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Abstract. 

For the unit disc JI]) in tC, the harmonic Hardy spaces H_P, 1 ::; 
p < oo, are defined as the set of harmonic functions h on JI]) satisfying 

The classical Littlewood-Paley inequalities for harmonic functions [3] 
in JI]) are as follows: Let h be harmonic on JI]). Then there exist positive 
constants C1, Cz, independent of h, such that 

(a) for 1 < p::; 2, 

(b) For p :0:: 2, if hE H_P, then 

In the paper we consider generalizations of these inequalities 
to Hardy-Orlicz spaces 'H,p of harmonic functions on domains !1 £; 
Rn, n :0:: 2, with Green function G satisfying the following: There 
exist constants a and {3, 0 < {3 ::; 1 ::; a < oo, such that for fixed 
to E !1, there exist constants C1 and Cz, depending only on t 0 , such 
that C18(x)"::; G(to,x) for all X En, and G(to,x)::; Cz8(x) 13 for all 
x E !1 \ B(to, ~8(to)). 

Received March 30, 2005. 
Revised April 30, 2005. 
2000 Mathematics Subject Classification. 30D55, 31B05. 
Key words and phrases. Green's function, Hardy-Orlicz spaces, harmonic 

function, harmonic majorant, holomorphic function, subharmonic function. 



364 M. Stoll 

§1. Introduction 

For the unit disc[]) inC, the harmonic Hardy spaces 1-(P, 1 :S: p < oo, 
are defined as the set of harmonic functions h on []) satisfying 

The classical Littlewood-Paley inequalities for harmonic functions [3] in 
[]) are as follows: Let h be harmonic on []). Then there exist positive 
constants cl' c2' independent of h, such that 

(a) for 1 < p :S: 2, 

(b) For p 2: 2, if hE 1-(P, then 

(1.2) J k (1-lzi)P- 11\lh(z)IPdxdy :S: C2llhll~-

In 1956 T. M. Flett [2] proved that for analytic functions inequality 
(1.1) is valid for all p, 0 < p :S: 2. Hence if u = Reh, h analytic, then 
since IV'ul = lh'l it immediately follows that inequality (1.1) also holds 
for harmonic functions in []) for all p, 0 < p :S: 2. A short proof of the 
Littlewood-Paley inequalities for harmonic functions in []) valid for all 
p, 0 < p < oo has also been given recently by Pavlovic in [5]. The 
Littlewood-Paley inequalities are also known to be valid for harmonic 
functions in the unit ball in JRn. In fact Stevie [7] h¥ recently proved that 
for n 2: 3, inequality (1.1) is valid for all p E [~=i, 1]. In [10] analogue's 
of the Littlewood-Paley inequalities have been proved by the author for 
domains Din JRn for which the Green function satisfies G(to, x) ;:::; b(x) 
for all x E D \ B(t0 ~b(t0 )), where b(x) denotes the distance from x to 
the boundary of D. In the same paper it was proved that for bounded 
domains with C1·1 boundary the analogue of (1.1) is also valid for all 
p, 0 < p :s: 1. 

In the present paper we extend the Littlewood-Paley inequalities 
to harmonic functions in the Hardy-Orlicz spaces 7-{1/J on domains D <;; 
JRn, n 2: 2, with Green function G satisfying the following conditions: 
There exist constants a and (3, 0 < (3 :S: 1 :S: a < oo, such that for fixed 
t0 E D, there exist constants C1 and C2, depending only on t 0 , such that 

(1.3) 

(1.4) 

C1b(x)"' :S: G(t0 , x) 

G(to, x) :S: C2b(x)P 

for all x E D, and 

for all XED\ B(t0 , ~b(to)) 1 . 
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Let n be an arbitrary domain in JR.n, n 2: 2, and let 'ljJ be a non­
negative increasing convex function on [0, oo) satisfying 'lj;(O) = 0 and 

(1.5) 'lj;(2x) ::; c'lj;(x) 

for some positive constant c. We denote by 1i1/J(O) the set of real or 
complex valued harmonic functions h on n for which '1/J(Ihl) has a har­
monic majorant on n. Since 'ljJ is convex and increasing, the function 
'1/J(Ihl) is subharmonic on n. The existence of a harmonic majorant con­
sequently guarantees the existence of a least harmonic majorant. For 
hE 1{1/J we denote the least harmonic majorant of '1/J(Ihl) by Hj, and for 
fixed to E 0 we set 

(1.6) 

It is known that N1f;(h) is given by 

(1.7) N1/J(h) = lim { '1/J(ih(t)l)dw~o(t), 
n-+oo lann 

where {On} is a regular exhaustion of 0 and w;,o is the harmonic measure 
on ann with respect to the point t 0 • Here we assume that to E On for 
all n. With 'lj;(t) = tP, 1 ::; p < oo, one obtains the usual Hardy 1{P 

space of harmonic functions on n, with 

(1.8) 

which is the usual norm on 7-(.P(O), p 2: 1. 
In the paper we prove the following generalizations of the Littlewood­

Paley inequalities. 

Theorem 1. Let 0 c;; JR.n be a domain with Green function G sat­
isfying inequalities (1.3) and (1.4). Let 'ljJ 2: 0 be an increasing convex 
C 2 function on [0, oo) with '1/J(O) = 0 satisfying (1.5). Set <p( t) = '1/J( Vt). 
Then there exist positive constants C1 and C2 such that the following 
hold for all hE 1i1/J(O). 

1As in [1] [4], if !1 is a bounded k-Lipschitz domain, then such constants 
a and (3 exist. If the boundary of n is C 2 or C 1 •1 ' then a = (3 = 1, and 
the inequalities can be established by comparing the Green function G to 
the Green function of balls that are internally and externally tangent to the 
boundary of !1. By the results of Widman [11], the inequalities are also valid 
with a= (3 = 1 for domains with C 1 ·" or Liapunov-Dini boundaries. 
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(a) If c.p is concave on [0, oo), then 

N,p(h)::::: c1 ['l/J(Ih(ta)l) + fo o(x) 13 - 2'l/J(o(x)IV'h(x)l)dx]. 

(b) If c.p is convex on [0, oo), then 

'l/!(lh(ta)l) + fo o(x)'"-2'l/J(o(x)IV'h(x)l) dx::::: C2N,p(h). 

An immediate consequence of the previous theorem with 'lj;(t) 
tP, 1 :::; p < oo, is the following: 

Theorem 2. Let 0 £; ffi.n be a domain with Green function G sat­
isfying inequalities (1.3) and (1.4), and let 1 :::; p < oo. Then there 
exist positive constants cl and c2 such that the following hold for all 
hE HP(O). 

(a) For 1 :::; p:::; 2, 

llhll~::::: cl [lh(to)IP + fo o(x)f3+p-2l\7h(x)IP dx] . 

(b) For 2:::; p < oo, 

lh(ta)IP + fo o(x)"+v-21\i'h(x)IP dx:::; C2llhll~-

§2. Preliminaries 

Our setting throughout the paper is ffi.n, n 2 2, the points of which 
are denoted by x = (x1, ... , Xn) with euclidean norm lxl = Jxi + · · · + x~. 
For r > 0 and x E ffi.n, set Br(x) = B(x,r) = {y E ffi.n: lx- Yl < r} 
and Sr(x) = S(x, r) = {y E ffi.n : lx - Yl = r }. For convenience we 
denote the ball B(O,p) by Bp, and the unit sphere 8 1 (0) by S. Lebesgue 
measure in ffi.n will be denoted by d>.. or simply dx, and the normalized 
surface measure on S by da. The volume of the unit ball B 1 in ffi.n will 
be denoted by Wn. For an integrable function f on ffi.n we have 

r f(x)dx = nwn roc rn-l r f(r() da(() dr. 
}JRn Jo Js 

Finally, for a real (or complex) valued C 1 function f, the gradient off 
is denoted by \7 f, and iff is C 2 , the Laplacian 6..f off is given by 

n 82f 
6..f = L fi2· 

1=1 xj 
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Let n be an open subset of !Rn' n ~ 2, with n <;; !Rn. For X E n, let 
O(x) denote the distance from X to the boundary of 0, and set 

(2.1) B(x) = B(x, ~o(x)) = {yEn: IY- xi < ~o(x)}. 

Then for ally E B(x) we have 

(2.2) ~o(x) ~ o(y) ~ ~o(x). 

For the proof of Theorem 1 we require several preliminary lemmas. 

Lemma 1. For f E £ 1 (0) and ry E IR, 

r o(xfilf(x)i dx ~ r o(wp-n [ r if(x)i dx] dw. Jo Jo J B(w) 

Note. The notation A ~ B means that there exist constants c1 and 
c2 such that c1A ~ B ~ c2A. 

Proof. The proof is a straightforward application of Tonelli's the­
orem, and consequently is omitted. Details may be found in [10]. 

Lemma 2. For u E C 2 (Bp), p > 0, 

1 u(p() da(() = u(O) + { ~u(x)Gp(x) dx, 
S jBp 

where 
(2.3) 

Gp(x) = { n(n1 ~ 2)wp [lxl!_, - pn
1

' l ' 
21f log G"f' 

0 < lxl ~ p, n ~ 3, 

0 < lxl ~ p, n = 2, 

is the Green function of Bp with singularity at 0. 

D 

Proof. The proof is an immediate consequence of Green's formula 
and hence is omitted. D 

Lemma 3. Let t.p be an increasing absolutely continuous function 
on [0, oo) with t.p(O) = 0. 

(a) If t.p is convex, then t.p(x) + t.p(y) ~ t.p(x + y) for all x, y E [0, oo ). 
(b) lft.p is concave, then t.p(x)+t.p(y) ~ t.p(x+y) for all x, y E [0, oo). 
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Proof (a) Suppose t.p is convex. Since t.p is absolutely continuous 
and increasing, t.p(x) = J; t.p1 where t.p1 2: 0. Hence 

r+y 1x+y 
t.p(x + y) = Jo t.p' = t.p(x) + x t.p'. 

But 

1x+y t.p1(t)dt =lay t.p1(x + t)dt. 

Since t.p is convex, t.p1 is increasing. Thus 

lay t.p'(x + t)dt 2: lay t.p'(t)dt = t.p(y), 

from which the result follows. The proof of (b) is similar. 0 

Lemma 4. Suppose 'P is an increasing C 2 function on (0, oo) with 
t.p(O) = 0 and 

(2.4) 2tt.p"(t) + t.p'(t) 2: 0, t > 0. 

Let h be a harmonic function on Bp, p > 0. 
(a) If t.p is concave, then 

{ p2~'P(ihi2)dx::::; C { 'P(P2i'Vhi2)dx. 
JB,;4 JB, 

(b) If t.p is convex and satisfies inequality (1.5), then 

{ p2~'P(ihi 2)dx 2: C { t.p(p2i'Vhi 2)dx. 
JB, JB,;2 

Remark. If u is a positive real-valued C 2 function, then 

~t.p(u2 ) = 2IY'ul2 [2t.p"(u2)u2 + t.p'(u2)] + 2t.p'(u2 )u~u. 
Thus the hypothesis 2tt.p"(t) + t.p'(t) 2: 0 guarantees that t.p(u2) is sub­
harmonic whenever u is subharmonic. For 1/;p( t) = tP, the function 
'Pp ( t) = 1/;p ( v't) = tPI2 satisfies inequality (2.4) if and only if p 2: 1. 

Proof We only prove the Lemma for n 2: 3, the special case n = 2 
is similar. (a) Suppose t.p is concave. Set E = p/4, 15 = p/2, and let G8 
be the Green function of B8 with singularity at 0. For lxl ::::; E, 

G8 X- -----1 [ 1 1 ] 
( ) - n(n- 2)wn lxln-2 Jn-2 

> __ _ __ _ C 2-n 1 [4n-2 2n-2] 
- n(n- 2)wn pn-2 pn-2 - nP . 
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Hence 

which by Lemma 2 

= Cpn- 2 [is zp(lh(b(W)da(()- zp(ih(OW)] . 

Since zp is concave, fs zp(lhl 2)da::::; zp Us lhl 2da). Thus 

h::::; Cpn-2 [zp (is ih(<5(Wda(())- zp(ih(O)i 2)]. 

Since zp is concave and increasing with zp(O) = 0, by Lemma 3 

zp(b)- zp(a)::::; zp(b- a), 0 <a::::; b. 

Therefore 

which by Green's identity (Lemma 2) 

Hence 

h ::::; Cpn-2zp (2 sup IV'h(xW r Gli(x)dx). 
xEBo JB, 

But 

Therefore since <5 = ~p, 

which since zp is increasing 

::::; Cpn-2 sup zp(p2IV'h(x)i2). 
xEBo 
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But since x --> cp(p2I'Vh(x)i2) is subharmonic, 

for all x E B0 . Therefore, combining the above we have 

(b) Suppose cp is convex and satisfies inequality (1.5). By Lemma 2 

which since cp is convex 

But by Lemma 3, 

Thus by Lemma 2, 

For lxl ::::; f and n ~ 3, G0(x) ~ Cnp2-n, where Cn = 22n-S /n(n- 2)wn. 
Therefore 

which since I'Vh(x)i2 is subharmonic and f = p/4 

By inequality (1.5) 

cp (2n:3P21'Vh(O)I2) ~ cn:3 cp(p2I'Vh(O)I2), 



Littlewood-Paley Inequalities 371 

where cis the constant in inequality (1.5). Combining the above gives 

Since G.,(x) :::; Cnlxl 2-n we have 

where Cn is a constant depending only on n. 
For wE B.,, set hw(x) = h(w + x). Thus 

which by the change of variable y = w + x 

Therefore, 

which by Fubini's theorem 

But 

Therefore, 

which completes the proof. D 

Lemma 5. Let '1/J and cp be as in Theorem 1, and let h be harmonic 
on 0. Assume that '1/J(Ihl) E C2 (0). Then for 'Y E JR, the following hold: 
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(a) If cp is concave, then 

fo 5(x)" ~1/J(Jh(x)l)dx :S:: C fo 5(x)"- 2?jJ(5(x)JV'h(x)l)dx. 

(b) If cp is convex and satisfies inequality (1.5), then 

fo 5(x)" ~1/J(Jh(x)J)dx 2: C fo 5(x)"- 2?jJ(5(x)JV'h(x)l)dx. 

Proof. (a) By Lemma 1 

fo J(x)" ~1/J(Ih(x)l)dx 

:s:: c f J(w)'-n [ f ~1/J(Ih(y)l)dyl dw. 
Jn J B(w,k8(w)) 

Set p = ~J(w) and u(x) = h(w + x). Then 

f 
1 

~1/J(Jh(y)J)dy = f ~1/J(Iu(x)l)dx, 
} B(w,88(w)) } Bp/4 

which by Lemma 4 

:s:: cp- 2 r ?jJ(pJV'u(x)l)dx 
jBp 

= CJ(w)-2 f 1/J(~J(w)JV'h(y)l)dy. 
}Bp(w) 

But ~J(w) :S:: J(y) for all y E Bp(w). Hence since ?jJ is increasing, 
1/J(~J(w)JV'h(y)J) :S:: ?jJ(J(y)JV'h(y)l), and thus 

r ~1/J(Ih(y)J)dy :s:: CJ(w)-2 r ?jJ(J(y)JV'h(y)J)dy. 
j B(w,k8(w)) J B(w) 

Finally, by Lemma 1, 

r J(wp-n-2 [ r ?jJ(J(y)JV'h(y)J)dyl dw 
Jn JB(w) 

:S:: C fo 5(x)"- 2?jJ(5(x)JV'h(x)l)dx, 

which proves (a). The proof of part (b) proceeds in the same manner, 
except that this case also requires inequality (1.5). 0 
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§3. Proof of Theorem 1 

Before proving Theorem 1 we require two preliminary results about 
subharmonic functions. Let s+(O) denote the set of non-negative sub­
harmonic functions on n that have a harmonic majorant on n. As in 
the Introduction, for f E s+(n) we let Hf denote the least harmonic 
majorant off on n. For convenience we will assume that f E C 2 (0). 
As in [8],[9] we have the following. 

Lemma 6. Let n be a domain in JRn, n ~ 2, with Green function 
G, and let f E C2(0). Then f E s+(f!) if and only if there exists toE 0 
such that 

(3.1) in G(to, x)!:l.f(x) dx < oo. 

If this is the case, then by the Riesz decomposition theorem 

(3.2) HJ(x) = f(x) +in G(x, y)!:l.f(y) dy 

If the subharmonic function f is not C 2 ' then the quantity !:l.f(x) dx 
may be replaced by dJ.Lf, where J.LJ is the Riesz measure of the subhar­
monic function f. 

Lemma 7. Let n be a domain in JRn, n ~ 2, with Green function G 
satisfying (1.3) and (1.4). Let t 0 En be fixed, and let a and {3 be as in 
inequalities (1.3) and (1.4) respectively. Then there exists constants C1 
and C2, depending only on t 0 and 0, such that for all f E S+(f!)nC2(0), 

C, [!(to) + [ J(x)"ll.f(x)dx] <; Ht(t0 ) 

~ C2 [ 1 f(x)dx + 1 o(x)/3 !:l.f(x)dx]. 

B(ta) !1 

Proof The left side of the previous inequality is an immediate con­
sequence of identity (3.2) and inequality (1.3). For the right side, inte­
grating equation (3.2) over B(to) gives 

H,(to) = ~ { f(x) dx + ~ { { G(x, y)!:l.f(y) dy dx, 
WnPo 1 B(t0 ) WnPo 1 B(t0 ) 1n 
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where Po= !J(t0 ). By Fubini's theorem, 

~ f f G(x,y)~f(y)dydx = ~ { ~f(y) { G(x,y)dxdy. 
WnPo J B(ta) Jn WnPo Jn J B(ta) 

Set 

I(y) = _l_ { G(x, y) dx. 
Wnp;; j B(ta) 

To complete the proof it remains to be shown that I(y)::::; CJ(y)f3. 
If y ~ B(t0 ), then since x ___, G(x, y) is harmonic on B(to) and G 

satisfies inequality (1.4), 

I(y) = G(t0 , y)::::; Czil(y)f3. 

Suppose y E B(t0 ) and n :::0:3. Then since G(x,y)::::; cnlx- yi 2-n, 

I(y)::::; Cn n r lx-yl2-ndx::::; Cn n r lx-yl2-ndx = 2nCnP~-n. 
WnPo } B(ta) WnPo } B(y,2p0 ) 

But for y E B(t0 ), Po::::; 2il(y). Thus 

I(y)::::; 2ncn2!3J(y)f3p~-n-{3 = CJ(y)f3, 

where C is a constant depending only on t 0 and n. 0 

Proof of Theorem 1. (a) Let 'ljJ be as in the statement of the 
theorem, and let h be a real-valued harmonic function on n. Set h,(x) = 
h(x) + iE. Then h, is harmonic on n and '1/J(ih,i) E C2 (D). Hence by 
Lemma 7, 

N,p(h,) ::::; Cz [ r '1/J(Ih,(x)i) dx + r J(x)f3 ~'1/J(Ih,(x)l) dx] ' 
} B(ta) Jn 

which by Lemma 5(a) 

::::; Cz [ r '1/J(Ih,(x)i) dx + r J(x)f3- 2'lj;(J(x)IV'h(x)i) dx]. 
}B(ta) Jn 

Letting E ___, o+ gives 

N,p(h) ::::; Cz [ max '1/J(ih(x)i) + f J(x)f3- 2 'l/J(il(x)IV'h(x)i) dx] . 
xEB(ta) Jn 
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It remains to be shown that 
(3.3) 

max ~(lh(x)l) ::::: c [~(lh(to)l) + f J(x)P- 2~(J(x)IV'h(x)l) dx] . 
xEB(to) Jn 

Without loss of generality we take t 0 = 0. As a consequence of the 
Fundamental Theorem of Calculus, for all x E B(t0 ), 

lh(x)l ::; lh(O)I +Po max IV'h(y)l. 
yEB(tu) 

Since ~ is increasing, convex, and continuous, and satisfies property 
(1.5) 

~(lh(x)l) ::; ~ ['lj!(lh(O)I) + max 'lj!(PoiY'h(y)l)] . 
2 yEB(~) 

Also, since y-+ 'lj!(poiY'h(y)l) is subharmonic, 

But Po::; J(y)::; 3p0 for ally E B(t0 ), and ~J(y) ::; J(x) ::; ~J(y) for all 
x E B(y, ~Po)· Thus 

'lj!(poiY'h(y)i) ::; C(po) In J(x) 13 - 2 '1j!(J(x)IV'h(x)l) dx, 

from which inequality (3.3) now follows. This completes the proof of (a). 
The proof of (b) is an immediate consequence of Lemma 7 and Lemma 
5(b). 

§4. Remarks 

The techniques employed in this paper may also be used to prove 
analogue's of Theorems 1 and 2 for Hardy-Orlicz spaces of holomorphic 
functions on a domain n <;; en' n 2': 1. 

In this setting the spaces H,p are traditionally defined as in [6, page 
83]. For a non-negative, non-decreasing convex function 'lj! on ( -oo, oo) 
with limt->-oo 'lj!(t) = 0, the Hardy-Orlicz space H1f;(O) is defined as the 
set of holomorphic functions f on n for which 'lj!(log If!) has a harmonic 
majorant on n. As in (1.5) we set N1f;(f) = H~(t0 ), where H~ denotes 
the least harmonic majorant of 'lj!(log lfl). With 'lj!(t) = ePt, 0 < p < oo, 
one obtains the usual Hardy HP space of holomorphic functions on n. 
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To obtain the analogue of Theorem 1 one considers the function cp(t) = 
'l/J(! logt). In this setting, hypothesis (2.4) can be replaced by 

( 4.1) Xcp 11 (X) + cp1 (X) 2: 0 

for all x E (0, oo ). If the above holds, then it is easily shown that 
for J holomorphic on n, cp(lfl 2 ) is plurisubharmonic on n, hence also 
subharmonic. Clearly cp(x) = w(!logx) satisfies (4.1) whenever 'ljJ is 
convex. The details of the statements and proofs of the appropriate 
theorems are left to the reader. 
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