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Generalization of a precise L? division theorem

Takeo Ohsawa

§ Introduction

The purpose of this article is to generalize the following.

Theorem 1 (cf. [0-3]). Let D be a bounded pseudoconvex domain
in C™ and let z = (21,. .., 2,) be the coordinate of C™. Then there exists
a constant C depending only on the diameter of D such that, for any
plurisubharmonic function ¢ on D and for any holomorphic function f
on D satisfying

W [ 1@ an < oo
D

there exists a vector valued holomorphic function g = (g1,...,9n) on D
satisfying

n
(2) £2) =3 2ig:(2)

i=1
with

® [ le@Pe O a0 [ (P @l
D D
Here d)\ denotes the Lebesgue measure.

We generalize this in order to establish an understanding that the
measure e~?|z|"2" dX in (1) consists of three parts, i.e. e=#(?) for any
plurisubharmonic function ¢, |z|~% as the quotient fiber metric associ-
ated to the morphism g — " zg;, and |z|7?"*2d) as the residue of
a volume form on (D \ {0}) x P! with respect to the embedding of
D\ {0} by z — (z,[z]), where [2] = (21 : -+ : z,).
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In our generalized circumstance there will be given a complex man-
ifold M and a surjective morphism v : F — @, where E and @ are
holomorphic vector bundles over M.

It was first asked by H. Skoda [S-2] to find an L? surjectivity con-
dition for the morphism induced from . More precisely speaking, by
specifying a C* volume form dVy; on M, a C* fiber metric hg of E and
the fiber metric hg of @ induced from hg via 7, a surjectivity criterion
was looked for with respect to the induced morphism

Vet AQ(Mv E) - AQ(M7 Q)

where A%(M, ) (= A%2(M, -,dVy)) denotes the space of L? holomorphic
sections and v.(g) :==yog.

Here we shall relax the L? condition by considering another volume
form dVj; on M and ask for a surjectivity condition for the induced

operator
Yo : AX (M, E,dVy) — A%(M,Q,dVy,)

where , is only defined as a map from a linear subspace of A M,E,dV)y).
To state our main result, let us introduce some notation.
Let QY, EV denote the duals of Q, E, let vV : Q¥ — EVY be the
dual of v, and let

P@QY) =[] P@y), PEY) =] P,

xeM reM

where P(QY) = {Cv | v € Q7\{0}} and P(E)) = {Cw | w € EY\{0}}.
We shall indentify P(QV) as a complex submainfold of P(EV) via vV.
Let us define a line bundle L(EY) over P(EV) by

LE)= [ LE
§EP(EY)

where L(EY)e = & Then L(EY)Y is, as a holomorphic line bundle over
P(EVY), naturally indentified with

[1E:/Kere (z e M€ P(EY))

z,€
where Ker¢ := Kera for any o € EY with ¢ = Ca. The line bundle
(vY)*L(EY)Y over P(QV) will be naturally indentified with

[T1Qz/Kere (z € M,ée PQ)))
z,§
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and denoted simply by L(EY)Y|P(QV).
Let o : P(EY)~ — P(EY) be the monoidal transform of P(EY)
along P(QV). For simplicity we put

5= o~ (P(QY):

Let p = rankF and ¢ = rank@. Then the canonical bundles
Kpgv)~ and Kp(gv) are related by a canonical isomorphism

KP(EV)~ ~ U*KP(E\/) ® [2]p_q_1.

Here ¥ denotes the line bundle associated to the divisor ¥.. Hence a
volume form dVp(gvy~ on P(EY)"~ is induced from dVis, hg and a fiber
metric of [X]. There is a canonical fiber metric of [E] induced from hg,
but we shall not stick to it for the sake of generality.

For any Hermitian line bundle L, its curvature form is denoted by
©r. For simplicity, the curvature form of the volume form, as a fiber
metric of the anticanonical bundle K, is denoted by Ric,.

In this situation, a generalization of Theorem 1 is

Theorem 2. Suppose that the following are satisfied.
1. There exists a closed subset A C M such that
(1.a) M\ A is a Stein mainfold
and

(1.b) For any point x € A and for any neighborhood U > x, all the L?
holomorphic finctions on U \ A extend holomorphically to U.

2. [X] admits a fiber metric such that

(2.a) There exists a bounded canonical section, say s, of [X].

(2.b) There exists a constant Ry such that dVy < Ry(woo).dVpgv)~,
where w denotes the projection from P(EV) to M.

(2.c) There exists a positive number £¢ such that

\/—1(0'*@L(EV)V -+ o* RiCp(Ev) —(p —q+ 6)@[2]) >0 for all e € [0,5()].

Then the operator v. : A%2(M,E,dVy) — A%(M,Q,dV},) admits a
bounded right inverse if there exists a constant Ry such that

RydVy > (mo0).dVs.

Here m denotes the projection from P(QV) to M and dVs denotes the
volume form on ¥ induced from dVpgv)~ and the fiber metric of [X].
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Corollary 3. Let D be a pseudoconvez domain in C™, let hy, ..., hyp
be bounded holomorphic functions on D, whose first order derivatives are
also bounded, let ¢ be a plurisubharmonic function on D and let f be a
holomorphic function on D satisfying

112 = /D 129 R A V/=T88(12I2 + log [h[?) < o0

where h = (h,. .., hp). Then there exist holomorphic functions g1, ..., gp
on D such that f =) "_, gih; and

/ lgl2e=*dx < Ol 1.
D

Here C is a constant depending only on h. Moreover, if the Ricci curva-
ture of N\ v/—109(|z|? + log |h|?) is semipositive, then there exist holo-
morphic functions ly,...,l, on D such that f = Zf=1 lih; and

/ 112e=% \ v/=108(2I2 + log |h]?) < C'|| |1
D

where C’ is a constant depending only on h.
Obviously the latter part of Corollary 3 contains Theorem 1.

Corollary 4. Let D, h and ¢ be as above. Then, for any holo-
morphic function f on D satisfying

/ |FPe B ~2~2|dR[?*ax
D

where k = inf(n, p—1), there exist holomorphic functions g1, ..., gp such
that f =3>""_, g;h; and

/ lgl2e~%d) < C” / |F12e# k=2 2|dh | dA
D D

where C is a constant depending only on h.

The paper is organized as follows. In Section 1 we briefly review
the L? extension theorem for the reader’s convenience. Theorem 2 will
be proved in Section 2. In Section 3, we shall recall Skoda’s L? division
theorem and its consequence which is weaker than Theorem 1. We dare
to do this because we want to show by a counterexample that a naive
improvement of Skoda’s theorem, from which Theorem 1 would follow
immediately, is false. This may well mean that our formulation of a
generalized L? division theorem gives a new insight into the division
properties of holomorphic functions.
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§1. Preliminaries — L? extension theorem

Let N be a complex mainfold of dimension m and let FF — N be a
holomorphic line bundle with a C* fiber metric hr. (The symbols M,
n, E, hg are reserved for the division theory.)

Let S C N be a closed complex submainfold of codimension one,
and let [S] be the holomorphic line bundle defined by a system of tran-
sition functions eqyg = so/sg, Where s, are local defining functions of S
associated to some open covering of N. Any holomorphic section s of
[S] is called a canonical section if S = s71(0) and ds|S is nowhere zero.
Once for all we fix a C* fiber metric b of [S] and a canonical section
s = {sa} with s, = eapsg.

Given any C* volume form dVx on N, a volume form dVy,; on S
is induced from dVy, s and b via the canonical isomorphism

(Km ®[S))|S ~ Ks
which is given by
wAdsg s wlS,
Sa

One may write on S

dVy
dVy p = .
Nl by ds, A d3a

Here the fiber metric b is represented by a system of positive C* func-
tions b, satisfying by, = |ega|?bs. More explicitly writing, let z be any
point of S and let (z1,...,2,) be a holomorphic local coordinate around
z such that z, = s, for some o around z, and such that

dVN =V -1 dz1 ANdZ1 N ...dz, NdZ,

holds at z. Then, identifying (zi,...z,—1) with a local coordinate of S
around z, we have

AV = V=T 'b7'dzs AdZy A ... dza_1 AdZn_

at .

Besides the induced volume form dVy, there is a volume form
associated to the function log |s|?, which turned out to be more natural
in the L? extension theory. In general, given any continuous function
¥ : N — R U {—00} such that ¢ — log|s|? is bounded near every point
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of S, we define a positive Radon measure dVy[y] on S by

/ fdVx[y] = lim = / fe ¥dVy.
EO T Jym1((=t=1,-1)

Here f runs through compactly supported nonnegative continuous fuc-
tion on N.
However it is easy to see that

dVy
dVi |t 2 =
() ~log [s|7] N Y A

whose verification is left to the reader.

Let AN, F, hp,dVy)(resp. AXS, F, hr,dVy|[log|s|?])) be the Hilbert
space of L? holomorphic sections of F over N (resp. over S) with respect
to (hp,dVy) (resp. w.r.t. (hr,dVy[log]s|?])).

Theorem 1.1. Let N, dVy, F, hp, S, b and s be as above, and
assume that the following are satisfied.

=dVnp,

(1.1) N contains a Stein open subset N’ such that
(1.1.a) N’ intersects with every connected component of S
and
(1.1.b) For any point x € N\ N' and for any neighborhood U > z,
all the L? holomorphic functions on U N N’ extend holo-
morphically to U.
(1.2) supy |s| < o0.
(1.3) There exists a positive number go such that

V—=1(8F + Ricy —(1 +€)Og)) 20 for all € € [0, o).

Then there exists a bounded linear operator I from AXS,F,hr,dVn[log[s]?])
to AAN,F,hr,dVy) such that I(f)|S=f for any f € A¥S,F,hrdVn[log[s]?]).
Here the norm of I is bounded by a constant dependly only on supy |s|
and gg.

This result is essentially contained in [O-2, Theorem 4]. Neverthe-
less we want to prove it here because the curvature assumption (1.3) is
somewhat weaker than that of [O-2].

Let us recall first a basic L? existence theorem for the d-equation
whose proof is contained in [O-2].

Theorem 1.2. Let (N,g) be a complete Kihler manifold of di-
mension m, let n be a bounded positive C*° function on N and let c be
a positive continuous function on (0,00) such that c(n) is bounded. Let
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(F, hg) be a Hermitian holomorphic line bundle over N whose curvature
form ©F satisfies

K:=+v—1(nOF — 80n — c(n) "1 Adn) >0

Then, for any positive integer g and for any O-closed locally square inte-
grable F-valued (m,q) formu on N satisfying ((kAg) ™ u,u) < oo, there
exists a square integrable F-valued (m,q — 1) form v such that

AVn+emu)=u and [Jv]* < ((kAg) ™ u,u).
Here Ay denotes the adjoint of u — (the fundamental form of g) A u.

The proof of Theorem 1.2 is a straightforward application of Hahn-
Banach’s theorem. (We note that the boundedness assumption on 7 and
c(n) was missing in [O-2]. See alse [O-1].)

Proof of Theorem 1.1. By (1.1) it suffices to prove that, for any rela-
tively compact Stein open subset Q C N with C? strongly pseudoconvex
boundary, there exists a bounded linear operator

I : A%(S,F, hp,dVy[log|s|?]) — A%(Q, F,hp,dVy)

such that Io(f)|SNQ = fISNQ for any f € A%(S, F, hp,dVy[log|s|?])
and that ||Ig|| is bounded by a constant that depends only on supy |s|?
and &g.

Once for all we fix such 2 and f. Then, by extending f to a neigh-
borhood of 2N S as a holomorphic section of F, say f, we consider a
C extension of f to Q of the form

ftzx(log|s|2+t+2)f (t>1)

where x is a C™ function R satisfying x(z) = 1 for x < 1 and x(z) =0
for x > 2.

By solving the equation dv; = 8, /s on  with an L? norm estimate
and by taking a weak limit of f; —sv; on €, we shall obtain a holomorphic
extension of f with a required L? norm bound.

For that we regard 9f;/s as a K} ® F ® [S]Y-valued (m,1) form
on €2, and apply Theorem 1.2 for any complete Kahler metric on .
Note that Q carries a complete Kahler metric because €2 is Stein (cf.
[G]). Multiplying s by a constant if necessary, we may assume that
supy log |s| < —1. Then we put ¥ = log|s|?, ® = log(|s|? + e~?) and

_ 2 —t _ 2 —t
= ey loslsl? + ™) + log(~log(Isf* + ).
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By a straightforward computation we obtain
00® = e ®|51200F + e 227!|5|20|s|2 A D|s|* on Q\ S
and
—OOn — _ 2
8 (1 q)) 590 + d~200 A JD.

Let us choose tg so that ® < —2 if t > tg. Then, for all t > ¢ty we
have

V—=1(®720® A 0D — 1300 A On)

_\/_( 298 A 5D — m(1—é)2a¢/\5®)

> V=1(@72 - %00 A DD > —V8"18<1> A 8.

Therefore if we put
k= V-1(nOrpgxysis) — 00 —n~2dn A dn)

and €; = min(egp, 1), on O\ S we have

K > i@m,{mmv + (1 - —) 80% + —Vacp N

\/__

(Orgkysis)v + 167 |s |288\I/)+——6<I>/\3<I>

v

>

L

€1
1 V=1 —

—(OF 4+ Ricy —~(1 + 616_¢|$|2)@[S]) + Ta@ A 0D.
1

Since e ®|s|? < 1, the first term in the last inequality is semipositive by
assumption. Therefore we obtain

K> —Vs_lacp ADO® on Q.

Hence, for any Hermitian metric g on £ we obtain

((f@Ag)_l(—gﬁ) g—sfi) < Gyllf|I?, fort>1.

S

Here the L? norm || f|| of f is with respect to hr and dVi[log|s|?], the
inner product on the left hand side is with respect to hp, dVxy and g,
and Cj depends only on sup |x/|.
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Therefore, choosing g to be a complete Kahler metric on 2, we may
apply Theorem 1.2 and obtain a square integrable F ® K, ® [S]Y-valued
(m,0) form w satisfying

(vVn+nw) =u

and

[wl* < Coll £1I*.

Clearly supy |sy/n + n?| < Ci, where C; depends only in supy |s|
and &g.

Therefore \/n + ndw (= \/n; + njw;) is a wanted solution to the
O-equation dv; = Of;/s.

§2. Proof of Theorem 2

Let the notation be as in Theorem 2 and let w be the projection
from P(EV) to M. Then we have a canonical commutative diagram

L(EV)Y «— w*E — E

S |

P(EYY — M
to which an isomorphism
A*(M, E,dVy) — A*(P(EY), L(E")")
(= AX(P(EY),L(EY)Y,w*dVy A dVFs))
is associated, which is an isometry up to mdltiplication by the volume of
PP~1, Here dVrs denotes the Fubini-Study volume form on the fibers of
P(EV). Identifying L(EV)V|P(E") with L(QV)V as in the introduction
we have a commutative diagram
A*(M,E,dVy) — A*(P(EY),L(EV)Y)
Y lp
AX(M,Q,dVy) — A*(P(QY),L(Q")Y)
where p denotes the natural restriction operator.
Now suppose that (1.a)—(2.c) and R2dVy, > (7 o 0).(dVs/|ds|?)

are satisfied. Then, to prove the existence of the right inverse of ~,, it
suffices to prove that the restriction operator

p: A2(P(EV)~,0*L(EY)Y) — A%(Z,0*L(EV)Y,dVx/|ds|?)
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admits a bounded right inverse. For that we shall verify the conditions
(1.1)-(1.3) of Theorem 1.1 for N = P(EV)™~ and S = X.

(1.1): Since M \ A is Stein and w~}(M \ A) is a PP~ !-bundle over
M\ A, @ (M \ A) admits a positive line bundle, and therefore so is
oY w Y (M\A)), too. Hence o~ !(w™!(M\ A)) contains as ample effec-
tive divisor Z which intersects with every component of ¥ transversally.
One may then put N’ = Z°¢.

(1.2) follows from (2.a). (1.3) follows from (2.c) because Ricp(gv)~ =
o* Ricpgv)—(p—q—1)O(x) by the definition of the volume form dVpgv)~.

Hence, by Theorem 1.1, the restriction operator from A%(P(EV)~,
o*L(EV)V) to A*(Z,0*L(EY)Y,dVpgv)~[log|s|?]) admits a bounded
right inverse. = This completes the proof of Theorem 2 because
dVp(pvy~log|s|?] = dVs by (1). a

To deduce Corollary 3 from Theorem 2, we put M = D\ h=1(0),
E = MxCpQ M x C and ¥(z,¢) = Y ¢hi(z). Then we may
put A = h;1(0) for any nonzero h;. As for the fiber metric of [X], we
may take |¢| 72 Zl# |¢ih; — ¢;hi|? as the squared length of the canonical

section s = {h; & & —hi}, ., where the local expression hys & —h; is effective

on the completement of the proper transform of the set {h;({; —h;{; = 0}
in {¢; # 0}. Clearly |s| is bounded on M, so what remains is to verify
(2.c) and the estimates for the volume forms.

For that we notice that

I¢I2dVp(gv)~

AV = R
\/_—1(2#1. \Cihy — gjhip)d(m - %hk) A d(hl - Z—;hk)
where
g2~ e =
dVppvy~ = /\ o™ (V—180(|z|* + log |¢]?)).

(Ziyéj |Cihj — thiP)p—z

From this expression of dVpgv)~ it is easy to see that the curvature
condition (2.c) holds true.

To see that the required estimates for dVp(gv)~ and dVg hold, we
consider an embedding

DxPPl «— DxCPxPr-1
] w
(2,¢) — (z,h(2),¢)
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and the associated commutative diagram between the blow ups

t: (DxPPHy - Dx(CPxPP 1)~
g1 l02
DxPrl <5 DxCPxPP1

Since supp, |dh| < oo by assumption, there exists a constant C such that

(*) C-lde(Ev)~ <

n+p—1

N\ o5(V=108(|2* + [w|* +log [¢[?))

. ¢~

p—2
(Z |Giw; — CjwilQ)
i#j

where w denotes the coordinate of CP.
In particular, dVp(gv)~ dominates the pull back of a bounded (n +
p—1,n+p~-1) form on D x (CP x PP~1)~, so that

< CdVp(gv)~

const.(w 0 0).dVppv)~ > /\ V/—1090|z|%.

(*) also shows that dVyx is quasi-equivalent to the pull back of
NP2 for some smooth positive (1,1) form, say w, on the excep-
tional set of 0.

Clearly

025w < const. v/—190(|z|2 + |w|? + log [¢|?)

in the sense of current, so that
(w0 0).dVs < const. /\ vV=109(|2|* + |h(2)|? + log |h(2) %)

< const. /\ V=189(|z|* + log |h(2)?).

The first part of Corollary 3 follows from this by regarding e™¥ as an
increasing limit of smooth fiber metrices of £ whose curvature forms
are semipositive. To obtain the latter part we have only to set dVyy =

A" V=199(|z|% + log |h|?). O

Corollary 4 follows imediately from Corollary 3.



260 T. Ohsawa

§3. A note on Skoda’s division theorem

It might be worthwhile to compare our results with the following
which are due to Skoda [S-2] (see also [D]).

Theorem 3.1. Let M be a complexr manifold of dimension n ad-
mitting o Kdahler metric and a plurisubharmonic ezhaustion function of
class C?, let E be a holomorphic Hermitian vector bundle of rank p over
M whose curvature form is semipositive in the sense of Griffiths, and
let v: E — Q be a surjective morphism to a holomorphic vector bundle
Q of rank q. Then, for any holomorphic Hermitian line bundle L whose
curvature form satisfies

(S) V=1(OL — Oget £ — kOdet @) = 0
for some k > inf(n,p — q), the induced linear map
Yot A2MEQ Ky @ L) — A2 (M, Q@ Ky ® L)

1§ surjective.

Corollary 3.2. Let Dbe a pseudoconvex domain in C™, let hy,.. .,hp
be holomorphic functions on D, and let k = inf(n,p—1). Then, for any
positive number €, there exists a constant C. such that, for any plurisub-
harmonic function ¢ on D and for any holomorphic function f on D
satisfying

/ |f12e ¢ || 7 727%dA < o0
D
there exist holomorphic functions g1, ...gp such that f =32 | g;h; and

[ laeremtsan< e, [ Jreeinti
D D

There are two points to be noted here. One point is that Corol-
lary 3.2 is not contained in Corollary 3 because we had to assume the
boundedness of h and its first derivative. The other point is that one
cannot drop the above £ by weaking the inequality k > inf(n,p — q)
in the hypothesis to & > inf(n,p — ¢), as the following counterexample
shows.

Let O(k) denote the holomorphic line bundle of degree k over P!
(0 := 0(0)).

Define a morphism ¢ : O — O(1) & O(1) by u(z,¢) = (z (¢,
(z+1)¢)), and let 0 — O = O(1) @ O(1) — O(2) — 0 be the as-
sociated exact sequence. Tensoring O(—1) to this we have

0—0(-1) — 080 — 0O(1) — 0.
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Letting M =PLE=0600,Q = O(1), L = O(1) and k = inf(n,p —
q) =1, we have

deg L = deg(det E) — kdeg(detQ)=1-0-1=0.
Hence (S) is satisfied, but
A*(M,Ky ® E® L) = H(P',0(-1)  O(-1)) = {0}
and
A*(M, Ky ® Q® L) = H' (P, 0) # {0}.
Therefore ~, is not surjective!

Open Question. Establish a general L? division theory that uni-
fies Theorem 2 and Theorem 3.1.
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