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The ideal structure of graph algebras 

Jeong Hee Hong 

§1. Introduction 

For an nxn {0, 1}-matrix A= [A(i,j)] without zero rows or columns 
the corresponding Cuntz-Krieger algebra OA is defined in [4] as a C*­
algebra generated by partial isometries { Si I i = 1, ... , n} on a Hilbert 
space satisfying sisi = L.?=l A(i,j)sjsj. Almost from the start it was 
observed [25] that instead of a matrix we can use a directed graph to 
encode this data. It took a little bit longer though before it was realized 
that graphical approach may be equally successfully applied to infinite 
graphs. This extension ( cf. [16, 15, 6, 2, 19] and references there) allows 
us to study by similar tools and within the same framework objects as 
diverse as classical Cuntz-Krieger algebras On, 0 00 , AF-algebras, and 
many other C* -algebras. 

A variety of methods have been employed in the investigations of 
graph algebras. The arguments in [16] and several subsequent papers 
( eg see [17]) rely heavily on the machinery of groupoids. A different 
approach is based on the realization of graph algebras as Cuntz-Pimsner 
algebras ( cf. [18, 13, 7]) corresponding to suitable Hilbert bimodules 
over discrete abelian C* -algebras. However it may well be that the 
direct approach yields the sharpest results (cf. [2, 19]). 

The structure of graph algebras is fairly well-known by now. In­
deed, after several earlier partial results a criterion for their simplicity 
has been found [21] (see also [17]). Their K-theory is readily com­
putable [19, 23]. Their stable rank can be determined from the graph 
[5]. A number of other questions, like injectivity of their homomorphisms 
( cf. [24]) or direct sum decomposability ( cf. [8]) can now be easily an­
swered. Modelling with graph algebras has been employed in the studies 
of semiprojectivity (cf. [22, 20]) and pure-infiniteness (cf. [10]). 

We begin this article with a brief overview of basic facts about graph 
algebras, illustrated with a number of examples. Then we move to our 
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main point of interest, the discussion of the structure of their ideals. 
First fundamental results about ideals of Cuntz-Krieger algebras were 
obtained in [3]. A complete discussion of the primitive spectrum of a 
Cuntz-Krieger algebra corresponding to a finite {0, 1 }-matrix (and hence 
a finite graph) was later given in [12]. However the ideal structure of 
graph algebras corresponding to infinite graphs is much more compli­
cated. Most previously obtained results in this direction dealt with the 
case of ideals of row-finite graphs (ie such that each vertex emits only 
finitely many edges) which are invariant under the canonical gauge ac­
tion of the circle group [16, 15, 2]. 

Similar results for row-finite graph algebras were obtained in [13] by 
viewing graph algebras as Cuntz-Pimsner algebras of suitable Hilbert hi­
modules. Very recently a complete description of ideals of all graph alge­
bras has been obtained [1, 9]. That is, all primitive ideals together with 
the hull-kernel topology on the primitive spectrum are known. These 
results cover the most general countable directed graphs, with no restric­
tive assumptions whatever. In this article we present without proofs the 
description of gauge invariant ideals and then briefly indicate how other 
ideals arise. For the complete results, see [1, 9]. 
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§2. Cuntz-Krieger algebras of directed graphs 

2.1. Definitions and examples 

A directed graph E is a quadruple ( E 0 , E 1 , r, 8) with E 0 the set of 
vertices, E 1 the set of edges, and r, 8 : E 1 -+ E 0 the range and source 
function, respectively. In what follows we always assume that both E 0 

and E 1 are at most countable. 
If n 2 1 then a path a of length ninE is a sequence a = ( e1, ... , en) 

with ei E E 1 and r(ei) = 8(ei+1) fori= 1, ... ,n-1. Then 8(a) = 8(e1), 
r(a) = r(en), and we say that a is a path from 8(a) to r(a). A path a 
(oflength at least 1) is a loop if r(a) = 8(a). It is a vertex simple loop if 
the vertices 8 ( ei) are distinct. The loop has no exits if 8 -l ( 8 ( ei)) = { ei} 
fori= 1, ... , n. A vertex vis called sink if 8-1 (v) = 0. 

The following concept of a Cuntz-Krieger E-family for a given di­
rected graph E was introduced in [15]. 
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Definition 1. Let E be a directed graph and let B be a C* -algebra. 
A Cuntz-Krieger E-family { Se, Pv} inside B consists of a collection of 
partial isometries { Se E B I e E E 1 } and a collection of projections 
{ Pv E B I v E E 0 } such that the following conditions are satisfied. 

(Gl) PvPw = 0 ifv -=f. w. 
(G2) s;St=Oife-=f.f. 
(G3) s;se = Pr(e)· 
(G4) SeS; :S Ps(e)· 

(G5) 2:: Ses; = Pv, ifv emits finitely many (and at least one) 
eEE1 ,s(e)=v 

edges. 

The following definition of graph algebras was given in [6]. 

Definition 2. The C*-algebra C*(E) of a directed graph E is a 
C* -algebra generated by partial isometries { se I e E E 1 } and projections 
{Pv I v E E 0 }, which is universal for Cuntz-Krieger E-families. That 
is, for any Cuntz-Krieger E-family {Se, Pv} inside a C*-algebra B there 
exists a unique C* -algebra homomorphism 1r s,P : C* (E) ---+ B such that 
7rs,p(se) = Se for all e E E 1 and 7rs,P(Pv) = Pv for all v E E 0 . 

Throughout this article we use symbols {se,Pv} with small s,p for 
the generators of the C*-algebra C*(E). Universality of graph algebras 
implies that there exists a canonical action 'Y of the circle group T on 
C* (E), called the gauge action, 

'Y: T---+ Aut(C*(E)) 

such that 'Yt(Pv) = Pv and 'Yt(se) = tse for all v E E 0 , e EEl, t E T. 

Example 3. Let Ei, i=1,2,3, be the following directed graphs. 

;-!-0 OJ-: 
e e 

We have C*(EI) 2" M 2 0 C(T) and C*(E3 ) is isomorphic to the 
Toeplitz algebra generated by a unilateral shift. Also C* (E2 ) 2" C(T) 
for n = 1 and C*(E2 ) 2" On for n 2': 2, including n = oo. 
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2.2. Basic properties of graph algebras 

One of the great advantages of working with graph algebras is the 
ease with which we can read all basic properties of these complicated 
objects from the underlying graphs. For example, C*(E) is unital if 
and only if E 0 is finite. Below we show how to recognize from directed 
graphs such properties of the corresponding algebras as Cuntz-Krieger 
uniqueness, simplicity, being AF, pure infiniteness, and K-theory. 

Since graph algebras are defined via a universal property, it is not too 
difficult to construct homomorphisms from these algebras to other C*­
algebras. However, it is usually much more difficult to verify whether 
such a homomorphism is injective or not. To this end we often use 
the following gauge invariant uniqueness theorem, which essentially says 
that the universality in the definition of C*(E) is equivalent to the ex­
istence of the gauge action. This result was proved in [2] for row-finite 
graphs, and in full generality in [19]. 

Theorem 4. Let E be a directed graph, { Se, Pv} be a Cuntz-Krieger 
E-family, and ns,P : C* (E) ----+ C* ( { Se, Pv}) be a C* -algebra homomor­
phism such that ns,P (se) = Se and ns,P(Pv) = Pv for all e E E 1 and all 
v E E 0 . Suppose that each Pv is non-zero, and that there is a strongly 
continuous action (3 ofT on C*( { Se, Pv}) such that f3t o ns,P = ns,P O"(t 

for all t E T. Then ns,P is injective. 

The classical Cuntz-Krieger uniqueness has also been generalized to 
the context of graph algebras. The following result was proved in [16] 
for row-finite graphs, and in full generality in [6]. 

Theorem 5. Let E be a directed graph in which every loop has an 
exit. Then for all Cuntz-Krieger E -family { Se, Pv} such that each Pv 
is different from 0, the corresponding C* -algebra homomorphism ns,P : 
C*(E)----+ C*({Se,Pv}) (with ns,p(se) = Se and ns,P(Pv) = Pv for all 
e E E 1 , v E E 0 ) is an isomorphism. 

An easy consequence of Theorem 5 is the uniqueness of the C*­
algebra, generated by a proper isometry (ie the classical result due to 
Coburn), corresponding to the graph E3 . A common generalization of 
Theorems 4 and 5 is given in [24]. 

A convenient criterion of simplicity of graph algebras is known [21]. 
It is formulated in terms of hereditary and saturated sets of vertices, 
which also play a crucial role in our description of ideals in the next 
section. A subset H <:;;; E 0 is called; 

(i) saturated if any v E E 0 , emitting finitely many (and at least one) 
edges and such that r(e) E H for all e E E 1 with s(e) = v, 
belongs to H, 
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(ii) hereditary if r(e) E H for any e E E 1 such that s(e) E H. 

Theorem 6. Let E be a directed graph. Then C* (E) is simple if 
and only if the following two conditions are satisfied. 

1. All loops in E have exits. 
2. The only hereditary and saturated subsets of E 0 are 0 and E 0 . 

The graphs E2 (n ~ 2) satisfy the conditions of Theorem 6, thus 
Cuntz algebras On (n ~ 2) and 0 00 are simple. But the Toeplitz al­
gebra is not, since the graph E3 has a nontrivial proper hereditary and 
saturated subset { v}. Earlier partial results in this direction may be 
found in [4, 16, 7, 6, 2]. A different (based on the groupoid approach) 
of an equivalent simplicity criterion has been recently found in [17]. 

It turns out that all simple graph algebras are either AF or purely 
infinite (cf. [15, 2, 19]). In fact, C*(E) is AF if and only if E has no 
loops, and C*(E) is purely infinite in the sense of [15] (but not necessarily 
simple) if and only if all loops in E have exits and every vertex connects 
to a loop by a directed path (cf. [15, 2, 10]). 

The K-theory of graph algebras is readily computable by the Cuntz 
method. Namely, the crossed product of C*(E) by the gauge action of 
the circle group Tis known as an AF-algebra ([14, 19]). Thus C*(E) is 
stably isomorphic to a crossed product of an AF-algebra by an action 
of the integers Z (dual to the gauge action}, which allows us to apply 
the Pimsner-Voiculescu exact sequence. 

The following thoerem was obtained in [19] for row-finite graphs, 
and then extended to the directed graphs with finitely many edges in 
[22]. These and several other results about the K-theory of graph or 
Cuntz-Krieger algebras are all based on the original calculation in [3]. 

Theorem 7. Let E be a directed graph and let V denote the col­
lection of all those vertices which emit at least one but at most finitely 
many edges. Let ZV and ZE0 be free abelian groups on free generators 
V and E 0 , respectively. Then 

K 0 (C*(E))!::::! coker(.6.E) and K 1 (C*(E))!::::! ker(.6.E), 

where dE : ZV ~ ZE0 is the map defined as 

.6.E(w) = r(e)- w . 
eEEl, s(e)=w 

It follows from Theorem 7 that K 1 groups of graph algebras must 
be free abelian. It turns out that this is the only restriction. Namely, for 
any pair of countable abelian groups A 0 , A1 with A1 free abelian, there 
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exists a stable, purely infinite and simple graph algebra C*(E) such that 
Ki(C*(E)) ~ Ai fori = 0,1 [23]. An easy way to check criterion for 
stability of graph algebras is given in [8]. 

Note that all graph algebras are separable according to our defini­
tion, since we only deal with countable graphs. All of them are also 
nuclear and satisfy the Universal Coefficient Theorem. Therefore purely 
infinite and simple algebras C*(E) serve as convenient models of a large 
subclass of the classifiable algebras. This fact has been recently exploited 
in [22] and [20] to show that all Kirchberg algebras with K 0 finitely gen­
erated and K 1 finitely generated free abelian are semiprojective. 

§3. Ideals of graph algebras 

In this section we present the ideal structure of graph algebras. We 
focus primarily on gauge invariant ideals J of C* (E) such that It ( J) = J 
for all t E T. We begin by recalling the classification of gauge invariant 
ideals for algebras of row-finite graphs. Then we discuss the general case 
of arbitrary graphs, and conclude with a brief indication of how other 
ideals, ie non gauge invariant ideals, arise. 

3.1. Gauge invariant ideals 
3.1.1. Row-finite directed graphs It turns out that that gauge in­

variant ideals of algebras of row-finite graphs are in a one-to-one corre­
spondence with hereditary and saturated sets of vertices. For a directed 
graph Ewe denote by 'EE the collection of all hereditary and saturated 
subsets of E 0 • If X~ E 0 then We denote by 'E(X) the smallest heredi­
tary and saturated subset of E 0 containing X. If J is a closed two-sided 
ideal of C*(E) then we define VJ := {v E E0 I Pv E J}. It is easy to 
see that VJ is hereditary and saturated. For a hereditary and saturated 
set K ~ E 0 we define J K to be the closed two-sided ideal of C* (E) 
generated by {Pv I v E K}. 

The following theorem is given in [2]. Its earlier versions, with some 
additional restrictions on the underlying directed graphs, are in [4, 13, 
16]. 

Theorem 8. If E is a row-finite directed graph then there is a 
one-to-one correspondence between the collection of closed, two-sided, 
gauge invariant ideals of C*(E) and 'EE, via J---+ VJ and JK +-- K. 

The key fact used in the proof of Theorem 8 is that for a gauge in­
variant ideal J of C*(E) the quotient C*(E)/ J is again a graph algebra, 
corresponding to the graph obtained by restriction of E to E 0 \ VJ. 

It is also possible to identify those directed graphs E such that all 
ideals of C* (E) are gauge invariant. For Cuntz-Krieger algebras of finite 
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{ 0, 1 }-matrices, this situation is captured by condition I I of Cuntz. Its 
analogue for row-finite graphs was introduced in [16] by the so-called 
condition K (an analogue of Cuntz's condition II). Condition K re­
quires that any vertex in E 0 lies on either none or at least two distinct 
vertex simple loops. If a row-finite graph E satisfies condition K then 
all ideals of C* (E) are automatically gauge invariant, and consequently 
Theorem 8 describes all ideals of C* (E) in this case. 

Example 9. The graph E below satisfies condition K. Thus ~E 
gives all ideals ofC*(E). Since ~E = {0,{w},E0 }, we have J{w} ~ K 
(compact operators on a separable Hilbert space) is the only nontrivial 
ideal of C* (E). Nate that the quotient C* (E) I J{ w} is isomorphic to 
C*(E2 ) (with n = 2), which is Cuntz algebra 0 2 . 

w 

Unfortunately, even for graphs as simple as E 1 or E 3 Theorem 8 
does not give the full description of ideals. The reason is that non gauge 
invariant ideals are present. 

3.1.2. The general case We now give a brief outline of the results 
obtained recently by the author in collaboration with the group from 
the University of Newcastle. Proofs of these results will be published in 
[1]. 

Unlike in the previously discussed much simpler case of row-finite 
graphs, the collection of hereditary and saturated subsets is not sufficient 
to describe all gauge inariant ideals in general. In order to do this we 
must first understand quotients of graph algebras by gauge invariant 
ideals. We first introduce the notion of the quotient graph. 

Let E be an arbitrary directed graph and let K ~ E 0 be a hereditary 
and saturated subset. We denote by K:;: the collection of all those 
vertices v E E 0 \ K such that s- 1 (v) n r- 1 (K) is infinite and s- 1 (v) n 
r- 1 (E0 \ K) is finite and non-empty. We then define the quotient graph 
E I K as follows. 

(EIK) 0 

(ElK? 

(E0 \ K) U {,6(v) I v E K:;:}, 

r- 1 (E0 \ K) U {,6(e) IeEE\ r(e) E K:;:}, 
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with s(jJ(e)) s(e) and r(jJ(e)) = jJ(r(e)). The j3 is just a symbol 
helping to distinguish a vertex v E E 0 and an edge e E E 1 from the 
extra vertex jJ(v) and the extra edge jJ(e) in ElK, respectively. Note 
that E I K is a subgraph of E if Kt;:: = 0, and this is always the case 
when E is row-finite. 

Example 10. Let E be the graph below. It is assumed here that 
K E ~E and v emits infinitely many edges into K. We have Kt;:: = { v} 
and the quotient graph E I K looks as follows. 

E 

e 

w v 

..... -~..j{ 
\ 

I 

ElK 

J3o(v) 

The following lemma provides a key tool for analyzing gauge invari­
ant ideals of arbitrary graph algebras. 

Lemma 11. Let E be a directed graph and let K E ~E· Then 
there is a natural isomorphism 

C*(E)IJK ~ C*(EIK). 

Now let K E ~E and X ~ Kt;::. We define JK,X as the closed 
two-sided ideal of C*(E) generated by JK and {Pv- Qv I vEX}, where 
Qv = '2:::s(e)=v,r(e)\1'K SeS= is a subprojection of Pv· As a special case we 
have JK,0 = JK, which always occurs in row-finite graphs. Clearly the 
ideal JK,X is gauge invariant. We denote by ~(Kt;::) the collection of all 
subsets of K!n. 

Theorem 12. If E is an arbitrary directed graph then there is a 
one-to-one correspondence between UK EEE { K} x ~( Kt;::) and the col­
lection of all closed, two-sided gauge invariant ideals of C* (E), given by 
the map 

(K,X) f----+ JK,X· 

Theorem 8 is then an immediate consequence of Theorem 12. 
Lemma 11 says that quotients of graph algebras by gauge invari­

ant ideals are themselves graph algebras. Thus, in order to describe 
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primitive gauge invarinat ideals it suffices to know what graphs E result 
in primitive algebras C*(E), since the quotient of a C*-algebra by a 
primitive ideal is a primitive C* -algebra. We have the following. 

Proposition 13. If E is an arbitrary directed graph then C* (E) 
is primitive if and only if E satisfies the following two conditions. 

1. All loops in E have exits. 
2. ~(v) n ~(w) -1-0 for any v,w E E 0 . 

We remark that an easy double application of Lemma 11 gives an 
isomorphism 

C*(E)IJK,x ~ C*((EIK)If3(X)), 

for all K E ~E and X <:;;; K~. Thus, combining Theorem 12 with 
Proposition 13 we get a criterion of primitivity of gauge invariant ideals 
of C*(E). Namely, a gauge invariant ideal JK,X of C*(E) is primitive if 
and only if the quotient graph (E I K) I (3(X) satisfies the conditions of 
Proposition 13. 

3.2. Other idelas 

In many cases, the graph algebra C*(E) may contain non gauge in­
variant ideals. For example, since ~Ea = {0,{w},E0 }, J{w} ~ lC is the 
only nontrivial gauge invariant ideal of C*(E3). However, since the quo­
tient graph E3l{w} is E 2 with n = 1, C*(E3)1J{w} ~ C*(E31{w}) ~ 
C(T) and consequently we see that C* (E3) contains a circle of non gauge 
invariant primitive ideal. 

For an arbitrary directed graph E it may be shown that all non gauge 
invariant primitive ideals arise essentially in the same way as described 
in the preceding paragraph. Namely, let J be a non gauge invariant 
primitive ideal of C*(E). Then there exists a unique maximal gauge 
invariant ideal J' of C*(E) contained in J. Furthermore, the quotient 
C* (E) I J' is isomorphic to C* (F) for a suitable graph F. It is that F 
must contain a unique vertex simple loop with no exits in F and that 
the ideal J corresponds to a point on that loop. 

A complete discussion of all primitive ideals of C*(E) for an arbi­
trary directed graph E, including the hull-kernel topology on the prim­
itive spectrum, are presented in articles [1, 9]. 
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