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Lines of principal curvature near singular end points 
of surfaces in JR3 

Jorge Sotomayor and Ronaldo Garcia 

Abstract. 

In this paper are studied the nets of principal curvature lines on 
surfaces embedded in Euclidean 3-space near their end points, at 
which the surfaces tend to infinity. 

This is a natural complement and extension to smooth surfaces 
of the work of Garcia and Sotomayor (1996), devoted to the study of 
principal curvature nets which are structurally stable -do not change 
topologically- under small perturbations on the coefficients of the 
equations defining algebraic surfaces. 

This paper goes one step further and classifies the patterns of 
the most common and stable behaviors at the ends, present also in 
generic families of surfaces depending on one-parameter. 

§1. Introduction 

A surface of smoothness class Ck in Euclidean (x, y, z)-space JR3 is 
defined by the variety A( a) of zeros of a real function a of class Ck in 
JR3 . The exponent k ranges among the positive integers as well as on 
the symbols oo, w (for analytic) and a(n) (for algebraic of degree n). 

In the class ca(n) of algebraic surfaces of degree n, we have a = 
I: ah, h = 0, 1, 2, ... , n, where ah is a homogeneous polynomial of de­
gree h with real coefficients: ah = I: aijkXiyi zk, i + j + k = h. 
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The space JR;3 will be endowed with the Euclidean metric ds 2 

dx2 + dy2 + dz 2 also denoted by <, >, and with the positive orientation 
induced by the volume form n = dx A dy Adz. 

An end point or point at infinity of A( o:) is a point in the unit sphere 
§ 2 , which is the limit of a sequence of the form Pn/IPnl, for Pn tending 
to infinity in A(o:). 

The end locus, E(o:), of A( a) is the collection ofits end points. This 
set is a geometric measure of the non-compactness of the surface and 
describes how it tends to infinity. 

A surface A(o:) is said to be regular atp E E(o:) if in a neighborhood 
of p, E(o:) is a regular smooth curve in § 2 • Otherwise, pis said to be a 
critical end point of A( o:). 

For the class a(n), E(o:) is contained in the algebraic curve En(o:) = 
{p E § 2 ; o:n(P) = 0}. The regularity of E(o:) is equivalent to that of 
En(o:). 

The gradient vector field of o:, will be denoted by \7 0: = O:x8 I ax + 
o:y8/8y + O:z8/8z, where O:x = 8o:j8x, etc. 

The zeros of this vector field are called critical points of o:; they 
determine the set C(o:). The regular part of A(o:) is the smooth surface 
S(o:) = A(o:) \ C(o:). When C(o:) is disjoint from A(o:), the surface 
S(o:) = A(o:) is called regular. The orientation on S(o:) will be defined 
by taking the gradient \7 o: to be the positive normal. Thus A( -a) defines 
the same surface as A( a) but endowed with the opposite orientation on 
S( -o:). 

The Gaussian normal map N, of S(o:) into the sphere § 2 , is defined 
by the unit vector in the direction of the gradient: N 01 = 'Vo:/I'Vo:l. 
The eigenvalues -kJ-x(p) and -k~(p) of the operator DN01 (p), restricted 
to TpS(o:), the tangent space to the surface at p, define the principal 
curvatures, kJ-x (p) and k~ (p) of the surface at the point p. It will be 
always assumed that kJ-x(p) ::; k~(p). 

The points on S(o:) at which the principal curvatures coincide, define 
the set U(o:) of umbilic points of the surface A(o:). On S(o:) \ U(o:), 
the eigenspaces of DNa, associated to -kJ-x and -k~ define line fields 
£ 1 ( o:) and £ 2 ( o:), mutually orthogonal, called respectively minimal and 
maximal principal line fields of the surface A( o:). The smoothness class of 
these line fields is ck-2 ' where k- 2 = k for k = oo, w and a( n)- 2 = w. 

The maximal integral curves of the line fields L 1(o:) and L 2 (o:) are 
called respectively the lines of minimal and maximal principal curvature, 
or simply the principal lines of A( a). 

What was said above concerning the definition of these lines is equiv­
alent to require that they are non trivial solutions of Rodrigues' differ­
ential equations: 
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(1) DNa(p)dp + k~(p)dp = 0, < N(p),dp >= 0, i = 1,2. 

where p = (x, y, z), a(p) = 0, dp = dx8j8x + dy8j8y + dz8/8z. See 
[22, 23]. 

After elimination of k~, i = 1, 2, the first two equations in (1) can 
be written as the following single implicit quadratic equation: 

(2) < DNa(p)dp 1\ N(p), dp >= [DNa(p)dp, Na(P), dp] = 0. 

The left (and mid term) member of this equation is the geodesic 
torsion in the direction of dp. In terms of a local parametrization a 
introducing coordinates ( u, v) on the surface, the equation of lines of 
curvature in terms of the coefficients (E, F, G) of the first and (e, J, g) 
of the second fundamental forms is, see [22, 23], 

(3) [Fg- Gf]dv2 + [Eg- Ge]dudv + [Ef- Fe]du2 = 0. 

The net F(a) = (Fl(a), F2(a)) of orthogonal curves on S(a) \ U(a), 
defined by the integral foliations F1(a) and F2(a) of the line fields L1(a) 
and L 2 (a), will be called the principal net on A(a). 

The study of families of principal curves and their umbilic singular­
ities on immersed surfaces was initiated by Euler, Monge, Dupin and 
Darboux, to mention only a few. See [2, 18] and [14, 22, 23] for refer­
ences. 

Recently this classic subject acquired new vigor by the introduction 
of ideas coming from Dynamical Systems and the Qualitative Theory of 
Differential Equations. See the works [14], [5], [7], [13] of Gutierrez, Gar­
cia and Sotomayor on the structural stability, bifurcations and genericity 
of principal curvature lines and their umbilic and critical singularities 
on compact surfaces. 

The scope of the subject was broadened by the extension of the 
works on structural stability to other families of curves of classical ge­
ometry. See [12], for the asymptotic lines and [8, 9, 10, 11] respectively 
for the arithmetic, geometric, harmonic and general mean curvature 
lines. Other pertinent directions of research involving implicit differen­
tial equations arise from Control and Singularity Theories, see Davydov 
[3] and Davydov, Ishikawa, Izumiya and Sun [4]. 

In [6] the authors studied the behavior of the lines of curvature on 
algebraic surfaces, i.e. those of ca(n)) focusing particularly their generic 
and stable patterns at end points. Essential for this study was the 
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operation of compactification of algebraic surfaces and their equations 
(2) and (3) in JR3 to obtain compact ones in § 3 . This step is reminiscent 
of the Poincare compactification of polynomial differential equations [19]. 

In this paper the study in [6] will be extended to the broader and 
more flexible case of Ck-smooth surfaces. 

As mentioned above, in the case of algebraic surfaces studied in [6], 
the ends are the algebraic curves defined by the zeros, in the Equato­
rial Sphere § 2 of § 3 , of the highest degree homogeneous part O:n of the 
polynomial a:. Here, to make the study of the principal nets at ends of 
smooth surfaces tractable by methods of Differential Analysis, we fol­
low an inverse procedure, going from compact smooth surfaces in § 3 to 
surfaces in JR3 . This restriction on the class of surfaces studied in this 
paper is explained in Subsection 1.1. 

The new results of this paper on the patterns of principal nets at end 
points are established in Sections 2 and 3. Their meaning for the Struc­
tural Stability and Bifurcation Theories of Principal Nets is discussed 
in Section 4, where a pertinent problem is proposed. The essay [21] 
presents a historic overview of the subject and reviews other problems 
left open. 

1.1. Preliminaries 
Consider the space A~ of real valued functions a:c which are Ck­

smooth in the three dimensional sphere § 3 = {lpl 2+lwl2 = 1} in IR4 , with 
coordinates p = (x, y, z) and w. The meaning of the exponent k is the 
same as above and a(n) means polynomials of degree n in four variables 
of the form a:c = L a:hwh, h = 0, 1, 2, ... , n, with O:h homogeneous of 
degree h in (x, y, z). 

The equatorial sphere in § 3 will be § 2 = {(p, w) : IPI = 1, w = 0} 
in IR3 . It will be endowed with the positive orientation defined by the 
outward normal. The northern hemisphere of § 3 is defined by JHI+ = 
{(p,w) E § 3 : w > 0}. 

The surfaces A(a:) considered in this work will be defined in terms 
of functions a:c E A~ as a: = a:co!P', where lP' is the central projection of 
JR3 , identified with the tangent plane at the north pole ']['~, onto JHI+, 
defined by: 

IP'(p) = (p/(IPI 2 + 1)112 , 1/(IPI2 + 1)112 ). 

For future reference, denote by ']['~ the tangent plane to § 3 at the 
point (0, 1, 0, 0), identified with IR3 with orthonormal coordinates (u, v, w), 
with w along the vector w = (0, 0, 0, 1). The central projection Q of']['~ 
to § 3 is such that IP'- 1 o Q : ']['~ ---+ ']['~ has the coordinate expression 
(u, v, w)---+ (ujw, vjw, 1/w). 
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For m :::; k, the following expression defines uniquely, the functions 
involved: 

In the algebraic case (k = a(n)) studied in [6], ac = "Ewn-hah, h = 
0, 1, 2, .. , n, where the obvious correspondence ah = a:;,_h holds. 

The end points of A(a), E(a), are contained in E(ac) = {a8(p) = 
0}. 

At a regular end point p of E(a) it will be required that a8 has a 
regular zero, i.e. one with non-vanishing derivative i.e. 'Va8(p) =f. 0. At 
regular end points, the end locus is oriented by the positive unit normal 
v(a) = 'Va8/I'Va81· This defines the positive unit tangent vector along 
E(a), given at p by r(a)(p) = pl\v(a)(p). An end point is called critical 
if it is not regular. 

A regular point p E E(a) is called a biregular end point of A(a) 
if the geodesic curvature, kg, of the curve E(a) at p, considered as a 
spherical curve, is different from zero; it is called an inflexion end point 
if kg is equal to zero. 

When the surface A( a) is regular at infinity, clearly E(a) = E(ac) = 
{a8(P) = 0}. 

The analysis in sections 2 and 3 will prove that there is a natural 
extension Fc(a) = (Fcl(a), Fc2(a)) of the net (JP>(F1(a)), JP>(F2(a)) to 
Ac(a) = {ac = 0}, as a net of class ck-2 , whose singularities in E(a) 
are located at the inflexion and critical end points of A(a). This is 
done by means of special charts used to extend the quadratic differen­
tial equations that define (JP>(F1 (a)), JP>(F2 (a)) to a full neighborhood in 
Ac(a) of the arcs of biregular ends. The differential equations are then 
extended to a full neighborhood of the singularities. See Lemma 2, for 
regular ends, and Lemma 4, for critical ends. 

The main contribution of this paper consists in the resolution of sin­
gularities of the extended differential equations, under suitable genericity 
hypotheses on ac. This is done in sections 2 and 3. It leads to eight 
patterns of principal nets at end points. Two of them - elliptic and 
hyperbolic inflexions- have also been studied in the case of algebraic 
surfaces [ 6]. 

§2. Principal Nets at Regular End Points 

Lemma 1. Let p be a regular end point of A( a), a= ac o JP>. Then 
there is a mapping a of the form 
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(5) 
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a(u,w) = (x(u,w),y(u,w),z(u,w)), w > 0, defined by 

u 
x(u,w) = -, 

w 
( ) h(u,w) 

y u,w = ' 
w 

1 
z(u,w) = -. 

w 

which parametrizes the surface A( a) near p, with 

1 1 
h(u,w) =kow + 2 au2 + buw + 2 cw2 

(6) 
1 ( 3 3 2 3 2 3) +5 a3ou + a21u w + a12uw + ao3w 

1( 4 4 3 6 2 2 + 24 a4ou + a31u w + a 22u w 

+4a13uw3 + ao4w4) + h.o.t 

Proof. With no lost of generality, assume that the regular end point 
p is located at (0, 1, 0, 0), the unit tangent vector to the regular end 
curve is T = (1, 0, 0, 0) and the positive normal vector is v = (0, 0, 1, 0). 
Take orthonormal coordinates u, v, w along T, v, w = (0, 0, 0, 1) on the 
tangent space, 'II't to § 3 at p. Then the composition JP>- 1 o 1Q writes as 
x = ujw, y = vjw, z = 1/w. 

Clearly the surface A(ac) near p can be parametrized by the central 
projection into § 3 of the graph of a ck function of the form v =: h(u, w) 
in 'II't, with h(O, 0) = 0 and hu(O, 0) = 0. This means that the surface 
A( a), with a= ac o JP>- 1 can be parametrized in the form (5) with h as 
in (6). 

Q.E.D. 

Lemma 2. The differential equation (3) in the chart a of Lemma 1, 
multiplied by w8 J EG - F 2 , extends to a full domain of the chart ( u, w) 
to one given by 

(7) 

Ldw2 + Mdudw + Ndu2 = 0, 

L =- b- a21u- a12w- (c + a22)uw 

1 2 1 2 
-(b + 2a31)u - 2a13w + h.o.t. 

1 2 
M =-a- a3ou- a21w- -(2a + a4o)u 

2 
1 2 

-a31uw + 2(2c- a22)w + h.o.t. 

N =w[au + bw + a3ou2 + 2a21uw + a12w2 + h.o.t.] 

where the coefficients are of class ck-2. 
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Proof. The coefficients of first fundamental form of a in (5) and 
(6) are given by: 

E( ) = 1 + h~ u,w 2 
w 

F( ) =hu(whw- h)- u 
u,w 3 

w 

G( ) = 1 + u2 + (whw- h)2 
u,w 4 

w 

The coefficients of the second fundamental form of a are: 

( ) huu 
e u w = --;--;:::::::=;::::==:;:;: 

' w4v'EG- F 2 ' 

( ) huw 
f u,w = w4v'EG- F2' 

( hww 
g u, w) = w4JEG- F2 

where e = [auu,au,awl/lau A awl, f = [auw,au,awJ/Iau A awl and 
g = [aww, au, aw]/lau 1\ awl· 

The differential equation of curvature lines (3) is given by Ldw2 + 
Mdudw + Ndu2 = 0, where L = Fg- Gf, M = Eg- Ge and N = 
Ef -Fe. 

These coefficients, after multiplication by w8 v' EG - F 2 , keeping the 
same notation, give the expressions in (7). Q.E.D. 

The differential equation (7) is non-singular, i.e., defines a regular 
net of transversal curves if a -1- 0. This will be seen in item a) of next 
proposition. Calculation expresses a as a non-trivial factor of k9 . 

The singularities of equation (7) arise when a = 0; they will be 
resolved in item b), under the genericity hypothesis a3ob -1- 0. 

Proposition 1. Let a be as in Lemma 1. Then the end locus is 
parametrized by the regular curve v = h(u, w), w = 0. 

a) At a biregular end point, i.e., regular and non inflexion, a -1- 0, 
the principal net is as illustrated in Fig. 1, left. 

b) If p is an inflexion, bitransversal end point, i.e., f3(p) = a30 b -1-
0, the principal net is as illustrated in Fig. 1, hyperbolic {3 < 0, 
center, and elliptic {3 > 0, right. 
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Fig. 1. Curvature lines near regular end points: biregu­
lar (left ) and inflexions: hyperbolic (center) and 
elliptic (right). 

Proof. Consider the implicit differential equation 

:F(u, w,p) =- (b + a21u + a12w + h.o.t.)p2 

(8) -(a+ agou + a21w + h.o.t.)p 

+w(au + bw + h.o.t.) = 0. 

The Lie-Cartan line field tangent to the surface :r-1(0) is defined 
by X = (:Fp,p:Fp, -(:Fu + p:Fw)) in the chart p = dwjdu and Y = 
( q:Fq, :Fq, - ( q:Fu + :F w)) in the chart q = du / dw. Recall that the integral 
curves of this line field projects to the solutions of the implicit differential 
equation ( 8). 

If a =/= 0, :r-1 (0) is a regular surface, X(O) = (-a, 0, 0) =/= 0 and 
Y(O) = (b, a, 0). So by the Flow Box theorem the two principal foliations 
are regular and transversal near 0. This ends the proof of item a). 

If a= 0, :r-1 (0) is a quadratic cone and X(O) = 0. Direct calcula­
tion shows that 

(
-:ago 

DX(O) = ~ 

Therefore 0 is a saddle point with non zero eigenvalues -ago and ago 
and the associated eigenvectors are e1 = (1, 0, 0) and e2 = (b, 0, -ag0 ). 

The saddle separatrix tangent to e1 is parametrized by w = 0 and 
has the following parametrization (8, 0, 0). The saddle separatrix tangent 
to e2 has the following parametrization: 

ago 82 ago 
u(8) = 8 + 0(8g), w(8) = -b2' + 0(8g), p(8) = -b8 + 0(8g). 

If agob < 0 the projection (u(8), w(8)) is contained in the semiplane 
w 2: 0. As the saddle separatrix is transversal to the plane {p = 0} the 



Lines of curvature near singular end points 445 

phase portrait of X is as shown in the Fig. 2 below. The projections 
of the integral curves in the plane ( u, w) shows the configurations of the 
principal lines near the inflexion point. 

,?Sf~ 
u 

Fig. 2. Phase portrait of X near the singular point of sad­
dle type 

Q.E.D. 

Proposition 2. Let a be as in Lemma 1. Suppose that, contrary 
to the hypothesis of Proposition 1, a= 0, a3o = 0, but ba4o =I 0 holds. 

The differential equation {7} of the principal lines in this case has 
the coefficients given by: 

1 2 
L(u, w) =- [b + a21u + a12w + 2(2b + a31)u 

1 2 +(c + a22)uw + 2a13w + h.o.t.] 

(9) 1 2 
M(u,w) =- [a21w + 2a4ou 

1 2 l +a31uw + 2(an- 2c)w + h.o.t. 

N(u, w) =w2 (b + 2a21u + a12w + h.o.t.) 

The principal net is as illustrated in Fig. 3. 
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Fig. 3. Curvature lines near a hyperbolic-elliptic inflexion 
end point 

Proof. From equation (7) it follows the expression of equation (9) is 
as stated. In a neighborhood of 0 this differential equation factors in to 
the product of two differential forms X+(u, w) = A(u, w)dv-B+(u, w)du 
and X_(u,w) = A(u, w)dv-B_(u, w)du, where A(u,w) = 2L(u, w) and 
B±(u, w) = M(u, w) ± J(M2 - 4LN)(u, w). The function A is of class 
ck-2 and the functions B± are Lipschitz. Assuming a4o > 0, it follows 
that A(O) = -2b =1- 0, B_(u, 0) = 0 and B+(u, 0) = a40u2 + h.o.t. In the 
case a4o < 0 the analysis is similar, exchanging B_ with B+. 

Therefore, outside the point 0, the integral leaves of X+ and X_ 
are transversal. Further calculation shows that the integral curve of X+ 
which pass through 0 is parametrized by (u, -~'bu3 + h.o.t.). 

This shows that the principal foliations are extended to regular fo­
liations which however fail to be a net a single point of cubic contact. 
This is illustrated in Fig. 3 in the case a4o/b < 0. The case a40jb > 0 is 
the mirror image of Fig. 3. Q.E.D. 

Proposition 3. Let a be as in Lemma 1. Suppose that, contrary 
to the hypothesis of Proposition 1, a= 0, b = 0, but a30 =/:- 0 holds. 

by: 

(10) 

The differential equation of the principal lines in this chart is given 

[ 1 2 1 2 2 
- a21 u + a12w + 2a31 u + (c + a22)uw + 2a13W + h.o.t.]dw 

[ 1 2 1 2 
- a3ou + a21w + 2a4ou + a31uw + 2 (a22- 2c)w + h.o.t.]dudw 

+w[(a3ou2 + 2a21uw + a12w2) + h.o.t.]du2 = 0. 

a) If (a~1 - a12a3o) < 0 the principal net is as illustrated in Fig. 
4 (left). 
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b) If (a~1 - a12a3o) > 0 the principal net is as illustrated in Fig. 
4(right). 

Fig. 4. Curvature lines near an umbilic-inflexion end point 

Proof Consider the Lie-Cartan line field defined by 

on the singular surface F-1(0), where 

F(u, w,p) =- [a21u + a12w + h.o.t.]p2 - [a3ou + a21w + h.o.t.]p 

+w[(a3ou2 + 2a21uw + a12w2) + h.o.t.] = 0. 

The singularities of X along the projective line (axis p) are given 
by the polynomial equation p(a3o + 2a21P + a12P2) = 0. So X has one, 
respectively, three singularities, according to a~1 - a12a30 is negative, 
respectively positive. In both cases all the singular points of X are 
hyperbolic saddles and so, topologically, in a full neighborhood of 0 the 
implicit differential equation (10) is equivalent to a Darbouxian umbilic 
point D1 or to a Darbouxian umbilic point of type D3. See Fig. 5 and 
[14, 17]. 

In fact, 

where, A31 = p((c+a22)p2+2a31p+a4o), A32 = p[a13p2+(2a22-c)p+a31] 
and A33 = 4a21P + a3o + 3a12P2. 

The eigenvalues of DX(O, O,p) are >.1 (p) = -(a3o + 3a21P + 2a12P2), 
>.2(p) = 4a21p + a3o + 3a12P2 and A3 = 0. 
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Fig. 5. Resolution of a singular point by a Lie-Cartan line 
field 

Let Pl and P2 be the roots of r(p) = a3o + 2a21p + a12P2 = 0. 
Therefore, Al(Pi) = a21Pi + a3o and A2(Pi) = -2(a21Pi + a3o). 
As 

r( _ a3o) = a3o(a12a;o- a~1 ) =I= O, 
a21 a21 

it follows that .Al(Pi).A2(Pi) < 0 and .A1(0).A2(0) = -a~0 < 0. So the 
singularities of X are all hyperbolic saddles. If a~1 - a12a3o < 0, X has 
only one singular point (0, 0, 0). If a~1 - a12a3o > 0, X has three singular 
points (0,0,0), (O,O,pl) and (O,O,p2). 

In the first case in a full neighborhood of (0, 0) the principal folia­
tions have the topological type of a D1 Darbouxian umbilic point. In 
the region w > 0 the behavior is as shown in Fig. 4 (left). In the second 
case the principal foliations have the topological type of a D3 Darboux­
ian umbilic point and so the behavior in the finite region w > 0 is as 
shown in Fig. 4 (right). Q.E.D. 

§3. Principal Nets at Critical End Points 

Let p be a critical end point of the surface A( a), a= acolP'. Without 
lost of generality assume that the point pis located at (0, 1, 0, 0) and that 
the surface ac = 0 is given by the graph of a function w = h( u, v), where 
h vanishes together with its first partial derivatives at (0, 0) and the u 
and v are the principal axes of the quadratic part of its second order jet. 

Through the central projection Q, the coordinates (u, v, w) can be 
thought to be orthonormal in the tangent space ']['; to § 3 at p, with w 
along w = (0, 0, 0, 1), u along (1, 0, 0, 0) and v along (0, 1, 0, 0). 
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Lemma 3. Let p be a critical end point of the surface A(a), a = 
ac o JP>. Then there is a mapping a of the form 

a(u,v) = (x(u,v),y(u,v),z(u,v)) 

defined by 

(11) 
u v 1 

x(u,v) =h(u,v)' y(u,v) = h(u,v)' z(u,v) = h(u,v) 

which parametrizes the surface A( a) near p. The function h is as follows. 

i) If p is a definite critical point of h, then 
(12) . 

h(u, v) =(a2u2 + b2v2) + ~(a3ou3 + 3a21u2v + 3a12uv2 + ao3v3) 

1 ( 4 6 3 4 2 2 6 3 4) h + 24 a4ou + a31u v + a22u v + a13uv + ao4V + .o.t. 

ii) If p is a saddle critical point of h, then 
(13) 

h(u, v) =(-au+ v)v + ~(a3ou3 + 3a21u2v + 3a12uv2 + ao3v3) 

1 ( 4 6 3 4 2 2 6 3 4) h + 24 a4ou + a31u v + a22u v + a13uv + ao4v + .o.t. 

Proof. The map x = ujw, y = vjw, z = 1/w from 'JI'~ to 'li'!, 
expresses the composition Jp>- 1 o Q. 

Therefore the surface A( a), with a = ac o (JP>) - 1 can be parametrized 
with the functions x, y, z as is stated in equation (11). 

The function h takes the form given in equation (12) if it is definite 
positive. If it is a non degenerate saddle, after a rotation of principal 
axes, h can be written in the form given in equation (13). Q.E.D. 

Lemma 4. The differential equation {3} in the chart a of Lemma 3, 
multiplied by h8v'EG- F 2, extends to a full domain of the chart (u, v) 
to one given by 

(14) 

Ldw2 + Mdudw + Ndu2 = 0, 

L=h8VEG- F 2(Fg- Gf), 

M =h8VEG- F 2(Eg- Ge), 

N =h8VEG- F 2(Ef- Fe). 
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where the coefficients are of class ck-2. Here (E,F,G) and (e,J,g) are 
the coefficients of the first and second fundamental forms of the surface 
in the chart a. 

Proof The first fundamental form of the surface parametrized by 
a, equation (11), in Lemma 3 is given by: 

E( ) = (h- uhu) 2 + (v 2 + 1)h~ 
u,v h4 

F( ) = -h(uhu + vhv) + (u2 + v 2 + 1)huhv 
u,v h4 

G( ) = (h- vhv) 2 + (u2 + 1)h~ 
u,v h4 

The coefficients of the second fundamental form are given by : 

huu 
e(u, v) =- h4)EG- p2 

huv 
f (u v) - - ----;-r;::;=:;:==~ 

' - h4 )EG-F2 

( ) hvv 
g u v - - -:-:;--r::;~==~ 

' - h4 )EG-F2 

where e = [auu,au,avl/lau 1\ avl, f = [auv,au,avJ/Iau 1\ avl and g = 
[avv, au, av]/lau 1\ avl· 

Therefore the differential equation of curvature lines, after multipli-
cation by h8 lau 1\ av I is as stated. Q.E.D. 

3.1. Differential Equation of Principal Lines around a Def­
inite Critical End Point 

Proposition 4. Suppose that 0 is a critical point of h given by 
equation (12), with a > 0, b > 0 (local minimum). 

In polar coordinates u = br cos B, v = ar sin(} the differential equa­
tion ( 14) is given by Ldr2 + M drd(} + N d(}2 = 0, where: 

L =lo + hr + h.o.t, 

M =mo + m1r + h.o.t, 

2 1 1 1 2 
N =r ( 2no + 6n1r + 24 n2r + h.o.t.) 

(15) 

with m 0 = M(B, 0) = -8a7 b7 -=1- 0 and the coefficients (lo, h, m 1 , no, 
n1, n2) are trigonometric polynomials with coefficients depending on the 
fourth order jet of hat (0,0), expressed in equations {16) to (19). 
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Proof. Introducing polar coordinates u = br cos 8, v = ar sin 8 in 
the equation (14), where h is given by equation (12), it follows that 
the differential equation of curvature lines near the critical end point 
0, is given by Ldr2 + Mdrd8 + Nd82 = 0, where: m 0 = M(8,0) = 
-8a7b7 , N(8, 0) = 0, and c:J: (8, 0) = 0. 

The Taylor expansions of L, M and N are as follows: 

L =lo + hr + h.o.t, 

M =mo + m1r + h.o.t, 

N =r2(no/2 + n1r/6 + nzr2 /24 + h.o.t.) 

After a long calculation, corroborated by computer algebra, it follows 
that: 

(16) 
lo = = 2a5 b5 [a3ob3 cos2 8 sin 8 + azlab2(2 cos 8- 3 cos3 8) 

+alza2b(sin8- 3cos2 8sin8) + ao3a3(cos3 8- cos8)] 

no =4b5a5 [( -3a21b2a + ao3a3) cos3 8 

(17) +( a3ob3 - 3alzba2) sin 8 cos2 8 

+( -ao3a3 + 2azl b2 a) cos 8 + 4ba2 a12 sin 8] 
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(19) 
n 2 =- 2a3b3[(a3b4(24a3oal3 + 6ao3a4o + l08a21a22 + 72a12a31) 

+6a7ao3ao4 -l8b2a5 (a21ao4 + 4a12a13 + 2ao3a22)- 6ab6 (3a2la4o 

+4a3oa31)) cos7 e + (a4b3(6ao4a3o + 72a2lal3 + 108al2a22 

+24ao3a31) + 6a4ob7 a3o- l8b5a 2(a4oa12 + 4a21a31 + 2a3oa22) 

-6a6 b( 4ao3al3 + 3al2ao4)) sine cos6 e + (24a7b2ao3 + 72b6 a3a21 

-b4a5 (24ao3 + 72a21) + ab6 (50a3oa31 + 36a2la4o) 

-a3b4(10ao3a4o + 198a21a22 + 46a3oal3 + 126a12a31) 

+b2a3 (l8ai2a21 - 6a~ 1 ao3 - 12a3oa12ao3) + b4a(3a~0ao3 

+6a3oa12a21 - 9a~ 1 ) + a 5b2(54ao3a22 + 114a12a13 + 30a2lao4) 

+a5 (3a63a21 - 3ai2ao3) - 8ao3a 7 ao4) cos5 e 
+(a6 b(22ao3al3 + l8a12ao4) + a4b5 (72al2 + 24a3o) - l0a4ob7 a3o 

-a4b3(90a2lal3 + 126a12a22 + 8ao4a3o + 26ao3a31) 

+a2b5 (54a3oa22 + 24a4oa12 + 102a21a31) + a 2b3(l2a3oao3a21 

+6ai2a3o -l8a~1a12)- 24b7a2a3o + 3b5 (a~ 1 a3o- a~0a12) 

-a4b(3a63a3o + 6a2lal2a03 - 9ar2) - 72a6 b3al2) sine cos4 e 
+( -2ao3a7 ao4- 24a7b2ao3 + 6a5 (ai2ao3- a63a21)- ab6 (l6a21a4o 

+24a3oa31) - a 5b2(l2a21ao4 + l8ao3a22 + 48a12a13) 

+a5 b4(24ao3 + 96a21) + a3b2(l5a3oa12ao3 + 12a~ 1 ao3- 27ai2a21) 

+a3b4( 4ao3a4o + 120a21a22 + 70a12a31 + 26a3oa13) 

+ab4(6a~l- 3a~oao3- 3a3oal2)a21- 96b6a3a21)) cos3 e + (48a6a2lb3 

+(4al3ao3 + 2a21ao4)a6 b + (9a21ao3a21 + 3a63a3o- 12a~1 )a4 b 

-(48a21 + 24a3o)a4b5 + (6ao3a31 + 34a13a21 + 48a21a22 

+2ao4a3o)a4b3 + 24b7a2a3o- (36a31a21 + l8a22a3o + 6a4oa21)a2b5 

+(9a~l a21 - 9a3oao3a2l)a2b3) sine cos2 e 
+( 4ao3a7 ao4 + ( -3ai2ao3 + 3a63a2l)a5 

+6a13b2a 5a12 - 36a5b4a21 + 3(3ai2a21 - 2a~ 1 ao3 - a12ao3a3o)b2a3 

-4(6a2la22 + al3a3o + 3al2a3l)b4a3 + 36b6a3a21) cos e 
+(12b5a4al2 - 12a6 b3a12- (2a12ao4 + 2a13ao3)a6b 

-(4al3a21- 6a12a22)a4b3 + (3ar2 - 3a12ao3a21)a4b) sine]. 
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h =- ~a3b3 [(l8b5aa21a3o + l8ba5a12ao3 

-6b3a3(a3oao3 + 9a21a12)) cos6 () 

+(3a6a~3 - 9(2a21ao3 + 3a~2 )b2a4 

+9(2a3oa12 + 3a~1 )b4a2 - 3b6 a~0 ) sin() cos5 () 

+( -lSb5aa21a3o + 9b3a3(9a21a12 + a3oao3) 

-39ba5a12ao3 - 32b3a5a13 + 32b5a3a31) cos4 () 
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(20) +(48b4a4a22- 8b6a2a4o- 6b4a2 (3a~1 + 2a12a3o)- 8b2a6ao4 

-6a6a~3 + 12b2a4 (2a21ao3 + 3a~2 )) sin() cos3 () 

+( -24b5a3a31 + 40b3a5a13 + 24ba5a12ao3 

-3b3a3(9a21a12 + a3oao3)) cos2 () 

+( -12b6a4 - 3b2a4 (3a~2 + 2a21ao3) + 8b2a6ao4 

+12b4a6 + 3a6a~3 - 24b4a4a22) sin() cos() 

-(3ba5a12ao3 + 8b3a5a13)] 

n 1 =a3b3[(l8b5aa21a3o - 6b3a3(9a21a12 + a3oao3) 

+ l8ba5a12ao3) cos6 () 

+(9b4a2(2a12a3o + 3a~1 ) - 9b2a4 (2a21ao3 + 3a~2 ) 

-3b6a~0 + 3a6a~3 ) sin() cos5 () 

+(l6b3a5a13 + 9b3a3(a3oao3 + 9a21a12) 

-l6b5a3a31- 39b5aa21a3o- lSba5a12ao3) cos4 () 

(21) +( -24b4a4a22 + 6b6a~0 - 12b4a2 (3a~1 + 2a12a3o) + 4b2a6ao4 

+4b6a2a4o + 6b2a4 (2a21ao3 + 3a~2 )) sin() cos3 () 

+( -20b3a5a13 - 6ba5a12ao3 + 12b5a3a31 

+l8b5aa21a3o- 3b3a3(13a21a12 + a3oao3)) cos2 () 

+( -12b6a 4 - 3a~2b2a4 + 12b4a4a22 + 12b4a 6 

+6b4a2 (2a~1 + a12a3o) - 3a6a~3 - 4b2a6 ao4) sin() cos() 

+(4b3a5a13 + 6b3a3a21a12 + 3ba5a12ao3)]. 

Q.E.D. 
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3.2. Principal Nets around a Definite Critical End Points 
Proposition 5. Suppose that p is an end critical point and consider 

the chart defined in Lemma 3 such that h is given by equation {12), with 
a > 0, b > 0 {local minimum). Then the behavior of curvature lines 
near p is the following. 

i) One principal foliation is radial. 
ii) The other principal foliation surrounds p and the associated 

return map II is such that IT(O) = 0, II'(O) = 1, II"(O) = 0, 

II"'(O) = 0 and IT""(O) = 7r ~ where 
210a5b5 ' 

~ =l2(a3oa21 + 3ao3a3o- 5a12a21)b6 a4 

+12(5a12a21- a12ao3- 3ao3a3o)a6b4 

+4(3ao4a3oa21 + a13a~ 1 + lOa31ao3a21)a4b4 

-4(10a13a12a3o + 3a4oa12ao3 + a31a~2)a4b4 

+4(a13a~3 - ao4a12ao3)a8 + 4(a4oa3oa21 - a31a~0 )b8 

+3(a~oao3 + 2a3oa~ 1 - 3a~0a21a12)b6 

+3(3a12a~3a21 - 2a~2ao3 - a3oa~3 )a6 

+4[ao3(2a13a21 - 3ao4a3o - 3a31ao3 + 12a22a12) 

+5ao4a12a21 - 13a13a~2]a6 b2 

+4[a3o( +3a13a3o- 2a31a12 + 3a4oao3 - 12a22a21) 

-5a4oa21a12 + 13a31a~1]a2 b6 

+9(a3oa~1 ao3 - 2a3oa21a~2 + a12a~1 )a2 b4 

+9( -a~2a21 - a3oao3a~2 + 2a12a~1 ao3)a4b2 

+l2b2a8a12ao3 -l2b8a 2a3oa21 

Fig. 6. Curvature lines near a definite focal critical end 
point,~> 0. 
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Proof. Consider the implicit differential equation (15) 

(lo + rh + h.o.t)dr2 + (mo + m1r + h.o.t)drdB 

+r2(no/2 + n1r/6 + n2r2 /24 + h.o.t.)dB2 = 0. 
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As mo = -8a7b7 f. 0 this equation factors in the product of two 
equations in the standard form, as follows. 

dr 1 no 2 1 3ml - no + mon1 3 - =---r +- r 
dB 2 mo 6 m~ 

1 (12m~no + m~n2 + 6lon~ - 6mom2no - 4momlnl) 4 -- r 
24 m~ (22) 

+h.o.t. 

1 2 1 3 1 4 
="2d2(B)r + '6d3(B)r + 24d4(B)r + h.o.t. 

(23) 
dB lo 
-d = -- + h.o.t. 

r mo 

The solutions of the nonsingular differential equation (23) defines 
the radial foliation. 

Writing r(B, h) := h + q1 ( B)h + q2(B)h2 /2 + q3(B)h3 /6 + q4( B)h4 /24 + 
h.o.t. as the solution of differential equation (22) it follows that: 

q~ (B) =0 

(24) 
q~(B) =d2(B) = -~ 

mo 
q~ (B) =3d2 ( B)q2 (B) + d3 (B) 

q,4(B) =3d2(B)q2(B)2 + 4d2(B)q3(B) + 6d3(B)q2(B) + d4(B) 

As q1(0) = 0 it follows that q1(B) = 0. Also qi(O) = 0, i = 2, 3, 4. 

So it follows that q2 (B) = - I: ;:,~ dB. From the expression of no, an 
odd polynomial in the variables c = cos B and s = sin B, it follows that 
q2(27r) = Oand therefore II'(O) = 1, II"(O) = 1. 

Now, q3(B) = I:[q2(B)q~(B) + d3(B)]dB. 

Therefore q3(B) = !qi(B) +I: d3(B)dB. 
So, 

Ilm(o) = q3(21r) = 121r d3(B)dB. 

A long calculation, confirmed by algebraic computation, shows that 
q3(27r) = 0. 
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Integrating the last linear equation in (24), it follows that: 

Therefore, 

Integration of the right hand member, corroborated by algebraic 

computation, gives II""(O) = 210:5 b5 ~. This ends the proof. Q.E.D. 

Remark 1. When~ =F 0 the foliation studied above spiruls around 
p. The point is then called a focal definite critical end point. 

3.3. Principal Nets at Saddle Critical End Points 

Let p be a saddle critical point of h as in equation (13) with the 
finite region defined by h( u, v) > 0. 

Then the differential equation (14) is given by 

(25) 
Ldv2 + Mdudv + Ndu2 = 0, 

L(u,v) =- a3u2 + 2a2uv- 3aa12uv2 + (2a2a12- 3aa21- 2a3o)u2v 

+(aa3o + 2a2a21)u3 + (2a12 + aao3)v3 + h.o.t. 

M(u, v) =- 2a2v2 + (4a3o- a2a12)uv2 + (a2a21- 2aa3o)u2v 

+a2a3ou3 + (2aa12 - a2ao3 + 4a21)v3 + h.o.t. 

N(u, v) =av2[a2 - 2(aa21 + a3o)u- 2(aa12u + a21)v] + h.o.t. 

Proposition 6. Suppose that p is a saddle critical point of the sur­
face represented by w = h( u, v) as in Lemma 3. Then the behavior of 
the extended principal foliations in the region {h(u,v) ~ 0), near p, is 
the following. 

i) If aa3o(ao3a3 + 3aa21 + 3a2a12 + a3o) > 0 then the curvatures 
of both brunches of h- 1(0) at p have the same sign and the 
behavior is as in Fig. 7, left -even case. 

ii) If aa3o(ao3a3 + 3aa21 + 3a2a12 + a3o) < 0 then the curvatures 
of both brunches of h-1(0) at p have opposite signs and the 
behavior is as in the Fig. 7, right - odd case. 
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Fig. 7. Curvature lines near saddle critical end point: even 
case, left, and odd case, right. 
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Proof. In order to analyze the behavior of the principal lines near 
the branch of h-1(0) tangent to v = 0 consider the projective blowing-up 
U=U,V=UW. 

The differential equation Ldv2 + M dudv + N du2 = 0 defined by 
equation (25) is, after some simplification, given by: 

(26) 
1 2 2 2 

( -4a30u + aa3ow + 0(2))du + (aa3ou- 2a w + 0(2))dwdu 

-(a2u + 0(2))dw2 = 0. 

To proceed consider the resolution of the singularity (0, 0) of equation 
(26) by the Lie-Cartan line field X= (q9q, 9q, -(q9u + 9w)), q = ~:. 
Here g is 

1 
9 = ( -4a~0u+aa3ow+0(2))q2 +(aa3ou-2a2w+0(2))q- (a2u+0(2)). 

The singularities of X, contained in axis q (projective line), are the 
solutions of the equation q(2a- a3oq)(6a- a3oq) = 0. 

Also, 

(
!(qa3o(2a- a3oq)) 

DX(O, 0, q) = !(a3o(2a
0

- a3oq)) 

3 
where A33 = 3a2 - 4aa3oQ + 4a~0q2 . 

-2qa(a- a3oq) 0 ) 
-2a(a- a3oq) 0 

0 A33 

. 1 
The mgenvalues of DX(O, 0, q) are >.1 (q) = -2a2 + 3aa3oq- 2a~0q2 , 

3 
>.2(q) = 3a2 - 4aa3oQ + 4a~0q2 and .A3(q) = 0. 
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Therefore the non zero eigenvalues of DX(O) are -2a2 and 3a2. At 
q1 = ; 3: the eigenvalues of DX(O, 0, q1) are 2a2 and -2a2. Finally at 
q2 = ..fu!.. the eigenvalues of DX(O, 0, q2) are 6a2 and -2a2. 

a3o 
As a conclusion of this analysis we assert that the net of integral 

curves of equation (26) near (0, 0) is the same as one of the generic 
singularities of quadratic differential equations, well known as the Dar­
bouxian D3 or a tripod, [14, 17]. See Fig. (5). 

Now observe that the curvature at 0 of the branch of h-1 (0) tangent 

to v = 0 is precisely k1 = a30 and that h-1(0)\ {0} is solution of equation 
a 

(25). So, after the blowing down, only one branch of the invariant curve 

v = a30 u2 + 0(3) is contained in the finite region {(u, v) : h(u, v) > 0}. 
6a 

Analogously, the analysis of the behavior of the principal lines near 
the branch of h- 1(0) tangent to v = au can be reduced to the above 
case. To see this perform a rotation of angle tan() = a and take new 
orthogonal coordinates u and ii such that the axis u coincides with the 
line v =au. 

The curvature at 0 of the branch of h-1 (0) tangent to v =au is 

k2 = _ ao3a3 + 3aa21 + 3a2a12 + a 30 

3a 

Performing the blowing-up v = v, u = sv in the differential equa­
tion (25) we conclude that it factors in two transversal regular foliations. 

Gluing the phase portraits studied so far and doing their blowing 
down, the net explained below is obtained. 

The finite region (h(u, v) > 0) is formed by two sectorial regions 
R1, with 8R1 = 01 u 02 and R2 with 8R2 = L1 u L2. The two regular 
branches of h-1(0) are given by 01 U L1 and 02 U L2. 

If k1 k2 < 0- odd case- then one region, say R 1 , is convex and 8R1 

is invariant for one extended principal foliation and 8R2 is invariant for 
the other one. In each region, each foliation has an invariant separatrix 
tangent to the branches of h- 1 (0). See Fig. 7, right. 

If k1k2 > 0 - even case- then in a region, say R1, the extended 
principal foliations are equivalent to a trivial ones, i.e., to dudv = 0, 
with 01 being a leaf of one foliation and 02 a leaf of the other one. In 
the region R2 each extended principal foliation has a hyperbolic sector, 
with separatrices tangent to the branches of h- 1(0) as shown in Fig. 7, 
left. Here 02 u L1 are leaves of one principal foliation and 0 1 n L2 are 
leaves of the other one. Q.E.D. 
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§4. Concluding Comments and Related Problems 

We have studied here the simplest patterns of principal curvature 
lines at end points, as the supporting smooth surfaces tend to infinity 
in IR3 , following the paradigm established in [6] to describe the struc­
turally stable patterns for principal curvature lines escaping to infinity 
on algebraic surfaces. 

We have recovered here -see Proposition 1 - the main results of the 
structurally stable inflexion ends established in [6] for algebraic surfaces: 
namely the hyperbolic and elliptic cases. 

In the present context a surface A( ac) with ac E A~ is said to be 
structurally stable at a singular end point p if the cs, topology with s ::; k 
if the following holds. For any sequence of functions a~ E A~ converging 
to ac in the c• topology, there is a sequence Pn of end points of A( a~) 
converging to p such that the extended principal nets of an = a~ o lP', 
at these points, are topologically equivalent to extended principal net of 
a= ac o lP', at p. 

Recall (see [6]) that two nets Ni i = 1, 2 at singular points Pi i = 1, 2 
are topologically equivalent provided there is a homeomorphism of a 
neighborhood of p 1 to a neighborhood of p2 mapping the respective 
points and leaves of the respective foliations to each other. 

The analysis in Proposition 1 makes clear that the hyperbolic and el­
liptic inflexion end points are also structurally stable in the C 3 topology 
for defining ac functions in the space A~, k 2: 4. 

We have studied also six new cases -see Propositions 2 to 6 - which 
represent the simplest patterns where the structural stability conditions 
fail. 

The lower smoothness class Ck for the validity of the analysis in the 
proofs of these propositions is as follows. In Propositions 2 and 6 we 
must assume k 2': 4. In Proposition 5, clearly k 2': 5 must hold. 

In each of these cases it is not difficult to describe partial aspects 
of possible topological changes -bifurcation phenomena- under small 
perturbations of the defining functions ac. 

However it involves considerably technical work to provide the full 
analysis of bifurcation diagrams of singular end points and their global 
effects in the principal nets. 

We recall here that the study of the bifurcations of principal nets 
away from end points, i.e., in compact regions was carried out in [13], 
focusing the umbilic singular points. There was also established the con­
nection between umbilic codimension one singularities and their counter­
parts in critical points of functions and the singularities of vector fields, 
following the paradigm of first order structural stability in the sense of 
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Andronov and Leontovich [1 J, generalized and extended by Sotomayor 
[20]. Grosso modo this paradigm aims to characterize the structurally 
stable singularities under small perturbations inside the space of non­
structurally stable ones. 

To advance an idea of the bifurcations at end points, below we will 
suggest pictorially the local bifurcation diagrams in the three regular 
cases studied so far. 

Fig. 8. Bifurcation Diagram of Curvature lines near regular 
end points: elimination of hyperbolic and elliptic 
inflexion points 

Fig. 9. Bifurcation Diagram of Curvature lines near 
umbilic-inflexion end points. Upper row: D 1 um­
bilic - hyperbolic inflexion. Lower row: D3 umbilic 
- elliptic inflexion. 



Lines of curvature near singular end points . 461 

The description of the bifurcations in the critical cases, however, is 
much more intricate and will not be discussed here. 

The full analysis of the non-compact bifurcations as well as their 
connection with first order structural stability will be postponed to a 
future paper. 

Concerning the study of end points, see also [16], where Gutierrez 
and Sotomayor studied the behavior of principal nets on constant mean 
curvature surfaces, with special analysis of their periodic leaves, umbilic 
and end points. However, the patterns of behavior for this class of 
surfaces is non-generic in the sense of the present work. 

We conclude proposing the following problem. 

Problem 1. Concerning the case of the focal critical end point, 
we propose to the reader to provide a conceptual analysis and a proof 
of Proposition 5, avoiding long calculations and the use of Computer 
Algebra. 
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