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On periodic points of 2-periodic dynamical systems 

Joao Ferreira Alves 

§1. Introduction and statement of the result 

Motivated by a recent extension of Sharkovsky's theorem to peri­
odic difference equations [1) (see also [4)), here we show that kneading 
theory can be useful in the study of the periodic structure of a 2-periodic 
nonautonomous dynamical system. 

Sirice the notions of zeta function and kneading determinant will 
play a central role in this discussion, we start by recalling them. 

Let X be a set and f : X -t X a map. For each n E z+, denote by 
r the nth iterate of f' defined inductively by 

f 1 = f and r+l = f o r, for all n E z+. 
In what follows we assume that each iterate of f has finitely many fixed 
points. The Artin-Mazur zeta function of f is defined in [3) as the 
invertible formal power series 

where 

r ( ) """#Fix(r) n 
'>f z = exp ~ z , 

n 
n2:1 

Fix(r) = {x EX: r(x) = x}. 

Naturally, this definition is a particular case of a more general definition, 
necessary for our purposes. 

Let f : Y -t X be a map, with Y C X. In this case the nth iterate 
of f is the map r : Yn -t X defined inductively by: 

Y1 = Y,/1 = f 
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and 

We define 

where 
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Yn+l = f-n(Y), r+l =for, for all n E z+. 

r ( ) L#Fix(r) n 
.,f z = exp z ' 

n 
n:O::l 

Fix(r) = {x E Yn: r(x) = x} 

Problems concerning rationality and analytic continuation of (J are often 
considered. In some interesting cases (J is a rational function of z. 
Notice that in such case, there exist a1, ... , ak, b1, ... , bk E C such that 

and consequently 

k 
(1) #Fix(r) = 2:: ai- bi, for all n;::: 1. 

i=l 

Milnor and Thurston in [5] studied the Artin-Mazur zeta function 
of a continuous piecewise monotone map f : [a, b] ---+ [a, b] introducing 
a so called kneading determinant of f, Dt(z), the determinant of a 
finite matrix, N J(z), called kneading matrix, with entries in Z[[z]] and 
depending upon the orbits of the turning points off; they established 
a fundamental relation between Dt(z) and (J(z). We illustrate this 
relation in the two following examples, without going into full details. 

Example 1. Let I= [a, b] c ~ be a compact interval. A continuous 
map f : I ---+ I is called piecewise monotone if there exist points (called 
turning points off) a= co < c1 < · · · < Ck-1 < Ck = b such that: f is 
strictly monotone in [Ci, ci+l]; and f has a local extrema at Ci· 

As an example lets E ]1, 2], and f: [-1, 1]---+ [-1, 1] be the contin­
uos map defined by f(x) = s -1- s lxl. The simplest case occurs when 
s = 2, in thiscase we do not need kneading theory to conclude that 

Ct(z) = 1 ~ 2z and #Fix(r) = 2n, for all n;::: 1. 

The situation is much more complex when s E ]1, 2[. Following [2] we 
consider a modified kneading determinant of f given by 

Dt(z) = (1- z) L knzn, 
n:O::O 
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where the sequence kn E { -1, 0, 1} is defined by 

ko =land kn = -sign(r(o))kn-1,/or n ~ 1. 

Thus, Dt(z) depends upon the orbit of the turning point 0, and, as a 
consequence of the Milnor- Thurston's identity 

-1 1 
(J(z)=Df (z)= (1-z)L: k zn' 

n:O::O n 

we may conclude that (J(z) is rational if and only if the sequence kn 

is eventually periodic. For example let s = 1±2v'5 . Since f ( 0) > 0, 
P(O) < 0 and P(O) = 0, we have Dt(z) = 1- 2z + z3 and 

1 1 
(J(z) = z3- 2z + 1 (1- z)(l- 1-2v'5z)(l- 1±2v'5 z)' 

and by (1} 

(1- J5)n (1 + J5)n #Fix(r) = 1 + 2 + - 2- , for all n ~ 1. 

Example 2. It is possible to generalize the notion of kneading de­
terminant for a continuous piecewise monotone map 

As in the previous situation, this determinant depends upon the orbits of 
the turning points of f and there exists a fundamental relation between 
Dt(z) and (J(z). 

As an example, let a E ]0, 1[ and f: [-1, -a] U [a, 1]----+ lR be the con­
tinuos map defined by f(x) = 1-2lxl. A modified kneading determinant 
of f is given by 

Dt(z) = (1- z) L krizn, 
n:O::O 

where the sequence kn E { -1, 0, 1} is defined by 

ko = 1 and kn+1 = E(jn+1 (a))kn, for n ~ 0, 

and E : lR ----+ { -1, 0, 1} is the step function defined by 

{ 
1 ifx E ]-1,-a[ 

E(x)= -lifxE]a,l[ 
0 otherwise 
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As a consequence of Milnor Thurston's main identity we have 

-1 1 
(J(z) = Df (z) = (1- z)"" k zn · 

L..m;;::o n 

Consider the particular case a = l· We have f(a) = ~' P(a) = 
-~ < 0, JS(a) = 0, thus D 1(z) = 1- 2z + z3 and 

1 1 
(J(z) = z3- 2z + 1 = (1- z)(1- l-2V5 z)(1- ¥z)' 

and by {1} 

#Fb<(f") ~ I + c -2 y'5)" + (I +2 y'5) n 

As mentioned above, our goal is to show that kneading theory can 
be useful to study the periodic structure of a periodic nonautonomous 
dynamical system. In this paper we shall restrict the discussion to 2-
periodic dynamical systems. As in the autonomous case, we shall need 
a preparation theorem, which is actually a generalization of (1). First, 
we need to introduce some notation. 

In what follows, by a dynamical system on a set X we mean a pair 

F={fo,h} 

of self mappings in X. Given x E X, the orbit of x is the sequence 
{ Xn} :'=o on X defined by 

xo = x, x1 = fo(x), x2 = h (fo(x)), ... 

or more precisely 

(2) { fo(xn) ifn is even 
Xo. = x and Xn+l = f ( ) f 

1 Xn i n is odd 

The point x is called periodic, with period p(x) E z+, if the orbit of x 
is a periodic sequence with period p(x). The set whose elements are the 
periodic points ofF is denoted by Perp. For each positive integer, n, 
we also define 

Perp(n) = {x E Perp: p(x) divides n}. 

We will assume that Perp(n) is a finite set for all positive integer n. 
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Observe that, even in the simplest cases, there exists a relevant 
difference between the numbers 

#Perp(n) and #Fix(r). 

Indeed, as the following example shows, even when the set X is finite, we 
can not guarantee the existence of complex numbers at, ... , ak, bt, ... , bk 
such that 

k 

(3) #Per!f'(n) = I: a~- b~, for all n ~ 1. 
i=t 

Example 3. Let X = {0, 1} and define the maps fo : {0, 1} ---t 

{0, 1} and ft: {0, 1} ---t {0, 1} by fo(O) = fo(1) = 0 and ft(O) = ft(1) = 
1. We have 

#p ( ) = { 0 if n is odd erp n 1 ;; . 
ZJ n zs even 

Consequently, the formal power series 

"' #Perp(n) n 1 
exp L..t z = --=== 

n~t n J1-z2 

is not rational, and therefore do not exist complex numbers satisfying 
(3). 

Nevertheless, it can be shown that, if the set X is finite, then there 
are complex numbers at, ... , ak, bt, ... , bk, Ct, ... , Ck, dt, ... , dk such that 

(4) { 

k 

I:ai- bi if n is odd 
#Perp(n) = ikt 

I:ci- di if n is even 
i=t 

This fact rises the following problem. IfF = {f0 , ft} is a dynamical 
system on an infinite set X, under which conditions cart we guarantee the 
existence of complex numbers verifying ( 4)? Our main theorem concerns 
this problem. For that purpose, we need to introduce the maps 

go : Xo c X ---t X 
x ---t fo(x) ' 

where 
Xo = {x EX: fo(x) = ft(x)}, 

and 
9t =Ito fo. 
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Theorem 4. Let F = {fo, ft} be a dynamical system on X. If 
(g0 (z) and (g1 (z) are rational, and a1, ... , ak, b1, ... , bk, ClJ ... , ck, d1, ... ,dk 
are complex numbers such that 

then we have 

'go(z) = Ilk 1- biz ( ) Ilk 1- diz 
., and (gl z = ··=1 1 - c.z ' i=l1- aiz . . 

k 
"an- b"!­L.. • • 
i=1 

k n n 

"c?- d? L.. • • 
i=1 

if n is odd 

ifn is even 

This general result has a relevant consequence in the context of 
interval maps. Let fo and It be continuous piecewise monotone self­
maps of a compact interval I C ~- Furthermore, assume that the set 

Xo = {x E I: fo(x) = ft(x)} 

has finitely many connected components. Notice that under these con­
ditions both maps g0 and g1 are continuous piecewise monotone, and 
thus we can use the old results on kneading theory to study the zeta 
functions of go and g1 . 

Example 5. Let fo: [-1, 1]--t [-1, 1] be defined by fo(x) = 1-2lxl, 
and let It : [-1, 1]--t [-1, 1] be any continuous expanding map such that: 
ft is increasing on [-1,0] and decreasing on [0, 1]; ft(x) = fo(x), for 
x E { -1, 0, 1 }. Under these conditions, it is easy to see that (g1 (z) do 
not depend upon It. As a matter of fact 

The study of (g0 ( z) is much more interesting because it depends on Xo. 
The simplest case occurs when X 0 = { -1,0, 1}. In this case we have 

and from Theorem 4 

1 
(go(z) = -1-, -z 

#Perp(n) = { ;n 
ifn is odd 
ifn is even 
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Of course the situation is more complex if the set Xo is infinite. As an 
example, assume that Xo = [-1, -~] U {0} U [~, 1]. We have then (see 
Example 2} 

and from Theorem 4 

{ 1 + ( l-2V5) n + ( 1+2V5) n if n is odd 
#Perp(n) = 

2n if n is even 

§2. Proof of Theorem 4 

Let us begin by recalling some facts on generating functions. For 
any sequence { sn} ~=l C C let us define the formal power series 

S(z) = exp 2::: Sn zn. 
n~l n 

It is well-known that: 
i) The generating function S(z) is a rational function of z if and only if 
there exist a1, ... ,ak;bb···,bk E C such that 

(5) 

ii) For any a1 , ... , ak; b1 , ... , bk E C the identity (5) holds if and only if 

k 

Sn = 2::: ar - br, for n ~ 1. 
i=l 

So, for any map f: X____. X, we may write: (J(z) is rational if and only 
if there exist a1, ... , ak; b1, ... , bk E C such that 

(6) 

which is equivalent to 

k 
(7) #Fix(r) = l:::ai- br, for n ~ 1. 

i=l 

We can now prove Theorem 4. Let F = {fo, /I} be a dynamical sys­
tem on X. If the zeta functions (90 (z) and (91 (z) are both rational, then 
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by (6) there are complex numbers a1, ... , ak, b1, ... , bk, c1, ... , ck, d1, ... , dk 
such that 

and by (7) 

k k 

#Fix(g0) = I: a~- b~ and #Fix(g]:) = I:c~- d~, n 2: 1. 
i=l i=l 

So, the theorem will follow from the identity 

(8) { 
Fix(g()) if n is odd 

Perp(n) = . n/2) . . · F1x(g1 1f n IS even 

In order to prove (8), let x E X and {xi}:0 be the orbit of x. 
Assume first that n is even. In this case we have by (2) 

Xo = x and Xkn =(!I o fo)kn/2 (x) = g~n/2 (x), fork 2: 1. 

So, we can write 

Xkn = xo, for all k 2: 1 if and only if g~n/2 (x) = x, for all k 2: 1, 

and therefore Perp(n) = Fix(g~/2 ). 
For n odd, if x E Perp(n), then the period p(x) is odd, and: 

fo(xj) = Xj+l = Xl+j+p(x) = fi(xj+p(x)) = fi(xj), if j is even; 

fi(xj) = Xj+l = Xl+j+p(x) = fo(Xj+p(x)) = fo(xj), if j is odd, 

which shows that 

{xi}:o C Xo = {x EX: fo(x) = fi(x)}. 

Therefore 
Xi= JJ(x) = gb(x), fori 2: 1 

and consequently 
gg(x)(x) = Xp(x) = Xo =X. 

This proves the inclusion PerF ( n) c Fix(g()). Since the inclusion Fix(g()) 
C Perp(n) is immediate it follows Fix(g()') = Perp(n), as requested. 

Acknowledgments. The author wishes to thank to Saber Elaydi the 
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