Appendix

Atsushi Ikeda

This is an appendix for the paper "Infinitesimal logarithmic Torelli problem for degenerating hypersurfaces in $\mathbb{P}^{n} "$ by S. Saito. In Theorem (2-1), the injectivity of $d \rho_{Z}$ was proved for degenerating hypersurfaces. But $d \rho_{Z}$ is not injective in case n is odd and $\delta=2$. We want to know the meaning of the exceptional cases. It is explained here, by using the extended period map, which is defined by K. Kato and S. Usui.

When we fix integers $\delta \geq 2, s \geq 1$ and $d \geq s \delta$, and general coefficients $a_{\alpha} \in \mathbb{C}$, a strict semistable degeneration $\tilde{X} \rightarrow B$ of hypersurfaces in \mathbb{P}^{m+1} over the unit disk is constructed in Section 1 . We denote the central fiber by $Z=Z_{0} \cup Z_{1} \cup \cdots \cup Z_{s}$, where $Z_{0}=\tilde{X} \cap \tilde{H}_{t}$ and $Z_{k}=\tilde{X} \cap \mathbb{E}_{k}$.

Proposition 1. Assume $d \geq s \delta+1$. The mixed Hodge structure on $H^{m}(Z, \mathbb{Q})$ satisfies

- $\operatorname{Gr}_{l}^{W} H^{m}(Z, \mathbb{Q})=0$ if $l \leq m-2$,
- $\operatorname{Gr}_{m-1}^{W} H^{m}(Z, \mathbb{Q}) \simeq H_{\text {prim }}^{m-1}\left(Z_{0} \cap Z_{s}, \mathbb{Q}\right)$.
$Z_{0} \cap Z_{\text {s }}$ is a nonsingular hypersurface of degree δ in $\tilde{H}_{t} \cap \mathbb{E}_{s} \cong \mathbb{P}^{m}$.
Proof. The spectral sequence

$$
E_{1}^{p, q}=H^{q}\left(Z^{[p]}, \mathbb{Q}\right) \Rightarrow H^{p+q}(Z, \mathbb{Q})
$$

defines the weight filtration on $H^{i}(Z, \mathbb{Q})$, where $Z^{[p]}=\underset{0 \leq i_{0}<\cdots<i_{p} \leq s}{ } Z_{i_{0}} \cap$ $\cdots \cap Z_{i_{p}}$. Let $\tilde{\mathbb{P}_{o}}=\tilde{H}_{t} \cup \mathbb{E}_{1} \cup \cdots \cup \mathbb{E}_{s}$ be the central fiber of $\tilde{\mathbb{P}_{B}} \rightarrow B$. We know that $\tilde{\mathbb{P}}_{o}^{[p]}=Z^{[p]}=\emptyset$ for $p \geq 3$, so $\operatorname{Gr}_{l}^{W} H^{m}(Z, \mathbb{Q})=0$ for $l \leq m-3$.

Received January 11, 2002.
2000 Mathematics Subject Classification: 14C34. Keywords: log period map, infinitesimal Torelli problem, degeneration, mixed Hodge structure, limit Hodge structure.

We recall that

$$
\left\{\begin{array}{l}
\tilde{\mathbb{P}}_{o}^{[2]}=\underset{1 \leq k \leq s-1}{\amalg} \tilde{H}_{t} \cap \mathbb{E}_{k} \cap \mathbb{E}_{k+1}, \\
\tilde{\mathbb{P}}_{o}^{[1]}=\coprod_{1 \leq k \leq s} \tilde{H}_{t} \cap \mathbb{E}_{k} \amalg \underset{1 \leq k \leq s-1}{\amalg} \mathbb{E}_{k} \cap \mathbb{E}_{k+1},
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
Z^{[2]}=\coprod_{1 \leq k \leq s-1} Z_{0} \cap Z_{k} \cap Z_{k+1}, \\
Z^{[1]}=\coprod_{1 \leq k \leq s} Z_{0} \cap Z_{k} \amalg \coprod_{1 \leq k \leq s-1} Z_{k} \cap Z_{k+1} .
\end{array}\right.
$$

Here we remark that $Z_{0} \cap Z_{k} \cap Z_{k+1}, Z_{0} \cap Z_{k}$ and $Z_{k} \cap Z_{k+1}$ are not connected if $m=2$ and $1 \leq k \leq s-1$.

The semistable degeneration is constructed by

$$
\begin{aligned}
B \times \mathbb{P}^{m+1}= & \mathbb{P}_{B} \pi_{1} \mathbb{P}_{B}^{(1)} \stackrel{\pi_{2}}{\longleftarrow} \mathbb{P}_{B}^{(2)} \longleftarrow \pi_{3} \cdots \pi_{s} \mathbb{P}_{B}^{(s)}=\widetilde{\mathbb{P}_{B}} \\
& \cup \quad \cup \\
& X \longleftarrow X^{(1)} \longleftarrow X^{(2)} \longleftarrow \cdots \longleftarrow X^{(s)}=\tilde{X}
\end{aligned}
$$

where π_{1} is the blowing-up of \mathbb{P}_{B} along the singular point $p \in X, \pi_{k}$ is the blowing-up of $\mathbb{P}_{B}^{(k-1)}$ along the singular locus $L_{k-1} \cong \mathbb{P}^{1}$ of $X^{(k-1)}$, and $X^{(k)}$ is the proper transform of X, \mathbb{E}_{k} is the proper transform in $\tilde{\mathbb{P}_{B}}$ of the exceptional set of $\pi_{k} . \tilde{H}_{t} \subset \tilde{\mathbb{P}_{B}}$ is the proper transform of $H_{t}=\{t=0\} \subset \mathbb{P}_{B}$.
$Z_{k} \cap Z_{k+1}$ is isomorphic to $\mathbb{P}^{1} \times\left(Z_{0} \cap Z_{k} \cap Z_{k+1}\right)$, and contains $Z_{0} \cap Z_{k} \cap Z_{k+1}$ as a fiber of the projection $\mathbb{P}^{1} \times\left(Z_{0} \cap Z_{k} \cap Z_{k+1}\right) \rightarrow \mathbb{P}^{1}$. So the restriction $H^{m-2}\left(Z_{k} \cap Z_{k+1}\right) \rightarrow H^{m-2}\left(Z_{0} \cap Z_{k} \cap Z_{k+1}\right)$ is surjective. Since $Z_{k} \cap Z_{k+1}$ meet only Z_{0}, this shows $\operatorname{Gr}_{m-2}^{W} H^{m}(Z, \mathbb{Q})=0$.

There is a commutative diagram

$$
\begin{gathered}
H^{m-1}\left(\tilde{\mathbb{P}}_{o}^{[0]}\right) \rightarrow H^{m-1}\left(\tilde{\mathbb{P}}_{o}^{[1]}\right) \rightarrow H^{m-1}\left(\tilde{\mathbb{P}}_{o}^{[2]}\right) \rightarrow H^{m-1}\left(\tilde{\mathbb{P}_{o}^{[3]}}\right)=0 \\
\downarrow \\
\downarrow \\
\downarrow \\
H^{m-1}\left(Z^{[0]}\right) \rightarrow H^{m-1}\left(Z^{[1]}\right) \rightarrow H^{m-1}\left(Z^{[2]}\right) \rightarrow H^{m-1}\left(Z^{[3]}\right)=0
\end{gathered}
$$

where the horizontal sequences are complex, and $\mathrm{Gr}_{m-1}^{W} H^{m-1+i}(Z, \mathbb{Q})$ is the i-th cohomology of the second sequence. So $\operatorname{Gr}_{m-1}^{W} H^{m}(Z, \mathbb{Q}) \simeq$ $H_{\text {prim }}^{m-1}\left(Z_{0} \cap Z_{s}, \mathbb{Q}\right)$ is proved by the following:

1. $H^{m-1}\left(\tilde{\mathbb{P}}_{o}^{[2]}\right) \simeq H^{m-1}\left(Z^{[2]}\right)$.
2. $\operatorname{Coker}\left(H^{m-1}\left(\tilde{\mathbb{P}_{o}}{ }^{[1]}\right) \rightarrow H^{m-1}\left(Z^{[1]}\right)\right) \simeq H_{\text {prim }}^{m-1}\left(Z_{0} \cap Z_{s}\right)$.
3. The composition $H^{m-1}\left(Z^{[0]}\right) \rightarrow H^{m-1}\left(Z^{[1]}\right) \rightarrow H_{\text {prim }}^{m-1}\left(Z_{0} \cap Z_{s}\right)$ is zero.
4. $\operatorname{Gr}_{m-1}^{W} H^{m}\left(\tilde{\mathbb{P}}_{o}\right)=0$ and $\operatorname{Gr}_{m-1}^{W} H^{m+1}\left(\tilde{\mathbb{P}}_{o}\right)=0$. (This means that the first sequence in the diagram is exact.)
Let X be defined in $B \times \mathbb{P}^{m+1}$ by the equation

$$
\sum_{\alpha_{0}+\cdots+\alpha_{m+1}=d} a_{\alpha} t^{\max \left\{0, s \delta-s\left(\alpha_{1}+\cdots+\alpha_{m}\right)-\alpha_{m+1}\right\}} X_{0}^{\alpha_{0}} \cdots X_{m+1}^{\alpha_{m+1}}=0
$$

We define a hypersurface $Y \subset \mathbb{P}^{m}$ by

$$
\sum_{\alpha_{1}+\cdots+\alpha_{m}=\delta, \alpha_{m+1}=0} a_{\alpha} X_{1}^{\alpha_{1}} \cdots X_{m}^{\alpha_{m}}=0
$$

which is singular at $[1: 0: \cdots: 0]$. Let $\tilde{Y} \subset \tilde{\mathbb{P}^{m}}$ be the desingularization by the blowing-up at the point, and Y_{0} be the hyperplane section of Y by $\left\{X_{0}=0\right\} . \quad Y$ is the projective cone over Y_{0}, and \tilde{Y} is a \mathbb{P}^{1}-bundle over Y_{0}.

For $1 \leq k \leq s-1$, there are isomorphisms

$$
\begin{array}{cc}
Z_{0} \cap Z_{k} \cap Z_{k+1} \subset \tilde{H}_{t} \cap \mathbb{E}_{k} \cap \mathbb{E}_{k+1} \\
\downarrow \cong & \downarrow \cong \\
Y_{0} \quad \subset & \mathbb{P}^{m-1}
\end{array}
$$

$$
\begin{array}{ccc}
Z_{k} \cap Z_{k+1} \subset \mathbb{E}_{k} \cap \mathbb{E}_{k+1} & Z_{0} \cap Z_{k} \subset \tilde{H}_{t} \cap \mathbb{E}_{k} \\
\downarrow \cong & \text { and } & \downarrow \cong \\
\mathbb{P}^{1} \times Y_{0} \subset \mathbb{P}^{1} \times \mathbb{P}^{m-1} & & \cong \\
& \tilde{Y} & \subset \mathbb{P}^{m}
\end{array}
$$

So we have $H^{m-1}\left(\tilde{H}_{t} \cap \mathbb{E}_{k} \cap \mathbb{E}_{k+1}\right) \simeq H^{m-1}\left(Z_{0} \cap Z_{k} \cap Z_{k+1}\right)$, $H^{m-1}\left(\mathbb{E}_{k} \cap\right.$ $\left.\mathbb{E}_{k+1}\right) \simeq H^{m-1}\left(Z_{k} \cap Z_{k+1}\right)$ and $H^{m-1}\left(\tilde{H}_{t} \cap \mathbb{E}_{k}\right) \simeq H^{m-1}\left(Z_{0} \cap Z_{k}\right)$.
$Z_{0} \cap Z_{s}$ is isomorphic to the hypersurface in $\tilde{H}_{t} \cap \mathbb{E}_{s} \cong \mathbb{P}^{m}$ defined by

$$
\sum_{s \delta=s\left(\alpha_{1}+\cdots+\alpha_{m}\right)+\alpha_{m+1}} a_{\alpha} X_{0}^{\delta-\left(\alpha_{1}+\cdots+\alpha_{m}\right)} X_{1}^{\alpha_{1}} \cdots X_{m}^{\alpha_{m}}=0 .
$$

The map $H^{m-1}\left(\tilde{H}_{t} \cap \mathbb{E}_{s}\right) \rightarrow H^{m-1}\left(Z_{0} \cap Z_{s}\right)$ has the cokernel $H_{\text {prim }}^{m-1}\left(Z_{0} \cap\right.$ $\left.Z_{s}, \mathbb{Q}\right)$. We have proved (1) and (2).
\mathbb{E}_{s} is isomorphic to the hypersurface in $\mathbb{P}^{1} \times \mathbb{P}^{m+1}$ defined by $u_{0}^{s} X_{0}=$ $u_{1}^{s} X_{m+1}$, where u_{i} is the parameter of \mathbb{P}^{1}. In this identification, Z_{s} is defined by

$$
\left\{\begin{array}{l}
u_{0}^{s} X_{0}=u_{1}^{s} X_{m+1} \\
\sum_{s \delta \geq s\left(\alpha_{1}+++\alpha_{m}\right)+\alpha_{m+1}} a_{\alpha} u_{0}^{s \delta-\alpha_{m+1}} u_{1}^{\alpha_{m+1}} X_{1}^{\alpha_{1}} \cdots X_{m}^{\alpha_{m}} X_{m+1}^{\delta-\left(\alpha_{1}+\cdots+\alpha_{m}\right)}=0
\end{array}\right.
$$

This shows that Z_{s} is a very ample divisor in \mathbb{E}_{s}. So the left vertical map in the diagram

$$
\begin{gathered}
H^{m-1}\left(\mathbb{E}_{s}\right) \rightarrow H^{m-1}\left(\tilde{H}_{t} \cap \mathbb{E}_{s}\right) \\
\downarrow \simeq \quad \downarrow \\
H^{m-1}\left(Z_{s}\right) \rightarrow H^{m-1}\left(Z_{0} \cap Z_{s}\right)
\end{gathered}
$$

is an isomorphism. Hence $H^{m-1}\left(Z_{s}\right) \rightarrow H_{\text {prim }}^{m-1}\left(Z_{0} \cap Z_{s}\right)$ is the zero map.
By Lemma 2, the left vertical map in the diagram

$$
\begin{gathered}
H^{m-1}\left(\tilde{H}_{t}\right) \rightarrow H^{m-1}\left(\tilde{H}_{t} \cap \mathbb{E}_{s}\right) \\
\downarrow \simeq \quad \downarrow \\
H^{m-1}\left(Z_{0}\right) \rightarrow H^{m-1}\left(Z_{0} \cap Z_{s}\right)
\end{gathered}
$$

is an isomorphism. Hence $H^{m-1}\left(Z_{0}\right) \rightarrow H_{\text {prim }}^{m-1}\left(Z_{0} \cap Z_{s}\right)$ is the zero map, and (3) is proved.

Because the monodromy of $\tilde{\mathbb{P}_{B}} \rightarrow B$ is trivial, (4) is proved by same argument in the proof of Corollary 3, using Clemens-Schmid exact sequence.
Q.E.D.

Lemma 2. If $d \geq s \delta+1$, then $H^{m-1}\left(\tilde{H}_{t}\right) \simeq H^{m-1}\left(Z_{0}\right)$.
Proof. $\quad \tilde{H}_{t}$ is obtained by

$$
\mathbb{P}^{m+1} \cong H_{t}=H_{t}^{(0)} \stackrel{\pi_{1}}{\leftarrow} H_{t}^{(1)} \stackrel{\pi_{2}}{\leftarrow} \cdots \stackrel{\pi_{s}}{\leftarrow} H_{t}^{(s)}=\tilde{H}_{t},
$$

where π_{1} is the blowing-up along the point p, and π_{k} is the blowingup along the point $L_{k-1} \cap H_{t}^{(k-1)}$ for $2 \leq k \leq s$, and we set $\pi=$ $\pi_{1} \circ \cdots \circ \pi_{s}$. We denote by $E_{k}^{\prime} \subset H_{t}^{(k)}$ the exceptional divisor of π_{k}, and by $E_{k} \subset \tilde{H}_{t}$ its proper transform in \tilde{H}_{t}. If H is a hyperplane in H_{t}, then $a \pi_{1}^{*}(H)+b\left(\pi_{1}^{*}(H)-E_{1}^{\prime}\right)$ is a very ample divisor in $H_{t}^{(1)}$ for $a, b \in \mathbb{Z}_{>0}$. In case $s=1, Z_{0} \sim d \pi^{*}(H)-\delta E_{1}=(d-\delta) \pi^{*}(H)+\delta\left(\pi^{*}(H)-E_{1}\right)$ is very ample in \tilde{H}_{t}, hence Lemma is proved.

We assume $s \geq 2$. In this case, Z_{0} is not ample in \tilde{H}_{t}. By the exact sequence

$$
H_{c}^{m-1}\left(\tilde{H}_{t} \backslash Z_{0}\right) \rightarrow H^{m-1}\left(\tilde{H}_{t}\right) \rightarrow H^{m-1}\left(Z_{0}\right) \rightarrow H_{c}^{m-1}\left(\tilde{H}_{t} \backslash Z_{0}\right)
$$

we want to show $H_{c}^{m-1}\left(\tilde{H}_{t} \backslash Z_{0}\right)=0$ and $H_{c}^{m-1}\left(\tilde{H}_{t} \backslash Z_{0}\right)=0$. Let $Z_{0}^{(k)}$ be the proper transform of $Z_{0}^{(k-1)}$ by π_{k}, where $Z_{0}^{(0)}=H_{t} \cap X$. Since $H_{t} \cong \mathbb{P}^{m+1}, E_{k}^{\prime} \cong \mathbb{P}^{m}$ and

$$
H_{t}^{(k)} \backslash\left(Z_{0}^{(k)} \cup E_{k}^{\prime}\right) \cong H_{t}^{(k-1)} \backslash Z_{0}^{(k-1)}
$$

$H_{c}^{m-1}\left(\tilde{H}_{t} \backslash Z_{0}\right)=0$ is proved by the exact sequence

$$
\begin{aligned}
H_{c}^{m-2}\left(E_{k}^{\prime} \backslash E_{k}^{\prime}\right. & \left.\cap Z_{0}^{(k)}\right) \rightarrow H_{c}^{m-1}\left(H_{t}^{(k)} \backslash\left(Z_{0}^{(k)} \cup E_{k}^{\prime}\right)\right) \\
& \rightarrow H_{c}^{m-1}\left(H_{t}^{(k)} \backslash Z_{0}^{(k)}\right) \rightarrow H_{c}^{m-1}\left(E_{k}^{\prime} \backslash E_{k}^{\prime} \cap Z_{0}^{(k)}\right)
\end{aligned}
$$

inductively.
By $E_{k}=\tilde{H}_{t} \cap \mathbb{E}_{k} \cong \tilde{\mathbb{P}}^{m}$ and $E_{k} \cap Z_{0} \cong \tilde{Y}$, we have

$$
H_{c}^{m}\left(E_{k} \backslash\left(E_{k} \cap Z_{0}\right)\right)=0
$$

for $1 \leq k \leq s-1$, and these contain $E_{k-1} \cap E_{k} \cong \mathbb{P}^{m-1}$ and $E_{k-1} \cap$ $E_{k} \cap Z_{0} \cong Y_{0}$ as a section of the \mathbb{P}^{1}-bundle structure, so we can see

$$
\begin{aligned}
& H_{c}^{m-1}\left(E_{k} \backslash\left(E_{k} \cap Z_{0}\right)\right) \simeq H_{c}^{m-1}\left(\left(E_{k-1} \cap E_{k}\right) \backslash\left(E_{k-1} \cap E_{k} \cap Z_{0}\right)\right) \\
& \simeq H_{\text {prim }}^{m-2}\left(Y_{0}\right) \\
& H_{c}^{m-1}\left(E_{k} \backslash\left(\left(E_{k} \cap Z_{0}\right) \cup\left(E_{k-1} \cap E_{k}\right)\right)\right)=0 \\
& H_{c}^{m}\left(E_{k} \backslash\left(\left(E_{k} \cap Z_{0}\right) \cup\left(E_{k-1} \cap E_{k}\right)\right)\right)=0
\end{aligned}
$$

for $2 \leq k \leq s-1$. By the exact sequence

$$
\begin{aligned}
& H_{c}^{m-1}\left(E _ { k } \backslash \left(\left(E_{k} \cap Z_{0}\right) \cup\right.\right.\left.\left.\left(E_{k-1} \cap E_{k}\right)\right)\right) \\
& \rightarrow H_{c}^{m}\left(\tilde{H}_{t} \backslash\left(Z_{0} \cup E_{1} \cup \cdots \cup E_{k}\right)\right) \rightarrow H_{c}^{m}\left(\tilde{H}_{t} \backslash\left(Z_{0} \cup E_{1} \cup \cdots \cup E_{k-1}\right)\right) \\
& \rightarrow H_{c}^{m}\left(E_{k} \backslash\left(\left(E_{k} \cap Z_{0}\right) \cup\left(E_{k-1} \cap E_{k}\right)\right)\right),
\end{aligned}
$$

we have

$$
H_{c}^{m}\left(\tilde{H}_{t} \backslash\left(Z_{0} \cup E_{1} \cup \cdots \cup E_{s-1}\right)\right) \simeq H_{c}^{m}\left(\tilde{H}_{t} \backslash\left(Z_{0} \cup E_{1}\right)\right)
$$

inductively, and by the exact sequence

$$
\begin{aligned}
0=H_{c}^{m-1}\left(\tilde{H}_{t} \backslash Z_{0}\right) & \rightarrow H_{c}^{m-1}\left(E_{1} \backslash\left(E_{1} \cap Z_{0}\right)\right) \rightarrow H_{c}^{m}\left(\tilde{H}_{t} \backslash\left(Z_{0} \cup E_{1}\right)\right) \\
& \rightarrow H_{c}^{m}\left(\tilde{H}_{t} \backslash Z_{0}\right) \rightarrow H_{c}^{m}\left(E_{1} \backslash\left(E_{1} \cap Z_{0}\right)\right)=0
\end{aligned}
$$

we have the exact sequence

$$
\begin{aligned}
0 \rightarrow H_{\mathrm{prim}}^{m-2}\left(Y_{0}\right) \rightarrow H_{c}^{m}\left(\tilde { H } _ { t } \backslash \left(Z_{0} \cup E_{1} \cup \cdots \cup\right.\right. & \left.\left.E_{s-1}\right)\right) \\
& \rightarrow H_{c}^{m}\left(\tilde{H}_{t} \backslash Z_{0}\right) \rightarrow 0 .
\end{aligned}
$$

To see $H_{c}^{m}\left(\tilde{H}_{t} \backslash Z_{0}\right)=0$,

$$
H_{\mathrm{prim}}^{m-2}\left(Y_{0}\right) \simeq H_{c}^{m}\left(\tilde{H}_{t} \backslash\left(Z_{0} \cup E_{1} \cup \cdots \cup E_{s-1}\right)\right)
$$

is proved in the following. We consider the rational map

$$
\begin{aligned}
H_{t} \cong \mathbb{P}^{m+1} \quad \cdots & \rightarrow \\
{\left[X_{0}: \cdots: X_{m+1}\right] } & \mapsto\left[X_{1}^{s}: \cdots: X_{m+1}^{s}: X_{0}^{s-1} X_{1}: \cdots: X_{0}^{s-1} X_{m}\right] \\
& =\left[y_{1}: \cdots: y_{m+1}: z_{1}: \cdots: z_{m}\right]
\end{aligned}
$$

which has the elimination of indeterminacy $\phi: \tilde{H}_{t} \rightarrow \mathbb{P}^{2 m}$. Let H_{t}^{\prime} be the image of $\pi \times \phi: \tilde{H}_{t} \rightarrow H_{t} \times \mathbb{P}^{2 m}$, and $W \subset H_{t} \times \mathbb{P}^{2 m}$ be the subvariety defined by $X_{1}=\cdots=X_{m+1}=y_{1}=\cdots=y_{m+1}=0$, which is contained in H_{t}^{\prime}. The birational morphism $\pi \times \phi: \tilde{H}_{t} \rightarrow H_{t}^{\prime}$ has the exceptional set $E_{1} \cup \cdots \cup E_{s-1}$, and $(\pi \times \phi)\left(E_{1} \cup \cdots \cup E_{s-1}\right)=W$. We can see

$$
\left\{\begin{array}{l}
\pi^{*} \mathcal{O}_{H_{t}}(1) \simeq \mathcal{O}_{\tilde{H}_{t}}\left(\pi^{*} H\right), \\
\phi^{*} \mathcal{O}_{\mathbb{P}^{2 m}}(1) \simeq \mathcal{O}_{\tilde{H}_{t}}\left(s\left(\pi^{*} H\right)-E_{1}-2 E_{2}-\cdots-s E_{s}\right)
\end{array}\right.
$$

Because Z_{0} is linearly equivalent to $d \pi^{*}(H)-\delta E_{1}-2 \delta E_{2}-\cdots-s \delta E_{s}$ in $\tilde{H}_{t}, \mathcal{O}_{H_{t}^{\prime}}\left(Z_{0}^{\prime}\right) \simeq\left(\mathcal{O}_{H_{t}}(d-s \delta) \boxtimes \mathcal{O}_{\mathbb{P}^{2 m}}(\delta)\right) \otimes \mathcal{O}_{H_{t}^{\prime}}$, where $Z_{0}^{\prime}=(\pi \times \phi)\left(Z_{0}\right)$. By the assumption $d \geq s \delta+1, Z_{0}^{\prime}$ is a very ample divisor in H_{t}^{\prime}, so we have

$$
H_{c}^{m-1}\left(W \backslash\left(W \cap Z_{0}^{\prime}\right)\right) \simeq H_{c}^{m}\left(H_{t}^{\prime} \backslash\left(Z_{0}^{\prime} \cup W\right)\right)
$$

Since $W \cap Z_{0}^{\prime}$ is isomorphic to Y_{0} in $\mathbb{P}^{m-1} \cong W$, we have $H_{c}^{m-1}(W \backslash$ $\left.\left(W \cap Z_{0}^{\prime}\right)\right) \simeq H_{\text {prim }}^{m-2}\left(Y_{0}\right) . \pi \times \phi$ induces the isomorphism

$$
\tilde{H}_{t} \backslash\left(Z_{0} \cup E_{1} \cup \cdots \cup E_{s-1}\right) \cong H_{t}^{\prime} \backslash\left(Z_{0}^{\prime} \cup W\right)
$$

so $H_{c}^{m}\left(\tilde{H}_{t} \backslash\left(Z_{0} \cup E_{1} \cup \cdots \cup E_{s-1}\right)\right) \simeq H_{\text {prim }}^{m-2}\left(Y_{0}\right)$ is proved. \quad Q.E.D.

The degeneration $\tilde{X} \rightarrow B$ defines the limit Hodge structure H_{lim}^{i}.
Corollary 3. Assume $d \geq s \delta+1$. The mixed Hodge structure on H_{lim}^{m} satisfies

- $\mathrm{Gr}_{l}^{W} H_{\mathrm{lim}}^{m}=0$ if $l \leq m-2$.
- $\mathrm{Gr}_{m-1}^{W} H_{\mathrm{lim}}^{m} \simeq H_{\text {prim }}^{m-1}\left(Z_{0} \cap Z_{s}, \mathbb{Q}\right)$.

If we denote the logarithm of the monodromy by $N: H_{\lim }^{m} \rightarrow H_{\mathrm{lim}}^{m}$, then $N^{2}=0$, and we have $N=0$ if and only if m is even and $\delta=2$.

Proof. We use the Clemens-Schmid exact sequence

$$
\operatorname{Gr}_{l-2 m-2}^{W} H_{m+2}(Z, \mathbb{Q}) \rightarrow \operatorname{Gr}_{l}^{W} H^{m}(Z, \mathbb{Q}) \rightarrow \operatorname{Gr}_{l}^{W} H_{\lim }^{m} \xrightarrow{[N]} \operatorname{Gr}_{l-2}^{W} H_{\mathrm{lim}}^{m}
$$

Since $W_{-m-3} H_{m+2}(Z, \mathbb{Q})=0, \operatorname{Gr}_{l}^{W} H^{m}(Z, \mathbb{Q}) \simeq \operatorname{Gr}_{l}^{W} H_{\lim }^{m}$ is proved by the sequence and Proposition 1, inductively for $l \leq m-1$. By the property of the weight filtration on H_{lim}^{m},

$$
\operatorname{Gr}_{m+i}^{W} H_{\mathrm{lim}}^{m} \stackrel{\left[N^{i}\right]}{\rightarrow} \mathrm{Gr}_{m-i}^{W} H_{\mathrm{lim}}^{m}
$$

the condition $N^{i}=0$ is equivalent to $W_{m-i} H_{\lim }^{m}=0$, hence the monodromy statement is proved. Since $Z_{0} \cap Z_{s}$ is a hypersurface of degree δ in $\mathbb{P}^{m}, H_{\text {prim }}^{m-1}\left(Z_{0} \cap Z_{s}, \mathbb{Q}\right)=0$ if and only if m is even and $\delta=2$. Q.E.D.

Corollary 4. If m is even and $\delta=2$, then $d \rho_{Z}$ is not injective.
Proof. We have the extended period map $\phi: B \rightarrow \Gamma \backslash D_{\sigma}$, where D is the period domain, σ is the nilpotent cone $\mathbb{Q}_{\geq 0} \cdot N$, and Γ is the subgroup of $\operatorname{Aut}\left(H_{\lim }^{m},<,>\right)$ generated by the monodromy. The log differential of the extended period map satisfies the commutative diagram

$$
\begin{array}{cc}
T_{B}^{\log }(o)=\mathbb{C} \cdot t \frac{\partial}{\partial t} \xrightarrow{d \phi} & T_{\Gamma \backslash D_{\sigma}}^{h}(\phi(o)) \\
\downarrow & \downarrow \\
H^{1}\left(Z, \theta_{Z / S_{o}}\right) & \xrightarrow{d \rho_{Z}} \underset{1 \leq p \leq m}{\bigoplus_{p}} \operatorname{Hom}\left(H^{m-p}\left(Z, \omega_{Z / S_{o}}^{p}\right), H^{m-p+1}\left(Z, \omega_{Z / S_{o}}^{p-1}\right)\right) .
\end{array}
$$

If $N=0$, then the extended period domain $\Gamma \backslash D_{\sigma}$ is equal to D. Because the \log structure of D is trivial, $d \phi\left(t \frac{\partial}{\partial t}\right)$ must be zero. On the other hand, the image of $t \frac{\partial}{\partial t}$ by the log Kodaira-Spencer map is not zero in $H^{1}\left(Z, \theta_{Z / S_{o}}\right)$. So $d \rho_{Z}$ is not injective.
Q.E.D.

Remark 5. If $m \geq 3$ or $d \neq 3$, then the period map $\phi: B \rightarrow \Gamma \backslash D_{\sigma}$ is injective, by the local Torelli for smooth hypersurfaces. But the log differential $d \phi$ is zero if m is even and $\delta=2$. The injectivity of ϕ does not necessary imply the injectivity of $d \phi$.

```
Graduate School of Science,
Osaka University,
Toyonaka,Osaka, 560
Japan
atsushi@math.sci.osaka-u.ac.jp
```

