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Generalization of a precise £ 2 division theorem 

Takeo Ohsawa 

§ Introduction 

The purpose of this article is to generalize the following. 

Theorem 1 (cf. [0-3]). Let D be a bounded pseudoconvex domain 
in en and let z = (zb ... 'Zn) be the coordinate of en. Then there exists 
a constant C depending only on the diameter of D such that, for any 
plurisubharmonic function cp on D and for any holomorphic function f 
on D satisfying 

(1) 

there exists a vector valued holomorphic function g = (gb ... , gn) on D 
satisfying 

n 

(2) f(z) = L Zigi(z) 
i=l 

with 

Here d>.. denotes the Lebesgue measure. 

We generalize this in order to establish an understanding that the 
measure e-'Pizl-2n d>.. in (1) consists of three parts, i.e. e-<p(z) for any 
plurisubharmonic function cp, lzl-2 as the quotient fiber metric associ­
ated to the morphism g f---+ I; zigi, and lzl-2n+2 d>.. as the residue of 
a volume form on (D \ {0}) x pn-l with respect to the embedding of 
D \ {0} by z f---+ (z, [z]), where [z] = (zl : · · · : Zn)· 
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In our generalized circumstance there will be given a complex man­
ifold M and a surjective morphism "Y : E --> Q, where E and Q are 
holomorphic vector bundles over M. 

It was first asked by H. Skoda [S-2] to find an L 2 surjectivity con­
dition for the morphism induced from "Y· More precisely speaking, by 
specifying a coo volume form dVM on M, a coo fiber metric hE of E and 
the fiber metric hQ of Q induced from hE via""(, a surjectivity criterion 
was looked for with respect to the induced morphism 

where A 2 ( M, · ) ( = A 2 ( M, · , dV M)) denotes the space of L2 holomorphic 
sections and "Y*(g) :="Yo g. 

Here we shall relax the L 2 condition by considering another volume 
form dVfvr on M and ask for a surjectivity condition for the induced 
operator 

where "Y* is only defined as a map from a linear subspace of A 2(M,E,dVM)· 
To state our main result, let us introduce some notation. 
Let Qv, Ev denote the duals of Q, E, let "Yv : Qv --> Ev be the 

dual of""(, and let 

P(Qv) = II P(Q~), P(Ev) = II P(E~), 
xEM xEM 

where P(Q~) = {Cv I v E Q~ \ {0}} and P(E~) = {Cw I wEE~\ {0}}. 
We shall indentify P(Qv) as a complex submainfold of P(Ev) via "Yv· 

Let us define a line bundle L(Ev) over P(Ev) by 

L(Ev) = II L(Ev)~ 
t,EP(EV) 

where L(Ev)~ = ~· Then L(Ev)v is, as a holomorphic line bundle over 
P(Ev), naturally indentified with 

II Ex/Ker~ (x EM,~ E P(E~)) 
x,~ 

where Ker ~ := Ker a: for any a: E E~ with ~ = Co:. The line bundle 
("Yv)* L(Ev)v over P(Qv) will be naturally indentified with 

II Qx/Ker~ (x EM,~ E P(Q~)) 
x,~ 
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and denoted simply by L(Ev)viP(Qv). 
Let a- : P(Ev)~ --+ P(Ev) be the monoidal transform of P(Ev) 

along P(Qv). For simplicity we put 

Let p = rank E and q = rank Q. Then the canonical bundles 
KP(EV)- and KP(EV) are related by a canonical isomorphism 

Here I; denotes the line bundle associated to the divisor I;, Hence a 
volume form dVP(Ev)- on P(Ev)~ is induced from dVM, hE and a fiber 
metric of [I;]. There is a canonical fiber metric of [I;] induced from hE, 
but we shall not stick to it for the sake of generality. 

For any Hermitian line bundle L, its curvature form is denoted by 
8 L. For simplicity, the curvature form of the volume form, as a fiber 
metric of the anticanonical bundle K:, is denoted by Ric •. 

In this situation, a generalization of Theorem 1 is 

Theorem 2. Suppose that the following are satisfied. 
1. There exists a closed subset A C M such that 

(La) M \A is a Stein mainfold 

and 

(I. b) For any point x E A and for any neighborhood U 3 x, all the L 2 

holomorphic finctions on U \A extend holomorphically to U. 

2. [I;] admits a fiber metric such that 

(2.a) There exists a bounded canonical section, says, of [I;]. 
(2.b) There exists a constant R1 such that dVM :::; RI(rvoo-)*dVP(Ev)-, 

where rv denotes the projection from P(Ev) toM. 
(2.c) There exists a positive number Eo such that 

Then the operator F* : A 2 (M,E,dVM) --+ A 2 (M,Q,dV{r) admits a 
bounded right inverse if there exists a constant R 2 such that 

Here 1r denotes the projection from P(Qv) to M and dVE denotes the 
volume form on I; induced from dVP(EV)- and the fiber metric of [I;]. 
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Corollary 3. Let D be a pseudoconvex domain in en, let h1, ... , hp 
be bounded holomorphic functions on D, whose first order derivatives are 
also bounded, let <p be a plurisubharmonic function on D and let f be a 
holomorphic function on D satisfying 

where h = ( h1 , ... , hp). Then there exist holomorphic functions g1, ... , gp 
on D such that f = 2::~= 1 gihi and 

£1gl 2 e-'~'d,\:::; Cllfll 2 · 

Here C is a constant depending only on h. Moreover, if the Ricci curva­
ture of 1\ n J=I88(izl 2 +log lhl 2 ) is semipositive, then there exist holo­
morphic functions h, ... , lp on D such that f = :L~= 1 lihi and 

where C' is a constant depending only on h. 

Obviously the latter part of Corollary 3 contains Theorem 1. 

Corollary 4. Let D, h and <p be as above. Then, for any holo­
morphic function f on D satisfying 

£1fl 2 e-'~'lhl- 2k- 2 ldhl 2kd,\ 

where k = inf( n, p -1), there exist holomorphic functions g1 , ... , gp such 
that f = 2::~= 1 gihi and 

£lgl 2 e-'~'d,\:::; C" £1fl 2e-'~'lhl- 2k- 2 ldhl 2kd,\ 

where C" is a constant depending only on h. 

The paper is organized as follows. In Section 1 we briefly review 
the L2 extension theorem for the reader's convenience. Theorem 2 will 
be proved in Section 2. In Section 3, we shall recall Skoda's L 2 division 
theorem and its consequence which is weaker than Theorem 1. We dare 
to do this because we want to show by a counterexample that a na1ve 
improvement of Skoda's theorem, from which Theorem 1 would follow 
immediately, is false. This may well mean that our formulation of a 
generalized L2 division theorem gives a new insight into the division 
properties of holomorphic functions. 
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§1. Preliminaries- L2 extension theorem 

Let N be a complex mainfold of dimension m and let F ~ N be a 
holomorphic line bundle with a coo fiber metric hp. (The symbols M, 
n, E, hE are reserved for the division theory.) 

Let S C N be a closed complex submainfold of codimension one, 
and let [ S] be the holomorphic line bundle defined by a system of tran­
sition functions eaf3 = sa/ Sf3, where sa are local defining functions of S 
associated to some open covering of N. Any holomorphic section s of 
[S] is called a canonical section if S = s-1(0) and dsiS is nowhere zero. 
Once for all we fix a coo fiber metric b of [S] and a canonical section 
s ={sa} with Sa= eaf3Sf3. 

Given any coo volume form dVN on N, a volume form dVN,b on S 
is induced from dVN, s and b via the canonical isomorphism 

which is given by 

wAdsa IS 
---=~w. 

Sa 

One may write on S 

Here the fiber metric b is represented by a system of positive coo func­
tions ba satisfying ba = lef3al 2bf3. More explicitly writing, let x be any 
point of Sand let (zb ... , zn) be a holomorphic local coordinate around 
x such that Zn =Sa for some a around x, and such that 

holds at x. Then, identifying (z1, ... Zn- 1) with a local coordinate of S 
around x, we have 

at x. 
Besides the induced volume form dVN,b, there is a volume form 

associated to the function log lsl 2 , which turned out to be more natural 
in the £ 2 extension theory. In general, given any continuous function 
'ljJ: N ~ R U { -oo} such that 'ljJ -log lsl 2 is bounded near every point 
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of S, we define a positive Radon measure dVN['¢] on S by 

f fdVN['¢] = lim .!:. f fe-.PdVN. Js t-+oo 7r }.p-1((-t-1,-t)) 

Here f runs through compactly supported nonnegative continuous fuc­
tion on N. 

However it is easy to see that 

(t) 

whose verification is left to the reader. 

Let A2(N, F, hF, dVN) (resp. A2(S, F, hF, dVN[loglsl 2])) be the Hilbert 
space of £ 2 holomorphic sections ofF over N (resp. overS) with respect 
to (hF, dVN) (resp. w.r.t. (hF, dVN[log lsl2])). 

Theorem 1.1. Let N, dVN, F, hF, S, b and s be as above, and 
assume that the following are satisfied. 

(1.1) N contains a Stein open subset N' such that 
(l.l.a) N' intersects with every connected component of S 

and 
(1.1. b) For any point x E N \ N' and for any neighborhood U 3 x, 

all the £ 2 holomorphic functions on U n N' extend holo­
morphically to U. 

(1.2) SUPN lsi < 00. 

(1.3) There exists a positive number co such that 

H(8F + RicN -(1 + c)8[sj) ~ 0 for all c E [0, co]. 

Then there exists a bounded linear opemtor I from A2(S,F,hF,dVN[log[sj2]) 
to A2(N,F,hF,dVN) such that I (f) IS= f for any f E A2(S,F,hF,dVN(log[s]2]). 

Here the norm of I is bounded by a constant dependly only on supN lsi 
and co. 

This result is essentially contained in [0-2, Theorem 4]. Neverthe­
less we want to prove it here because the curvature assumption (1.3) is 
somewhat weaker than that of [0-2]. 

Let us recall first a basic £ 2 existence theorem for the 8-equation 
whose proof is contained in [0-2]. 

Theorem 1.2. Let (N, g) be a complete Kahler manifold of di­
mension m, let "' be a bounded positive c= function on N and let c be 
a positive continuous function on ( 0, oo) such that c("') is bounded. Let 
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(F, hF) be a Hermitian holomorphic line bundle over N whose curvature 
form 8 F satisfies 

Then, for any positive integer q and for any 8-closed locally square inte­
grable F-valued (m,q) form u on N satisfying ((~A9 )- 1u,u) < oo, there 
exists a square integrable F -valued ( m, q - 1) form v such that 

Here A9 denotes the adjoint of u f-t (the fundamental form of g) 1\ u. 

The proof of Theorem 1.2 is a straightforward application of Hahn­
Banach's theorem. (We note that the boundedness assumption on TJ and 
c(ry) was missing in [0-2]. See alse [0-1].) 

Proof of Theorem 1.1. By (1.1) it suffices to prove that, for any rela­
tively compact Stein open subset f! c N with 0 2 strongly pseudoconvex 
boundary, there exists a bounded linear operator 

In : A 2(S, F, hF, dVN[log lsl 2]) --+ A2(f!, F, hF, dVN) 

such that In (f) IS n f! =JIB n f! for any f E A 2 (S, F, hF, dVN[log lsl 2]) 

and that lllnll is bounded by a constant that depends only on supN lsl 2 

and co. 
Once for all we fix such n and f. Then, by extending f to a neigh­

borhood of n n S as a holomorphic section ofF, say j, we consider a 
c= extension of f to n of the form 

It = x(log lsl 2 + t + 2)j (t » 1) 

where X is a c= function R satisfying x(x) = 1 for X< 1 and x(x) = 0 
for x > 2. 

By solving the equation Bvt = a it! s on n with an L 2 norm estimate 
and by taking a weak limit of ft- SVt on n, we shall obtain a holomorphic 
extension of f with a required L 2 norm bound. 

For that we regard 8ftfs as a K'f.r Q9 F Q9 [8]v-valued (m, 1) form 
on f!, and apply Theorem 1.2 for any complete Kahler metric on f!. 
Note that f! carries a complete Kahler metric because f! is Stein (cf. 
[G]). Multiplying s by a constant if necessary, we may assume that 
supN log lsi< -1. Then we put \If= log lsl 2 , ci> = log(lsl 2 + e-t) and 

1 
TJ = . ( ) + log(lsl 2 + e-t) +log( -log(lsl 2 + e-t)). 

mm co, 1 
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By a straightforward computation we obtain 

and 

- ( 1) 2 - 2 --88ry = 1 - ~ 88if! +if!- 8if! A 8if!. 

Let us choose t0 so that if! < -2 if t > t0 . Then, for all t > to we 
have 

Therefore if we put 

and E1 = min(Eo, 1), on f2 \ S we have 

1 ( 1 )2 - A -
K 2 -8 F®Kv ®(S]V + 1 - - 88if! + --8if! 1\ 8if! 

E1 N if! 8 

1 <I> 2- A -
2 -(8F®Kv®(S]V + E1e- lsi 88\J!) + --8if! 1\ 8if! 

E1 N 8 

1 <I> 2 A -2 -(8F + RicN -(1 + E1e- lsi )8[sJ) + --8if! 1\ 8if!. 
E1 8 

Since e-<I>Isl 2 < 1, the first term in the last inequality is semipositive by 
assumption. Therefore we obtain 

A -
K 2 - 8-8if! 1\ 8if! on f2. 

Hence, for any Hermitian metric g on n we obtain 

((KAg)- 1( 8!t), 8!t)::; Collfll 2 , fort» 1. 

Here the L2 norm IIIII off is with respect to hF and dVN [log lsl 2], the 
inner product on the left hand side is with respect to hF, dVN and g, 
and C0 depends only on sup lx'l· 
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Therefore, choosing g to be a complete Kahler metric on D, we may 
apply Theorem 1.2 and obtain a square integrable F ® K'Jv ® [S]v -valued 
(m, 0) form w satisfying 

a(-/rJ + 1}3w) = u 

and 

Clearly supN Jsv7J + 7}31 :::; cl, where cl depends only in SUPN Jsl 
and c:o. 

Therefore V 1J + 173w ( = y' 1Jt + 1J{Wt) is a wanted solution to the 
a-equation avt = a it! s. 
§2. Proof of Theorem 2 

Let the notation be as in Theorem 2 and let w be the projection 
from P(Ev) toM. Then we have a canonical commutative diagram 

L(Evt r- w* E ~ E 

~ 1 1 
P(Ev) ~ M 

to which an isomorphism 

A2(M, E, dVM) ____:::::__, A2(P(Ev), L(Ev) v) 

(= A2(P(Ev),L(Evt,w*dVM 1\dVps)) 

is associated, which is an isometry up to multiplication by the volume of 
pP- 1 . Here dVps denotes the Fubini-Study volume form on the fibers of 
P(Ev). Identifying L(Ev)vJP(Ev) with L(Qv)v as in the introduction 
we have a commutative diagram 

where p denotes the natural restriction operator. 
Now suppose that (l.a)-(2.c) and R2dV}v1 ~ (1r o a)*(dV~/JdsJ 2 ) 

are satisfied. Then, to prove the existence of the right inverse of '"h, it 
suffices to prove that the restriction operator 
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admits a bounded right inverse. For that we shall verify the conditions 
(1.1)-(1.3) of Theorem 1.1 for N = P(Ev)~ and S =E. 

(1.1): Since M \A is Stein and w- 1(M \A) is a pP- 1-bundle over 
M \A, w-1(M \A) admits a positive line bundle, and therefore so is 
a- 1(w- 1(M\A)), too. Hence a- 1(w- 1(M\A)) contains as ample effec­
tive divisor Z which intersects with every component of E transversally. 
One may then put N' = zc. 

(1.2) follows from (2.a). (1.3) follows from (2.c) because RicP(Ev)~ = 
a* Ric P(EV)- (p'-q-1) e [E] by the definition of the volume form dVP(EV)~ 0 

Hence, by Theorem 1.1, the restriction operator from A2 (P(Ev)~, 
a*L(Ev)v) to A2 (E,a*L(Ev)v,dVP(EvJ~[loglsl 2]) admits a bounded 
right inverse. This completes the proof of Theorem 2 because 
dVP(Ev)~ [log lsl 2 ] = dVE by (t). 0 

To deduce Corollary 3 from Theorem 2, we put M = D \ h- 1(0), 
E = M x CP, Q = M x C and 'Y(z,() = L:;(ihi(z). Then we may 
put A = hi 1 (0) for any nonzero hi. As for the fiber metric of [E], we 
may take 1(1-2 L:;i#j l(ihj- (jhil 2 as the squared length of the canonical 

sections= { h1t-hi} i#J where the local expression h1t-hi is effective 
on the completement of the proper transform of the set {hj(i -hi(j = 0} 
in { (1 -1- 0}. Clearly Is I is bounded on M, so what remains is to verify 
(2.c) and the estimates for the volume forms. 

For that we notice that 

where 

From this expression of dVP(Ev)~ it is easy to see that the curvature 
condition (2.c) holds true. 

To see that the required estimates for dVP(Ev)~ and dVE hold, we 
consider an embedding 

D X pP- 1 

w 
(z,() 

<---t D X CP X pP-1 

w 
.......-. (z, h(z), () 
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and the associated commutative diagram between the blow ups 

t: (D X pP- 1 )~ 

la1 
D X pP- 1 

Since supD ldhl < oo by assumption, there exists a constant C such that 

where w denotes the coordinate of CP. 
In particular, dVP(Ev)~ dominates the pull back of a bounded (n + 

p - 1, n + p - 1) form on D x ( CP x pv- 1) ~, so that 

n 

const.(w o a)*dVP(Ev)~ ~ 1\ v'=I88Izl 2 . 

( *) also shows that dVE is quasi-equivalent to the pull back of 
A n+p- 2 w for some smooth positive (1, 1) form, say w, on the excep­
tional set of a 2 . 

Clearly 

in the sense of current, so that 

n 

(w o a)*dVE:::; const.f\ v'=Ia8(1zl 2 + lh(zW +log lh(z)l 2 ) 

n 

:::; const.f\ Ra8(1zl 2 +log lh(z)l 2). 

The first part of Corollary 3 follows from this by regarding e-"' as an 
increasing limit of smooth fiber metrices of E whose curvature forms 
are semipositive. To obtain the latter part we have only to set dVM = 
An yCia8(1zl 2 +log lhl 2 ). D 

Corollary 4 follows imediately from Corollary 3. 
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§3. A note on Skoda's division theorem 

It might be worthwhile to compare our results with the following 
which are due to Skoda [S-2] (see also [D]). 

Theorem 3.1. Let M be a complex manifold of dimension n ad­
mitting a Kahler metric and a plurisubharmonic exhaustion function of 
class C 2 , let E be a holomorphic Hermitian vector bundle of rank p over 
M whose curvature form is semipositive in the sense of Griffiths, and 
let 'Y : E ---+ Q be a surjective morphism to a holomorphic vector bundle 
Q of rank q. Then, for any holomorphic Hermitian line bundle L whose 
curvature form satisfies 

(S) 

for some k > inf(n,p- q), the induced linear map 

1* : A2 (M, E 0 KM 0 L)----+ A 2 (M, Q 0 KM 0 L) 

is surjective. 

Corollary 3.2. Let D be a pseudoconvex domain in en, let h1, ... ,hp 
be holomorphic functions on D, and let k = inf(n,p -1). Then, for any 
positive number c:, there exists a constant Cc; such that, for any plurisub­
harmonic function cp on D and for any holomorphic function f on D 
satisfying 

fv1!12e-'Pihl-2k-2-c;d.X < oo 

there exist holomorphic functions g1, ... gp such that f = I:f=1 gihi and 

fvigi2e-'Pihi-2k-E:d.X :S Cc; fv1fl2e-'Pihl-2k-2-c;d.X. 

There are two points to be noted here. One point is that Corol­
lary 3.2 is not contained in Corollary 3 because we had to assume the 
boundedness of h and its first derivative. The other point is that one 
cannot drop the above c: by weaking the inequality k > inf(n,p- q) 
in the hypothesis to k ;::: inf(n,p- q), as the following counterexample 
shows. 

Let O(k) denote the holomorphic line bundle of degree k over P 1 

(0 := 0(0)). 
Define a morphism t : 0 ---+ 0(1) EB 0(1) by t(z, () = (z, (z(, 

(z + 1)()), and let 0 ---+ 0 ~ 0(1) EB 0(1) ---+ 0(2) ---+ 0 be the as­
sociated exact sequence. Ten so ring 0 ( -1) to this we have 

0 ----+ 0( -1) ----+ 0 EB 0 ----+ 0(1) ----+ 0. 
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Letting M = P 1, E = 0 EB 0, Q = 0(1), L = 0(1) and k = inf(n,p­
q) = 1, we have 

degL = deg(detE)- kdeg(detQ) = 1-0-1 = 0. 

Hence ( S) is satisfied, but 

A2 (M, KM Q9 E Q9 L) = H 0 (P1 , 0( -1) EB 0( -1)) = {0} 

and 

Therefore"~* is not surjective! 

Open Question. Establish a general L 2 division theory that uni­
fies Theorem 2 and Theorem 3.1. 
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