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Golden optimal path in discrete-time dynamic
optimization processes
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Abstract.

We are concerned with dynamic optimization processes from a
viewpoint of Golden optimality. A path is called Golden if any state
moves to the next state repeating the same Golden section in each
transition. A policy is called Golden if it, together with a relevant
dynamics, yields a Golden path. The probelm is whether an optimal
path/policy is Golden or not. This paper minimizes a quadratic cri-
terion and maximizes a square-root criterion over an infinite horizon.
We show that a Golden path is optimal in both optimizations. The
Golden optimal path is obtained by solving a corresponding Bellman
equation for dynamic programming. This in turn admits a Golden
optimal policy.

§81. Introduction

Recently the Golden optimal solution, its duality, and its equivalence
have been discussed in static optimization problems [4, 5, 6]. In this
paper we consider the Golden optimal solution in dynamic optimization
problems.

We consider two typical types of criterion — quadratic and square-
root — in a deterministic optimization. We minimize quadratic criteria

I(z) = Z [#7 + (@n — zn11)?], J(2) = Z [(@n = 2n41)? + 25 44]
n=0 n=0

and maximize square-root criteria

K(z) =Y 8" (VEn + /Tn — Tni1),

n=0
L(z) = Zﬂ" (VEn — Tnt1 +/Tnr1)
n=0
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respectively. Here 8 is 0 < § < 1. The differences between I and J and
between K and L are

J(z) = I(z) -5

K@)+ _ (6" = 8") Van (67 =0).

n=0

L(x)

We show that a Golden path is optimal in these four optimization prob-
lems. The Golden optimal path is obtained by solving Bellman equation
for dynamic programming [3, 7].

§2. Golden paths

A real number

=

14
9= 2

is called Golden number [1, 2, 8]. It is the larger of the two solutions to
quadratic equation

~ 1.618

(1) ?—2-1=0.

Sometimes (1) is called Fibonacci quadratic equation. The Fibonacci
quadratic equation has two real solutions: ¢ and its conjugate ¢ := 1—¢.
We note that B _
Further we have
9 =1+6,8 =2-¢
PP =3 9 = L.
A point (2~ ¢)z splits an interval [0, z] into two intervals [0, (2—¢)z]
and [(2 — ¢)z,z]. A point (¢ — 1)z splits the interval into [0, (¢ — 1)z]

and [(¢ — 1)z, z]. In either case, the length constitutes the Golden ratio
(2—¢) : (¢ —1) =1: ¢. Thus both divisions are the Golden section.

Definition 2.1. A sequence z : {0,1,...} — R! is called Golden if
and only if either

T T
bl =¢—1or b =2—¢.
Ty Tt

Lemma 2.1. A Golden sequence x is either

xy = x0(¢p — 1)* or 3y = w0(2 — qb)t.
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Fig. 1 Golden paths z = c(¢ — 1)t ¢ =1,2,3
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We remark that
(p-1'=¢"" 2-¢)'=(1+¢)"
where
p—1=¢ ' = 0618 2—¢ = (1+¢)"! =~ 0.382

Let us introduce a controlled linear dynamics with real parameter b
as follows.

(2) xt+1=b:ct+utt=0,1,...

where v : {0,1,...} — R! is called control. If u; = pz;, the control u
is called proportional, where p is a real constant, proportional rate. A
sequence z satisfying (2) is called path.

Definition 2.2. A proportional control u on dynamics (2) is called
Golden if and only if it generates a Golden path x.

Lemma 2.2. A proportional control uy = pxy on (2) is Golden if
and only if

(3) | p=-bt+od—-1lorp=—-b+2—¢.

83. Control processes

This section minimizes two quadratic cost functions

) o0
D (ot (@n = 2ni1)?] and Y [(@n = 2ni1)® + 204 ] -
n=0

n=0

Both problems are solved as a control process with criterion

oo} oo
Z (z2 +u2) and Z (w2 +z2,4)
n=0 n=0

under a common additive dynamics with a given initial state
Tpt1 = b0Tp + Upn, To =cC

where ¢ € RL
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3.1. Quadratic in current state

Let us now consider a control process with an additive transition
T(z,u) = bz +wu. Here b is a constant, which represents a characteristics
of the process :

o0
minimize Z (2:,21 + ufl)
n=0
(o) subject to (i) Tpt1 = bTn + Uy n>0
(i) —oo<uUp < -

(i) =z =c

Let v(c) be the minimum value of C(c). Then the value function v
satisfies Bellman equation [3]:

(4) v(z) = min  [2* + v+ v(bz +u)].

—oo<u<oo

Eq. (4) has a quadratic form v(z) = vz?, where v € R!.

Lemma 3.1. The control process C(c) with characteristic value b (€
RY) has a proportional optimal policy f, f(z) = pz, and a quadratic
minimum value function v(x) = va?, where

P+vbei+d 0w
Pt

The proportional optimal policy f°° splits at any time an interval

bz T
0 into [0, (b = |0, —— d |——
0,4] nto 0, 6+ ple] = [0, 72| ana |2
when b = 1, the quadratic coefficient v is reduced to the Golden number

14456
2

, x| . In particular,

10} =~ 1.618

Further the division of [0, z] into {O, —2 | and [—m—, :c} is Golden.
1+¢ 1+ ¢
A quadratic function w(z) = ax? is called Golden if a = ¢.

Theorem 3.1. The control process C(c) with characteristic value
b =1 has a Golden optimal policy f*°, f(z) = (1 — §)z, and the Golden
quadratic minimum value function v(z) = ¢x2.
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3.2. Qquadratic in next state

Here we consider the cost function r : XxU — R! which is quadratic
in current control and next state :

r(z,u) = u?+ (br +u)?.

Then a control process is represented by the following sequential mini-
mization problem :

- 00
minimize Z (u2 +22,,)
n=0
(o) subject to (1) Xp41 = bzy + up n>0
(i) —oo<u,<oo =
(iii) zo=vc
The value function v satisfies Bellman equation [3]:
_ . 2 2
(5) v(x) = _min [u? + (bz + u)® + v(bz + u)] .

Eq. (5) has a quadratic solution v(z) = vz?, where v € R*.

Lemma 3.2. The control process C'(c) with characteristic value b
has a proportional optimal policy f°°, f(z) = px, and a quadratic mini-
mum value function v(z) = vx?, where

b2 -2+ Vbt 4+ 4 1+wv
v o= 7p:-————-b.
2 240

240’
When b = 1, the coefficient v is reduced to the inverse Golden number

b b
The policy f°° splits an interval [0, ] into [O, %] and [ z x} .

Further the division of [0, z] into [0, (2 — ¢)z] and [(2 — ¢)z, ] is Golden.
A quadratic function w(z) = az? is called inverse Golden if a = ¢1.

Theorem 3.2.. The control process C'(c) with characteristic value
b=1 has a Golden optimal policy f*°, f(z) = (1 — ¢)z, and the inverse
Golden quadratic minimum value function v(z) = (¢ — 1)z2.
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84. Allocation processes
This section maximizes two discounted square-root reward functions

Zﬁn(\/x_n'l_ wn_xn+1) and Zﬁn(\/xn_xn-‘rl +\/-7—7;|-_I_)
n=0

n=0

Both problems are solved as an allocation process with criterion

> B (VEu +uam) and Y B (Vn + v/Enr1)
n=0 n=0

under a common subtractive dynamics with a given initial state
Tn+1 = Tpn — Un, Tg =C
where ¢ > 0.

4.1. Square-root in current state
Let us now consider an allocation process with a subtractive transi-
tion T'(z,u) = —u :

Maximize Z B" (VIn + /un)
n=0

subject to (i) Zpy1 =Tn —up
(ii)) 0<u, <z

(iil) o =c.

A(c)

Let v(c) be the maximum value of A(c). Then the maximum value
function v satisfies the following Bellman equation:

(6) v(z) = olgfgxz [Vz +Vu + Bu(z — u)] .

Eq. (6) has a square-root form v(z) = v\/z, where v € R!.

Let us adopt a proportional policy f°° (f(z) = pz) with proportional
rate p (0 < p < 1). Then state z under the control u = pr goes
deterministically to the next state T(z,u) =z —u =z —pr = (1 —
p)x. Thus we have z = (1 — p)z + pz. The state transition of control
process A(c) governed by the proportional policy f* means that the
current control v = pz splits the state interval [0, z] into two intervals
[0, (1 —p)z] and [(1 — p)z, z]. When the split yields a Golden section,
the proportional policy f*° (f(z) =pz) is called Golden.



Golden optimal path in discrete-time dynamic optimization processes 85

Lemma 4.1. The allocation process A(c) has a proportional optimal
policy f°, f(z) = pz, and a square-root mazimum value function v(x) =
v/ , where

2 1-p%)°

el

We remark that the coefficient v is the solution to
v=1++/1+(Bv)?, v>2.

Let ussolve 1 —p=¢ —1 or 2 — ¢. Then we have the following result.

Theorem 4.1. When 8 =¢ (1 —/d—1) =~ 0.346 or 8 = /¢ —
Vo —1 = 0.486, the proportional policy f*°, f(x) = pzx, is Golden opti-
mal.

4.2. Square-root in next state

Now we consider an allocation process with transition T'(z,u) =
zT—u:

Maximize Z G" (\/un 4+ /Tri1 )
n=0

subject to (1) ZTpt1 = Tn — Un
(i) 0<un<an
(i) zo=c.

A'(o)

Let v(c) be the maximum value of A’(c). Then the maximum value
function v satisfies an optimality equation:

(N v(z) = ol\g/lfgxx [Vu + vz —u + Bo(z —u)].

Eq. (7) has a square-root solution v(z) = v\/z, where v € R

Let us adopt a proportional policy f*° (f(z) = pz) with p (0 <
p < 1). Then the current control u = px splits the interval [0, z] into
[07 (1 -—p)x] and [(1 _p)$7 .CL']

Lemma 4.2. The allocation process A’(c) has a proportional opti-
mal policy [, f(z) = pz, and a square-root mazimum value function
v(x) = vy/z, where

BrV2—F  1-8/2- P
: .

1_/32 y D=
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Note that the coefficient v is the positive solution to

v =+/1+(1+pv)2.

By solving 1 — p = ¢ — 1, we have the following result.

Theorem 4.2. When 8 = /1 —2y/2¢ —3 = 0.168, the propor-

tional policy f°, f(x) = pzx, is Golden optimal.
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