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Abstract. 

We show that f E £P(X; m) implies lfldm E Sk for p > D with 
D > 0, where Sk is a subfamily of Kato class measures relative to 
a semigroup kernel Pt ( x, y) of a Markov process associated with a 
(non-symmetric) Dirichlet form on L2 (X; m). We only assume that 
Pt(x, y) satisfies the Nash type estimate of small time depending on 
D. No concrete expression of Pt(x,y) is needed for the result. 

§1. Introduction 

A measurable function f on IRd is said to be in the Kato class Kd if 

lim sup 1 lf(y)l dy 0 for d ~ 3, 
r-+O xEJRd lx-yl<r lx- Yld- 2 

lim sup 1 (log lx- Yl- 1)1/(y)ldy 0 ford= 2, 
r-+O xEJRd lx-yl <r 

sup 1 lf(y)ldy < oo for d = 1. 
xEJRd lx-yl<l 
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Let Mw = (!1, Bt, Px)xERd bead-dimensional Brownian motion on JR. d. 

The following theorem is shown in Aizenman and Simon [1]: 

Theorem 1.1 (Theorem 1.3(ii) in [I]). f E Kd if and only if 

sup Ex [ t lf(Bs)ids] = sup [ ( t Ps(x,y)ds) lf(y)idy ~ 0, 
xERd lo xERd jRd lo 

where Pt(x, y) := (21ri)d/2 exp[-lx;J12 ] is the heat kernel ofMw. 

Zhao [13] extends this in more general setting including a subclass 
of Levy processes, but his result does not assure the low dimensional 
case even if the process is Mw. The following is also shown in [1]: 

Theorem 1.2 (cf. Theorem 1.4(iii) in [1]). LP(JR.d) C Kd holds if 
p > d/2 with d ~ 2, or p ~ 1 with d = 1. 

Note that there is an f E Ldf2 (JR.d) \ Kd for d ~ 2. Indeed, 
taking g E C0 ([0,2/e[-+[O,oo]) with g(r) := 1/(r2 logr-1 ) if d ~ 3, 
:= 1/(r2(logr-1 )1+"), c E]O, 1[ if d = 2 for r E [0, 1/e], f(x) := g(lxl) 
does the job through the proof of Proposition 4.10 in [1]. Here (4.10) in 

[1] should be changed to J0
1/e r(log r-1 )IV(r)ldr < oo if d = 2. 

In the framework of strongly local regular Dirichlet forms with the 
notions of volume doubling and weak Poincare inequality, Biroli and 
Mosco [3] gave a similar result with Theorem 1.2 (see Proposition 3.7 
in [3]). Their definition of Kato class depends on the volume growth 
of balls. The purpose of this note is to show that Theorem 1.2 holds 
true in more general context replacing Kd with Sl the family of Kato 
class smooth measures in the strict sense in terms of semigroup kernel of 
Markov processes associated with (non-symmetric) Dirichlet forms (see 
Theorem 2.1 below). 

Finally we will announce the content of [10]. In [10], we extend 
Theorem 1.1, that is, under some conditions, we establish Kd,f3 = Sl in 
the framework of symmetric Markov processes which admits a semigroup 
kernel possessing upper and lower estimates, which includes the low 
dimensional case. Here Kd,f3 is the family ofKato class measures in terms 
of a Green kernel depending on d, (3 > 0. In particular, Theorem 2.1 
below can be strengthened by replacing LP(X; m) with L~nif(X; m). 

§2. Result 

Let X be a locally compact separable metric space and m a posi­
tive Radon measure with full support. Let X~::. := XU{~} be a one 
point compactification of X. We consider and fix a (non-symmetric) 
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regular Dirichlet form ( £, F) on L2 (X; m). Then there exists a pair of 
Hunt processes (M, M), M = (!1, Xt, (, Px), M = (n, Xt, (, Fx) such 
that for each Borel u E L2 (X;m), Ttu(x) = Ex[u(Xt)] m-a.e. x E X 
and Ttu(x) = Ex[u(Xt)] m-a.e. x E X for all t > 0, where (Tt)t>O 
(resp. (Tt)t>o) is the semigroup associated with (£,F) (resp. (E, F)), 
where E(u, v) := £(v, u) for u, v E F is the dual form of (£,F). Here 
( := inf{t ~ 0 I Xt = ~} (resp. ( := inf{t ~ 0 I Xt = ~}) de­
notes the life time of M (resp. M). Further, we assume that there 
exists a kernel Pt(x, y) defined for all (t, x, y) E]O, oo[ xX x X such that 
Ex[u(Xt)] = Ptu(x) := fx Pt(x, y)u(y)m(dy) and Ex[u(Xt)] = Pu(x) := 
fx Pt(x, y)u(y)m(dy) for any x E X, bounded Borel function u and 
t > 0, where Pt(x, y) := Pt(Y, x). Pt(x, y) is said to be a semigroup ker­
nel, or sometimes called a heat kernel of M on the analogy of heat kernel 
of diffusions. Then Pt and Pt can be extended to contractive semigroups 
on LP(X; m) for p ~ 1. The following are well-known: 

(a) Pt+s(x, y) = J/s(x, z)pt(z, y)m(dz), '~x, y EX, '~t, s > 0. 

(b) Pt(X, dy) = Pt(X, y)m(dy), '~x EX, '~t > 0. 

(c) 1/t(x, y)m(dy)::::; 1, "'x EX, "'t > 0. 

The same properties also hold for Pt(x, y). 

Definition 2.1 (Kato class 8~, Dynkin class Sfjy). For a positive 
Borel measure 1-L on X, 1-L is said to be in K ato class relative to the 
semigroup kernelpt(x,y) (write 1-L E S~) if 

(2.1) lim sup { ( {t p8 (x, y)ds)t-L(dy) = 0 
t--+0 xEX 1 X lo 

. and 1-L is said to be in Dynkin class relative to the semigroup kernel 
Pt(X, y) (write 1-L E Sfjy) if 

(2.2) sup { ( t p8 (x, y)ds) t-L(dy) < oo for 3 t > 0. 
xEX Jx Jo 

Clearly, S~ c Sfjy. The notions S~ and Sfjy are similarly defined by 
replacing Pt(X, y) with Pt(x, y). 

Definition 2.2 (Measures of finite energy integrals: So, Boo, cf. [6]). 
A Borel measure 1-L on X is said to be of finite energy integml with respect 
to (£,F) (write 1-L E So) if there exists C > 0 such that 

L lvldt-L::::; cJt:l(v,v), "'v E FnCo(X). 
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In that case, for every a> 0, there exist Ua~tJlaJ.t E :F such that 

Ea(UaJ.t, v) = Ea(v, UaJ.t) = L v(x)~t(dx), "'v E :F n Co(X). 

Moreover we write J.t E Boo (resp. J.t E Boo) if J.t(X) < oo and U01 J.t E 
:Fn VXJ(X;m) (resp. U01 J.t E :Fn L00 (X;m)) for some/all a> 0. 

Definition 2.3 (Smooth measures in the strict sense: 81, cf. [6]). 
·A Borel measure J.t on X is said to be a smooth measure in the strict 
sense with respect to (E, :F) (write J.t E 81) if there exists an increasing 
sequence {En} of Borel sets such that X= U~=1 En, "~n EN, IE, it E Boo 
and Px(limn-+oo ax\E, ~ () = 1, "~x EX. Here (is the life time of M. 
The family of smooth measure in the strict sense with respect to ( £., :F) 
(write S1) can be similarly defined. 

Definition 2.4. We define Bl := Si n 81, SlJ := sf); n 81, Bi := 
~0 ~ ~1 ~0 ~ 

SKns1 andSD :=SnnS1. 

We fix D > 0 and assume the Nash type estimate: for each to > 0 
we have 

(2.3) 3Cn,to > 0 s.t. sup Pt(x,y)::; Cn,t0 CD, "'t E]O,to[. 
x,yEX 

Remark 2.1. The condition (2.3) implies the following: 

(a) 3Cn,t0 > 0 s.t. 11Ptll1-+oo ::; Cv,t0 CD for any t E]O, to[. 
(b) For each p ~ 1, 3 Cn,p,to > 0 s.t. IIPtllv-+oo ::; Cn,p,tocDfp for 

any t E]O, to[. 

If (E,:F) is a symmetric Dirichlet form, (2.3) is equivalent to one (hence 
all) of (a),(b). If further D > 1, (2.3) is also equivalent to the Sobolev 
inequality (see [5]): there exists C'D > 0 and 'Y > 0 such that 

(c) !lull~ ::; C'DE7 (u, u) for all u E :F. 

Next theorem extends Theorem 1.2 and the lower estimate of pin 
this theorem is best possible as remarked after Theorem 1.2. 

Theorem 2.1. Suppose {2.3) and p > D with DE [1, oo[ or p ~ 1 
with D E]O, 1[. Then f E LP(X; m) implies lfldm E Sl n Sl. 

§3. Proof of Theorem 2.1 

We set r01 (x,y) := 100 e-atPt(x,y)dt. First we show the following: 
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Lemma 3.1. JL E Sjt.. is equivalent to 

(3.1) lim sup { ra(x, y)JL(dy) = 0 
a-+oo xEX j X 

and IL E Sfjy is equivalent to 

(3.2) sup r ra(x,y)JL(dy) < oo, 3 a > 0. xExJx 
Proof. We first show (2.1)::::?(3.1). Take a 0 > 0 with a::::: a 0 , 

L ra(x,y)JL(dy) 

= L 1t e-asPs(x, y)dsjt(dy) + L 100 e-asp8 (x, y)dsjt(dy) 
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~ L 1t Ps(x, y)dsjt(dy) + e-(a-ao)t L 100 e-a08p8 (x, y)dsjt(dy). 

Here 

Since Pu+kt(X, y) = L Pkt(X, z)pu(z, y)m(dz), 

L 100 
e-aosPs(x, y)dsjt(dy) 

= f: e-aokt r Pkt(x, z) r t e-O!oUPu(z, y)dujt(dy)m(dz) 
k=l lx lx lo 

~ f: e-aokt { Pkt(x, z) { t Pu(z, y)dujt(dy)m(dz). 
k=l lx lx lo . 

From (2.1), Nt := sup { t Pu(z, y)duJL(dy) < oo. Then zEX Jx Jo 

(3.3) sup { ra(x, Y)JL(dy) xExJx 
~sup { t Ps(x, y)dsJL(dy) + e-:t tNt. xEXlxlo 1-e ao 
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Therefore 

lim sup { r,(x, y)J.L(dy) ~ sup { t Ps(x, y)dsJ.L(dy) ~ 0. 
<>-+oo xEX J X xEX J X lo 

Next we show (3.1)=>(2.1). We have 

(3.4) sup { t p8 (x, y)dsJ.L(dy) ~ e"'t sup { r,(x, y)J.L(dy). 
xEX Jx Jo xEX Jx 

Therefore 

lim sup { t p8 (x, y)dsJ.L(dy) ~ sup { r,(x, y)J.L(dy) ~ 0. 
t-+OxEX Jx Jo xEX Jx 

The implications (3.2){:=}(2.2) are clear from (3.3) and (3.4). 0 

Lemma 3.2. The following are equivalent to each other. 

(a) J.L E Sf}y. 

(b) sup { (ftPs(x,y)ds)J.L(dy)<oo for'~t>O. 
xEX Jx Jo 

(c) sup r r,(x,y)J.L(dy) < 00 for '~a> 0. 
xEXlx 

Proof We first show (a)===?(b). Suppose that (a) holds for some 
t0 > 0. For any t > 0, we take n E N with t ~ nt0 • We have 

sup { ( t Ps(x, y)ds)J.L(dy) 
xEX Jx Jo 

~supt { Pkt0 (x,z)( to { Ps(z,y)J.L(dy)ds)m(dz) 
xEXk=llx lo lx 

~n sup {to ( { p8 (x, y)J.L(dy)) ds < oo. 
xEX Jo Jx 

(b)===?(c) is clear from (3.3) and (c)===?(a) is clear. 0 

Proposition 3.1. Suppose that J.L E Sf}y is a positive Radon measure 
on X. Then J.L E 81. 

Proof It suffices to show that for a positive Radon measure J.L E 

Sf}y, IKJ.L E So for any compact set K. Indeed, there exists an increasing 
sequence {Gn} of relatively compact open set with U~=l Gn =X. Then 
we see Ian.J.L E Soo for each n E N, which implies J.L E S1 by Thoerem 
5.1.7(iii) in (6]. Though the framework of Thoerem 5.1.7(iii) in [6] is 
symmetric, its proof only depends on the quasi-left-continuity of M and 
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remains valid in the present context. We show IKJ.L E So for a compact 
set K. Fix a > 0 and set RaJ.L(x) := fx r0 (x, y)J.L(dy). First we show 
Ra(IKJ.L) E L2 (X; m). 

IIRa(JKJ.L)II~ < IIRa(JKJ.L)IIooiiRa(JKJ.L)IIl 

IIRa(hJ.L)IIoo(fKJ.L, Ra1) 
1 
-IIRa(JKJ.L)IIooJ.L(K) < oo. 
a 

Next we prove Ra(JKJ.L) E F. It suffices to show 

supt:J!l(Ra(hJ.L), Ra(fKJ.L)) < oo, 
/3>0 

where t:J!l(u,v) := (J(u- (3Ri3+au,v)m for u,v E L 2 (X;m). Then 

sup (3(R!3+a(IKJ.L), Ra(hJ.L))m 
/3>0 

IIRa(IKJ.L) lloo sup f3(IKJ.L, R/3+a1) 
!3>0 

< IIRa(JKJ.L)IIooJ.L(K) < 00. 

Finally we prove IKJ.L E So and Ra(IKJ.L) = Ua(IKJ.L). It suffices to show 
that for any v E :Fn C0(X) 

where we use the right continuity of the sample paths of M. 0 

Proof of Theorem 2.1. By duality, it suffices only to prove that f E 

LP(X; m) implies lfldm E SJ-. Take p > D with D E [1, oo[ or p ~ 1 
with D E]O, 1[. Since IIPtllv-+oo::; Cn,p,torDfp fort E]O, to[, we have 

sup { ( t Ps(x, y)ds) lf(y)lm(dy) 
xEX Jx Jo 

= sup t ( { lf(y)IPs(x, y)m(dy)) ds 
xEX Jo Jx 

::; Cn,p,to llfllv 1t s-D/pds 

= C llfll _P_tl-Djp ~ 0. D,p,to p D p-
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Then lfldm E S~. Since lfldm with f E LP(X; m) is a Radon measure, 
we conclude lfldm E S1 by Proposition 3.1. Therefore lfldm E Sl. D 

§4. Examples 

Example 4.1 (Symmetric a-stable process). Take a E]O, 2[. Let 
M"' = (0, Xt, Px)xEJRd be the symmetric a-stable process on JRd, that 
is, Levy process satisfying E 0 [ev'=I(e,x,)] = e-tlel". It is well-known 
that M"' admits a semigroup kernel Pt(x, y) satisfying the following 
(cf. [2],[7]): :JC; = C;(a, d) > 0, i = 1, 2 such that for all (t, x, y) E 
]0, oo[ xJRd x JRd 

c1 1 c2 1 
td/a ( lx-yi)d+a :::;pt(x,y):::; td/a (1+ lx-yi)d+a' 

1+ ~ fl/a 

Similar estimate holds for jump type process over d~sets (see [4]). In 
particular, there exists c2 = C2(a, d) > 0 with Pt(X, y) ::::: c2cd/a 
for (t,x,y) E]O,oo[xJRd x JRd. Then we have that f E LP(JRd) implies 
lf(x)ldx E Sl if p > d/a with d 2': a, or p 2': 1 with d <a. 

Example 4.2 (Relativistic Hamiltonian process). Let MH be the 
relativistic Hamiltonian process on JRd with mass m > 0, that is, MH = 
(0, Xt, Px)xEJRd is a Levy process satisfying 

Eo[ev'=I(~.x,)] = e-t(vlel2+m2-mJ. 

It is shown in [8], the semigroup kernel Pt(x, y) of MH is given by 

Pt(X, y) = (27r)-d t r emte-v(lx-yl2+t2)(izl2+m2)dz. 
Jlx - Yl2 + t2 }JRd 

Hence we have that for each t0 > 0, there exist C; = C;(d) > 0, i = 1, 2 
independent of t0 such that for any t E]O, t 0 [, x, y E JRd 

cl e-mlx-yl c2 emto 
- < Pt ( x, Y) < - . 
td ( 1 + lx;2yi2) (d+l)/2 - - td ( 1 + lx;2yi2) (d+l)/2 

In particular, SUPx,yEJRd Pt(X, y) :::; C2emto jtd fort E]O, to[. Then we have 
that f E LP(JRd) implies if(x)ldx E Sl for p >d. 

Example 4.3 (Brownian motion penetrating fracrals, cf. [9]). The 
diffusion process on JRd constructed in [9] admits the heat kernel Pt(x, y) 
which has the following upper estimate: there exists C > 0 such that 
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SUPx,yEJRd Pt(X, y) ::; Crd/2 if t E]O, 1]. Hence f E LP(~d) implies 
if(x)idx E Sf< for p > d/2 with d 2: 2 or p 2: 1 with d = 1. 

Example 4.4 (Diffusions with bounded drift). Let a be the sym­
metric matrix valued measurable function such that .XI~I 2 ::; (a(x)~, ~) ::; 
Al~l 2 , "~x,~ E ~d for 0 < 3 -X ::; 3A. Let b: ~d ~ ~d be a bounded 
measurable function and assume div b 2: 0 in the distributional sense. 
Consider (ca,b, Clf(~d)) defined by 

ca,b(u, v) := -21 r (a(x)Y'u(x), Y'v(x))dx- r (b(x), Y'u(x))v(x)dx 
JJRd JJRd 

for u,v E Clf(~d). Then we see ca,b(u,u) 2: 0 for u E Clf(~d) and 
(ca,b, Clf(~d)) is closable on L2(~d) (see Chapter II 2(d) in [11]). We 
denote by (ca,b, H1 (~d)) its closure on L2 (~d). (ca.b, H1 (~d)) is a non-
symmetric Dirichlet form on L2 (~d). Let {Tt'bh>o be the L2 (~d)­
semigroups associated with (ca,b, H1 (~d)). Then, by §II. 2 in [12], Tt'b 
admits a heat kernel p~'b(x, y) on ]0, oo[x~d x ~d such that Pt'b f(x) := 

JJRd p~'b(x, y)f(x)dy is an m-version ofTt'b f for f E L2 (~d) andp~'b(x, y) 
satisfies the Aronson's estimates: (see (II. 2.4) in [12]) there exists an 
M := M(.X, A, d) E [1, oo) such that for all x, y E ~d, t E]O, 1[ 

(4.1) _1_e-M(t+lx-yl 2 /t) < Pa,b(x y) < M eMt-!x-y! 2 fMt. 
Mtd/2 - t ' - td/2 

In particular, SUPx,yEJRd p~'\x, y) ::; M eM jtdf2 for all t E]O, 1[, hence 

f E V'(~d) implies if(x)idx E Sf< nSf< for p > d/2 with d 2:2, or p 2: 1 
with d = 1. 
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