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The Helmholtz decomposition 
in Sobolev and Besov spaces 

Hayato Fujiwara and Masao Yamazakit 

Abstract. 

This paper is concerned with the Helmholtz decomposition of vec­
tor fields on bounded domains and exterior domains, and provides the 
decompositions in Sobolev spaces and Besov spaces of order in cer­
tain interval. In particular, the decompositions in homogeneous Besov 
spaces Bf,q and B:X,,q are given. 

§ Introduction. 

Let n be an integer such that n ~ 2. We are concerned with the ini­
tial boundary value problem for the nonstationary Navier-Stokes equa­
tion in the Sobolev spaces and the Besov spaces of negative order on 
the domain f2 in lltn. For the equation in the whole spaces lltn there are 
many works. See Kato and Ponce [8] for the Sobolev spaces, and for 
Cannone and Planchon [4] and Kozono and Yamazaki [10] for the Besov 
spaces, and Koch and Tataru [9] for the derivatives of the elements of 
BMO. More detailed references are given in [15]. These results are based 
on the fact that the Helmholtz decomposition in the whole spaces can 
be described by the Riesz transformations and hence its property in real 
analysis is well-known. 

For general domains, much less is known. Grubb [6] first considered 
this problem with the Neumann boundary conditions in the Sobolev 
spaces of order n/p- 1, which can be negative for p > n on bounded 
domains by duality argument. Then Amann [1] considered this problem 
with the Dirichlet boundary condition in the Besov spaces on bounded 
domains, exterior domains and half spaces. Later on, Grubb [7] consid­
ered the problem for s > 1/p- 2 with the Dirichlet boundary condition. 
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Amann [1], among others, obtained a unique time-global solution as 

the limit of the Leray-Hopf solutions with initial data in L 2 n .B;,Ic::,- 1 in 

.B;,Ic::,- 1 . However, only initial data in the closure of L2 n .B;,IJ,- 1 can be 

treated in this way, and this closure does not coincide with .B;,IJ,-1 in 
general. 

In order to consider this problem in a different way, we first estab­
lish the Helmholtz decomposition in the Sobolev spaces and the Besov 
spaces. Namely, we generalize the Helmholtz decomposition in LP-spaces 
obtained by Fujiwara and Morimoto [5] for bounded domains, and by 
Miyakawa [11] and Simader and Sohr [13] for exterior domains. By using 
this decomposition we can define the Stokes operator in these spaces di­
rectly and cover the cases which is not treated by previous works, which 
will be done in forthcoming papers. 

As is stated by [4], [10] and [1], the Navier-Stokes initial value prob­
lem is time-globally well-posed if initial data is small in the homogeneous 
Besov space .B;,IJ,- 1 for p E ( n, oo), but similar results with initial data 

in the inhomogeneous space B;,IJ,-1 is hardly possible for unbounded 
domains. Hence we treat homogeneous spaces as well as inhomogeneous 
spaces. Moreover, in order to consider initial data with no decay prop­
erty, we cover the case p = oo. 

The paper [13] employed the characterization of the weak solution 
of the Neumann problem by variational methods, which is based on the 
reflexivity of the function spaces. Since this method is not applicable to 
treat the Besov spaces for p = 1 and p = oo, we employ the concrete 
expression of the solution employed in [5] and [11], and provide a new 
estimate of the solution. 

This paper is organized as follows. In Section 1 we introduce the 
function spaces. In Section 2 we define the normal trace of solenoidal 
vector fields. Then the main theorem is stated in Section 3. In Section 4 
we give estimates of solutions to the Neumann problem, and the main 
theorem is proved in Section 5. 

§1. Function Spaces. 

We first introduce the function spaces on the whole space JR.n. First, 
for p E (1, oo) and s E JR., we define the Sobolev space H~(JR.n) and the 

homogeneous Sobolev space H~(JR.n) by 

H; (JR.n) = { f E S' Ill! IH; II = ll.r-1 [(e)s F[f](e)] liP< oo}, 

if; (JR.n) = {! E S' /PIll! Iii; II= IIF- 1 [lelsF[JJ(e)] lip< oo} 
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respectively, where(~) = J1 + 1~1 2 , II·IIP denotes the standard LP-norm, 
and S' and P denote the set of tempered distributions and the set of 
polynomials respectively. · 

Next, let x(t) be a monotone-decreasing smooth function on [0, +oo) 
such that x(t) = 1 on [0, 1] and x(t) = 0 on [2, oo), and put 
'PJ(~) = X (2-jl~l) -X (2 1 -jl~l) for j E z and <P(~) = x(IW· Now, 
for p, q E [1, oo] and s E JR., we define the Besov space B~,q (JR.n) and the 

homogeneous Besov space B~,q (JR.n) by 

B;,q(JR.n) = { f E S' IIIJ IB;,q II = IIF-1 [<P(~)F[f](~)JIIP 

+II { 2jsll.r-1 [cpj(~)F[f](~)] liP} :11 cqll < 00 }, 

iJ;,q (JR.n) = { J E S' /P lilt liJ;,q II = 

II { 2js ll.r-1 [cpj(~)F[f](~) J liP}=-= I eq II < 00} 

respectively. Then we have the inclusion relations B~,q, (JR.n) C 

B~,q2 (Rn) for q1 < qz, B~,p(Rn) C H~(Rn) C B~, 2 (Rn) for p E (1,2], 
B~, 2 (JR.n) C H;(Rn) C B~,p(JR.n) for p E [2, oo). We also have the 

Sobolev embedding B~,q (JR.n) C B:,~n/p+n/r (JR.n) for 1 ::; p < r ::; oo. 
If p, q < oo, the space Crf (JR.n) is dense in the spaces H; (JR.n) and 
B~,q(JR.n). If s < njp, the same results hold also for homogeneous spaces. 
For more detailed property of these spaces, see Triebel [14, Chapter 2]. 
Furthermore, put 

B;,cxo_(JR.n) = {t E B;,cxo(JR.n) I 1 _}l~= 2jsiiF-1 [cpj(OF[J](OJIIP = 0}' 
iJ;,cxo- (JR.n) = { J E iJ;,cxo (JR.n) I jETcxo 2js IIF-1 [ 'Pj (~)F[J] (~) J liP = 0} 

respectively. Then the spaces B~,=- (JR.n) and B~,=- (JR.n) are closed 

subspaces of B~,= (JR.n) and B~,= (JR.n) respectively. Moreover, in the 
case p < oo, the space B~,=- (JR.n) coincides with the closure of the 
space Cgc' (JR.n) in B~,= (JR.n). 

In the case s < njp we can (and do in the sequel) identify the 
spaces H~(JR.n) and B~,q(JR.n) with subspaces of S'. (See Bourdaud [3].) 

In this way the space B~,=- (JR.n) coincides with the closure of the space 

Crf(JR.n) in B~,=(JR.n) provided p < oo and njp- n < s < njp. 
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If s > 0, we have H;CJRn) = ii;(JR.n) n LP(JRn) and B;,q(IR.n) 
LP(JR.n) n .B;,q(IR.n). On the other hand, if s < 0, we have H;(JR.n) = 
ii;(IR.n) + LP(IR.n) and B;,q(IR.n) = LP(IR.n) + .B;,q(IR.n). Furthermore, for 

p E (1, oo) we have ( H; (IR.n)) 1 = H;? (IR.n) and ( ii; (IR.n)) 1 
= ii;,s (IR.n) 

with p1 = pf(p- 1), and for p, q E [1, oo) we have (B;,q(IR.n)) 1 = 

B;,~q'(IR.n) and (.B;,q(IR.n))' = .B;,~q'(IR.n) with p1 = pj(p- 1) and 

q1 = qf(q -1). For p E [1, oo), we also have (B;, 00 _(1R.n)) 1 = B;,~1 (1R.n) 

and ( .B;,oo- (IR.n)) 1 = .B;,~1 (IR.n). 
The following lemma provides a function space whose dual space 

coincides with BI,HIR.n), 

Lemma 1.1. Suppose that s > 0, and let B~ 00 (1R.n) denotes the 

closure of C(f (IR.n) in B~,oo (IR.n). Then we hav~ (iJ~,oo (IR.n)) 1 = 

B~, 1 (JR.n). 

Proof Let Cb(JR.n) be a set of continuous functions u(x) on IR.n 
such that limlxl-+oo u(x) = 0. For a nonnegative integer k, let C~(IR.n) 
be a set of functions u(x) such that (al<>luj8x"')(x) E Cb(JR.n) holds for 
every a E Nn such that lad ~ k. Then we have B~, 1 (1R.n) C C~(IR.n) C 

B~,00 (1R.n). Now choose k > 0 and every() E (0, 1) so that s = ()k. Then 
we have the inclusion relations 

B~,00 (1R.n) = (B~,l(JR.n), B~,l(JR.n))O,oo C (Cb(JR.n), C~(JR.n))O,oo 

C (B~,00 (1R.n), B~,00 (1R.n)) 0 , 00 = B~,oo• 

which yields ( Cb(IR.n ), C~ (IR.n)) o,oo = B~,oo (IR.n ). Since C(f (JR.n) is dense 

in Cb(IR.n) and C~(IR.n), the space B~,00 (0.) coincides with the closure of 
C~(IR.n) in B~,00 (1R.n). Hence it follows from Bergh and Lofstrom [2]3.7, 
Remark that 

(1.1) 

On the other hand, we have (Cb(IR.n)) 1 = M(IR.n), where M(JR.n) denotes 
the set of Radon measures on IR.n with bounded total variation. In view 
of the Radon-Nikodym theorem and the Fubini theorem, we have the 
inclusion relation 
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From this fact we have 

These two inclusion relations imply 

Bl,fk(IRn) = (B~, 1 (1Rn), Bl,~(1Rn)) 0 , 1 c ( (Cb(IRn))', (C~(IRn))') 0 1 
. , 

c (B~,oo(IRn),Bl,~(IRn))o,l = Bl,fk(IRn). 

From this relation and (1.1) we obtain the conclusion. 

Next, for a domain !1 c IRn, put 

n;(n) = {u E V'(D) I:Ju E n;(JR.n) such that uln = u} 

Q.E.D. 

with norm llu IH; II = min {II ul n;lll uln = u }, where V'(D) denotes 
the set of the distributions on !1. The spaces ii;(n), B;,q(D) and iJ;,q(D) 
are defined similarly. If !1 is bounded, we have the identities ii;(n) = 
n;(n) and iJ;,q(D) = B;,q(D). For a bounded C 2•1 hypersurface r in 
IRn and s E IR such that lsi < 1, we can define the Besov space B;,q(r) 
on r by way of the local coordinates. 

Let !1 be either a bounded domain or an exterior domain with C 2•1 

boundary r. If 1 < p < oo and 1/p < s < 2, we can define for every u E 
n;(n) the trace ')'rUE B;~l/p(r), and the mapping u f-+ ')'rU is bounded 

• 8 l/p 
from n;(n) to Bp~ (r). If 1 ~ p ~ oo and 1/p < s < 2, we can de-

fine for every u E iJ;,q(D) the trace ')'rUE B;~l/v(r), and the mapping 
• 8 l/p 

u f-+ 'Yru is bounded from B;,q(D) to Bp~ (r). On the other hand, 

for every u E B;,q(r) with s E (0, 1- 1/p), there exists U E B;~l/p(D) 
such that 'YrU = u and that llu IB;~l/v(n) II ~ Cllu IB;,q(D) II· Fur­

thermore, if q = p E (1, oo), we can choose U satisfying U E n;+1 (!1) 

and llu ln;+l/p(D) II ~ Cllu IB;,p(D) II as well. (See Triebel [14, Sec­

tion 2.9].) 
Finally, for p E (1, oo) and q E [1, oo], we define the Lorentz space 

Lp,q(n) by 

Lp,q(D) = { f(x) E Ltoc(D) I 

llullv,q = (fo= (sJ.L({x En llu(x)l > s) 11vr ~s Y/q < oo }· 
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Then LP·P(n) LP(n), and we have the real interpolation property 
(LPo,qo (n), £Pl,Ql (n))o,q = Lp,q(n) with 1/p = (1-B)/Po+B/p1 provided 
Po =1- Pl· For more detailed property of these spaces, See Bergh and 
Lofstrom [2, Chapter 5]. 

§2. Normal traces. 

We start with the following lemma concerning the duality between 
the function spaces on general domains. 

Lemma 2.1. Suppose that 1 < p < oo and -1 + 1/p < s < 1/p, 
and put p1 = pf(p- 1). Then we have the following assertions: 

(1) We have (H;(n)) 1 = H;s(n) and ( .ff;(n))'= .ff;s(n). 

(2) Suppose that 1::::; q < oo. Then we have (B;,q(n)) 1 = B;~q'(n) 

and ( n;,q(n) )' = n;~q' (n). 

(3) We have ( B:,oo- (n)) I = B;~l (n) and ( n:,oo- (n) )' = 

n;:1(n). 

Proof Triebel [14, Theorem 2.10.2.2, Remark 2.10.2.3] imply that 

(H;(n)) 1 = H;s(n) and that (B;,q(n)) 1 = B;~q'(n) for 1::::; q < oo. 
Next, put r = pnj(n- ps). If s ~ 0, we have the inequality p ::::; 

r::::; p/(1- ps) < oo, and it follows that .ff;(n) c U(n) and n;,q(n) c 
Lr,q(n). On the other hand, if s < 0, we have the inequality 1 < 
p/(1- ps) < r < p and the equality njr1 = njp1 + s. This implies that 
the spaces .ff;s(n) and n;~q'(n) are densely embedded into u' (n) and 

Lr',q' (n) respectively, where q1 is replaced by oo- if q = 1. These facts 
imply the inclusion relations Lr(n) c .ff;(n) and Lr,q(n) c n;,q(n). 
Hence, in both cases, we can argue in the same way as before to conclude 

that (if; (n) )' = if;s (n) and ( n;,q (n) )' = n;~q' (n) for 1 ::::; q < 
oo. We thus established Assertions (1) and (2). Finally, in view of 
Triebel [14, Theorem 2.6.1, (c)], we can prove Assertion (3) in the same 
way. Q.E.D. 

The following lemma can be proved in the same way. 

Lemma 2.2. For s E (0, 1), we have the identities (Bf,q(n)) 1 = 

B~~q' (n) and ( Bf,q(n) )' = B~~q' (n) for 1 ::::; q < oo, and 

( Bf,oo- (n)) 1 = B~~1 (n) and ( Bf.oo- (n) )' = B~~1 (n). 
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By virtue of these lemmas we can prove the following theorem. In 
the sequel let n denote the outer normal vector of r. 

Theorem 2.3. Suppose that p E [1, oo] and 1/p -1 < s < 1/p, and 
assume that r E [pnj(p + n),p] satisfies 1/r < min{O, s} + 1. Then we 
have the following assertions: 

(1) Suppose that p #- 1, oo. If u E H;(n) and div u E H:(r!), then 

we have n ·')'ru E B~~l/p(r) with the estimate 

(2.1) lin ·f'rU IB;~l/p II ~ C (llu IH; II+ lldivu IH: II). 

(2) Suppose that q E [1, oo]. If u E B~,q(fl) and divu E B:,q(fl), 

then we have n · f'rU E B~~l/v(r) with the estimate 

These statements hold as well if we replace some of the spaces H;(n), 

n:(n), B~,q(fl) and B:,q(fl) by il;(n), il:(n), i3;,q(fl) and i3:,q(fl) 
respectively. 

Proof First, fix a bounded domain U in JR.n such that r c U. Let 
'P be a smooth function on r. We define n . f'rU as a distribution on r 
by the formula 

(2.3) (r.p, n ·')'ru)r = k V' · (<I>u) dx = (<I>, div u)n + (V'<I>, u)n, 

where <I> E C(f' (U) satisfies ')'r<l> = r.p. Then it is easy to verify that 
(r.p, n · ')'ru)r is defined independently of the choice of <I>. Furthermore, 
for every p and q, we can choose a constant Cp,q such that, for every r.p 
we can choose <I> so that 

We first show the estimate of Assertion (1). The divergence theorem 
yields the estimate 

(2.5) 

l(r.p,n·')'ru)rl ~ l(r.p,divu)nl + I(V'r.p,u)nl 

~ C (II'P IH;,slllldivu IH: II+ IIV'r.p ln;,sllllu IH~ II) · 

Since 1-1/r < s < 1/p ~ 1/r, we have the duality (H:(O))' = H;, 8 (rl). 
Moreover, since p' ~ r' < oo and since r' ~ p'n/(n- p') if p' < n, 
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we have the inequality ll<p IH;;s II ~ ciiV'<p IH;,s II with a constant C 
depending on the domain U. Substituting this inequality and (2.4) into 
(2.5), we conclude that 

Since ( B~(~;-s (f))'= B;~l/p(r), we haven· 'Yru E B;~l/p(r) with the 

estimate (2.1). 
By using the estimate 

Assertion (2) in the case q = p > 1 can be proved in the same way. 
Assertion (2) in the case q = p = 1 can also be proved from the equal-

ity ( .B~-;~ (r) )' = Bi,1s (f), which can be proved in the same way as 

Lemma 1.1. Here .B;;-;~(r) denotes the closure of C 2 (r) in B~-;~(r). 
Finally, Assertion (2) in the general case follows from Assertion (2) for 
q = p and real interpolation. Q.E.D. 

In particular, if u E H;(n) with 1/p- 1 < s < 1/p satisfies divu = 0, 

we can consider the normal trace n · 'Yr E B;~l/p(r), and similar facts 
holds for other function spaces. 

§3. Main Result. 

Our main result of bounded domains is the following theorem. 

Theorem 3.1. Suppose that 0 is either a bounded domain or an 
exterior domain with C 2•1 boundary r. Then we have the following: 

(1) Suppose that 1 < p < oo and 1/p- 1 < s < 1/p, and put 

(3.1) H~,p(O) = { u E ( h;(n)) n I divu = 0 inn, n. 'YrU = 0} 

and 

(3.2) c;(n) = { u E ( h;(n)) n I ::JG such that u = V'G}. 

Then we have the topological direct sum decomposition 

(3.3) 
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(2) Under the same assumption as Assertion (1), put 

and 

(3.5) a;(n) = { u E (H;(n)r I :JG such that u = V'G}. 

Then we have the topological direct sum decomposition 

(3.6) (H;(n)r = H~,p(n) EB a;(n). 

(3) Suppose that p, q E [1, oo] and 1/p- 1 < s < 1/p, and put 

(3.7) B~,p,q(n) = { u E ( .B;,q(n)) n I divu = 0 inn, n. 'YrU = 0} 

and 

(3.8) a;,q(O) = { u E ( .B;,q(O)) n j:JG such that u = V'G}. 

Then we have the topological direct sum decomposition 

(3.9) 

(4) In addition to the assumption in Assertion (3), assume more­
over that n is bounded, or that 1 < p < oo. Put 

(3.10) B!,p,q(n) = { u E (B;,q(n)r I divu = 0 inn, n. 'YrU = o} 

and 

(3.11) a;,q(n) = { u E (B;,q(n)r I :JG such that u = V'G}. 

Then we have the topological direct sum decomposition 

(5) Let Pp,s denote the projection operator on il~,p(n) associated 
with the topological direct sum decomposition (3.3), and let Pp,s 
denote the projection operator on H~,p(O) associated with the 
topological direct sum decomposition (3.6). Moreover, let Pp,q,s 
denote the projection operator on B~,p,q(O) associated with the 
topological direct sum decomposition (3.9), and let Pp,q,s denote 
the projection operator on B~,p,q(n) associated with the topo­
logical direct sum decomposition (3.12). Then these projection 
operators are identical on the intersection of the domains. 
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(6) We have the identities (Pp,s)' = Pp',s and (Pp,s)' = Pp',s for 

p E (1, oo) with p' = pj(p -1), and the identities (Pp,q,s )' = 

Pp',q',s and (Pp,q,s)' = Pp',q',s for p, q E [1, oo) with p' as above 
and q' = qf(q- 1). 

Remark 3.1. If 0 is bounded, we have if;(O) = H;(o) and 

i3;,q(O) = B;,q(O). Hence Assertion (2) and Assertion (4) are iden­
tical with Assertion ( 1) and Assertion ( 3) respectively. 

§4. Estimate of the Neumann Problem. 

We start with the following lemma concerning real interpolation 
relations which will be used in the estimate. 

Lemma 4.1. Suppose that 0 is either a bounded domain or an 
exterior domain with C2' 1 boundary r, and that so, Sl E (1/p- 1, 1/p) 
satisfy s0 =f. s1. Then we have the relations 

(Bso (0) Bs1 (0)) = B(l-O)so+Osl(O) 
p,qo ' p,q1 O,q p,q ' 

( iJso (0) Bs1 (0)) = iJ(l-O)so+Osl (H) 
p,qo ' p,q1 O,q p,q 

for every qo, q1 E [1, oo]. If p E (1, oo), we also have 

(Hso (0) Hs1 (0)) = B(l-O)so+Os1 (0) 
P ' P O,q p,q ' 

( if so (0) ifsl (0)) = iJ(l-O)so+Osl (0) 
p ' p O,q p,q . 

This lemma follows from Triebel [14, Theorem 2.10.4.1] and the 
proof of Lemma 2 .1. 

We now state the required estimate. Let 0 be a domain with C 2,1-

boundary r. For p E [1, oo] and s E (1/p- 1, 1/p), put 

( 4.1) 
for p = 1, 

for 1 < p < oo, 
for p = oo. 

Then we have the following theorem on the Neumann problem 

(4.2) 

(4.3) 

!:l.h(x) = div f(x) in 0, 

n. (f(x)- V'h(x)) = 0 on r. 
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Theorem 4.2. Suppose that !1 is either a bounded domain or 
an exterior domain with C 2•1 boundary r. Then, for every p and s 
as above, there exists a constant C = Cn,p,s,n such that, for every 
f(x) E (x;(n)r, there exists a solution h(x) of the problem (4.2)­
(4.3), uniquely modulo constants, and we have the estimate II'Vh IX; II ::; 

CllfiX;II· 

Proof Choose f(x) E x;(lRn) such that fin = f and that 

II Jl x;ll ::::: 2llf IX; II· Furthermore, if n is an exterior domain, we 

choose j so that f K j dx = 0, where K = lRn \ !1. Then put h1 = E * j, 
where E denotes the fundamental solution of ~ on JRn. Then we have 
the estimate 

and the equality div(f - 'V hl) = div f - ~hl = 0 on n. It follows from 
Theorem 2.3 that the normal trace 

is well-defined. Furthermore, it satisfies the estimate 

and the equality 

lrg(x)ds(x) =in div{f(x)- 'Vh1(x)}dx = 0. 

Hence the Neumann problem 

~h(x) = 0 inn, 

n. 'Vh(x) = -g(x) on r, 

has a solution h(x), uniquely modulo constants. This solution is given 
by the formula h(x) = h2(x) + h3(x), where 

(4.6) h2(x) =-£ E(x- y)g(y) ds(y), 

h3(x) =-£ r(x, y)g(y) ds(y). 
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Here r(x, y) is a function on n X n satisfying ~xr(x, y) = 0 on n and 
n·'Y'x(r(x,y)+E(x-y)) =Oonr. Thisfunctionalsosatisfiesr(x,y) = 
r(y, x) and 

(4.7) 

with a constant C independent of f. (See Mizohata [12, Theorem 8.6] 
in the case n = 3.) Furthermore, we have the identity 

( 4.8) h3(x) = - [ n · 'V E(x- y)h(y) ds(y) 

In order to obtain an explicit estimates of h2 from (4.6), we recall the 
definition of the normal trace. We have 

( 4.9) h2(x) = (E(x- · ), g)r = ('V yE(x- ·),- f + 'Vh1)rl 

=In 'VyE(x-y)(-f(y)+'Vhi(Y))dy 

and 

(4.10) h3(x) =In 'Vyr(x, y)(- f(y) + 'Vhl(Y))dy. 

For bounded n, the equality (4.10), the estimates (4.5), (4.7) and the 
elliptic regularity theory imply 

We turn to the estimate of h2 (x). If 1 ::; p < oo, let 1/;(x) denote the zero 
extension of- f(x) + 'Vh1(x) on JR.n. Then the denseness of the space 
C[f'(D) in x; implies that 1/J(x) E x;(JRn) with the estimate 

111/J 1x; II::; c (lit 1x; II+ II'Y'h1 1x; II)::; ell ll x;ll· 
It follows from h2 = 'V E * 1/J that 

Suppose that p = oo. We can choose a neighborhood U0 of r and a 
C 1,1-diffeomorphism F : r x ( -1, 1) ___, U0 such that F(x, 0) = x and 
(8Fj8t)(x, 0) = n(x) for every x E r. Next, for every j = 1, 2, 3, ... , let 
wj(t) be a smooth function on ( -1, 1) such that 0::; Wj(t) ::; 1, Wj(t) = 1 
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for t :S: -2-j and wj(t) = 0 for t 2 -2J+1, and let XJ(x) denote the 
C1,1-functions on U0 such that the identity XJ (F(x, t)) = wj(t) holds 
for every x E r and every t E ( -1, 1). Then we can extend XJ(x) as a 
C 1•1-function on the whole space ]Rn by putting 

Namely, we have 

{
XJ(x) = 1 

XJ(x) = 0 

for x E S1 \ Uo, 
for x E JRn \ (S1 U Uo). 

lim XJ(x) = { 1 
J--+00 0 

(x E S1), 
(x if S1). 

Let W be an arbitrary element of ( Bl,~ (JRn)) n. Then we have 

We next verify that the sequence {XJV}~ 1 converges in ( Bl,r(JRn)) n as 

j -+ oo. Indeed, the restriction vln belongs to ( Bl,f(S1)) n. Hence, for 

every c > 0, there exists r..p E (C0 (S1)r such that llvln- r..p IBl,f II< c. 
For this r..p there exists a positive integer j 0 such that XJ(x) = 1 holds 
on suppr..p for every j 2 j 0 . It follows that XJ(x)r..p(x) = r..p(x) for j 2 )o. 
From this fact we conclude that, for every j 2 j 0 , the function XJV E 

( i3 1,f (JR n) f satisfies the estimate 

with a constant C independent of v and r..p. Since c > 0 is arbi­
trary, this implies that the sequence {XJV }~ 1 is a Cauchy sequence 

in (B!,f(lRn)) n. By using this fact, we define 'Vh2 E X~(JRn) by 

(w, \lhz)n = - r div w(x)hz(x) dx 
}ffll.n 

=-lim { { \JE(x-y)div\ll(x)dx'lj;J(Y)dy 
J----*00 }JRn. }JRn 

=- lim { v(y)'lj;J(Y) dy, 
J---+00 }JR-n 
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where '1/Ji(Y) = Xi(Y)(- f(y) + "Vh1(y)), That is, 

"V h2 =weak-* lim "V { "V E(x - y )'I/J1 (y )dy. 
J->00 }JRn 

From this fact we obtain 

Hence we have (4.12) also in the case p = oo. 
Putting h(x) = h1(x) + h2(x) + h3(x) and summing up (4.4), (4.11) 

and (4.12) we obtain the conclusion for bounded n. 
We next consider the case that n is an exterior domain. Since the 

functions h1 and h2 are written as the integral on the whole space or 
its weak-* limit, it follows that the estimates (4.4) and (4.12) hold also 
in this case. Hence it suffices to show (4.11). To this end choose a 
positive number R > 0 such that n n {x E JRn I lxl < R} = JRn, and 
put u = {x E n I lxl < 3R} and v = {x E ]Rn I lxl > 2R}. Then 
II"Vh3 IX;(u) II can be estimated in the same way as in the case where n 
is bounded, and hence II"Vh31x;(u) II ~ell !I x;ll. Hence it suffices to 

estimate II"Vh31X;(V) II· For this purpose we employ the identity (4.8). 
We first show that, for every k = 1, 2, ... , there exists a constant Ck 
such that 

holds for every x E V. Indeed, since r E {x E JRn I lxl ~ R}, we have 
lx- Yl ~ lxl/2 for x E V andy E r. Hence, differentiating both sides of 
(4.10) and observing that lxl ~ 2R on V, we obtain (4.13). 

From this fact and the estimate 

we conclude that "V h2 E Bf,00 (V) with the estimate 

(4.14) 

for every s 2: 1. Next, suppose that 0 < s < 1. Then we have 
(4.15) 

I"Vh3(x+y)- "Vh3(x)l = IY· "V2h3(x+By) I ~ clll !I x;ll IYI n+l 
1 + lx+ Byl 
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with some BE (0, 1). If IYI ::; lxl/2, we have lx + Byl 2- lxl -IYI 2- lxl/2. 
Substituting this estimate into ( 4.15) we obtain 

(4.16) IV'h3(x + y)- V'h3(x)l < c II il xsll IYil-s 
IYI 8 -

1 P 1 + (lxl/2)n+l 

::; ell il x;lllxls +11xln+s . 

Next, if IYI 2- lxl/2, we have lx + Yl ::; lxl + IYI ::; 3IYI· It follows that 

( 4.17) 
IV'h3(x + y) - V'h3(x) I < IV'h3(x + y)l + IV'h3(x) I 

IYI 8 - IYI 8 

::; Call Jl x;ll C1 + lx ~ Yln)lyls + (1 + l:ln)lyls) 

::; Call Jl x;ll ( lx + Yl 8 +11x + Yln+s + lxls +11xln+s). 

In view of (4.16) and (4.17), we have 

{ IV'h3(x + y)- V'h3(x)l dx 
lv IYI 8 

::; ell 11 x;lll, Cxls +11xln+s + lx + Yl 8 +11x + Yln+s) dx 

::; ell 11 x;ll· 

This implies that (4.14) holds also for s E (0, 1). By Lemma 4.1 and 
the Sobolev embedding theorem we conclude that V'h3 E B~,l for every 

s > njp- n. This implies V'h3 E x:(v) with IIV'h31x: II ::; ell il x:ll 
for every p E [1, oo] and s E (1/p- 1, 1/p). Q.E.D. 

§5. Proof of the Main Theorem. 

First we derive the decomposition in x: as in the previous section 

from Theorem 4.2. For every f(x) E (x:(o)(, let h(x) be the solution 
of the problem (4.2)-(4.3), and put Pf(x) = f(x)- V'h(x). Then we · 
have 

div Pf(x) = div f(x)- tlh(x) = 0 in 0, 

n ·rrPJ(x) = n ·rr(f(x)- V'h(x)) = 0 on r. 



114 H. Fujiwara and M. Yamazaki 

It follows that (1- P)f E G~(O) and Pf E if;,<7(0) for p E (1, oo), 

and (1- P)f E G~,p(O) and Pf E .B;,p,<7(0) for p = 1, oo. Moreover, 
the mapping P is continuous. Assertion (5) follows immediately from 
the fact that the construction above is independent of p and 8. Hence, 
applying Lemma 4.lwe conclude Assertions (1) and (3). 

Next, assume that p E (1, oo) and 1/p- 1 < 8 < 1/p. Then we have 

H;(n) = ii;(n) n H~(n) for 8 ~ o, 
H;(n) = ii;(n) + H~(n) for 8 ~ o. 

For p = 1, oo and 8 E (1/p-1, 1/p), we have n;,p(O) = .B;,p(O) provided 
0 is bounded. Hence, if 1 < p < oo or if 0 is bounded, Theorem 4.2 
holds also for 

for p = 1, 

for 1 < p < oo, 

for p = oo. 

instead of (4.1). Applying Lemma 4.1 we conclude Assertions (2) and 
(4). 

It remains only to show Assertion (6). For p, q E [1, oo) and 8 E 

(1/p -1, 1/p), put p' = pj(p- 1) and q' = qj(q- 1), and consider the 
following settings: 

(5.1) X= (ii;(n)f, Y= (ii;/(n)f,P=Fp,s, Q=Fp',-s, 

(5.2) X= ( .B;,q(n)) n, Y = ( .B;,s(n)) n, P = Fp,q,s, Q = Fp',q',-s, 

(5.3) X= (H;(n))n, Y = (H;,s(n)r, P = Pp,s, Q =Pp',-s, 

(5.4) x = (n;,q(n)r, Y = (n;,~q,(n)r, P = Pp,q,s, Q = Pp',q',-s· 

Here we assume p > 1 in (5.1) and (5.3), and we assume p > 1 or n is 
bounded in (5.4). It suffices to show that Q = P' in each of the settings 
above. Namely, it suffices to show the identity (!, Qg)n = (P J, g)n for 
every f EX and every g E Y. 

Suppose that f E (1- P)X and g E QY. Then we have div g = 0 and 
n · "Yr9 = 0. On the other hand, let {!j }~1 be a sequence in ( C(f (0)) n 

such that iJ ----> f in X as j ----> oo. Let hj be the solution of the problem 
(4.2)-{4.3) with f replaced by fJ. Then we have '\lhj = (1- P)fj ----> 

(1 - P)f = f in X. It follows that 

(!, g)n = lim ('\7 hj, g)n = lim ( (hj, n · "'(rg)r - (hj, div g)n) = 0, 
J---+CXJ J-+00 
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where the integration by parts is justified because hj can be approxi­
mated by functions in C{f' (IRn) in X, where 

Hence 

in the case (5.1), 

in the case (5.2), 

inthe case (5.3), 

in the case (5.4). 

(5.5) ( (1 - P)J, Qg)o. = 0 for every f E X, g E Y. 

Next, suppose that f E PX and g E (1- Q)Y. Then we can write 
g = \71/J with some 1/J. Next, let {IJ}.f=1 be a sequence in (C'if'(O)t 
such that fJ -+ f in X as j -+ oo. Let hj be the solution of the problem 
(4.2)-(4.3) with f replaced by IJ, and put 'PJ = PfJ = fJ- 'Vhj EX. 
Then we have 'PJ E P X and 'PJ -+ P f =fin X as j -+ oo. This implies 
div 'PJ -+ div f = 0 and n · /r'PJ -+ n · /r f = 0 as j -+ oo. It follows that 

(!, g)n = _lim ('PJ, 'V'l/;)n = lim ( (n · /r'PJ' 1/J)r- (div 'PJ, 1/J)n) = 0, 
J-+00 J-+CXJ 

where the integration by parts is justified since 'PJ can be approximated 
by functions in C{f' (!Rn) in X. Hence 

(5.6) (P J, (1 - Q)g)n = 0 for every f E X, g E Y. 

The identities (5.5) and (5.6) imply the identity (P J, g)o. = (!, Qg)n 
for every f E X and g E Y, as required. This completes the proof of 
Assertion (6). 
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