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On periodic points of 2-periodic dynamical systems

Joao Ferreira Alves

§1. Introduction and statement of the result

Motivated by a recent extension of Sharkovsky’s theorem to peri-
odic difference equations [1] (see also [4]), here we show that kneading
theory can be useful in the study of the periodic structure of a 2-periodic
nonautonomous dynamical system.

Since the notions of zeta function and kneading determinant will
play a central role in this discussion, we start by recalling them.

Let X be aset and f : X — X a map. For each n € ZT, denote by
f™ the nth iterate of f, defined inductively by

fl=fand f"™' = fo f* foralln e Z*.

In what follows we assume that each iterate of f has finitely many fixed
points. The Artin-Mazur zeta function of f is defined in [3] as the
invertible formal power series

) = e

n>1
where
Fix(f*) ={z € X : f*(z) =z}.

Naturally, this definition is a particular case of a more general definition,
necessary for our purposes.

Let f:Y — X be a map, with Y C X. In this case the nth iterate
of f is the map f™ :Y,, — X defined inductively by:

Vi=Y, fl=f
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and
Y1 = fY), " = fo f, foralln € ZT.
We define SFix(f)
ix(f") ,
Cf(z):epo——————-n 2",
n>1
where

Fix(f") = {z € Y, : "(z) = z}

Problems concerning rationality and analytic continuation of (s are often
considered. In some interesting cases (s is a rational function of z.
Notice that in such case, there exist aq, ..., ag, b1, ..., bx € C such that

k1 — biz
Cf(Z) - zl;Ill _ (liZ’
and consequently
E
(1) #Fix(f") = Y af — b7, for all n > 1.
i=1

Milnor and Thurston in [5] studied the Artin-Mazur zeta function
of a continuous piecewise monotone map f : [a,b] — [a,b] introducing
a so called kneading determinant of f, Dy(z), the determinant of a
finite matrix, Nf(2), called kneading matrix, with entries in Z[[z]] and
depending upon the orbits of the turning points of f; they established
a fundamental relation between Dy(z) and (f(z). We illustrate this
relation in the two following examples, without going into full details.

Example 1. Let I = [a,b] C R be a compact interval. A continuous
map f: I — I is called piecewise monotone if there exist points (called
turning points of f)a=cy < 1 < -+ < cp_1 < ¢, = b such that: f is
strictly monotone in [c;, c;iv1]; and f has a local extrema at ¢;.

As an example let s € |1,2], and f : [-1,1] — [-1,1] be the contin-
uos map defined by f(z) = s —1— s|z|. The simplest case occurs when
s = 2, in this case we do not need kneading theory to conclude that

Cr(z) = T _1 . and #Fix(f") = 2", for alln > 1.

The situation is much more complex when s € |1,2[. Following [2] we
consider a modified kneading determinant of f given by

Di(2) = (1-2) 3 kne™,

n>0
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where the sequence k., € {—1,0,1} is defined by
ko = land k, = —sign(f™(0))kn—1,for n > 1.

Thus, D¢(z) depends upon the orbit of the turning point 0, and, as a
consequence of the Milnor-Thurston’s identity

42 =D = T

we may conclude that (r(z) is rational if and only if the sequence ki,

is eventually periodic. For example let s = 14;2\/_5 Since f(0) > 0,
f2(0) <0 and f3(0) =0, we have D¢(z) =1 — 2z + 23 and

(2) = 1 B 1
iz T3 -22+1 (1_2)(1_1%52.)(1_&%52)’
and by (1)

1~\/5)n+<1+\/5

#Fix(f")=1+< 5 5 ),foralanl.

Example 2. It is possible to generalize the notion of kneading de-
terminant for a continuous piecewise monotone map

f : [al,bl]U“'U[ak,bk] — R.

As in the previous situation, this determinant depends upon the orbits of
the turning points of f and there exists a fundamental relation between

D;(z) and (s(2).

As an example, let a € ]0,1] and f : [-1, —a]U[a, 1] — R be the con-
tinuos map defined by f(x) =1—-2|x|. A modified kneading determinant
of f is given by

D(z) =(1—2) ) kn2",

n>0

where the sequence ky, € {—1,0,1} is defined by
ko =1 and kny1 = (f" (a))kn, forn >0,
and e : R — {—1,0,1} is the step function defined by

1ifzre]-1,—aq]
e(z) =4 —1lifze]al]
0 otherwise



4 J. Alves

As a consequence of Milnor Thurston’s main identity we have
1
(1=2) 30 kna™’

Consider the particular case a = . We have f(a) = 3, fa) =

-1 <0, f3a) =0, thus Dg(z) =1 - 22+ 2% and
1

1
2 -22+1  (1-2)(1- %gz)(l - l:t;@z)

(1(z) =Df'(2) =

(r(z) =

and by (1)
#Fix(f") =1+ (1 ”2*@) + (1 +2¢g> :

As mentioned above, our goal is to show that kneading theory can
be useful to study the periodic structure of a periodic nonautonomous
dynamical system. In this paper we shall restrict the discussion to 2-
periodic dynamical systems. As in the autonomous case, we shall need
a preparation theorem, which is actually a generalization of (1). First,
we need to introduce some notation.

In what follows, by a dynamical system on a set X we mean a pair

F={fo, 1}

of self mappings in X. Given z € X, the orbit of x is the sequence
{zn}or, on X defined by

Ty = z,71 = fo(x), 22 = f1 (fo(z)), ...
or more precisely

= [ fo(zn) if nis even
(2) zo =z and Tpy1 = { i) if n is odd

The point z is called periodic, with period p(z) € Z™T, if the orbit of z
is a periodic sequence with period p(x). The set whose elements are the
periodic points of F' is denoted by Perp. For each positive integer, n,
we also define

Perp(n) = {z € Perp : p(z) divides n}.

We will assume that Perg(n) is a finite set for all positive integer n.



On periodic points of 2-periodic dynamical systems 5

Observe that, even in the simplest cases, there exists a relevant
difference between the numbers

#Perp(n) and #Fix(f™).

Indeed, as the following example shows, even when the set X is finite, we
can not guarantee the existence of complex numbers a1, ..., ag, by, ..., bx
such that

k
(3) #Perp(n) = Y a} — b}, for alln > 1.
i=1

Example 3. Let X = {0,1} and define the maps fo : {0,1} —
{0,1} and f1 : {0,1} — {0,1} by fo(0) = fo(1) =0 and f1(0) = f1(1) =

1. We have ; ”
0 ifniso
#Perr(n) = { 1 ifn s even

Consequently, the formal power series

exp 3 #Perp(n) . 1
anl n \% 1—22

is not rational, and therefore do not exist compler numbers satisfying
(3).

Nevertheless, it can be shown that, if the set X is finite, then there
are complex numbers as,...,ak, b1, ..., b, 1, ..., Ck, d1, ..., dx such that

k
a? — b} ifnisodd
1

(4) #Perp(n) = ¢ 7
Dt —dP if nis even
i=1

This fact rises the following problem. If F = {fy, f1} is a dynamical
system on an infinite set X, under which conditions car we guarantee the
existence of complex numbers verifying (4)? Our main theorem concerns
this problem. For that purpose, we need to introduce the maps

go: XoCX —» X
z = fo(z) ’
where
Xo={z e X: folzx) = fr(x)},
and
g1 = f10 fo.
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Theorem 4. Let F = {fo,fi} be a dynamical system on X. If
Cgo(2) and (g, (2) are rational, and ay, ..., ak, by, ..., bg, c1,...; Cr, d1, ...y die
are complex numbers such that

k 1 bZZ 1— dlZ
(@) = 1= and G, () = [T 1=,
then we have
k
>al = b}  ifnis odd
#Perp(n)=4¢ '
Yoei —d?  ifn is even
i=1

This general result has a relevant consequence in the context of
interval maps. Let fo and fi; be continuous piecewise monotone self-
maps of a compact interval I C R. Furthermore, assume that the set

Xo=A{z € I: fo(x) = fi(z)}

has finitely many connected components. Notice that under these con-
ditions both maps go and g; are continuous piecewise monotone, and
thus we can use the old results on kneading theory to study the zeta
functions of gg and g;.

Example 5. Let fo : [—1,1] — [—1,1] be defined by fo(z) = 1-2|z],
and let fi : [—1,1] — [—1,1] be any continuous expanding map such that:
f1 is increasing on [—1,0] and decreasing on [0,1]; fi(z) = fo(z), for
z € {—1,0,1}. Under these conditions, it is easy to see that (g4, (z) do
not depend upon f1. As a matter of fact

1
1—42"

Co1(2) = Cprofe (2) = (p2(2) =
The study of (4,(2) is much more interesting because it depends on Xo.

The simplest case occurs when Xo = {—1,0,1}. In this case we have

1
1—-27

Cgo (z) =
and from Theorem 4

[ 1 ifnisodd
#Perp(n) = { 2™ ifn is even
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Of course the situation is more complex if the set Xy is infinite. As an
example, assume that Xo = [—1, -—%] u{otu [%, 1]. We have then (see
Example 2)

1

(1-2)(1 - 1582)(1 - 155;)

Co (Z) =

and from Theorem 4

1+ (1“2\/5)71 + (1+2‘/g>n if n is odd .
A if n is even

#Perp(n) = {

§2. Proof of Theorem 4

Let us begin by recalling some facts on generating functions. For
any sequence {s,}; C C let us define the formal power series

S(z) =exp > Sn pn,

n>1 1

It is well-known that:
i) The generating function S(z) is a rational function of z if and only if
there exist a1, ..., ag; b1, ..., bx € C such that

(5) S(z) = [ 202

‘i:11 — a/jz‘

ii) For any ay, ..., ak; b1, ..., bg, € C the identity (5) holds if and only if
k
Sn= > ar — by, forn > 1.
=1

So, for any map f: X — X, we may write: (y(2) is rational if and only
if there exist aq, ..., ag; b1, ..., b € C such that

k1 biZ
(6) () = 1o
which is equivalent to
3
(7) #Fix(f") = Y. a} — b7, forn > 1.
i=1

We can now prove Theorem 4. Let F' = {fo, f1} be a dynamical sys-
tem on X. If the zeta functions (g, (2) and 4, (2) are both rational, then
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by (6) there are complex numbers a1, ..., 0%, b1, ..., bx, €1, ..., Ck, d1, ..., di
such that

1—b;z —d;
o) = T2 and G, (2) = 11—
1

i1l —ciz’

and by (7)
k k
HFi(gl) = Dhap — b and #Fix(gf) = Socf — dFyn > 1.
i=1 =1

So, the theorem will follow from the identity

Fix(¢f) ifnisodd
Fix(g?/?) ifniseven '

(8) Perp(n) = {

In order to prove (8), let z € X and {z;};-, be the orbit of z.
Assume first that n is even. In this case we have by (2)

zo =z and Tg, = (f1 0 fo)’m/2 (z) = gfn/z(x), for k > 1.
So, we can write
Tgn = T, for all k > 1 if and only if gk"/2( )=u, forall k> 1,

and therefore Perg(n) = Fix(g™/?).
For n odd, if z € Perp(n), then the period p(z) is odd and:

fo(z5) = Tj41 = Tigjap@) = [1(Tj4p)) = fi(z;), if J is even;
f1(z5) = Tj41 = Tiijapa) = fol@j4p@)) = folz;), if j is odd,
which shows that
{.’L‘z}fi_o C Xo = {iL‘ € X: fo(.’L') = fl(.’E)} .
Therefore ' '
z; = fo(x) = go(x), for i > 1

and consequently

gg(m) (2) = Tp(z) = T0 = .

This proves the inclusion Perp(n) C Fix(g¢). Since the inclusion Fix(g{)
C Perp(n) is immediate it follows Fix(g}) = Perp(n), as requested.
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