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Steady motions of the Navier-Stokes fluid 
around a rotating body 

Toshiaki Hishida 

Abstract. 

Consider the 3-dimensional Navier-Stokes fluid filling an infinite 
space exterior to a rotating body with constant angular velocity. By 
using the coordinate system attached to the body, the problem is re­
duced to an equivalent one in the fixed exterior domain. The reduced 
equation then involves an important drift operator, which is not subor­
dinate to the usual Stokes operator and causes some difficulties. Based 
on [13], [26] and [12], this survey article addresses steady solutions to 
the reduced problem. 

§1. Introduction and summary 

1.1. Navier-Stokes fluid around a rotating body 
Let us consider the physical situation that a compact rigid body 

moves in a viscous incompressible fluid in a prescribed way. We would 
like to know the motion of the fluid, which is governed by the Navier­
Stokes equation in a time-dependent exterior domain. In his series of pa­
pers, Finn considered the problem with translating bodies and started its 
mathematical analysis, see [14], [9], [15], [31] and the references therein. 
It is certainly interesting to take also the rotation of the body into ac­
count. In the last decade a lot of efforts have been made by several 
mathematicians on some related problems with rotating bodies, how­
ever, our mathematical understanding is still far from complete. 

In this survey article, based on the works [13], [26] and [12] jointly 
with R. Farwig and D. Muller, we provide some recent results on steady 
motions. We discuss the purely rotating case and thus the translation 
of the body is absent. Let D be an exterior domain in JR3 with smooth 
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boundary oD. The rigid body JR3 \ D is rotating about y3-axis (without 
loss of generality) with the constant angular velocity w = (0, 0, !w!)T. 
Here and hereafter, superscript-T denotes the transpose and all vectors 
are column ones. Unless the body is axisymmetric, the domain D(t) = 
O(!w!t)D = {y = O(!w!t)x; x E D} occupied by the fluid actually varies 
with timet, where 

( 
cost 

O(t) = si~ t 
- sint 0 ) 
cost 0 . 

0 1 

The problem we are going to consider is the Navier-Stokes equation 

OtV + v · \7 yV = L'::iyv- \7 y1r + 9, divyv = 0, 

for y E D(t), t > 0 subject to the non-slip boundary condition on the 
surface of the body 

v!aD(t) = w /1. y 

and the rest condition at space infinity 

v ---> 0 as IYI ---> oo 

together with initial condition 

v(y, 0) = a(y), y ED. 

Here, v(y,t) = (v 1 ,v2,v3 )T and n(y,t) respectively denote unknown 
velocity and pressure of the fluid, while 9(y, t) = (91 , 92, 93) T and a(y) = 
(a1 , a 2 , a 3 )T are given external force and initial velocity. The symbol /1. 

stands for the usual exterior product of 3-dimensional vectors; thus, 

which is the rotating velocity of the rigid body. It is reasonable to reduce 
the problem to an equivalent one in the exterior domain D by using the 
reference frame attached to the rotating body (although there is another 
possibility, see [8]). Namely, the following change of unknowns ( v, 1r) and 
the force 9 is made: 

u(x, t) = O(lw!t)T v (O(!w!t)x, t), p(x, t) = 1r (O(!w!t)x, t), 

f(x, t) = O(lwltf 9 (O(!w!t)x, t). 

Our problem is then reduced to 
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Btu+ u · Vu = t:.u + (w 1\ x) · Vu- w 1\ u- \lp + f, 
div u = 0, 

in D x (0, oo) subject to 

ulaD = w 1\ x, u ---+ 0 as lxl ---+ oo, u(x, 0) = a(x). 
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The most interesting and difficult feature is that the drift term ( w 1\ 
x) · Vu is not subordinate to the viscous term t:.u and thus cannot be 
treated as a simple perturbation even if lwl is small. In fact, unlike the 
Laplace operator' the fundamental solution r( X' y) of the linear operator 

(1.1) L = -t:.- (w 1\x) · V +wl\ 

cannot be estimated from above by C/lx- yl; to be precise, its final 
component r33(x, y) satisfies 

(1.2) 

for p > 1 when one takes, for example, Xp = (p, 0, of and Yp = (0, p, of, 
see [13], [26]. Furthermore, unlike the heat semigroup ett:., the generated 
semigroup 

(e-tL f) (x) = O(lwltf (eM f) (O(Iwlt)x) 

on L 2(JK3) is not analytic, although it possesses some smoothing prop­
erties. The related semigroup [22] for the exterior problem enjoys such 
properties as well, see [23], [24], [25] and also the recent work [21]. 

There are some studies on the Navier-Stokes initial value problem 
above in exterior domains within the framework of L 2 space; weak solu­
tion [3], local unique solution [23], local and global strong solutions [18]. 
Recently, a local unique solution has been constructed by [21] within the 
framework of Lq space. We also mention the related topic on the steady 
falling motion of a body in an infinite fluid. The body must undergo a 
translation and a rotation which are to be determined from equilibrium 
conditions on the boundary, see [37] and [16]. 

1.2. Steady problem 
The present article is devoted to the study of the steady problem in 

exterior domains: 

(1.3) Lu + \lp + u · Vu = f, div u = 0 in D, 
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see (1.1), subject to 

(1.4) ulaD = w 1\ x, u ---+ 0 as lxl ---+ oo. 

Note that the steady motion in the frame attached to the body cor­
responds to the time-periodic one in the original frame. It is possi­
ble to construct solutions of class 'Vu E £ 2 to (1.3)-(1.4) by means of 
the Galerkin method in £ 2 framework for arbitrary w and f = div F 
with F E £ 2, see [3], [16], [30] and [33]. When w is small enough and 
f = div F satisfies lxi 21F(x) I+ lxl 3lf(x)l + lxl 4 ldiv f(x) I ::; co with some 
small c0 > 0, Galdi [17] derived remarkable pointwise estimates 

of a unique solution. These decay properties are very interesting and 
important in some studies of stability ([3], [18]), but, at the first glance, 
rather surprising as we know (1.2). See also [19], in which the trans­
lation of the body is also taken into account. We may expect some 
anisotropic decay structures of solutions (that the Oseen case reminds 
us, see [14], [9], [15], [31 ]), but as far as simple isotropic decay estimates 
are concerned, the result of [17] shows that the rate of the decay of the 
Navier-Stokes flow at infinity is the same as the usual case w = 0 in spite 
of slightly worse behavior (1.2) of the fundamental solution. 

In Theorem 2.5 of this article we provide another outlook on the 
pointwise estimates (1.5) in a different framework by use of function 
spaces; to be precise, we show the existence of a unique solution to (1.3)­
(1.4) with the force f E W3j~,oo in the class ("'Vu,p) E £3/2,oo when both 
f and w are small enough, where £ 3; 2,00 is the weak-£3; 2 space, one 

of the Lorentz spaces. We here note that f E W3j~,oo if and only if 
f = div F with F E £ 3; 2,00 • Our class of solutions is consistent with 
(1.5), and our class of external forces is larger than [17]. The complete 
proof of our result will be given in [12]. For the case w = 0, the same 
result as ours has been already proved by Kozono and Yamazaki [29]. 

1.3. Linearized problem in Lq 
The first step toward the result above is the Lq-analysis of the linear 

whole space problem initiated by [13], in which the fundamental Lq 
estimate 

(1.6) 
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was proved, where Lis the linear operator given by (1.1). For the proof 
of (1.6), it is sufficient to show ll~ui1Lq(JR3) :::; CIILuiiLq(IR3), which is 
never trivial since the integral kernel ~xf(x, y) of the operator f >---t ~u 

does not seem to be of Calder6n-Zygmund type. £ 2 estimate is, how­
ever, easy to show. So, the well-known standard argument due to 
Calder6n-Zygmund is to establish the so-called weak (1, 1) inequality 
(L1-L1,oo estimate), which implies the Lq estimate on account of the 
Marcinkiewicz interpolation theorem. Although the weak ( 1, 1) inequal­
ity is of own interest, the proof given by [13] provides another route. 
In [13], roughly speaking, we split ~u into {(~u)1 }jEZ by using the 
homogeneous Littlewood-Paley dyadic decomposition 

(1. 7) 

In order to prove not only that the series ~u = I:jEZ(~u)1 makes 
sense in Lq but also the desired Lq estimate, we make use of the square 
function of Littlewood-Paley type 

(1.8) ( r= d ) 1/2 
(Sf)(x) = Jo l(¢s * f)(x)l2 ss 

to find the estimate 

(1.9) 

for each j E Z provided 2 < q < oo. An important fact is that 
IIS(·)IILq(JRn) is equivalent to II · IILq(IR") under some conditions on the 
family {cPs} s>O of rapidly decreasing functions. Therefore, the method 
of the square function enables us to reduce the study of Lq-norms to that 
of quadratic expressions. The Lq boundedness of the Hardy-Littlewood 
maximal function is also employed in the proof of (1.9). The other case 
1 < q < 2 follows from a duality argument. Concerning the tools above 
from harmonic analysis, we refer to [35], [36]. The result of [13] has been 
generalized by [10] (see also [11]) for the case where the translation of 
the body is also taken into account. 

In [26] the harmonic-analytic approach explained above has been 
developed to prove the Lq estimate of ('V u, p) for the linear whole space 
problem 

Lu + 'Vp = J, div u = 0 



122 T. Hishida 

when the external force f is taken from the space wq- 1 (JR3). Since the 
kernel r(x,y) is not symmetric, the second derivative V'xV'yf(x,y) is 
more complicated; nevertheless, the essential part of the argument of 
[13] works well. By means of a localization procedure, [26] has studied 
the existence, uniqueness and Lq estimate 

(1.10) 

of weak solutions to the linear exterior problem 

(1.11) Lu+ V'p = J, div u = 0 in D; uiav = 0, 

provided n/(n- 1) = 3/2 < q < 3 = n. This result is regarded as a 
generalization of [4], [20], [27] and [28] for the usual Stokes problem (the 
case w = 0), since the restriction on the exponent q is the same. It is 
worth while emphasizing that the restriction above is optimal; that is, 
q > n/ ( n -1) is necessary for the solvability in the class ( u, p) E Wt} x Lq 
for all f E wq-I, and so is q < n for the uniqueness in that class. Because 
of lack of the case q = 3/2 = n/2, which comes fn;>m the nonlinearity 
u · V'u, the Lq-theory does not help us to solve the steady Navier-Stokes 
problem (1.3)-(1.4); in fact, llu · V'ullw.-l(D) ::; CIIV'ulli.(D) holds if and 
only if q = n/2. Therefore, we have to replace L3; 2 by a larger space. 
To do so, in the case w = 0, Kozono and Yamazaki [29] first introduced 
the Lorentz space. Our result tells us that, in the problem (1.3)-(1.4) as 
well, a right class to find the solution is (V'u,p) E L3; 2,00 • 

1.4. Linearized problem in L3/2,oo 
In [12], instead of (1.10), the L3; 2,00 estimate 

(1.12) 

for the problem (1.11) is derived. Once this is established, a fixed point 
argument gives us a unique solution of (1.3)-(1.4) in the class (V'u,p) E 

L3/2,oo· In the proof of the solvability of (1.11) for all f E W3j~,oo' a 
duality argument due to [29] does not seem to be applied to our problem 
because of lack of homogeneity of the equation unlike the usual case w = 
0. We thus follow, in principle, the argument of Shibata and Yamazaki 
[32], in which the solution is constructed without any duality argument 
for the Oseen problem to study the uniformity of solutions with respect 
to constant flow at infinity. Note that one cannot use any continuity 
argument since C0 is not dense in Lq,oo· So, as in [32], given f E 
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W3;~,oo' we try to construct directly the solution to (1.11). Though cut­
off procedures were carried out twice in [32], we use such a procedure 
only once to obtain the solution as below; in this point, the proof of 
[32] is simplified. Let ( v, 7r) be a parametrix (an approximation of the 
solution), which is constructed by use of solutions in the whole space and 
in a bounded domain combined with the Bogovskii operator [2]. Then 
(v,7r) satisfies Lv + \h = f + Rf and div v = 0 in D with vltm = 0, 
where Rf is a remainder term with compact support. It is possible to 
show that the operator 1 + R has a bounded inverse in vV3j~,oo. 

In the next section we present the main theorems: Theorems 2.1 and 
2.2 for the linear whole space problem (2.7) below, Theorems 2.3 and 2.4 
for the linear exterior problem (1.11) and Theorem 2.5 for the Navier­
Stokes problem (1.3)-(1.4). We sketch the proof of only Theorems 2.2 
and 2.4, which are the central parts of the proof of Theorem 2.5, in the 
final section. 

§2. Results 

2.1. Function spaces 
To begin with, we introduce notation. Let n be a smooth domain in 

JR3 ; especially, we need function spaces on n = D, IR3 , or a bounded do­
main. By C(f (f!) we denote the class of smooth functions with compact 
supports in n. For 1 ::; q ::; oo, the usual Lebesgue spaces are denoted 
by Lq(f!) with norm II · llq,l1· We need the Lorentz spaces Lq,r(f!), with 
norm II · llq,r,n, that are defined by use of average functions; for details, 
see [1]. For 1 < q < oo and 1 ::; r ::; oo, the Lorentz spaces can be 
constructed via real interpolation 

For 

(2.1) 1 < q < oo, 1 < r ::; oo, 

we have the duality relation 

1 1 - +- = 1, 
q' q 

1 1 - +- = 1, 
r' r 

In particular, Lq,oo(f!) = Lq', 1 (f!)* is well known as the weak-Lq space, 
in which C(f(f!) is not dense, and f is in Lq,oo(f!) if and only if 

super l{x E f!; lf(x)l > cr}ll/q < oo, 
a->0 
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where I · I stands for the Lebesgue measure. In what follows, we adopt 
the same symbols for denoting the vector and scalar function spaces as 
long as there is no confusion, and we use abbreviations II · llq = II · llq,D 
and II · llq,r = II · llq,r,D for the exterior domain D. 

We need the homogeneous Sobolev spaces. For 1 < q < oo, let 
Wi (0) be the completion of C0 (0) with respect to the norm IIV'(·)IIq,n, 
and wq- 1(0) the dual space of Wi,(O) where 1/q' + 1/q = 1. Let 

(2.2) 1 < qo < q < q1 < oo, 1/q = (1- B)/qo + Bjq1, 1 ~ r ~ oo. 

We then define 

which is independent of the choice of (qo,q1), with norm IIV'(·)IIq,r,!1· 
When r = oo, we note that C0 (0) is not dense in Wd-, 00 (0). 

For (q, r) satisfying (2.1), the space Wq~f(O) is defined as the dual 

space of Wi',r'(O); by duality theorem for interpolation spaces (see [1, 
3.7.1]), we see that 

for q,qo,Q1,r satisfying (2.2) but roiL Let 1 < q.< oo and 1 < r ~ oo. 
Then, due to Kozono and Yamazaki [29, Lemma 2.2], for every f E 

Wq~f(O), there is a vector function FE Lq,r(O) such that 

div F = f, 

with some C > 0. 
For the exterior domain D and 1 ~ r ~ oo, if in particular 1 < q < 

3 = n, we then have the characterization 

(2.3) 
0 1 . 

Wq,r(D) = { u E Lq.,r(D); V'u E Lq,r(D), ulan= 0} 

together with 

(2.4) 

where 1/q* = 1/q- 1/3. When q = 3 = n, we have also WJ, 1 (D) '---> 

Loo(D) n C(D) with 
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(2.5) 

which will play an important role. Concerning the embedding inequali­
ties (2.4) and (2.5), see [29, Lemma 2.1]. 

For a bounded domain !1, 1 < q < oo and 1:::; r:::; oo, we have 

. 1 
Wq,r(D) = { u E Lq,r(D); V'u E Lq,r(D), ulan = 0}, 

with the Poincare inequality llullq,r,o :::; CIIV'ullq,r,o for u E WJ,r(D) by 
real interpolation. 

2.2. Main theorems for the linearized problems 
Let 1 < q < oo and 1 < r :::; oo. Let us consider the linear exterior 

problem (1.11). Given f E Wq~/(D), the pair offunctions (u,p) is called 
(q, r)-weak solution (q-weak solution when q = r) of (1.11) if 

(1) (u,p) E WJ,r(D) X Lq,r(D); 
(2) div u = 0 in Lq,r(D); 
(3) (w 1\ x) · V'u- w 1\ u E Wq~/(D); 
(4) (u,p) satisfies Lu + V'p =fin the sense of distributions, that 

is, 

(2.6) (V'u, V'cp)- ((w 1\ x) · V'u- w 1\ u, cp)- (p, div cp) = (!, cp) 

holds for all cp E C0 (D), where(·,·) stands for various duality 
pairings; by continuity (note r > 1), (u,p) satisfies (2.6) for all 

. 1 
cp E Wq',r'(D). 

When 1 < q < 3, we have u E Lq.,r(D) by (2.3), so that u ---> 0 at 
infinity in this weak sense. 

Since we make use of a cut-off technique, we must consider the whole 
space problem as well with the inhomogeneous divergence condition 

(2.7) Lu+ V'p = J, div u = g 

a weak solution of which is defined in the same way as above. 
For (2.7) we study a strong solution too, which is defined as follows. 

Let 1 < q < oo. Given f E Lq(IR3) and g E WJ(!R3), the pair offunctions 
(u,p) is called q-strong solution of (2.7) if 

(1) (u,p) E w;(JR3) X Wq1(JR3); 
(2) div u = g in WJ(IR3 ); 
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(3) (wAx)· V'u- w Au E Lq(R.3 ); 

(4) (u,p) satisfies Lu + V'p =fin Lq(R.3 ). 

Here, the space Wd-(JR.3 ) has been already introduced, but we here give 
its characterization 

and also, 

The results on the existence, uniqueness and Lq estimates of solu­
tions to (2.7) and to (1.11) are as follows. 

Theorem 2.1. ([13]) Let 1 < q < oo and suppose that 

f E Lq(R.3 ), g E Wi(JR.3 ), (w A x)g E Lq(R.3 ). 

Then the problem (2. 7) possesses a q-strong solution (u,p) E Wi(JR.3 ) x 

w; (JR.3 ) subject to the estimate 

(2.8) 
IIY'2ullq,IR3 + IIY'PIIq,IR3 + ll(w Ax)· V'u- w A ullq,IR3 

:S C (llfllq,!Rs + IIY'gllq,IR3 + ll(w A x)gllq,IRs), 

with some C > 0 independent of lw 1- The solution is unique in the class 
above up to a linear combination of w, wAx and (x1, x 2 , -2x3 )T for u, 
and up to a constant for p. 

Theorem 2.2. ([26]) Let 1 < q < oo and suppose that 

Then the problem (2. 7) possesses a q-weak solution (u,p) E Wd-(JR.3 ) x 
Lq(R.3 ) subject to the estimate 

(2.9) 
IIY'ullq,IR3 + 11PIIq,IR3 + ll(w Ax)· V'u- w A ullwq-l(IR3) 

::::: C (11fllw.- 1 (IR3) + llgllq,IR3 + ll(w A x)gllw.- 1 (IR3)), 

with some C > 0 independent of lw 1- The solution is unique in the class 
above up to a constant multiple of w for u. 
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Theorem 2.3. ([26]) Let 3/2 < q < 3. For every f E wq- 1 (D), 

there exists a unique q-weak solution (u,p) E W.J(D) x Lq(D) of the 
problem ( 1.11) subject to the estimate 

with some C > 0 independent of lwl E [0, o], where o > 0 is arbitrary. 

The next theorem provides the existence, uniqueness and L 3; 2,oo 

estimate of solutions to (1.11). 

Theorem 2.4. ([12]) Let f E W3j~, 00 (D). Then the problem (1.11) 

possesses a unique (3/2, oo)-weak solution (u,p) E Wj12,00 (D)x£3/2,oo(D) 
subject to the estimate 

(2.11) 
IIY'ull3/2,oo + IIPII3/2,oo 

+ ll(w Ax)· V'u- w A ullw-1 (D) :::; Cllfllw-1 (D)' 
3/2.= 3/2,= 

with some C > 0 independent of lwl E [0, o], where o > 0 is arbitrary. 

2.3. Main theorem for the Navier-Stokes problem 
We take a cut-off function ( E C<f (JR3; [0, 1]) satisfying ( = 1 near 

the boundary aD, and set 

Then we see that div b = 0 and blaD = wAx. We thus intend to find 
the solution to (1.3)-(1.4) as the form u = v + b, so that (v,p) should 
obey 

(2.12) { 
Lv + V'p = f- <T>(v, b), div v = 0 

vlaD = 0, v ___, 0 as lxl ___, oo, 

in D, 

with 

<T>(v, b) = (v +b)· V'(v +b)+ Lb 
= div [(v +b) 181 (v +b)- V'b- (wAx) 181 b + b 181 (wAx)], 

where w 181 w = (w1wk); here, note that 

(wAx)· V'b = div [(wAx) 181 b], w A b = div [b 181 (wAx)]. 
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Let f E W3j~, 00 (D). Since v E Wi; 2,00 (D) implies <P(v, b) E W3j~, 00 (D), 
one can define weak solution (v,p) E Wi;2,00 (D) x L3/2,oo(D) of (2.12) 
by (3/2, oo)-weak solution of (1.11) with f replaced by f- <P(v, b). 

Theorem 2.5. ([12]) There is a constant TJ = TJ(D) > 0 such that 
iff E W3j~, 00 (D) with 

lwl + llfllw- 1 (D) 5: TJ, 
3/2,oc 

then the problem (2.12} possesses a unique weak solution 

. 1 
(v,p) E W3;2,00 (D) x L3/2,oo(D) 

subject to the estimate 

with some C > 0 independent of lwl and f. 

§3. Outline of the proof 

3.1. On the proof of Theorem 2.2 ([26]) 
For the proof of Theorem 2.2, it suffices to consider 

(3.1) Lu=f 

For rapidly decreasing forces f, the equation (3.1) admits a solution of 
the form 

(3.2) u(x) = { r(x, y)f(y)dy = {oo O(lwlt)T (etll f) (O(Iwlt)x)dt 
}JR3 lo 

with the kernel 

(3.3) r(x, y) = fooo O(lwlt)T Et(O(Iwlt)x- y)dt, 

where E(x) = (47r)-312e-lxl 2
/ 4 and Et(x) = c 312E(x/Vt). 

By [27] the class {div F; FE CQ"(IR3 )} is dense in wq- 1 (JR3 ). There­
fore, the essential step is to show 
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(3.4) 

for the force term of the form f = div F with F E Ctf(IR3 ); hereafter, 
we will concentrate ourselves on (3.4). Set 

(3.5) (TF)(x) = V'u(x) =- { Y'xY'yr(x,y): F(y)dy, }m_3 

which we rewrite as the form TF = (TtmF) 1<£ m< 3 for F = (FJ.!v)l< v<3 - ' - _p,, -
with 

(3.6) 

where H = (Hkv)19 ,v9 is the Hessian matrix of E, that is, 

By use of the Littlewood-Paley decomposition (1.7), we decompose 
the function H as 

""' (") Hkv = ~Hk~' 
jEZ 

In (3.6) we replace H by H(1) = (Hk~) to define the decomposed 
1:5k,v:<;3 

operators T(jl = (rt<;).) with 
1:5f,m:53 

(r,<;),F) (x) = L 1= O(lwit)fi'O(Iwit)km(Hk~t * FJ.!v)(O(Iwit)x) ~t, 
J.!,V,k 

where H(j) (x) = t-312 H(j) (x/vt) kv,t kv · 
In order to estimate T,<;), F, we make use of the square function 

(1.8), where {¢s}s>O is a fixed farriily of rapidly decreasing and radially 
symmetric functions satisfying 
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and 

(3.7) r <Ps(x)dx = 0; 
}'Rs 

(~ E IR3 \ {0}), 

togetherwithsupp¢8 C {~; 2_jg < 1~1 < Js}· SinceiiS(·)IIq,Rs isequiv­

alent to II · llq,Rs ([36, Chapter I, 8.23]), we have 

Assume now that 1 < q/2 < oo. Then one can estimate 

(3.9) 

for w E Lq/(q- 2) (IR3 ) to obtain 

(3.10) 

I((STe~F)2 , w)l :::; C L IIHk~ II1,Rs i 3 ( Ml~w) (x) (SFJlv) (x) 2dx 
/-L,V,k 

with 

12
4 r ( ~ . ) dt 

(3.11) ( Ml~w) (x) =sup IHk~tl * lw (O(Iwltf(-)) I (x)-, 
r>O 2-4r t 

where Hk~t(x) = Hk~t( -x). From the pointwise estimate 

IHk~(x)l:::; CT21il7jJ2_ 23 (x), 

where 7/!(x) = (1 + lxl 2)-2 and 7/!t(x) = t-3127j!(x/Vt), we obtain 

Proposition 3.1. Let 1 < p < oo. Then the sublinear operator 
defined by {3.11) enjoys 

11Mk~)wllp,JR3 :::; CT21i111wllp,Rs, 

with some C = C(p) > 0 independent ofw E Lp(IR3 ),j E Z, 1:::; k, v:::; 3 
and lwl. 
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In view of (3.10), we use Proposition 3.1 as well as IIHk~ lh,JR3 ::; 
C2-2111 to see that 

I((ST}~F) 2 ,w)l :S C (T 2111 )
2

IIwllq/(q-2),IR3 L IIF1wii;,JR3, 
/-',V 

for all w E Lq/(q- 2 ) (JR3). By duality and by (3.8) we arrive at 

IITtr;; Fllq,IR3 ::::: CT 2111 11FII q,JR3' 

with some C > 0 independent ofF E C8"' (JR3), j E Z, 1 ::; £, m ::; 3 and 
lwl. Hence, as long as 2 < q < oo, 

T = (Ttm)19,m~3 with Ttm = LTtr;; 
jEZ 

is well-defined as a bounded operator on Lq(JR3). For 1 < q < 2, we 
use the adjoint operator T*. The same argument as above implies that 
T* is also a bounded operator on Lqj(q-l)(JR3 ); so, Tis Lq-bounded for 
1 < q < 2 as well. We have thus proved (3.4) for 1 < q < oo. 

3.2. On the proof of Theorem 2.4 ([12]) 
By real interpolation Theorem 2.2 implies 

Proposition 3.2. Let 1 < q < oo and suppose that 

Then the problem (2. 7) possesses a (q, oo)-weak solution 

subject to the estimate 

(3.12) 
11Vullq,oo,IR3 + 11PIIq,oo,IR3 + ll(w Ax)· V'u- w A ullwq-;~(JR3) 

::::: C (11fllw;,~(JR3) + ll9llq,oo,IR3 + ll(w A x)gllwq-;~(JR3)), 
where C > 0 is independent of lw I· The solution is unique in the class 
above up to a constant multiple of w for u. 

Let n c JR3 be a bounded domain with smooth boundary an, and 
let us consider 

(3.13) Lu + V'p = f, div u = 0 inn; ulan= 0. 
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For the usual Stokes problem (the case w = 0), Lq- and Lq,=-theories 
are known, see [6], [34], [27] and [29]. In bounded domains, the operator 
L can be treated as a perturbation to the Laplace operator; thus, we 
have 

Proposition 3.3. Let n be as above and let 1 < q < oo. Suppose 
that f E Wq~~(fl). Then the problem (3.13) possesses a unique (up to an 

additive constant for p) (q, oo )-weak solution (u,p) E Wi,=(fl) xLq,=(fl) 
subject to the estimate 

(3.14) IIY'ullq,=,n + llullq,=,n + liP- Pllq,=,n ::::: Cllfllw.-;Jc (f!), 

with some C > 0 independent of lwl E [0, 8], where 8 > 0 is arbitrary 

and p = l~lln p(x)dx. 

We first see that the uniqueness part of Theorem 2.4 follows from 
the Lq-theory (Theorem 2.3) by using the similar cut-off procedure to 
[26, Lemma 5.2]. Given f E W3j;,=(D), we next intend to construct 
the solution of (1.11) with use of the solutions in the whole space and 
in a bounded domain. We fix p > 0 so large that JR3 \ D c Bp_ 5 (the 
open ball centered at the origin with radius p- 5), and take the cut-off 
functions ¢1 E c=(JR3; [0, 1]),j = 0, 1, 2, satisfying 

We set 

lxl::; p-5, 
lxl;:::: p-4, 

lxl::; p- 3 + j, 
lxl;:::: p- 2 + j, (j = 0,2). 

A= {x E lR3; p- 4 < lxl < p- 1}. 

Consider (2.7) with f replaced by ¢d and g = 0 in the whole space JR3. 

We see that ¢dE W3j;,=(lR3) with ll¢dllw3;~.=(JR3) ::; Cllfllw3;L,"CDJ· 
Let ( u=, P=) be the solution obtained in Proposition 3.2 for the external 
force ¢d, and by 

we denote the solution operator. Here, u= is uniquely chosen in such 
a way that u= E L3,=(JR3). We also consider (3.13) with f replaced 
by ¢21 in the bounded domain n = Dp. We easily see that ¢ 2f E 
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W3-1~ (Dp) with 114>2/llw-1 (D ) ::::: Cllfllw-1 (D)· Let (uo,Po) be 
,oo 3/2,XJ p 3/2,-;:,c 

the solution obtained in Proposition 3.3 for the external force ¢2! and 
by 

we denote the solution operator. Here, p0 is uniquely chosen in such a 
way that fn Po(x)dx = 0. As a parametrix (an approximation of the 

p 

solution) for the exterior problem, we take 

(3.15) { 
Qf = (1- </>o)Qoof + </>oQof+ B[(Qoof- Qof) · Y'</>oJ, 
ITf = (1 - </>o)IToof + </>oiTof, 

where B is the Bogovskii operator, which makes the correction of diver­
gence, in the bounded domain A, see [2], [5], [15]. Concerning the class 
of (Qf, IT!), we have 

Proposition 3.4. Let f E W3j~,00 (D). Then (Qf, IT!) E WJ-;2 ,00 (D) x 

L3/2,oo(D) with 

IIY'Qfll3/2,oo + IIITfll3/2,oo:::; Cllfllw,;L,"(D)' 

for some C > 0 independent of lwl E [0, 8], where 8 > 0 is arbitrary. 

We see that (v, 1r) = (Qf, IT!) is a distribution solution to 

(3.16) Lv + V'1r = f + Rf, div v = 0 in D; vlan = 0, 

where R: f r---> (remainder); that is, 

Rf =- 2Y'¢o · V'(Qoof- Qof)- [~</>o + (w 1\ x) · Y'</>o](Qoof- Qof) 

- LB[(Qoof- Qof) · Y'</>o] + (V'</>o)(IToof- ITo!), 

for which we have the following lemma. 

Lemma 3.1. Let f E W3j~, 00 (D). Then Rf E W3j~,00 (D) with 

IIRfllw-1 (D) ::::: Cllfllw-1 (n)· 
3/2,oc 3/2,oc 

In the proof, the embedding relation (2.5) plays a fundamental role. 
By Lemma 3.1 and Proposition 3.4, we find that (v,1r) = (Qf,ITf) is a 
(3/2, oo)-weak solution of (3.16). 
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Proposition 3.5. The operator R is compact from W3j~,oo (D) into 

itself And further, 1 + R has a bounded inverse in W3j~,oo(D). 

By Propositions 3.4 and 3.5 the pair of 

u=Q(l+R)- 1J, p = II(l + R)- 1 J, 

provides a (3/2, oo)-weak solution of (1.11) with f E W3j~, 00 (D) and the 
estimate (2.11) holds. This shows the existence part. Finally, one can 
show that the constant C > 0 in (2.11) is independent of lwl E [0, J] by 
means of a contradiction argument. 
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