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Semi-stable extensions on arithmetic surfaces 

Christophe Soule 

Let S be a smooth projective curve over the complex numbers and 
X ---> S a semi-stable projective family of curves. Assume that both S 
and the generic fiber of X over S have genus at least two. Then the 
sheaf of absolute differentials fl!x- defines a vector bundle on X which 
is semi-stable in the sense of Mumford-Takemoto with respect to the 
canonical line bundle on X. The Bogomolov inequality 

ci ( fl 1-) ::; 4 C2 ( fl 1- ) 
leads to an upper bound for the self-intersection c1 (wx;s )2 of the relative 
dualizing sheaf wx;s-

Assume now that S is the spectrum Spec ( 0 F) of the ring of integers 
in a number field F and that X---> Sis a semi-stable (regular) curve over 
S, with generic genus at least two. In [7], Parshin asked for a similar 
upper bound for the arithmetic self-intersection c1 (wx;s )2 of the relative 
dualizing sheaf of X overS, equipped with its Arakelov metric. He and 
Moret-Bailly [5] proved that a good upper bound for this real number 
c1 (wx;s) 2 would have beautiful arithmetic consequences (including the 
abc conjecture). 

If one tries to mimick in the arithmetic case the proof that we have 
just checked in the geometric case, one soon faces the difficulty that we 
do not know any arithmetic analog for the sheaf of absolute differentials 
fl!x-. In [3], Miyaoka proposed to turn this difficulty as follows. He no­
ticed that, in the geometric case, any general enough rank two extension 
E of wx;s by the pull-back to X of fl1 is semi-stable and that it can 
be used instead of fl!x- in the argument. When S =Spec (OF) it is then 
natural to apply an arithmetic analog of Bogomolov inequality to a rank 
two extension E of wx;s by some hermitian line bundle pulled back from 
S. 

But then, a new difficulty arises. Namely, the second Chern number 
c2 (E) of E is more involved in the arithmetic case than in the geometric 
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one, as it contains an archimedean summand - an integral over the set 
of complex points of X - which is not easy to bound from above. 

In this paper, which is a sequel to [8] and [9], although we are unable 
to prove Parshin's conjecture by Miyaoka's argument, we show that 
his method still provides interesting lower bounds form some successive 
minima of the euclidean lattice of sections of hermitian line bundles on 
the arithmetic surface X. 

More precisely, we consider an hermitian line bundle N on X, with 
positive even degree on the generic fiber. We prove that, when k is big 
enough, the logarithm J.lk of the k-th successive minimum of H 1(X, N- 1 ), 

endowed with its £ 2-metric, is bounded below: 

- 2 
c1(N) A 

J.lk~~-' 

where n is the degree of N, d = [F : Ql] and A is a simple constant 
(Theorem 2). 

This result is a complement to Theorem 4 in [9], where smaller 
values of k were studied. The proof is similar and consists mainly in 
making precise Miyaoka's assertion that a general extension E of N by 
the trivial line bundle is semi-stable on X 181 F. For that, again inspired 
by Miyaoka, we write E as an extension 

over X 181 F, with L = wx;s 181 M- 1 being the Serre dual of M, and 
we show (Proposition 1) that E is semi-stable on X 181 F as soon as the 
boundary map 

is an isomorphism. Next, we give an upper bound for the dimension of 
a vector space V C Ext (L, M) such that, for every extension class in 
V, the corresponding map a is singular (Proposition 2). By a standard 
argument it follows that, if k is big enough, there exists an extension E 
of N by Ox which is semi-stable over X 0F and such that the £ 2-norm 
of its extension class is bounded above by exp (J.Lk + A). The proof of 
( *) (see Theorem 2) then follows from a theorem "a la Bogomolov" for 
semi-stable hermitian vector bundles on arithmetic surfaces, which is 
due to Miyaoka [4], [8] and Moriwaki [6]. 

The geometric aspect of our argument can also be expressed in terms 
of the secant variety Ld of a smooth projective curve C. In [10], Voisin 
gave an upper bound for the dimension of projective spaces contained in 
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'Ed, when dis small enough with respect to the degree of C. In Theorem 
1, we prove a similar result for a slightly bigger value of d. 

When doing this work, I got help from C. Gasbarri, B. Mazur, 
Y. Miyaoka and especially C. Voisin, who found a gap in the proof 
of Proposition 2 and fixed it. I wish to express to them my gratitude, 
as well as to the organizers of this conference. 

Notation. Given two line bundles on a scheme X, we denote by L -l 

the dual of L and by LM the tensor product of L with M. 

§1. Semi-stable extensions on curves 

1.1. 

Let k = k be an algebraically closed field, and C a smooth connected 
projective curve of genus g 2: 0 over k. Let Land M be two line bundles 
on X and 

(1) 

a rank two extension of M by L. Consider the associated boundary map 
in cohomology 

Proposition 1. Assume that deg(L):::; deg(M) and that 

a) Either deg(L) + deg(M) 2: 2g- 2 and 8 is injective; 
b) Or deg( L) + deg( M) :::; 2g - 2 and 8 is surjective. 

Then the vector bundle E is semi-stable on C. 

1.2. Proof. 

Let us prove a) by contradiction. Let N C E be a line bundle on C 
such that 

deg(N) > deg(E) = deg(L) + deg(M). 
2 2 

Then deg(N) > deg(L), therefore N n L = 0, and the composite map 

is injective. The extension 

0 --7 L --7 E' --7 N --7 0 
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induced by (1) and this map is split. Therefore the associated boundary 
map 

H 0 (C, N)---> H 1 (C, L) 

is zero, i.e. the restriction of a to H 0 ( C, N) C H 0 ( C, M) vanishes. 

On the other hand, since deg(L) + deg(M) 2: 2g- 2, we have 

deg(N) > g- 1, 

hence, by Riemann-Roch, H 0 (C, N) =f. 0. This contradicts the assump­
tion that a is injective. 

To prove b) by contradiction we may consider a quotient N of E of 
degree less than deg(E)/2 and look at the extension 

0 ---> N ---> E' ---> M ---> 0 

induced by the composite map L ---> E' ---> N. Alternatively, one can 
deduce b) from a) by considering the Serre dual of E. 

1.3. Remark. 

There are cases where E is semi-stable when neither a) nor b) holds. 

1.3.1. For instance, when Cis an elliptic curve and A E C(k), let 
L = 0( -A) and M = O(A). The group of extensions 

Ext (M, L) = H 1 (C, 0(2A)) 

has dimension two, when H 0 ( C, M) and H 1 ( C, L) have dimension one. 
Therefore there exists a nontrivial extension 

such that a vanishes. On the other hand, if N c E has degree deg(N) > 
degiE) = 0, it must be contained in M. Since deg(M) = 1 we get N = M 
and the extension has to be trivial. 

1.3.2. Another example, where L = Oc is the trivial line bun­
dle and M is the sheaf w = Oi:: of differentials on C, was proposed by 
J. Harris (I thank B. Mazur for explaining this to me). Choose a sextic 
C' C J!D2 with exactly two nodal singularities, and let C be the normal­
ization of C'. On this curve C of genus 8 let N be the pull-back of 0(1) 
from lP'2 to C. One can show that there exists an extension 

0---> N---> E---> w N- 1 ---> 0 
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such that the boundary map 

has rank three, when H 1 (C, N) has dimension four. Furthermore E is 
stable and has a nowhere vanishing section. Therefore E is an extension 

0 ____, 0 c ----> E ----> w ____, 0 

with associated boundary map 

which is neither injective nor surjective. 

§2. Projective subspaces in secant varieties 

2.1. 

Let k be a field of characteristic zero, C a smooth projective curve 
over k, and Crc = C ® k its extension of scalars to the algebraic closure 

k 
of k. We assume that Crc is irreducible of genus g 2': 0. 

Consider a line bundle Non C. Each cohomology class 

classifies an extension 

0 ____, 0 c ____, E ____, N ____, 0 . 

Let n = deg(N) be the degree of N. 

Proposition 2. Assume that the degree n is even and nonnegative, 
and that N is not trivial. Let V c H 1 (C,N- 1 ) beak-vector space of 
dimension 

dim(V) 2': n - m + g, 

where m is the integer defined by formula (3) below. 

Then there exists e E V such that the corresponding vector bundle 
E is semi-stable (over Crc). 
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2.2. Proof. 

Since n is even, we can choose a line bundle H on Ck such that, if 
w=Ob, 

deg(N w) = 2 deg(H). 

If H' = NwH- 1 , we get deg(H') = deg(H), and 

Nw=HH'. 

Since Pic0 ( Ck) is divisible, there exists a line bundle A of degree zero 
on ck such that 

H' =H A2 . 

Let M = H A and L = w M- 1 . We get 

N = H H' w- 1 = H 2 A 2 w- 1 = M(wM- 1)- 1 = M L- 1 . 

Any class e E H 1 ( C, N- 1 ) defines an extension 

0 -> Oc -> E -> N -> 0 

over C and, by tensoring by L, an extension 

(2) O->L->E0L->M->O 

over Ck. The vector bundle E is semi-stable if and only if E 0 L is 
semi-stable. 

From now on, and till the end of§ 2, we assume that k = k. Since 
deg(N) ~ 0 we have deg(L) :::; deg(M). Furthermore 

deg(L) + deg(M) = 2g- 2. 

Therefore, by Proposition 1, E 0 L is semi-stable if and only if the 
boundary map 

defined by (2) is an isomorphism. Note that, by Serre duality, 

has the same dimension as H 0 ( C, M). Let 

(3) m = dimk H 0 (C, M). 
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To prove Proposition 2, we now follow an argument of C. Voisin. The 
map 8e is the cup-product bye E H 1 (C,LM-1 ). Therefore, by Serre 
duality again, the map 

H 0 (C,Nw)* 

H 0 (C, M 2)*--+ Hom (H0 (C, M)--+ H 0 (C, M)*) 

which maps e to ae is dual to the cup-product 

We denote by 
J1: H 0 (C, M)®2 --+ V* 

the composite of this cup-product with the projection of H 0 (C, M 2 ) onto 
the dual of V. Since the cup-product is commutative, any element in V 
defines, via J1, a quadric in the projective space P(H0 (C, M)). 

Arguing by contradiction, we assume that all these quadrics are sin­
gular. Consider the Zariski closure B C P ( H 0 ( C, M)) of the union of the 
singular loci of the quadrics with singular locus of minimal dimension, 
and let b be the dimension of B. 

Let a E H 0 (C, M) be a representative of a generic point [a] E B. 
We claim that the map 

J1a: H 0 (C, M)--+ V* 

mapping T E H 0 ( C, M) to 

has rank at most b. Indeed, it follows from the definitions that a quadric 
q E Vis singular at T E H 0 (C, M) if and only if it lies in the subspace 
Q7 C V orthogonal to the image of J17 • Generically, the singular locus 
of q is minimal. Therefore the union all the vector spaces Q7 , [T] E B, 
is an open subset of V. Since [a] is generic in B, the dimension of Qa is 
at least dim(V) - b, and the rank of J1a is at most b as claimed. 

This implies that the kernel Ha c H0 (C, M) of J1a has dimension 
c ~ m- b (note that this dimension c has a fixed value when [a] is 
generic in B). Let K c H 0 (C, M 2 ) be the subspace orthogonal to V. 
By definition, the vector space 

is contained inK. Its dimension is c. 
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On the other hand, we can choose points x 0 , ••• , Xb on C and vectors 
a0 , .•• ,O"b E H 0 (C,M) such that [ai] lies in Band 

O"i(Xj) = 8ij 

for all i and j. By moving Xi without moving the other points, we can 
also assume that, for every i, at least one section in H", does not vanish 
at xi. As a consequence, K"i is not contain in the sum of the K"i 's, 
j =f. i, and the dimension of the sum of the subspaces K"" i = 0, ... , b, is 
at least 

b+c2:m. 

Therefore K has dimension at least m and, since H 1 (C, N-1 ) has di­
mension n + g - 1, the dimension of V is at most n + g - m - 1. This 
contradicts one of our hypotheses. 

2.3. Remark. 
In the proof of Proposition 2, N = M 2 w- 1, therefore 

n 
deg(M) = 2 + g - 1 2: g - 1. 

By the Riemann-Roch theorem: 

n 
x(C, M) = deg(M)- g + 1 = 2 . 

By Clifford's theorem 

dimk H 1 (C, M) ::::; Sup(g- 1, 0), 

and dimk H 1(C, M) = 0 whenever deg(M) > 2g- 2. Therefore 

n n 
2 ::::; m :::=; 2 + Sup(g- 1, 0), 

hence n n 
2 + Inf(g, 1) :::=; n- m + g :::=; 2 + g 

and n- m + g =~+gas soon as n > 2g- 2. 

2.4. Secant varieties 

2.4.1. The Proposition 2 can be rephrased in terms of secant va­
rieties. Let d 2: 1 be an integer and 

n=2d+2. 

Let k be an algebraically closed field of characteristic zero and C a 
smooth connected projective curve over k, of genus g, say C C IP'. Let 
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N- 1 = w 0( -1) be the Serre dual of the canonical sheaf on C, and 
assume that deg(N) = n. 

Consider the secant variety 

Ed= U (Z), 
ZEX(d) 

swept out by the linear spans of d-uples of points on C. Define mas in 
(3). 

Theorem 1. The secant variety Ed does not contain any projective 
space JP>8 of dimension 

o~n-m+g-1. 

2.4.2. Proof Let e E H 1(C,N-1), e =!=- 0, and 

the corresponding extension. the semi-stability of E means that e does 
not lie in the image of the boundary map 

coming from 

for any effective divisor D of degree less than ~' i.e. deg(D) ~ d. 
This condition happens to be equivalent to the fact that the point in 
lP' = lP'(H1(c,N-1)) defined bye does not belong to Ed. For more 
details see [2], p. 451, or [9], § 1.6. Therefore Theorem 1 follows from 
Proposition 2. 

2.4.3. Using 2.3 we see that the lower bound 

c5o = n - m + g - 1 

in Theorem 1 is such that 

n 
c5o ~ 2 + Inf (g - 1, 0) = d + Inf (g, 1) , 

and c50 = d+gwhen n > 2g-2. The remark 1.3 above suggests that this 
bound is not optimal. According to C. Voisin, when g > 0, Theorem 1 
should remain true with c5 ~ d ([9] , § 1.3). 
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§3. Semi-stable extensions on arithmetic surfaces 

3.1. 

Let F be a number field, 0 F its ring of integers and S = Spec( 0 F). 
Consider a semi-stable curve X over S such that X is regular and its 
generic fiber XF is geometrically irreducible of genus g 2: 0. Let 

deg : Pic (X) ---+ IZ 

be the morphism sending the class of a line bundle on X to the degree 
of its restriction to XF. 

Let N = (N, h) be an hermitian line bundle over X, i.e. a line 
bundle N on X together with an hermitian metric h on the restriction 
Nc of N to X(C) which is invariant under complex conjugation. The 
cohomology group 

is a finitely generated module over 0 F. For every complex embedding 
(J : F ---+ <C, let X 17 = X 0<C be the corresponding surface and A17 = A0<C. 
This cohomology group 

is canonically isomorphic to the complex vector space 1i0 ' 1(X17 , N(; 1) 

of harmonic differential forms of type (0, 1) with coefficients in the re­
striction N(; 1 of the line bundle N- 1 to X(C) = U X 17 • Given a E 

17 

1i0 ,1(X17 , N(; 1 ), we let a* be its transposed conjugate (the definition of 
which uses the metric h), and we define 

Given e E A, we let 

llell =Sup IICJ(e)ll£2, 
17 

where CJ runs over all complex embeddings of F. 

We are interested in (the logarithm of) the successive minima of A. 
Namely, for any positive integer k :=; rk(A), we let /Lk be the infimum of 
all real numbers J.L such that there exist k elements e1 , ... , ek in A which 
are linearly independent in 
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and such that 

(4) for all i = 1, ... , k . 

Let n = deg(N). We assume that n > 0 and that n is even. We 
define m by the formula (3) above (with ground field P instead of k). 
Finally, let 

d = [F: IQ] 

be the degree ofF over IQ. 

Theorem 2. Assume that k ~ n- m +g. Then 

where 
1 

A=-+ log(m(n + g -1)), 
n 

and c1 (N)2 E JR. denotes the self-intersection of the arithmetic Chern 
- -1 

class c1(N) E CH (X). 

3.2. Proof. 

Let e1 , ... , ek be elements of A which are F-linearly independent 
and such that (4) holds. Call V C H 1 (Xp,N- 1 ) the F-vector space 
spanned by e1, ... , ek. According to Proposition 2 there exists e E V 
such that the corresponding extension E of N by the trivial line bundle 
on Xp is semi-stable on Xp. Furthermore, using the notation of the 
proof of Proposition 2, E is semi-stable as soon as 

is an isomorphism. Choosing a basis of these two vector spaces, we get 
a polynomial P of degree m on V 0 P such that 

P(e) = det(8e), 

so that E is semi-stable as soon as P(e) f. 0. Therefore, by a stan­
dard argument (see [9], proof of Proposition 5), there exists k integers 
n1, ... , nk, with I nil ~ m for all i, such that 

(5) 

satisfies P( e) f. 0, hence E is semi-stable. 
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From the definition of J..Lk and (5) we get 

(6) II ell ::; m kexp(J..Lk) ::; m(n + g- 1) exp(J..Lk) 

(since rk(A) = n + g- 1). According to a result of Miyaoka ([4], [8] 
Theorem 1) and Moriwaki [6], this implies that, for any choice of a 
metric onE (invariant under complex conjugation), the inequality "ala 
Bogomolov" 

(7) 

-2 
is satisfied in R Here, as in [8] § 2.1, given x E CH (X) we also denote 

by x E lR its arithmetic degree deg (x). 

We now proceed in a way similar to· [8], Proposition 1 and Corollary 
(where more details can be found). Recall that E is an extension 

(8) 0----> Ox----> E----> N----> 0. 

We endow 0 x with the trivial metric and N with a metric h' to be 
specified below. For any choice of a smooth splitting of (8) over X(C), 
we get a metric on E, namely the orthogonal direct sum of the chosen 
metrics on Ox and N. The Cauchy-Riemann operator on Ec can be 
written in matrix form according to that splitting: 

- ([) 0:) 
OE = 0 [)N ' 

where o: is a smooth form of type (0, 1) over X(C) with coefficients in 
Nc 1 . One can choose the smooth splitting of (8) over X(C) in such 
a way that o: is the harmonic representative of the restriction of e to 
X(C). With this choice we get 

and 

2 c2(E) = :2: IIO"(e)IIZ2, 
a:F--+C 

where, for every complex embedding O", 11·11~2 is the £ 2-norm on H 1(Xa, 
Nc1 ) defined by h'. 

Now let t = llell 2 and let us choose h' = th. We get 



Semi-stable extensions on arithmetic surfaces 295 

and 

Therefore the inequality (7) reads 

Since, by (6), 
log II ell ::::; /Jk + log(m(n + g- 1)), 

Theorem 2 follows. 
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