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Weighted homogeneous polynomials and
blow-analytic equivalence

Ould M Abderrahmane

Abstract.

Based on the T. Fukui invariant and the recent motivic invariants
proposed by S. Koike and A. Parusiriski we give a simple classification
of two variable quasihomogeneous polynomials by the blow-analytic
equivalence.

§1. INTRODUCTION

Unlike the topological triviality of real algebraic germs, the C'-
equisingularity admits continuous moduli. For instance, the Whitney
family Wi(z,y) = zy(z — y)(z — ty), t > 1, has an infinite number
of different C'-types. Nevertheless, as was noticed by Tzee-Char Kuo,
this family is blow-analytically trivial, that is, after composing with
the blowing-up 3: M? — R2, W, o 8 becomes analytically trivial. T.-
C. Kuo proposed new notions of blow-analytic equisingularity and the
blow-analytic function (see [6, 3] for survey). Let f: U — R, U open
in R™ be a continuous function. We say that f is blow-analytic, if
there exists a sequence of blowing-up 3 such that the composition f o 3
is analytic (for instance f(z,y) = 521;%5 is blow-analytic but not C?).
A local homeomorphism h: (R",0) — (R",0) is called blow-analytic
if so are all coordinate functions of A and A~!. Two function germs
f1, f2: (R™,0) — (R,0) are blow-analytically equivalent if there is a
blow-analytic homeomorphism h such that f; = f2 0 h.

Observation. Let f, g: (C",0) — (C, 0) be weighted homogeneous
polynomials with isolated singularities. It is known, for n = 2, 3, that if
(C", f~1(0)) and (C™, g~1(0)) are homeomorphic as germs at 0 € C™,
then, their systems of weights coincide.
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We will consider real singularities. We can easily see that the notion
of topological equivalence is too weak to consider the same problem for
real analytic singularities. For example, consider f(z,y) = 23 + zy®
and g(z,y) = 2® + y®, they are topologically equivalent by Kuiper-
Kuo Theorem (see |7, 8]). However, f and g have different weights. We
replace the topological equivalence by the blow-analytic equivalence, and
we will consider the following problem suggested by T. Fukui.

Problem 1 (T. Fukui, [2], Conjecture 9.2 ). Let f, g: (R",0) —
(R, 0) be weighted homogeneous polynomials with isolated singularities.
Suppose that f and g are blow-analytically equivalent. Then, do their
systems of weights coincide?

The purpose of this paper is to establish this conjecture for two
variables. Namely, we will prove the following:

Theorem 1. Let f;: (R?,0) — (R,0) (i = 1,2) be non-degenerate
quasihomogeneous polynomials of type (1; ri1,7i2) such that 0 < ry <
rii- If fi and fo are blow-analytically equivalent, then either both fi
and fo are nonsingular, or both are analytically equivalent to xy, or
(r11,712) = (T21,722).

We call a polynomial f quasihomogeneous of type (d; wy,...,wp) €
Q"L if 43w+ - - +izgwy, = d for any monomial azt! ... x4 of f. We say
that a polynomial f(z) is non-degenerate if {B%Ll(z) == B—‘ZE%(:B) =

0} ¢ {0} as germs at the origin of R".

We will next recall some important results on blow-analytic equiv-
alence.

Theorem 2 (T. Fukui - L. Paunescu [4]). Given a system of weights
w = (wy,...,wy), let fr: (R™,0) — (R,0) be an analytic function for
t € I =[0,1]. Suppose that for each t € I, the weighted initial form
of fi with respect to w is the same weighted degree and has an isolated
singularity at 0 € R™. Then {fi}tes is blow-analytically trivial over I.

T. Fukui (]2]) gave some invariants for blow-analytic equivalence.
One of them is defined as follows:
For an analytic function f: (R",0) — (R,0), set
A(f) ={O0(f o A) | A: (R,0) — (R",0) C*arc}.

Then we have
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Theorem 3 (Fukui’s invariant). Suppose that analytic functions
f,9: R™0) - (R,0) are blow-analytically equivalent, then A(f) =
A(g).

Recently in [5], S. Koike and A. Parusinski have defined motivic zeta
functions (inspired by the work of Denef and Loser [1]) which are invari-
ant for blow-analytic equivalence. We will briefly recall their definition
of the zeta functions.

Denote by L the space of analytic arcs at the origin 0 € R™:

L={y:(R,0) — (R",0) | v is analytic }
and by L the space of truncated arcs:
Lr={y€L|y({t) =01t + - +vth, v; € R"}.

Given an analytic function f: (R™,0) — (R,0). For k > 1 we
denote

A(f)={veLr|for(t)=ct: +---, c#0}.
We define the zeta function of f by

Z5(T) = Y (=1) """ x*(A()T*

k>1

where x¢ denotes the Euler characteristic with compact support.
Then we have

Theorem 4 (S. Koike - A. Parusiniski [5]). Suppose that analytic
functions f, g: (R™,0) — (R,0) are blow-analytically equivalent, then
Z; = 7,.

Before starting the proof of Theorem 1, we will make one more
remark, as follows.

Remark 5. Let f: (R",0) — (R,0) be a non-degenerate quasiho-
mogeneous polynomial of type (d; w1, ..., wy). Taking a new representa-
tive of the blow-analytic class of f if necessary we can suppose that, for
each a € N™ such that (o, w) = oqwy + - - - + apwy, = d, the coefficient

term x® = x7! - 2%~ is not zero in f(x).

Our remark is a simple consequence of Theorem 2 (we omit the
details).



336 O. M. Abderrahmane

§2. PROOF OF THEOREM 1

Let f;: (R?,0) — (R,0) (i = 1,2) be non-degenerate quasihomoge-

neous polynomials of type (1; r;1,7i2). Setting

1 1

ai=—and by=— fori=1,2.

T;1 T2
Modulo a permutation coordinate of R?, we may assume that a; < b;.
Moreover, if a; < 2, then f; is analytically equivalent to g(z,y) = = or zy
by the Implicit Function Theorem. But 0 € R? is a regular point of x
and the polynomial zy is a weighted homogeneous of type (1; 1, 1).
Given this, we can assume that

(2.1) 2<a;<b fori=1,2

Since f; are non-degenerate quasihomogeneous polynomials, we have
the following cases for Newton boundary I'( f;) as in the following figure :

AN VAN YA
b, ¢ b, ¢ b; 4
* ¢ (lan)
r(f) T
(P 1) . (pi,1)
a; a; a;
ai, b; € N a; €N or b e N ai¢N,bi§ZN

These figures suggest that the proof of Theorem 1 should be divided
into several steps, according to the possible cases for a; and b; :

Case 1. In this case, we suppose a;, b; € N (i.e., f; nearly conve-
nient). Here N denotes the set of positive integers and let for any a € N,
Nsq ={k € N |k > a}. We first remark that the Fukui invariant of f;
can be computed easily as follows:

Assertion 6.

a;N U b;N U {oo} if £71(0) = {0},

2.2)  A(fi) =
= ) {aiN UbNUN> g, 5] U{oo} otherwise.
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Where [a;,b;] = LCM(a;, b;).

Proof. Let A: (R,0) — (R?2,0) be an analytic arc. Then A(t) =
(X (t), Y(¢)) can be expressed in the following way :

X(t) = 0t 4+ o1 t* 4o Y(t) = cpt¥ +cppat T4,

where ay, ¢, # 0 and u,v > 1. By the above Remark 5, we may
assume that there exist the terms X% and Y% with non-zero coefficients
in f;(X,Y).
We will first consider the case whereby f;"1(0) = {0}. If ua; # vb;,
we have
X (8), Y (t) = dy tmin{uesvbd o g 20

then O(f; o A) = min{ua;, vb;} € a;N UbN U {oo}. Thus it remains
for us to consider the case ua; = vb;. In this case, we have

fz(X(t),Y(t)) = fi(au7 cv)tua,' +y

since fi(ay , ¢y) # 0. Therefore A(f;) C a;IN Ub;N U {o0}. Any integer
s € a;NUb;N, for instance s = k a;, is attained by the arc v(t) = (t¥,0).
Hence we have

A(fl) =a;NUH;NU {OO}

We will next consider the case whereby f;1(0) # {0}. Similarly we
have

a;INUbNU {OO} - A(fz) CaNUHNU Nz[ai,bi] U {OO}

Obviously we only have to prove that N4, 5,) S A(f:). Suppose that
k € N> (4,5, Then there exists an arc y through 0 € R? such that O(fo
v) = k. Setting [a;,b;] = n;a; = m;b;, since f; is non-degenerate and
£71(0) # {0}, there exists a (a, ¢) € f;*(0) such that (g—%(a, c), %%(a, c))
# (0,0), we may assume that %)f(i(a, ¢) # 0. Then it is easy to see that
for any positive integers [a;, b;] + s € A(f), s € N, is attained by an arc
Y(t) = (at™ + 5T ™).

Evidently, this completes the proof of the Assertion. Q.E.D.

From Theorem 3, A(f1) = A(f2). Thus, by the above Assertion, we
have the following result :

a1 = az same multiplicity for f;,
b1 = b2 if b] ¢ a1N or bg ¢ agN,

by = by if f;71(0) # {0}.
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Manifestly, the Fukui invariant determines the weights except in the
following case:

by = kia, by = koa and f;(0) = {0},

where a = a; = ay is the smallest number in A(f;), and there remains
to prove k; = ko. In fact, assume that k1 # ko, for example ko > k.
We will show that this gives rise to a contraduction by comparing the
coefficients of the zeta functions. If ks > k; then we may write

Abl (f2) = {V(t) = (Ckltkl + +cb1tb1 ) dltl +o 4+ dbltbl) | Cky 7/: 0}
~R* x R~k x Rb1.

That is
(23)  X°(An(f2)) = (F2x (RO RH0) = (=2)(-1)* R
Also, since fl_l(O) = {0}, we obtain

Abl(fl) = {’Y = (ukltkl +ooee ubltb17U1t1 +-- +Ub1tb1) l (ukl’vl) 7é 0}
~ (R%2 - {0}) x Rb-F1 x R !

which means
XS (Ab, (f1)) = x°(R2 — {0}) xS(R2r—Fa=1y,

Since x¢(R? — {0}) = 0 we get by (2.3) that x(4s, (f1)) # x°(As, (f2))-
Therefore Zy, # Zy,, which contradicts Theorem 4. This ends the proof
of Theorem 1 in the first case.

Case 2. In this case, we suppose a; ¢ N, b; € N for ¢ = 1, 2. Since
fi is non-degenerate, then there exists the term zP:y for some integers
p; > 1 with non-zero coeflicients in f;(z,y). By Theorem 2 and (2.1),
it is easy to see that for any integers s > 1, f;(z,y) + 2P is blow-
analytically equivalent to f;(z,y). Then the Fukui invariant of f; is
determined by

(2.4) A(fi) ={pi +1,pi+2,pi+3,--- } U{oo}.

Moreover A(f1) = A(f2), and it follows that p; = ps. Consequently it
is sufficient to prove that b; = by. Indeed, suppose that b; < bs. Then,
we let

p=p1=p2, Rn={(rs)eN*|rp+s=n}
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and
C::s = {V(t) = (urtr + .- + untn 9 Usts + tte + Untn) | Uy, Vs 7’4' O}
~ (R*)Z X R2n4r—5‘

Let us first compute x¢(As, (fi)). It is easy to see that for any
positive integers n < b;, we have that A,(fi) = U, e, Cr, (Remark

that the union is disjoint). Thus, by the additivity of x¢, we have

(2.5) XA (f2)) = D (=217,

(r,8)ERy,

Similarly if b, — 1 ¢ pIN, we obtain
(26)  x(An () = (D04 DT (2P (D

(7, s)E?Rbl

where d is the smallest number in {1,...,b1} such that dp + 1 > b;.
It follows from (2.5) and (2.6) that x¢(Ap, (f2)) # x(4s,(f1)). But
this implies a contradiction, by comparing the coefficients of the zeta
functions. Hence we have b; — 1 € pN. Now assume b; = kp+ 1. Then
by elementary computation, we have

Ap, (f1) = Cp, U (Uirs)emo, \{(k)}C%)5
where
Cr, = {7(t) = (ut® + - + up,t® , oot + -+ vy t%) | fi(ug,v1) # 0}
~ {f1 # 0} x R#17+=1,

Also, by the additivity of the Euler characteristic with compact support,
we obtain

XA (f1) = X £OD(-D)P Ry N (-

(rs)eRe \{(k,1)}

Together with (2.5), it follows that

(2.7) X“({fi=0}) = -
We will next compute the x°(Ap, +1(fi)), (¢ = 1,2). Setting m =
kp+2 =1by; + 1. Then, by the above, m — 1 ¢ pN and m < bs, we can

easily see the following
(2.8)

X (Am(f2)) = {Z“’”E“m P if m < b,

_2(_1)2m—k—1 4 Z(r,s)E?Rm 4(_1)2m—r—s if m = by
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Now we compute x°(A,,(f1)). Let A(t) = (X (), Y (t)) be an analytic
arc defined by
X(t) = ut + - + umt™,

Y(t) = vit + - + vpt™
We can write
fUX®),Y (1) = filue, v)t™F + (Vfr(ur,v1)5 (urgr,v2) ) t7 + -,

where

15) 0
(Vfi(ug,v1); (uks1,v2)) = T;(ukyvl)uk+1 + -52—1(1%,7)1)”2-

Moreover, if fi(ug,v1) =0 and (Vfi(uk,v1); (ug+1,v2)) # 0, then we
have O(f1 o A\) = m. Let us put
B = {(u,v,w,2) € (f{ 1(0) = {0}) x R* | {Vfi(u,v); (w,2)) #0},
By = {(u,v,w,2) € (f{ 1(0) = {0}) x R? | (Vfi(u,v); (w,2)) =0},
Cvy, = {(upth + - 4 umt™, vitt + -+ + upt™)| (ug, Ups1,v1,v2) € B1}
~ By x R?™~k-3

Then, by the above, the A,,(f1) given by

Am(fl) = Cvfl U (U(r,s)E%mC;ns)'

»

Thus the Euler characteristic with support compact of Ay, (f1) equals
(2.9 x(An(f1)) = XC(BI)(_l)Qm—k—S + Z (_2)2(_1)2771—1*—3‘
(r,s)ERMm

By identification of the m-coefficients of both zeta functions of f; for
i = 1,2, it follows from (2.8) and (2.9) that x°(B1) =0 or — 2. On the
other hand, (f;*(0) — {0}) x R? = B; U B;. Therefore

X(f1(0) = {0}) = x°(B1) + x°(Ba),

but By ~ (f;*(0)~{0}) x R. This is clear because f; is non-degenerate,
then we have

XE(FH(0) = {0}) = X°(f71(0) = {0})(=1) + X*(By).
Since x¢(B1) = 0 or — 2, this yields
X“(f1(0) =1or0,

which contradicts (2.7). This ends the proof of Theorem 1 in the second
case.
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Remark 7. If we drop the assumption that bs is an integer, then
the above proof still holds.

Case 3. In this case, we suppose a; € N, b; ¢ N for 1 = 1,2.
Since f; is non-degenerate, then there exists the term xy% for some
integers g; > 1 with non-zero coefficients in f;(z,y). For any real o we
denote by e(a) the minimum positive integer n such that n > . By an
argument similar to that of Assertion 6 and (2.4), we can compute the
Fukui invariant of f; as follows:

A(fi) = aiNU{e(b;), e(b;) +1,---} U {oo}.
By Theorem 3, A(f1) = A(f2). Then we have the following result :
(2.10) a1 = az and e(by) = e(bs)

Suppose now b; # ba. Then ¢1 # g2, but | b1 — b2 |2 g1 —q2 [> 1. It
follows that e(b1) # e(bz), which contradicts (2.10). This complete the
proof of Theorem 1 in the third case.

Case 4. In this case, we suppose a;, b; ¢ N for + = 1,2. Since
fi is non-degenerate, then there exist the terms xP*y and xy?% for some
integers p; > 1 and ¢; > 1 with non-zero coefficients in f;(z,y). Thus,
the Fukui invariant of f; can be written as

which implies p; = p;. Thus we only have to prove that by = bs.
Indeed, let us assume that b; < by. Then we have ¢q; < g2 which implies
by < e(b1) < by. Let us put

p=p1 =p2, m=e(b) and Ry, = {(r,s) € (N~ {0})?| rp+ s =m}.

We first observe that m — 1 ¢ pN. Otherwise, if m — 1 = rp, then we
have:

(2.11) hh<qg+r<rp+1l<ra.

This is a consequence of by < m = rp+ 1 and also (1, ¢1) and (p, 1)
are vertices of I'(f1). But m = min{n € N | n > b;}, which contradicts
(2.11). Hence we have m — 1 ¢ pN. Using this observation and by
elementary computation we obtain the following result :

X An(f2) = 3 (~2)%(-1)2mr,

(r,s)ERM

X(Am(f1)) = (—22(-1)™rat 4+ N (—2)% (1)

(T»S)E%m

(2.12)
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This means that Zy # Zy,, which contradicts Theorem4. This
complete the proof of Theorem 1 in the fourth case.

In order to finish the proof of Theorem 1, it suffices to show the
following lemmas.

Lemma 8. a; € N if and only if as € N.

Proof. Suppose that this is not the case. Namely, a; € N and
az ¢ N. Since f> is non-degenerate, then there exists the term zP2y for
some integers pa > 1 with non-zero coefficients in fa(z,y). Again using
the same argument in (2.4) one gets

A(f2):{p2+17p2+27p2+3a""00}7

Since A(f1) = A(f2), then we have a3 = by = pa + 1, set m = py + 1.
We shall compute the x“(An(fi)) for ¢ = 1,2, that is

A (f2) ={7@t) = (wrt + - + umt™, vit + - - - + v,t™) | ug, v1 # 0}
~ (R*)? x R?™2
S0
Am(f1) ={v(t) = (uat + - Fumt™, vit + -+ + vt™) | fi(u1,v1) # 0}
~ {fi1 #0} x R*™72,
and hence to
(—2)%(—1)2m-2 ifi =2,
X“({f1 £0})(-1)>""2 ifi=1.
Since x¢(Am(f1)) = x°(Am(f2)), then we have

(2.14) X“({fr=0}) =-3.

Using the same argument as Case 2, the (m + 1)-coefficients of Z;,
for i = 1,2 can be computed as follows:

(2.13) X (Am(f)) = {

-4  if m # by,

X(Am+1(f1)) = x°(B1) and x°(Am41(f2)) = .
-6 if m = by.
We recall that :

By = {(u,v,w,2) € (f{1(0) = {0}) x R? | (Vfi(u,v); (w,2)) #0},
B; ={(u,v,w,z2) € (ffl(O) - {0}) x R?| (Vfi(u,v); (w,2)) =0}
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Finally, by comparing the (m+-1)-coefficients of both zeta functions Zy,,
it is evident that x°(B;) = —4 or —6, but (f;1(0)—{0})xR? = B;UB,.
It follows from the additivity of the Euler characteristic that x°(f;"1(0)—
{0}) = x°(B1)+x°(Bz). On the other hand, by By ~ (f7}(0)—{0}) xR
(because f1 is non-degenerate), then we have

X(ffH0)) =~1or -2,
which contradicts (2.14). This proves the lemma. Q.E.D.
Lemma 9. b; € N if and only if by € N.

Proof. Suppose now that by € N and by ¢ N. Since f5 is non-
degenerate, then there exists the term xy? for some integers gz > 1
with non-zero coefficients in fa(z, y).

We first consider a; € N for ¢ = 1,2. Then, by the same reason as
above, we can compute the Fukui invariant of f; as follows:

A(fl) =aNUbNU NZ[ahbl] U {OO}7
A(f2) = G,QN U NZe(bz) U {OO}

Since A(f1) = A(f2), then we have the following result:
(2.15) a1 = a2, by =ka;, and e(bs) =by or by + 1.

Since by = kaj, we may assume by Remark 5 that there exists the
term 2y*(91~1) with non-zero coefficients in f(z,y). But |by — by| >
lg2 — k(a1 — 1) > 1, which implies by > by + 1 or by > by + 1. It follows
that e(bs) > b1 + 1 or e(bs) < by, which contradicts (2.15), and ends the
first part of the lemma.

Now we consider the case where a; ¢ N for ¢ = 1,2. Since f; is
non-degenerate, then there exists the term xPiy for some integers p; > 1
with non-zero coeflicients in f;(x,y). It is easy to see that

Moreover A(f1) = A(f2), and we get p1 = pa. Set
p=p1=ps, m=e(by) and Ry ={(r,s)EN?|rp+s=m}.

As stated in Remark 7, we can exclude the case where by < by (because
this is proved in exactly the same way as Case 2). Thus it remains to
consider the case by < b3.

We next compute the m-coefficients of both zeta functions Zy, for
1 =1, 2. For this, we can assert that m —1 ¢ pN. Indeed, suppose that
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m — 1 = ap for some positive integer a. Since by < m = ap + 1 which
implies by < g2 + @ < ap + 1. This is clear because (1, g2) € I'(f2).
But m = e(bs) is equal to the smallest integer greater than by, which is
a contradiction. Therefore we obtain that m — 1 ¢ pN, and so on by
elementary computation, we have the following result:

(216) X“(An(f2) = (w2)2(-D)™Fet 4 5 (g1,

(r,8)ERm.
And
X(Am(f) = Y (-2)%(-1)*™ " it m<by,
(r,8)ERm
X(Am(f1)) = (=2)(-1)™F 2+ Y (=2)%(-1)*™7"*  if m=by.

(r,s)ERM

Now it suffices to note by the above equalities that Z;, # Z¢,, which
contradicts Theorem 4. This completes the proof. Q.E.D.

Theorem 1 is therefore proved.

Example 10. Let k be an arbitrary integer greater than or equal to

4. We consider quasihomogeneous polynomial functions fi, gr: (R?,0) —
(R, 0) defined by

fr(z,y) =2® +2y?*,  gi(z,y) =2° — 22

Note that the weights of fi and gi are (£, &) and (%, 2—161_'_—2) re-

spectively. Since fi, and g have different weights for k¥ > 4, they are
not blow-analytically equivalent by Theorem 1. However, fr and g are
topologically equivalent. In fact, the above fi(z,y) = 2° + zy?* €
JEF1(2,1) is C-sufficient by the Kuiper-Kuo Theorem (see [7, 8]).
Therefore, fi is topologically equivalent to fx — y2* 2. On the other
hand, g and gi + zy%* are blow-analytically equivalent by Theorem 2.
Besides fr — y2*¥*2 = gy + 22, hence the conclusion holds. Conse-
quently, fi € Jﬁk“(Z, 1) is not blow-analytically sufficient for k > 4.

In the case k = 4, the weights of f4 and g4 are equal to (é, ll .
Furthermore, f4 is blow-analytically equivalent to g4. Indeed, consider
the family H;: (R%0) — (R,0) (¢t € [0,1]) defined by Hy(z,y) =
(1 —1t)fa(z,y) +t ga(z,y). It is easy to see that for each t € [0,1], H; has
an isolated singularity at 0 € R2. Therefore, it follows from Theorem
2 that {H;}o<¢<1 is blow-analytically trivial over [0,1]. In particular,
Hy = f4 is blow-analytically equivalent to H; = g4.
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