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Singular directions of meromorphic solutions of
some non-autonomous Schroder equations

Katsuya Ishizaki and Niro Yanagihara

Abstract.

Let s = |s|e*™* be a complex constant satisfying |s| > 1 and
A &€ Q. We show that for a transcendental meromorphic solution
f(2) of some non-autonomous Schroder equation f(sz) = R(z, f(z)),
any direction is a Borel direction.

§1. Introduction

Let R(z,w) be a rational function in z and w of deg,, R{z,w) at
least 2, and let s € C be a constant of modulus bigger than 1. This note
is devoted to investigate singular directions of meromorphic solutions of
functional equations of the form

(L1) f(s2) = Rz, f(2)), d = deg,[R(z,w)] = 2.

In this note “meromorphic” means “meromorphic in the complex plane
C”, and we assume that the reader is familiar with the Nevanlinna the-
ory, see e.g., [1], [4]. By a simple transformation, we can assume that
R(0,0) = 0. In order to state an existence theorem of a meromorphic
solution for (1.1), we write
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Under the assumption that either

(1.2) a10#0 and s"#ap1 forallneN,
or
(1.3) a10=0 and s=ap1,

the equation (1.1) admits the unique meromorphic solution f(z) # 0
with f(0) = 0 for the case (1.2), and also the unique solution f(z) with
f(0) = 0, f/(0) = 1, for the case (1.3). For the proof, see [8, p.153].
When f(z) is transcendental, the order of growth p = p(f) is given by
p =logd/log|s|, d = deg,, R(z,w), and there holds

(1.4) Kir? <T(r, f) < Kar?,

with some positive constants Ki, K2, where T'(r, f) is the Nevanlinna
characteristic of f(z), see [8, p.159].

Let 0, = {z = re*”, r > 0} be a ray and Q(w,a),a € (0,7), be a
sector Qw,a) = {z ; |arg[z] — w| < a}. When w is fixed, we write for
Q(w, o) simply as . Further we define Q) =Qan {lz| < r}.

Let f(z) be a transcendental meromorphic function of order p > 0.
Let 9, be fixed. For any a € CU {0}, write zeros of f(z) —a in Q4 =
Qw, a) as 2z (a, ), n=0,1,--- , multiple zeros counted only once. On
the other hand, zeros of f(z) — a, counted with multiplicity, are denoted
as zp(a, Qo). We say 0,, to be a Borel direction of divergence type in the
sense of Tsuji (resp. in the sense of Valiron), for f(z) [6, p.274] (resp.
[7]), if for any a € C, with at most two possible exception(s),

= 1
;m:w foranya>0,

oc
1
(resp. ; m =00 forany a > 0).

In the following, we call a Borel direction of divergence type simply as a
Borel direction.

Obviously, if ¢ is a Borel exceptional value in the sense of Valiron,
then c is so in the sense of Tsuji, too, but the converse is not true. We
write s as

(1.5) s=|s[e*™™, |s|>1, Xe[0,1).

In the autonomous case, i.e., R(z, w) does not contain z, we proved
[2] that for a meromorphic solution g(z) of the equation g(sz) = R(g(2)),
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any direction 9, is a Borel direction in the sense of both Valiron as well
as Tsuji, supposed A ¢ Q. Further, a Borel exceptional value ¢, if any,
must be a Picard exceptional value, i.e. g(z) # ¢ for any z € C.

§2. Non-autonomaus Schréder equations and a main result

In order to consider the non-autonomous case where R(z,w) con-
tains z, we need to make some provisions. Write R(z,w) in (1.1)

P(z,w)
Q(z,w)’
P g
P(z,w) = Zaj(z)wj, Qlz,w) = Zbk(z)wk,
k=0

j=

R(z,w) =

where a;(z), by(2) are polynomials. We have d = max(p, q) > 2.
Proposition 1. By some linear transformation

aw + 3

(2.1) Llw] = ma

aa/@a’y’(se(ca a(s_ﬁ’}/#o’

the equation (1.1) can be reduced to the following form

Lf(9] = R LIED, R0 = g,
d d
P°(z,w) = Za;(z)wj, Q°(z,w) = Zbi(z)wk,
7=0 k=0

in which we have
(2 2) degw[Po(Zaw)] = degw[Q"(z,w)] =d,
' degla}(z)] = deg[b;(2)] = D.

We remark that the conditions (2.2) are satisfied with any quadruple
o, 8,7,0 € C, ad — By # 0 for other than a finite number of exception.

Proof of Proposition 1 Let

Y 5=095(2)f(z)
k=0 Dk(2) f(2)F
Put f(z) = fi(z) + @. Then

f(sz) = max(p,q) = d.

filsz) = S0 () fi(2)]
R EE
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where

zl:j (m) m J(lm(z) - Oézmm(q 9 (m> am‘jbm(z)a
J J

for j < p, when p <d,

all(z) =
-« {Z;dn=j (T) am—jbm(z)} 3 for .7 > D,

forj > p, whenp < q=d,

q
bg](z) = Z (7]?) a™ kb (2), fork <q.

m=k

Hence, except a finite number of values «, we have
deglaf(2)] = max(degla]! (=), dealby (2)),
deglbp’(2)] = max deg[t;(2))].

Put fi(z) = 1/f2(z). Then

1o 0l (2) ey
Skt (2)f2(2)*
deg[b)(2)] = max(deg[a}) ()], deg[ty (=)

fz(sz) =

Put fa(2) = f3(z) + B, f3(z) =1/fs(z), and fa(z) = f5(z) + v, then we
obtain (2.2) for a£-5](z), bf](z), except for a finite number of values 3, .
We have thus proved Proposition 1.

Write the coefficients of w’ in P(z,w) and those of w* in Q(z,w) as

a]-(z) (J)Z + a( ) D=1 +a(])

b(z) = b(k) D b(k) D-1 ... 4 b(k)
with aD) # 0 and b(k) # 0 for 0 < j,k <d, and put

Pr(w) = aPw +af Vi . 40D 0 < j < d,

(2.3)
Q(*l(w) :b(Dd b(d 1) wi™ 1 b(O

The main result in this note is the following
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Theorem 1. Suppose A ¢ Q in (1.5) and R(z,w) in (1.1) satisfies
(2.2). Assume that P;(w) and Q}(w) for R(z,w) defined in (2.3) are
relatively prime. Let (1.1) have a transcendental meromorphic solution
f(2z). Then any 0, (wo € [0,27)) is a Borel direction in the sense of
Tsuji for f(z).

Remark 1. We can assume without losing generality that P;(w)
and Q}(w) are relatively prime for each j, 1 < j < d — 1, which can be
attained by a suitable choice of «, 3,7, € C in (2.1).

On the contrary to autonomuous case, a Borel exceptional value need
not be a Picard exceptional value (see the end of Section 1). Further,
Borel exceptional value in the sense of Tsuji may be not exceptional in
the sense of Valiron. We can see these in Examples 1 and 2 below.

Example 1. Consider the equation [8, p.158]

1 )
(24)  fils) = T2 fi@)h s =15l X e 0,D\Q |s] > 2
If we put f1(z) = 1+ hy(2), then
2z 1+=z 1+2 2
hl(sz)_1az+2l~zh1(z)+l—zh1(z) =2z4+2hi(2)+---,

and we have that a1 0 =2 # 0, ap,1 = 2 # s” for any n € N, hence
there is the unique solution hi(z) #Z 0, h1(0) = 0. Therefore, there is
the unique non-trivial solution for (2.4) which is given by

ro=M(2)"

n=1 §"

Hence f1(z) has two Borel exceptional values 0, co in the sense of Tsuji.
They are not a Borel exceptional values in the sense of Valiron.

Example 2. Consider also the equation
(25)  fa(sz) = (1+2)f2(2)%, s =s]e”™, A€ [0, )\ Q, 5| >2.

As in Example 1, there is the unique solution which is given by

fa(2) = ﬁ (1+ Sin)2
n=1

f2(z) has a Borel exceptional value 0 in the sense of Tsuji, which is not
exceptional in the sense of Valiron. For f2(2), co is exceptional in the
sense of Valiron (in fact, Picard exceptional).
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We observe primeness in the examples above. For the equation (2.4)
we have, putting g;(z) = 1/(fi(2) — 1),
(-1+ 1) 1(2)?
201(2)2 +2(1+ H)gu(z) + (1 + 1)’
We have P (w) = —w? and Q3(w) = 2w? + 2w + 1 which are relatively
prime.

For the equation (2.5), we see that Pj(w) and @3(w) are not rela-
tively prime, and the assumption in Theorem 1 is not satisfied. But if

we put ga(z) = 1/(f2(2) — 1), then we get

gi1(sz) =

92( )?
zga(sz = Ro(z,92(2)).
e R (PSR R
For Ra(z,w), we have that Py(w) = w? and Q3(w) = w? + 2w + 1 are
relatively prime. Hence the arguments in the proof of Theorem 1 stated
in Sections 4, 5 can be applied to Ra(z,g2(2z)). But we do not know
whether for m € Z with some K > 0,

T(r; Qa; 2™g2(2)) < KT(1;Qq; g2(2)) + O((log 7)?)

holds or not. Therefore, our Theorem 1 can not be applied to (2.5).

§3. Characteristic functions in a sector

Following Tsuji [6, p.272], we define the sectorial characteristic of a
meromorphic function w(z). Fix w € [0, 27). With Qu, = Q(w, &) and
ng) as in Section 1, we define

[w' (te®)] 1\
Qo tde,
S(r3 Qoo w) //Q<r>(1+|wtw)|2 td

T(r; Qo ; ):/ 5(t; Qagiw) )
. ¢

Let a(r, b; Qs w), Qe = Q(w, @), be the number of zeros of w(z) — b
contained in Qg), multiple zeros counted only once, and put

. T o= -0

N(r,b; Qo; w) :/ wdt.
1

Then by [6, p.272, Theorem VIIL.3], we have with any a > ay,

3
(3.1) T(r; Qao; w) <3)_ N(2r,bi; Qa; w) + O((logr)?).
g=1
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We note that (3.1) is generalized by Toda [5].

84. A preliminary Lemma

Let R(z,w) is a rational function in w whose coefficients are rational
functions. Suppose that R(z,w) satisfies the condition in Theorem 1.

Lemma 1. Write Q(w, ) as Q4. We have for a constant K
T(r;Qa; R(z, f(2))) < KT(r; Qa5 f(2)) + O((log )?).

Proof of Lemma 1 Let a(z) be a rational function satisfying a(z) —
M # 0,00 as z — oo. Then |M|/2 < |a(z)| < 2|M] for |z| > ro with
sufficiently large ro, and we have

(afYl . 1Sl laf
T 1o/ = ThJafP T T4 ]afP?
L] a2 If) o 1f
<S5 Tt 2’ 3+ 2 2
2 Jal T THIafE THE IS IafE T
L] JafE 1 |f 17
<=2y L= 9\M
3 TP T e MR
1| 7
2.2 : .
5 e+ 2w D N

Hence we get
(4.1) T(r; Qa;a(2)f(2)) < 8(IM|™ 4+ |M|)*T(r; Qas f(2)) +O((logr)?).

Note that, if a(z) = M a constant, then O((logr)?) in (4.1) can be
omitted.
We have for c€ C

(4.2) K (e)T(r; Q03 f) ST(15Qa; f — ¢) < Ka(e)T (75 Qas; f),

where K;(c), j = 1,2, are constants depending on ¢. In fact, (4.2) is
trivial when ¢ = 0. Suppose ¢ # 0. If | f(2)] < 2|,

1 1+f@)P
L0l = T+ [f(2) - P

and if | f(z)| > 2|c|, we obtain from |¢/f(z)| < 1/2,

4 1@ 1+ P
9 ST+1f() - M-cfOP+If@E =

<1+ 4|c?,
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When ¢(z) is a rational function with ¢(z) — M € C as z — oo, by the
similar calculation as above we infer that

(4.3) K1(0)T(r; Qa3 f) < T(r3Q0; f — €) + O((log7)?)
< Ka(e)T(r; Qa; f) + O((log 7)?).
In fact, |c(z)| < M; with some M; > |M|, for large |z|. Since we have

If =l 1+l | 1+1f* _1f
T+ [f—c2 T T4 [f—cP1+]c?  TH+[f-cP1+]|f

and

1 2 1 2 1
+ Iel <1+4M7, - +1/] <max<l+4M1,4+M2)

L+ [f—c? ™ +1f—c? T
we obtain the second inequality in (4.3). Thus for a meromorphic func-
tion g(z), we see T(r;Qq;g + ¢) + O((logr)?) < Ko(c)T(r;Q4;9) +
O((logr)?) with a constant Ka(c). Set g(z) = f(z) — ¢(2) in this in-
equality, we get the first inequality in (4.3).

By (4.1) and (4.2}, we see that, with a constant K,

T(r;Qa; f) < KLT(r; Qa3 LIf]),  Llw] = ;

where «, 3,7,0 € C, ad — By # 0.
We have for £ > 2,

G _ @™ 1@ o, 1)

L+ f(2)42 L+ [fRF 1+f1P 7 1+
since 27! 4+ 2ttt —1 — 22 = —(1 — 211 — 2*1) <0 for £ > 0, and
hence

T(r; Qa; £(2)") < T (r; Qs f(2))-
For R(z,w) = P(z,w)/Q(z,w), define P} (w) and Qj(w) as in (2.3).
We assume that Pj(w), Q% (w) are relatively prime, following Theorem 1.
Then, as stated in Remark 1, we can assume that P;(w),Qj(w) are
relatively prime, without losing generality. Of course we assume (2.2).
Write P(z,w) = aq(2)P1(z, w), Q(z,w) = ba(2)Q1(z, w) and Ry(z,w) =
Py (z,w)/Q1(z,w). Note that

-1 ‘ al!

Pi(z,w) = w® + Z !, all(z) = %) _ ag] Z
(2)
Jj=0
d-1 (]
, , ; bi(z) >\ br
= @ 4] — 4l

Q1(z,w) = w* + Zb] (2)w?, bVl(z) = ba(2) =b§ + g

§=0 n=1
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with a([)j] # 0 and bgj] # 0. Since lim, . a(z) # 0,00, where a(z) =
aq(2)/ba(z), we have by (4.1) for a constant K,

T(r;Qa; R(z, f(2))) < K T(r; Qa; Ri(z, f(2))) + O((log r)?).

Hence we may treat P(z,w) = Pi(z,w), Q(z,w) = Q(z,w). We write
Ry(z, f(z)) = w1 + wa, where

Sino @Y f(e)?
FT )

wr =

We will show that, with some constant K7,
(4.4) T(r; Qo w1 +ws) < K {T(r; Qa; w1)+T(r; Qu; w2) }+O((log )?).
In fact, we have

(wi +wo)'| _ 1+ fuwnf? |wi 1+ |wsl? |wsl
14 I’lU1 +’lU2|2 14+ le +'U)2|2 1+ "UJ1|2 1+ "LU1 +U)2|2 1+ lUJ2|2'

If either |w1| > 2|wa| or |wa| > 2|wy|, then

2 2
L+ Jun] 4 (or <1), L+ [ws]

L — = <1 (or <4).
14 |wi +wsl? ~ - L4 |wy +wp)? ~ or <4)

If 2|’UJ1| > I’U.)2| > (1/2)|w1|, then

PR <2 (|G + - +1a0 ()

and a[j](z), 0 <j<d-1,are bounded as z — oo. Hence f(z) must be
bounded. Since P} (w),Q}(w) are relatively prime by the assumption,
| Py (w)|?+]Q%(w)|? > K’ > 0 with a constant K’. Hence | P, (z, f(2))|*+
|Q1(z, f(2))|? > K* with a constant K* > 0, if |z| is sufficiently large.
Thus we have

1 2 1 2
—tM-——S~/K1/27 —M——<«/K1/2

1+ |wy + ws|? 14 juy +wal?2 —

with some K, for |z| > 7o if rg is large, which shows (4.4). Next, write

d—2
Py(z,w) = a"U()w? ! + Py(z,w), Ps(z,w) = Zam(z)wj
3=0



164 K. Ishizaki and N. Yanagihara

and w; = P3(z,w)/Q1(z,w) and wy = al*~U(2)w?'/Q;(z,w). Since
P; ,(w) and Q}j(w) are relatively prime, we obtain (4.7) as above. Ap-
plying these arguments repeatedly, we have

d .
T(r; 9a; R(2 £(2)) < Ko 3 T3 9 %) +0((log)?)

=0

d
< K 3T 0y LETED) | o((10gr12)

par )
<Ks Y T(r;Q;f(2)*7) + O((logr)?)
0<j,k<d

< KT(r;Qa; £(2)) + O((log r)?).

with some constants Ko, K3, K, making use of (4.3). We have thus
proved Lemma 1.

85. Proof of Theorem 1

Let T(r, f) be the characteristic function of f(z) in the sense of
Shimizu-Ahlfors. As in [6, p.274], we see from (1.4) that there is w* €
[0,27) such that

) dr = o0,

/°° T(r; Qw", 20); f)

for any ag € (0, 7). Define R°(z,w) = w and
R™(z,w) = R(s™ 2, R™"(z,w)) for m>1.
Then we have
f(s™z) = R(s™ 'z, f(s™"'2)) = R™(2, f(2)).

It is not difficult to see that R™(z, w) satisfies (2.2) from the assumption
for R(z,w), and also see that P}, (w) and Q. (w) corresponding to
R™(z,w) are relatively prime. We can assume that P;(w) and Q}m(w)
corresponding to R™(z,w) are relatively prime, for each 7 < d™ by a
suitable linear transformation, if necessary.

Take wp € [0,27) and «a € (0, 7) arbitrarily. Let m € N be so large
that o = Jwo+27mA —w*| < @/8, mod 27, see e.g., [3]. Then we have
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/°° T(r; wo, 2/2); R™ (2, (2)) ;.

rp+l
_ [* Tnflena/isna),,
rp+1
s o [ TR ) g

for some positive constant C. Thus by Lemma 1

/°° T(r; Qwo, a/2); f(z))d,r =

re+l

By means of Tsuji’s result (3.1), for any distinct three values b; € CU
{00}, 1 <0 <3,

* N(2r,bs; Qwo, a); f(z
Z/ (wo, @); f(2))

o7l dr = oo,

which implies our assertion.
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