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Singular directions of meromorphic solutions of 
some non-autonomous Schroder equations 

Katsuya lshizaki and Niro Yanagihara 

Abstract. 

Let s = lsle2 rr-'i be a complex constant satisfying lsi > 1 and 
>. tf. Q. We show that for a transcendental meromorphic solution 
f(z) of some non-autonomous Schroder equation f(sz) = R(z, f(z)), 
any direction is a Borel direction. 

§1. Introduction 

Let R(z, w) be a rational function in z and w of degw R(z, w) at 
least 2, and let s E <C be a constant of modulus bigger than 1. This note 
is devoted to investigate singular directions of meromorphic solutions of 
functional equations of the form 

(1.1) f(sz) = R(z, f(z)), d = degw[R(z, w)] ~ 2. 

In this note "meromorphic" means "meromorphic in the complex plane 
<C", and we assume that the reader is familiar with the Nevanlinna the­
ory, see e.g., [1], [4]. By a simple transformation, we can assume that 
R(O, 0) = 0. In order to state an existence theorem of a meromorphic 
solution for ( 1.1), we write 

R(z, w) = L an,mZnWm. 

n+m::O:l 
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Under the assumption that either 

(1.2) a1,0 =/- 0 and sn =/- ao,l for all n E N, 

or 

(1.3) a1,0 = 0 and s = ao,1, 

the equation (1.1) admits the unique meromorphic solution f(z) ¢. 0 
with f(O) = 0 for the case (1.2), and also the unique solution f(z) with 
f(O) = 0, f'(O) = 1, for the case (1.3). For the proof, see [8, p.153]. 
When f(z) is transcendental, the order of growth p = p(f) is given by 
p = logdjlog lsi, d = degw R(z, w), and there holds 

(1.4) 

with some positive constants K 1 , K 2 , where T(r, f) is the Nevanlinna 
characteristic of f(z), see [8, p.159]. 

Let llw = {z = reiw, r > 0} be a ray and D(w,a),a E (0,1r), be a 
sector D(w, a) = {z; I arg[z]- wl <a}. When w is fixed, we write for 

D(w,a) simply as Da· Further we define n~l =Dan {lzl < r}. 
Let f(z) be a transcendental meromorphic function of order p > 0. 

Let llw be fixed. For any a E C U { oo}, write zeros of f ( z) - a in Da = 
D(w, a) as z~ (a, Da), n = 0, 1, · · · , multiple zeros counted only once. On 
the other hand, zeros of f(z)- a, counted with multiplicity, are denoted 
as Zn(a, Da)· We say llw to be a Borel direction of divergence type in the 
sense of Tsuji (resp. in the sense of Valiron), for f(z) [6, p.274] (resp. 
[7]), if for any a E C, with at most two possible exception(s), 

00 1 2o lz~(a, Da)IP = oo for any a> 0, 

(resp. 
00 

1 ) L - oo for any a > 0 . 
n=O lzn(a, Da)IP -

In the following, we call a Borel direction of divergence type simply as a 
Borel direction. 

Obviously, if c is a Borel exceptional value in the sense of Valiron, 
then c is so in the sense of Tsuji, too, but the converse is not true. We 
writes as 

(1.5) 

In the autonomous case, i.e., R(z, w) does not contain z, we proved 
[2] that for a meromorphic solution g(z) of the equation g(sz) = R(g(z)), 
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any direction llw is a Borel direction in the sense of both Valiron as well 
as Tsuji, supposed >. 1:- Q. Further, a Borel exceptional value c, if any, 
must be a Picard exceptional value, i.e. g(z) -1- c for any z E C. 

§2. Non-autonomaus Schroder equations and a main result 

In order to consider the non-autonomous case where R(z, w) con­
tains z, we need to make some provisions. Write R(z, w) in (1.1) 

P(z, w) 
R(z, w) = Q(z, w), 

p q 

P(z, w) = L a1(z)w1, Q(z, w) = L bk(z)wk, 
j=O k=O 

where a1(z), bk(z) are polynomials. We have d = max(p, q) 2: 2. 

Proposition 1. By some linear transformation 

(2.1) L[wl = aw + f3, {3 , ~r a, , "(, u E ~L-, 
"(W+ 0 

the equation (1.1) can be reduced to the following form 

L[f(sz)] = R 0 (z, L[f(z)]), 

d 

P 0 (z,w) = l:a.J(z)wl, 
j=O 

R o( ) = po(z, w) 
z, w Qo(z, w)' 

d 

Q0 (z,w) = Lbk(z)wk, 
k=O 

in which we have 

(2.2) 
degw[P 0 (Z, w)] = degw[Q 0 (Z, w)] = d, 

deg[aj(z)] = deg[bk(z)] =D. 

We remark that the conditions (2.2) are satisfied with any quadruple 
a, {3, "(, 0 E C, aO- {3"( -/= 0 for other than a finite number of exception. 

Proof of Proposition 1 Let 

~;=O a1(z)f(z)1 
f(sz) = ~%=o bk(z)f(z)k, max(p, q) =d. 

Put f(z) = h(z) +a. Then 
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where 

"'P . (m) CY.m-ja (z)- CY. "'min(q,j) (m) CY.m-jb (z) 
um=J . m um=J . m ' 

J J 
for j::::: p, when p::::: d, 

-CY. { 2::!=j ( 7) CY.m-jbm(z)}, for j > p, 

for j > p, when p < q = d, 

b~l(z) = j;k (~) CY.m-kbm(z), fork:::; q. 

Hence, except a finite number of values a, we have 

deg[a~1 ] (z )] = max( deg[a~1 ] (z)], deg[bl1l (z )]), 
J,k 

deg[bgl(z)] = maxdeg[bL1l(z))]. 
k 

Put h (z) = 1/ h(z). Then 

Put h(z) = h(z) + /3, h(z) = 1/ j4(z), and j4(z) = fs(z) +/,then we 
obtain (2.2) for a~5l(z),bl5l(z), except for a finite number of values fJ,f. 
We have thus proved Proposition 1. 

Write the coefficients of w1 in P(z, w) and those of wk in Q(z, w) as 

a1(z) =a g) zD + ag~ 1 zD- 1 + · · · + a61), 

bk(z) = b~)ZD + b~~ 1 zD- 1 + · · · + b6k)' 

with a g) i= 0 and b~) f. 0 for 0 :::; j, k :::; d, and put 

P*(w) = a(j)wj + a(j- 1)w1 - 1 + · · · + a(o) 0 < J. < d 
J D D D' - -' 

Q'd(w) = b}';lwd + b}g- 1lwd- 1 + .. · + b~). 
(2.3) 

The main result in this note is the following 
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Theorem 1. Suppose A ~ Q in (1.5) and R(z, w) in (1.1) satisfies 
(2.2). Assume that PJ(w) and Qd(w) for R(z,w) defined in (2.3) are 
relatively prime. Let (1.1) have a transcendental meromorphic solution 
f(z). Then any Dw0 (wo E [0, 27r)) is a Borel direction in the sense of 
Tsuji for f(z). 

Remark 1. We can assume without losing generality that PI ( w) 
and Qd(w) are relatively prime for each j, 1 :::; j :::; d- 1, which can be 
attained by a suitable choice of a, {3, "(, 8 E C in (2.1). 

On the contrary to autonomuous case, a Borel exceptional value need 
not be a Picard exceptional value (see the end of Section 1). Further, 
Borel exceptional value in the sense of Tsuji may be not exceptional in 
the sense of Valiron. We can see these in Examples 1 and 2 below. 

Example 1. Consider the equation [8, p.158] 

(2.4) 1 + z 2 2 ·.x h(sz) = 1 _ zh(z) , s =isle""' , A E [0, 1) \ Q, lsi > 2. 

If we put ft(z) = 1 + h1(z), then 

2z 1 + z 1 + z 2 
h1(sz)= 1 _z +2 1 _zhl(z)+ 1 _zh1(z) =2z+2hl(z)+···, 

and we have that a1,0 = 2 =1- 0, ao,l = 2 =1- sn for any n E N, hence 
there is the unique solution h1(z) ¢. 0, h1(0) = 0. Therefore, there is 
the unique non-trivial solution for (2.4) which is given by 

00 1 z 2n.-l 

ft(z) = IT ( ~ s;) 
n=l 1 s" 

Hence h (z) has two Borel exceptional values 0, oo in the sense of Tsuji. 
They are not a Borel exceptional values in the sense of Valiron. 

Example 2. Consider also the equation 

(2.5) h(sz) = (1 + z)f2(z) 2 , s = lsle2.,.i\ A E [0, 1) \ Q, lsi> 2. 

As in Example 1, there is the unique solution which is given by 

f2(z) has a Borel exceptional value 0 in the sense of Tsuji, which is not 
exceptional in the sense of Valiron. For h(z), oo is exceptional in the 
sense of Valiron (in fact, Picard exceptional). 
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We observe primeness in the examples above. For the equation (2.4) 
we have, putting 91(z) = 1/(h(z) -1), 

_ ( -1 + ~)g1(z) 2 
91 (sz) - 1 1 · 

2g1(z)2 + 2(1 + z-)91(z) + (1 + z-) 

We have P2(w) = -w2 and Q2(w) = 2w2 + 2w + 1 which are relatively 
prime. 

For the equation (2.5), we see that P2(w) and Q2(w) are not rela­
tively prime, and the assumption in Theorem 1 is not satisfied. But if 
we put 92(z) = 1/(h(z)- 1), then we get 

92(z)2 
zg2(sz) = 92(z)2 + 2(1 + ~)g2(z) + (1 + ~) = R2(z,g2(z)). 

For R2(z,w), we have that P2(w) = w2 and Q2(w) = w2 + 2w + 1 are 
relatively prime. Hence the arguments in the proof of Theorem 1 stated 
in Sections 4, 5 can be applied to R2(z,g2(z)). But we do not know 
whether formE Z with some K > 0, 

holds or not. Therefore, our Theorem 1 can not be applied to (2.5). 

§3. Characteristic functions in a sector 

Following Tsuji [6, p.272], we define the sectorial characteristic of a 
meromorphic function w(z). Fix w E [0, 2n). With Da0 = D(w, ao) and 

n~j as in Section 1, we define 

1 !1 ( lw'(tei0 )1 ) 2 
S(r; Da0 ; w) =- 1 I ( .0 )! 2 tdtdB, 
. n n~;i + w te' 

T(r; !lao; w) = ( S(t; !lao; w) dt. 
} 0 t 

Let n(r, b; Da; w), Da = D(w, a), be the number of zeros of w(z) - b 
contained in n~l, multiple zeros counted only once, and put 

N( b.n . ) = Jr n(t,b;Da;w)d 
T, 1 Ha,W t. 

1 t 

Then by [6, p.272, Theorem VII.3], we have with any a > a 0 , 

3 

(3.1) T(r;Da0 ;w):::; 3LN(2r,bi;Da;w) +0((logr)2). 
i=1 
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We note that (3.1) is generalized by Toda [5]. 

§4. A preliminary Lemma 

Let R(z, w) is a rational function in w whose coefficients are rational 
functions. Suppose that R(z, w) satisfies the condition in Theorem 1. 

Lemma 1. Write O(w, a) as Oa. We have for a constant K 

T(T; Oa; R(z, f(z))):::; KT(T; Oa; f(z)) + O((logT)2). 

Proof of Lemma 1 Let a(z) be a rational function satisfying a(z) ___, 
M f. 0, oo as z ___, oo. Then IMI/2 :::; la(z)l :::; 2IMI for lzl ~ To with 
sufficiently large To, and we have 

l(af)'l Ia' !I Ia!' I 
1 + lafl 2 :::; 1 + lafl 2 + 1 + lafl 2 

1 la'l laPI 1!'1 lal 1!'1 
S 2 . ~ + 1 + lafl 2 1 + 1!1 2 + 1 + lafl 2 1 + 1!1 2 

1 la'l lafl 2 1 lf'l 1!'1 
:::; 2 . ~ + 1 + lafl 2 lal 1 + 1!12 + 2IMI1 + 1!1 2 

1 la'l 1 lf'l 
:::; 2 . ~ + 2( IMI + IMI) . 1 + 1!1 2 . 

Hence we get 

(4.1) T(T; Oa; a(z)f(z)) :::; 8(IMI-1 + IMI)2T(T; Oa; f(z)) +0((1ogT)2 ). 

Note that, if a(z) = M a constant, then O((logT) 2) in (4.1) can be 
omitted. 

We have for c E C 

where K1(c), j = 1, 2, are constants depending on c. In fact, (4.2) is 
trivial when c = 0. Suppose c f. 0. If lf(z)l:::; 2lcl, 

1 < 1 + lf(z)l 2 < 2 
1 + 9lcl2 - 1 + lf(z) - cl2 - 1 + 4lcl ' 

and if lf(z)l > 2lcl, we obtain from lc/ f(z)l < 1/2, 

i < _1-:-+-,';:lf-,:..(z-'-)-'-12= 
9 - 1 + lf(z) - cl 2 

1 + 1/lf(z)l2 < 4 
II- c/ f(z)l 2 + 1/lf(z)l2 - · 
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When c(z) is a rational function with c(z) -t ME Cas z -too, by the 
similar calculation as above we infer that 

(4.3) K1(c)T(r; 0 0 ; f):::; T(r; 0 0 ; f- c)+ O((logr) 2 ) 

:::; K2(c)T(r; 0 0 ; f)+ O((logr)2). 

In fact, lc(z)l :::; M1 with some M1 > IMI, for large lzl. Sincewe have 

If'- c'l 1 + lcl2 lc'l 1 + lfl2 If' I 
___:..:~___:.= < + ---:-:'-::....:....._'""" ..,...~~ 
1 +If- cl2 - 1 + If- cl2 1 + lcl2 1 +If- cl2 1 + lfl2 

and 

1 + lcl2 2 1 + 1!12 ( 2 1 ) 
1 +If- c12 :::; 1 + 4Ml, 1 +If- c12 :::; max 1 + 4M1 '4 + Ml ' 

we obtain the second inequality in (4.3). Thus for a meromorphic func­
tion g(z), we see T(r; 0 0 ; g + c) + O((log r) 2) :::; K2(c)T(r; 0 0 ; g) + 
O((logr)2) with a constant K2(c). Set g(z) = f(z)- c(z) in this in­
equality, we get the first inequality in (4.3). 

By (4.1) and (4.2), we see that, with a constant KL 

T(r;Oa; f):::; KLT(r; 0 0 ; L[f]), L[w] = aw + {J, 
"(W+ 8 

where a, {3, "(, 8 E C, a8- fJ'Y =1- 0. 
We have for f 2: 2, 

l(f(z)R)'I = flf(z)l-11 + lf(z)H11 lf'(z)l < f lf'(z)l 
1 + lf(z)RI2 1 + lf(z)£12 1 + lf(z)l2 - 1 + lf(z)l2' 

since xl-1 + xl+1 - 1- xu = -(1- xl-1 )(1 - xl+1) :::; 0 for x 2: 0, and 
hence 

T(r; Oa; f(z)l) :::; f 2T(r; Oa; f(z)). 

For R(z, w) = P(z, w)/Q(z, w), define Pl(w) and Q;t(w) as in (2.3). 
We assume that PJ(w), Q;t(w) are relatively prime, following Theorem 1. 
Then, as stated in Remark 1, we can assume that P1*(w), Q;t(w) are 
relatively prime, without losing generality. Of course we assume (2.2). 
Write P(z,w) = ad(z)P1(z,w),Q(z,w) = bd(z)Q1(z,w) and R1(z,w) = 
P1 (z, w)/Q1(z, w). Note that 

d-1 

P1(z,w) = wd + L:aUl(z)w1, 
j=O 

d-1 

Q1(z,w) = wd + Lb[1l(z)w1, 
j=O 

. 00 (j] 
(j]( ) _ a1(z) _ (j] '""'~ a z- ()-a0 +L....., 

adz n=1 zn 
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with a~l =/= 0 and b~l =/= 0. Since limz-+oo a(z) =/= 0, oo, where a(z) = 
ad(z)/bd(z), we have by (4.1) for a constant Ka 

Hence we may treat P(z, w) = P 1 (z, w), Q(z, w) = Q(z, w). We write 
R1(z, f(z)) = w1 + w2, where 

f(z)d 
W2 = . 

Q1(z,j(z)) 

We will show that, with some constant K 1 , 

In fact, we have 

l(w1+w2)'l 1+lw112 Jw]_J 1+lw212 lw~l 
~~--~~< + . 
1 + lw1 + w2l2 - 1 + lw1 + w2l2 1 + lw1l2 1 + lw1 + w2l2 1 + Jw2l 2 

If either Jw1l :=::: 2Jw21 or Jw2l :=::: 2Jw1J, then 

- __ 1 ,-+--'l_w_2'---12-= < 1 (or 
2 ::::: 4). 1+Jw1+w2l -

If 2Jw11 > Jw2l > (1/2)Jw1J, then 

lf(z)i2:::; 2 (ia[d-1l(z)llf(z)d-11 + ... + Ja[Ol(z)i) 

and a[1l(z), 0:::; j:::; d- 1, are bounded as z-+ oo. Hence f(z) must be 
bounded. Since PJ(w), Q:J(w) are relatively prime by the assumption, 
IPJ(w)i2+1Q:J(w)l2:;::: K' > 0 with a constant K'. Hence IP1(z, f(z))i2+ 
IQ1(z,j(z))l2:;::: K* with a constant K* > 0, if izl is sufficiently large. 
Thus we have 

with some K 1, for lzl :;::: To if To is large, which shows (4.4). Next, write 

d-2 
P2(z, w) = a[d-1l(z)wd-1 + P3 (z, w), P3 (z, w) = L a[1l(z)w1 

j=O 
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and w1 = P3 (z, w)/Q1 (z, w) and w2 = a[d-1l(z)wd-1 /Q1 (z, w). Since 
P:;_ 1 (w) and Q'd(w) are relatively prime, we obtain (4.7) as above. Ap­
plying these arguments repeatedly, we have 

~ f(z)J 2 
T(r; fla; R(z, f(z))) ~ K2 f:;'o T(r; fla; Q1(z, f(z))) + O((logr) ) 

~ Q1(z,j(z)) 2 
~K2f:;'oT(r;fla; f(z)J )+O((logr)) 

~ K3 L T(r; fla; f(z)lk-JI) + O((logr)2 ) 

0-<::;j,k<::;d 

~ KT(r; fla; f(z)) + O((logr)2 ). 

with some constants K2, K 3, K, making use of (4.3). We have thus 
proved Lemma 1. 

§5. Proof of Theorem 1 

Let T(r, f) be the characteristic function of f(z) in the sense of 
Shimizu-Ahlfors. As in [6, p.274], we see from (1.4) that there is w* E 

[0, 27T) such that 

/

00 T(r;fl(w*,o:o);J)d _ 
rP+1 r-oo, 

for any o:0 E (0, 1r). Define R0 (z, w) = w and 

Then we have 

It is not difficult to see that Rm(z, w) satisfies (2.2) from the assumption 
for R(z, w), and also see that P:irn (w) and Q'dm(w) corresponding to 
Rm(z,w) are relatively prime. We can assume that Pj*(w) and Q'dm(w) 
corresponding to Rm(z, w) are relatively prime, for each j < dm by a 
suitable linear transformation, if necessary. 

Take wo E [0, 21r) and o: E (0, 1r) arbitrarily. Let m EN be so large 
that o:o = lwo+27rm>.-w*l < o:/8, mod 27r, see e.g., [3]. Then we have 
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/

00 T(r; O(wo, a/2); Rm(z, f(z))) dr 
rP+l 

= / 00 T(r; O(wo, a/2); f(smz)) dr 
rP+l 

165 

C/00 T(lslmr;O(w*,ao);f(z))d _ 
2: rP+l r - oo. 

for some positive constant C. Thus by Lemma 1 

/

00 T(r; O(wo, a/2); f(z)) d _ 
rP+l r-oo. 

By means of Tsuji's result (3.1), for any distinct three values bi E <C U 
{oo},1:Si:S3, 

3 -
"'/

00 N(2r,bi;O(wo,a);f(z))d = 
~ rP+l r oo, 
i=l 

which implies our assertion. 
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