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The Littlewood-Paley inequalities for Hardy-Orlicz
spaces of harmonic functions on domains in R"”

Manfred Stoll

Abstract.

For the unit disc D in C, the harmonic Hardy spaces H?, 1 <
p < 00, are defined as the set of harmonic functions A on D satisfying

2m
[R5 = sup —-1—/ |h(re®®)|Pdo < .
o<r<1 27 0

The classical Littlewood-Paley inequalities for harmonic functions [3]
in D are as follows: Let h be harmonic on D. Then there exist positive
constants C1, Cs, independent of h, such that

(a) for 1 < p <2,

IAIE < Gy [lh(O)I” + [[a= e wnera dy] .
(b) For p > 2, if h € H?, then

/ / (1= )P~} |Vh(2)Pdz dy < Cah]E.
D

In the paper we consider generalizations of these inequalities
to Hardy-Orlicz spaces H, of harmonic functions on domains Q2 C
R™, n > 2, with Green function G satisfying the following: There
exist constants a and 3, 0 < # <1 < a < 00, such that for fixed
to € 0, there exist constants C; and C3, depending only on ¢,, such
that C16(x)* < G(to, ) for all z € Q, and G(to,z) < C20(x)? for all
z € Q\ B(to, 26(to)).
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§1. Introduction

For the unit disc D in C, the harmonic Hardy spaces H?, 1 < p < oo,
are defined as the set of harmonic functions » on D satisfying

1 27 .
h|b = — [ |h(re”)|Pdf < oo.
Ihlly = sw 5= [ re?)lPas < oo

The classical Littlewood-Paley inequalities for harmonic functions [3] in
D are as follows: Let h be harmonic on . Then there exist positive
constants C, Cs, independent of A, such that

(a)for 1< p<2,

Ly JE<G [|h(0)|P T / [@- 1 19h@Pdzdy|.
D
(b) For p > 2, if h € HP, then |

(1.2) //D(l — 2P Vh(2)|Pdz dy < Ca| A3

In 1956 T. M. Flett [2] proved that for analytic functions inequality
(1.1) is valid for all p, 0 < p < 2. Hence if u = Reh, h analytic, then
since |Vul| = [h’| it immediately follows that inequality (1.1) also holds
for harmonic functions in D for all p, 0 < p < 2. A short proof of the
Littlewood-Paley inequalities for harmonic functions in D valid for all
p, 0 < p < oo has also been given recently by Pavlovi¢ in [5]. The
Littlewood-Paley inequalities are also known to be valid for harmonic
functions in the unit ball in R™. In fact Stevié [7] has recently proved that
for n > 3, inequality (1.1) is valid for all p € [2=2,1]. In [10] analogue’s
of the Littlewood-Paley inequalities have been proved by the author for
domains Q in R™ for which the Green function satisfies G(t,,z) = d(x)
for all z € Q\ B(t,16(t,)), where 6(z) denotes the distance from z to
the boundary of ). In the same paper it was proved that for bounded
domains with C*'! boundary the analogue of (1.1) is also valid for all
p,0<p<1.

In the present paper we extend the Littlewood-Paley inequalities
to harmonic functions in the Hardy-Orlicz spaces H, on domains Q C
R™ n > 2, with Green function G satisfying the following conditions:
There exist constants o and 3, 0 < 8 < 1 < « < 00, such that for fixed
t, € £, there exist constants C; and C3, depending only on t,, such that

(1.3) C1é(2)* < G(to, x) for all z € Q, and
(1.4) G(to,z) < Cod(x)P for all z € Q\ B(to, 26(t,))"



Littlewood- Paley Inequalities 365

Let Q be an arbitrary domain in R, n > 2, and let ¢ be a non-
negative increasing convex function on [0, 0o) satisfying 1(0) = 0 and

(1.5) P(2z) < cy(a)

for some positive constant c. We denote by H,(£2) the set of real or
complex valued harmonic functions h on € for which ¥(|k|) has a har-
monic majorant on €. Since 1 is convex and increasing, the function
1(|h|) is subharmonic on Q. The existence of a harmonic majorant con-
sequently guarantees the existence of a least harmonic majorant. For
h € H,, we denote the least harmonic majorant of ¥(jh|) by H {/ﬁ, and for
fixed t, €  we set

(16) Ny (k) = H(to).

It is known that Ny (h) is given by

(L7) Ny = lim | w0

where {2, } is a regular exhaustion of Q and wf¢ is the harmonic measure
on 99, with respect to the point ¢t,. Here we assume that ¢, € Q, for
all n. With ¢¥(t) = t?, 1 < p < oo, one obtains the usual Hardy HP
space of harmonic functions on 2, with

1/p
(19) inly = Jim ([ wepaso)
- oy,
which is the usual norm on H?(Q), p > 1.
In the paper we prove the following generalizations of the Littlewood-
Paley inequalities.

Theorem 1. Let Q@ C R" be a domain with Green function G sat-
isfying inequalities (1.3) and (1.4). Let 3y > 0 be an increasing convex
C? function on [0, 00) with ¥(0) = 0 satisfying (1.5). Set p(t) = ¥(V/1).
Then there exist positive constants C1 and Cs such that the following
hold for all h € Hy(02).

1As in [1] [4], if Q is a bounded k-Lipschitz domain, then such constants
a and 3 exist. If the boundary of Q is C? or C*!, then & = 8 = 1, and
the inequalities can be established by comparing the Green function G to
the Green function of balls that are internally and externally tangent to the
boundary of Q. By the results of Widman [11], the inequalities are also valid
with a = 8 = 1 for domains with C*® or Liapunov-Dini boundaries.
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(2) If ¢ is concave on [0,00), then
Ny(h) < € [wuh(tom + [ 6) 206 Th(w) e
(b) If ¢ is convez on [0, 00), then
Wllh(to)) + [ d) (G Th@) de < Cally(h).

An immediate consequence of the previous theorem with ¥(t) =
P, 1 <p < 0, is the following:

Theorem 2. Let O C R™ be a domain with Green function G sat-
isfying inequalities (1.3) and (1.4), and let 1 < p < oo. Then there
exist positive constants Cy; and Co such that the following hold for all
h € HP(Q).

(a) For 1l <p<2,

e [Ih(to)lp + [ P ohe o).
Q
(b) For 2 < p < o0,
Ih(t,)? + / 5(z) P2V h(z)P da < G |h2.
Q

§2. Preliminaries

Our setting throughout the paper is R™, n > 2, the points of which

are denoted by x = (z1, ..., z,,) with euclidean norm |z| = /22 + - -+ + 22.
For r > 0 and =z € R", set B,(z) = Blz,7r) = {y e R" : jx — y| < r}
and S,(z) = S(x,r) = {y € R* : |z — y| = r}. For convenience we

denote the ball B(0, p) by B,, and the unit sphere S1(0) by S. Lebesgue
measure in R™ will be denoted by dA or simply dz, and the normalized
surface measure on S by do. The volume of the unit ball By in R™ will
be denoted by w,. For an integrable function f on R™ we have

[ s =, [ [ 10 doto)ar

Finally, for a real (or complex) valued C! function f, the gradient of f
is denoted by Vf, and if f is C2, the Laplacian Af of f is given by
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Let €2 be an open subset of R", n > 2, with Q C R™. For z € Q, let
d(x) denote the distance from z to the boundary of 2, and set

(2.1) B(z) = B(z,36(z)) = {y € Q: [y —z| < 4(z)} .
Then for all y € B(z) we have
(2.2) L3(z) < 8(y) < 20(a).
For the proof of Theorem 1 we require several preliminary lemmas.

Lemma 1. For f € L'(Q) and v € R,

/ |f(2)] dx} dw.
B(w)

Note. The notation A ~ B means that there exist constants ¢; and
¢z such that ¢;A < B < ¢ A.

/sﬂ(:c)“’lf(:r)ldzz/ﬂd(w)v_n

Proof. The proof is a straightforward application of Tonelli’s the-
orem, and consequently is omitted. Details may be found in [10].
O

Lemma 2. Foru ¢ C?(B,), p >0,

/ u(p¢) da(¢) = u(0) +/ Au(z)G,(z) dz,
s B,

where
(2.3)
1 1 1
- ) 0< < ) Z 37
Go(o) — 4 71— 2y =] e
p(@) = 1 0
— log +—, 0<|z|<p, n=2,
2 7 x|

is the Green function of B, with singularity at 0.

Proof. The proof is an immediate consequence of Green’s formula
and hence is omitted. O

Lemma 3. Let ¢ be an increasing absolutely continuous function
on [0, 00) with ¢(0) = 0.

(a) If ¢ is convez, then p(x) +(y) < p(x+y) for all z, y € [0, 00).

(b) If ¢ is concave, then p(x)+¢(y) > p(x+y) for all z, y € [0, 00).
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Proof. (a) Suppose ¢ is convex. Since ¢ is absolutely continuous
and increasing, p(z) = fox ¢’ where ¢’ > 0. Hence

Tty z+y
plz+y) = / ¢ = p(x) + / ¢
0 x

z+y Y
/ '(t)dt = / ¢’ (z + t)dt.
T 0

Since @ is convex, ¢’ is increasing. Thus

Yy Y
/ o (@ + t)dt > / & ()t = o(y),
1] 0

-from which the result follows. The proof of (b) is similar. d

But

Lemma 4. Suppose ¢ is an increasing C? function on (0,00) with
»(0) =0 and
(2.4) 2t (1) + ' (t) >0, t>0.

Let h be a harmonic function on B,, p > 0.
(a) If © is concave, then

| sl <c [ oo vh?)de.
Bp/a 3
(b) If v is convexr and satisfies inequality (1.5), then
[ #nevprzzc [ ol onps
B, B, /2
Remark. If u is a positive real-valued C? function, then
Ap(u?) = 2Vuf? [20" (u?)u? + ¢ (u?)] + 2 (uP)ul.

Thus the hypothesis 2t¢” (t) + ¢'(t) > 0 guarantees that ¢(u?) is sub-
harmonic whenever v is subharmonic. For v¥,(t) = tP, the function
0p(t) = Yp(V1) = tP/? satisfies inequality (2.4) if and only if p > 1.

Proof. We only prove the Lemma for n > 3, the special case n = 2
is similar. (a) Suppose ¢ is concave. Set € = p/4, § = p/2, and let G,
be the Green function of Bs with singularity at 0. For |z| <,

Gs(z) = n(n —12)wn [[a:[’ll—z B 5"1‘2]

1 A A enp?"
— n(n _ 2)(.&)" pn—2 pn—2
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Hence
h= [ APz <o [ Ap(h@)P)Gs(a)dz,
B( Bé

which by Lemma 2
=02 | [0 )dac) - o1hO)P)
Since  is concave, [4@(|h|2)do < ¢ ([ |h|?do). Thus
i< 02 o [1n60Ra0(0)) - ohOP)].

Since ¢ is concave and increasing with ¢(0) = 0, by Lemma 3
¢(b) —p(a) <p(b—a), 0<a<h

Therefore
L < Co™2p ( [ im0 paec) - |h<o>|2) ,

which by Green’s identity (Lemma 2)

= Cp"2p (2 |Vh(x);205(x)dx) .

Bs
Hence ‘
I <Cp" 2p (2 sup |Vh(:c)|2/ Gg(x)d:c> .
z€Bs Bs
But

1
m@mmz%&

Therefore since § = %p,

2
L < Cp2p (j— sup Wh(w)|2) ,

T xeB;s
which since ¢ is increasing

< Cp"? sup p(p?|Vh(z)|?).
€ By
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But since  — ¢(p?|Vh(z)|?) is subharmonic,

C
PPIVR@P) < [ oIV Py
r
for all z € Bs. Therefore, combining the above we have
[ pavimparse [ p@IvaR
Bv/4 B,
(b) Suppose ¢ is convex and satisfies inequality (1.5). By Lemma 2

Ap(|h(z)|*) G () dz = /Ssa(lh(5C)|2)dU(C) —@(|h(O)1),

Bs

which since ¢ is convex

> ( /S |h<«s<>|2da<c>) ~ p(hO)P) = L.

But by Lemma 3,

Bz o [ 160 Pda(c) - IhO)P).

Thus by Lemma 2,

|Vh(x)|*Gs(x) dx)
Bs

| 2eib@Gsa) s 2 o (
Bs

For |z| < e and n > 3, G5(z) > cnp®™", where ¢, = 22" /n(n — 2)wn,.
Therefore

22n42n

IVh(z)|*Gs(x) dz >

Bs n{n — 2)wy,

/ |Vh(z)|?dz,
which since |Vh(z)|? is subharmonic and € = p/4

> W}L—‘-‘)P [VR(0)? > 2n1+3p [VR(0)]*.

By inequality (1.5)

1 1
¢ (G ITHO) 2 ZLe(TRO)),
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where c¢ is the constant in inequality (1.5). Combining the above gives
PEIVO)) < [ Ap((h(a)?)Gs(o) do.

Since G5(z) < Cp|z|>~™ we have

S(PIVh(O)?) < Cn /B A ()22~ dx,

[

where C,, is a constant depending only on 7.
For w € Bs, set hy(z) = h(w + z). Thus

PPV < Cu [ Asillhul@) el da.
which by the change of variable y = w+ «

=C, o )A<P(Ih(y)|2)1y —w[* "dy.

Therefore,
/ (0% Vh(w)?) dw < O, / / Ap(h)P)ly — w*~ dy dw,
Bs Bs J Bs(w)

which by Fubini’s theorem

<c. [ Ae(hw)?) / v —wl*~"dw | dy.
Bas Bs(y)

But
P
/ ly — w|* "dw = / 2|2~ " dx = nw, .

Bs(y) Bs 4
Therefore,

[ e vmr ar<cot [ AP ax

Bs Bgs

which completes the proof. O

Lemma 5. Let i and ¢ be as in Theorem 1, and let h be harmonic
on Q. Assume that ¥(|h|) € C%(Q). Then for v € R, the following hold:
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(a) If ¢ is concave, then
/ 6(z)" Ayp(|h(z)|)dz < C/ §(x)"*P(6(2)|Vh(z)|)da.
Q ; Q
(b) If ¢ is convex and satisfies inequality (1.5), then
[ sun@is > © [ 6@ Tk
Q Q
Proof. (a) By Lemma 1
[ 3@ sv(ih@) s
w)’ " A .
<c [ sw) { / o wuh(ymdy] dw
Set p = 16(w) and u(z) = h(w + z). Then
/ Av(hDdy = [ Av(u@)iz,
B(w,}d(w) B,/
which by Lemma 4
<0 [ v(pIVut)iz
BP
— o) [ w(35(w)IVAG)dy.
B, (w)

But 16(w) < 6(y) for all y € B,(w). Hence since 9 is increasing,
H(36(w)IVAm)]) < $(6w)IVh(y))), and thus

/ A(h(y))dy < Co(w)~> / $(6()|Vh() ) dy.
B(w,}6(w)) B(w)

Finally, by Lemma 1,

/ 5(w)r 2 [ / ¢(6(y)|Vh(y)l)dy} dw
Q B(w)
<c / 5(x)29(8(x) | Vh(z)|)dz,
Q

which proves (a). The proof of part (b) proceeds in the same manner,
except that this case also requires inequality (1.5). O
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§3. Proof of Theorem 1

Before proving Theorem 1 we require two preliminary results about
subharmonic functions. Let S1(€) denote the set of non-negative sub-
harmonic functions on 2 that have a harmonic majorant on Q. As in
the Introduction, for f € S*(Q) we let H; denote the least harmonic
majorant of f on Q. For convenience we will assume that f € C?(Q).
As in [8],[9] we have the following.

Lemma 6. Let Q be a domain in R™, n > 2, with Green function
G, and let f € C*(Q). Then f € S*(Q) if and only if there exists t, € Q
such that

(3.1) AG(to,x)Af(x) dz < 00.

If this is the case, then by the Riesz decomposition theorem

(3.2) Hy(z) = f(2) + /Q G(z,y)Af(y) dy

If the subharmonic function f is not C?2, then the quantity Af(z) dz
may be replaced by duy, where ps is the Riesz measure of the subhar-
monic function f.

Lemma 7. Let Q be a domain in R™, n.> 2, with Green function G
satisfying (1.3) and (1.4). Let t, € Q be fized, and let o and 3 be as in
inequalities (1.3) and (1.4) respectively. Then there exists constants Cq
and Cz, depending only on t, and Q, such that for all f € ST(Q)NC?(Q),

cn | fits) + / §(z)*Af(2)de | < Hy(t,)
Q

<Cy / f(z)dz + / 5(x)P Af(z)dax
B(to) Q

Proof. The left side of the previous inequality is an immediate con-
sequence of identity (3.2) and inequality (1.3). For the right side, inte-
grating equation (3.2) over B(t,) gives

1 1

H:(t,) = / r)dxr + / /Ga:,A )) dy dz,
£(to) o B(to)f() ot Lo Jo (z,y)Af(y) dy
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where p, = 14(t,). By Fubini’s theorem,

1 1
_ / / G2, y)Af(y) dy dz = —— / Af() / Gz, y) da dy.
WnPo JB(t,) IS WnpPy JQ B(to)

Set

1
I(y) = / G(z,y)dx.
( ) WnPy JB(t.) ( )

To complete the proof it remains to be shown that I(y) < Cé(y)”.
If y ¢ B(t,), then since £ — G(z,y) is harmonic on B(t,) and G
satisfies inequality (1.4),

I(y) = G(to,y) < C28(y)°.
Suppose y € B(t,) and n > 3. Then since G(z,y) < cn|z — y[>~",

‘n / |z—y|>~"dz < c"n/ |z—y|* " "dz = 2ncnp? .
WnPs JB(t,) WnPs JB(y.20.)

But for y € B(t,), po < 2§(y). Thus

I(y) <

I(y) < 2nea2°3(y)Pp2 P = Cé(y)”,

where C is a constant depending only on t, and (2. 0O

Proof of Theorem 1. (a) Let ¢ be as in the statement of the
theorem, and let h be a real-valued harmonic function on Q. Set h.(z) =
h(z) + ie. Then h. is harmonic on © and ¥ (|h|) € C%(Q2). Hence by
Lemma 7,

Ny(he) < Cs /B RCCROIE /ﬂ 5(w)"Aw(lhe(x)l)dr] ,

which by Lemma 5(a)

<Oy

/ w(lhe(r)l)dﬂer/5($)’3‘2¢(5(I)th(w)l)dx}-
B(t,) Q

Letting € — 0% gives

Nyl < C | max vl + [ 52006 ds).

€ B(t,)
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It remains to be shown that
(3.3)

max Y((h(a)]) < O [w<lh(to>n +f 6<x)ﬂ—2w(6<w)|wx)|>dx] .
Q

zE€B(to

Without loss of generality we take t, = 0. As a consequence of the
Fundamental Theorem of Calculus, for all z € B(t,),

|h(z)] < [h(0)| + po max |Vh(y)l.
yE€B(to)

Since v is increasing, convex, and continuous, and satisfies property
(1.5)

B < § [WOHON) + mex $(aulTHGD)

Also, since y — ¥(po|Vh(y)|) is subharmonic,

n

HolVHD < 5o [ bl TR de
Y3 Po

Wnpy

But p, < 8(y) < 3p, for all y € B(t,), and 16(y) < é(x) < 24(y) for all
z € B(y, $po)- Thus '

P(polVRW))) < Clpo) /Q 5(x)7~2(6(2)|Vh(z)]) dz,

from which inequality (3.3) now follows. This completes the proof of (a).
The proof of (b) is an immediate consequence of Lemma 7 and Lemma

5(b).

§4. Remarks

The techniques employed in this paper may also be used to prove
analogue’s of Theorems 1 and 2 for Hardy-Orlicz spaces of holomorphic
functions on a domain 2 ¢ C*, n > 1.

In this setting the spaces H,, are traditionally defined as in [6, page
83]. For a non-negative, non-decreasing convex function 3 on (—oo, 00)
with lim¢—, o ¥(t) = 0, the Hardy-Orlicz space H(Q2) is defined as the
set of holomorphic functions f on Q for which 1 (log|f|) has a harmonic
majorant on ). As in (1.5) we set Ny (f) = Hi(to), where H£ denotes
the least harmonic majorant of ¥(log|f|). With ¥(t) = e?*, 0 < p < o0,
one obtains the usual Hardy HP space of holomorphic functions on 2.
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To obtain the analogue of Theorem 1 one considers the function ¢(t) =
¢(% logt). In this setting, hypothesis (2.4) can be replaced by

(4.1) ze"(x) + ¢'(x) 2 0

for all x € (0,00). If the above holds, then it is easily shown that
for f holomorphic on Q, ¢(|f|?) is plurisubharmonic on €, hence also
subharmonic. Clearly ¢(z) = ¥(} logz) satisfies (4.1) whenever 1 is
convex. The details of the statements and proofs of the appropriate
theorems are left to the reader.
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