in dynamic optimization 
problems. 

We consider two typical types of criterion - quadratic and square­
root - in a deterministic optimization. We minimize quadratic criteria 

= = 
I(x) = 2: [x~ + (xn- Xn+1)2], J(x) = L [(xn- Xn+d2 + X~+l] 

n=O n=O 

and maximize square-root criteria 

= 
n=O 

= 
L(x) = 2: (3n ( Jxn- Xn+l + .Jxn+l), 

n=O 
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respectively. Here {3 is 0 < {3 < 1. The differences between I and J and 
between K and L are 

J(x) I(x)- x~ 

00 

L(x) K(x) + L (f3n-1- f3n) ..;x;: ({3-1 = 0). 
n=O 

We show that a Golden path is optimal in these four optimization prob­
lems. The Golden optimal path is obtained by solving Bellman equation 
for dynamic programming [3, 7]. 

§2. Golden paths 

A real number 

¢ = 1 + J5 ~ 1.618 
2 

is called Golden number [1, 2, 8]. It is the larger of the two solutions to 
quadratic equation 

(1) x2 - x -1 = 0. 

Sometimes (1) is called Fibonacci quadratic equation. The Fibonacci 
quadratic equation has two real solutions: ¢ and its conjugate¢ := 1- </J; 
We note that 

Further we have 

¢+¢ = 1, ¢·¢ = -1. 

¢2 = 1 + ¢, t = 2 - ¢ 

¢2 + ¢2 = 3, ¢2 . t = 1. 

A point (2-</J)x splits an interval [0, x] into two intervals [0, (2-</J)x] 
and [(2- </J)x, x]. A point (¢- 1)x splits the interval into [0, (¢- 1)x] 
and[(¢ -1)x, x]. In either case, the length constitutes the Golden ratio 
(2- ¢) : (¢- 1) = 1: ¢. Thus both divisions are the Golden section. 

Definition 2.1. A sequence x: {0, 1, ... } --t R 1 is called Golden if 
and only if either 

Xt+l = </J - 1 or Xt+l = 2 - </J. 
Xt Xt 

Lemma 2.1. A Golden sequence x is either 

Xt = xo(<P -1)t or Xt = xo(2- <P)t. 
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We remark that 

where 

¢-1 = ¢-1 ~ 0.618, 2-¢ = (1+¢)- 1 ~ 0.382 

Let us introduce a controlled linear dynamics with real parameter b 
as follows. 

(2) Xt+1 = bXt + Ut t = 0, 1, ... 

where u : {0, 1, .. . } ----> R 1 is called control. If Ut = pxt, the control u 
is called proportional, where p is a real constant, proportional rate. A 
sequence x satisfying (2) is called path. 

Definition 2.2. A proportional control u on dynamics (2) is called 
Golden if and only if it generates a Golden path x. 

Lemma 2.2. A proportional control Ut = PXt on (2) zs Golden if 
and only if 

(3) p = -b + ¢- 1 or p = -b + 2 - ¢. 

§3. Control processes 

This section minimizes two quadratic cost functions 

00 00 

n=O n=O 

Both problems are solved as a control process with criterion 

00 00 

n=O n=O 

under a common additive dynamics with a given initial state 

Xn+l = bxn +un, Xo = c 

where c E R 1 . 
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3.1. Quadratic in current state 

Let us now consider a control process with an additive transition 
T(x, u) = bx+u. Here b is a constant, which represents a characteristics 
of the process : 

00 

minimize L (x~ + u~) 
n=O 

C(c) 
subject to (i) x"n+l = bxn + Un 

n~O (ii) -oo<un<oo 

(iii) xo =c. 

Let v(c) be the minimum value of C(c). Then the value function v 
satisfies Bellman equation [3]: 

(4) 

Eq. (4) has a quadratic form v(x) = vx2 , where v E R 1• 

Lemma 3.1. The control process C (c) with characteristic value b ( E 

R 1 ) has a proportional optimal policy f 00 , f ( x) = px, and a quadratic 
minimum value function v( x) = vx2 , where 

b2 + v'b4 + 4 v 
v = 2 ' p = - 1 + v b. 

The proportional optimal policy f 00 splits at any time an interval 

[0, x] into [0, (b + p)x] = [o, 1 ~ v] and [ 1 ~ v, x] . In particular, 

when b = 1, the quadratic coefficient vis reduced to the Golden number 

¢ = 1 + ..j5 ~ 1.618 
2 

Further the division of [0, x] into [o, _x_] and [-x-, x] is Golden. 
1+¢ 1+¢ 

A quadratic function w(x) = ax2 is called Golden if a=¢. 

Theorem 3.1. The control process C(c) with characteristic value 
b = 1 has a Golden optimal policy f 00 , f(x) = (1- ¢)x, and the Golden 
quadratic minimum value function v(x) = ¢x2 • 
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3.2. Qquadratic in next state 

Here we consider the cost function r : XxU --+ R 1 which is quadratic 
in current control and next state : 

Then a control process is represented by the following sequential mini­
mization problem : 

C'(c) 

00 

minimize 2.::: ( u~ + x~+ 1 ) 

n=O 

subject to (i) Xn+1 = bxn + Un 
(ii) - 00 < Un < 00 

(iii) xo = c. 

n~O 

The value function v satisfies Bellman equation [3]: 

(5) v(x) = min [u2 + (bx + u) 2 + v(bx + u)] . 
-oo<u<oo 

Eq. (5) has a quadratic solution v(x) = vx2 , where v E R 1 . 

Lemma 3.2. The control process C'(c) with characteristic value b 
has a proportional optimal policy f 00 ,J(x) = px, and a quadratic mini­
mum value function v(x) = vx2 , where 

v = b2 - 2 + Jb4+4 - - 1 + v b 
2 ,p- 2+v' 

The policy f 00 splits an interval [0, x] into [ 0, 2 ~ v] and [ 2 ~ v , x] . 
When b = 1, the coefficient v is reduced to the inverse Golden number 

¢-1 = ¢- 1 = - 1 + v5 ::::::: 0.618 
2 

Further the division of [0, x] into [0, (2- ¢)x] and [(2- ¢)x, x] is Golden. 
A quadratic function w(x) = ax2 is called inverse Golden if a= ¢- 1 . 

Theorem 3.2. The control process C'(c) with characteristic value 
b = 1 has a Golden optimal policy / 00 , f(x) = (1- ¢)x, and the inverse 
Golden quadratic minimum value function v(x) = (¢ -1)x2 . 
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§4. Allocation processes 

This section maximizes two discounted square-root reward functions 

= = L (Jn ( ,;x;: + Jxn- Xn+l) and L (Jn ( Jxn- Xn+l + Jxn+l) · 
n=O n=O 

Both problems are solved as an allocation process with criterion 

= = L (Jn (,;x;: + JU;) and L (Jn ( yiU; + Jxn+l) 
n=O n=O 

under a common subtractive dynamics with a given initial state 

where c ~ 0. 

4.1. Square-root in current state 
Let us now consider an allocation process with a subtractive transi­

tion T(x,u) =x-u: 

= 
Maximize L {Jn ( ,;x;: + JU;) 

n=O 

A( c) 
subject to (i) Xn+l = Xn- Un 

n~O 
(ii) 0 ::=; Un ::=; Xn 

(iii) xo =c. 

Let v(c) be the maximum value of A(c). Then the maximum value 
function v satisfies the following Bellman equation: 

(6) v(x) = Max [v'x + v'U + (Jv(x- u)]. 
o:s;u:s;x 

Eq. (6) has a square-root form v(x) = vy'X, where v E R1 . 

Let us adopt a proportional policy J= (! ( x) = px) with proportional 
rate p (0 < p < 1). Then state x under the control u = px goes 
deterministically to the next state T(x, u) = x-u = x- px = (1 -
p )x. Thus we have x = (1 - p )x + px. The state transition of control 
process A(c) governed by the proportional policy J= means that the 
current control u = px splits the state interval [0, x] into two intervals 
[0, (1- p)x] and [(1- p)x, x]. When the split yields a Golden section, 
the proportional policy t= (f(x) =px) is called Golden. 
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Lemma 4.1. The allocation process A( c) has a proportional optimal 
policy f 00 , f(x) = px, and a square-root maximum value function v(x) = 
vyfX, where 

v = 
2 . (1 - !)2)2 

1 - !]2 ' p = (1 + !]2)2 . 

We remark that the coefficient v is the solution to 

v = 1 + J1 + (!Jv) 2 , v ::=: 2. 

Let us solve 1- p = ¢- 1 or 2- ¢. Then we have the following result. 

Theorem 4.1. When !) = ¢ (1- V?J=T) ~ 0.346 or!) = y(f)­
vq;=T ~ 0.486, the proportional policy f 00 , f(x) = px, is Golden opti­
mal. 

4.2. Square-root in next state 

Now we consider an allocation process with transition T(x, u) 
x-u: 

A'(c) 

00 

Maximize L !)n ( ,;u;: + Jxn+l) 
n=O 

subject to (i) Xn+l = Xn - Un 
(ii) 0 :::; Un :::; Xn 

(iii) x0 = c. 

Let v(c) be the maximum value of A'(c). Then the maximum value 
function v satisfies an optimality equation: 

(7) v(x) = Max [v'U + JX="U + !]v(x- u)]. 
O~u~x 

Eq. (7) has a square-root solution v(x) = vyfX, where v E R 1 . 

Let us adopt a proportional policy f 00 (! ( x) = px) with p ( 0 < 
p < 1). Then the current control u = px splits the interval [0, x] into 
[0, (1- p)x] and [(1- p)x, x]. 

Lemma 4.2. The allocation process A'(c) has a proportional opti­
mal policy f 00 , f ( x) = px, and a square-root maximum value function 
v(x) = vyfX, where 

v = !)+~ 1-!J~ 
1- !)2 ' p = 2 
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Note that the coefficient v is the positive solution to 

v = .j1 + (1 + ,Bv)2. 

By solving 1- p = ¢- 1, we have the following result. 

Theorem 4.2. When ,B = .j1 - 2.j2¢- 3 ~ 0.168, the propor­
tional policy / 00 , f(x) = px, is Golden optimal. 

References 

[ 1] A. Beutelspacher and B. Petri, Der Goldene Schnitt 2., iiberarbeitete und 
erweiterte Auflange, Elsevier GmbH, Spectrum Akademischer Verlag, 
Heidelberg, 1996. 

[ 2] R. A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific 
Publ. Co. Pte. Ltd., 1977. 

[ 3) S. Iwamoto, Theory of Dynamic Program: Japanese, Kyushu Univ. Press, 
Fukuoka, 1987. 

[ 4] S. Iwamoto, Cross dual on the Golden optimum solutions, Math. Econom., 
Res. Inst. Math. Sci., Kyoto Univ., RIMS K6kyfrroku, 1443, 2005, pp. 
27-43. 

[ 5] S. Iwamoto, The Golden optimum solution in quadratic programming, In: 
Proceedings of the International Conference on Nonlinear Analysis and 
Convex Analysis, Okinawa, 2005, (eds. W. Takahashi and T. Tanaka), 
Yokohama Publ., Yokohama, 2007, pp.109-205. 

[ 6] S. Iwamoto, The Golden trinity- optimility, inequality, identity-, Math. 
Econom., Res. Inst. Math. Sci., Kyoto Univ., RIMS K6kyfrroku, 1488, 
2006, pp. 1-14. 

[ 7] S. Iwamoto and M. Yasuda, Dynamic programming creates thegolden ratio, 
too, Decision-Making and Mathematical Model under Uncertainty, Res. 
Inst. Math. Sci., Kyoto Univ., RIMS K6kyfrroku, 1477, 2006, pp. 136--
140. 

[ 8] H. Walser, Der Goldene Schnitt, B. G. Teubner, Leibzig, 1996. 

Seiichi Iwamoto 
Department of Economic Engineering 
Graduate School of Economics 
Kyushu University 
Pukuoka 812-8581, Japan 

Masami Yasuda 
Department of Mathematical Science 
Faculty of Science, Chiba University 
Chiba 263-8522, Japan 

E-mail address: iwamoto@en.kyushu-u.ac.jp 
yasuda@math.s.chiba-u.ac.jp 


