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§0. Introduction 

Recently Kato and Usui ([KU]) have constructed partial compact­
ifications of period domains by using logarithmic Hodge structures. It 
motivates us to study extended period maps and their Torelli problems. 
The purpose of this article is to give some results on the infinitesimal 
logarithmic Torelli problem of extended period maps for degenerating 
hypersurfaces. 

We first set up the following problem in the logarithmic algebraic ge­
ometry. Let k be a field of characteristic zero and let fio = (Spec(k), N 0 ) 

be the standard log point where the log structure N 0 is defined by 
N ---t k; 1 ---t 0. Let fo : (Z, Mz) ---t fio be a log smooth morphism 
of semistable type whose underlying morphism is proper and flat of rel­
ative dimension m. Let wz;s0 be the sheaf of logarithmic differentials 
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of (Z,Mz)/!io introduced by [K]. It is a locally free Oz-module and we 
put 

The main object of study is the map 

d H 1(z (} ) ffi H (HP(Z m-p) HP+1(z m-1-p)) Pz : ' Z/So --> W om ,wZ/So ' ,wZ/So 
o:s;p:s;m-1 

that is given nse to by the pairing H 1(Z,ez;s0 ) 0 HP(z,wr;1i,) --> 

HP+ 1 (Z m- 1-p) · d d b th t t" (} ""' q q-l ,wZ/So m uce y e con rae 10n Z/So '61 Wz;so --> wZ/So 
and cup product. We say that the infinitesimal logarithmic Torelli holds 
for (Z, Mz)/!i0 when dpz is injective. 

Now we consider the case k =C. In [KU] dpz is interpreted as the 
logarithmic differential of an extended period map and the injectivity 
implies that the period map is an embedding on the universal deforma­
tion space of f 0 . In order to explain the implication more precisely, we 
consider the following concrete situation. Let B = { t E C I It I < 1} be 
the unit disc and let pm+l be the complex projective space with homo­
geneous coordinate X 0 , ... , Xm+l· We will construct a certain moduli 
space over B that parametrizes families of hypersurfaces XC pm+l x B 
over B such that X --> B is smooth outside the point { t = X 1 = 
· · · Xm+l = 0} with some prescribed type of singularity at the point. 
Every member X/ B of the moduli space has a standard desingulariza­

tion X --> X such that X has strictly semistable reduction over B. It 
gives rise to a log smooth morphism (Z, Mz)--> fi0 where Z is the cen­
tral fiber of X --> B and Mz is associated to the embedding Z '---+ X. 
Our main result Theorem(2-1) asserts under suitable assumptions that 

the infinitesimal logarithmic Torelli holds for (Z,Mz)/fi0 . Letting B* 
be the universal covering of B- {0}, it implies that the limiting Hodge 
structure on Hm(x x 8 B*,Q) defined by Steenbrink [St] determines 
(Z, Mz) locally on the moduli space up to isomorphisms of log schemes 
over !i0 (see Theorem(2-2) for the more precise statement). 

The proof of the main theorem follows the line of thoughts de­
veloped by Griffiths [Grif]. The point is to express H 1 (Z, {}z;s0 ) and 
HP(Z, wi;sJ by Jacobian rings and observe that dpz is induced by 
multiplication of polynomials. In order to develop the generalized J aco­
bian rings in our logarithmic context, we apply the Green's technique of 
Koszul complexes ([G, Lecture 4]) to a certain toric variety. 



Infinitesimal Logarithmic Torelli Problem 403 

The author would like to thank Professors M. Green, F. Kato, K. 
Kato and S. Usui for valuable comments and encouragement. 

§1. A moduli space of degenerating hypersurfaces in IP'n 

In the whole paper we fix the base field k of characteristic zero, a 
variable t over k and a discrete valuation ring A over k[t] such that tis a 
prime element of A and that A/(t) '::::' k. Let IP' A= Proj(A[X0 , ... , Xn]) 
be the projective space of dimension n 2: 3 over Spec(A) and let AA = 

Spec(A[x1, ... , xn]) with Xi =Xi/ Xo be the affine subspace. We are go­
ing to study hypersurfaces in IP' A which are smooth over Spec(A) [1/t] and 
whose fibers over Spec(A/ ( t)) has isolated singularity of some prescribed 
type at the origin of A.A. We need introduce some notations. 

Definition(l-1). We fix an integer s 2: 1. 

(1) Let q 2: 0 be an integer. Let PX C A[Xo, ... , Xn] be the A-module 
of homogeneous polynomials of degree q. Let AA = A[x1, ... , Xn] 
and A~q be the subspace of polynomials of degree :::; q. We con­

stantly use the identification PX ~ A~q; G(Xo,X1,···,Xn)--+ 
G(1, X1, ... , Xn)· 

(2) For an integer v 2: 0 let mA(v) C AA be the ideal generated by 
the elements 

tf3xr'x~2 • • • x~n with (3 +an+ s L ai 2: v 
1:S:i:S:n-1 

and define 

Now we fix an integer d > 0 for the degree of our hypersurfaces 
and 8 > 0 for the multiplicity of designated singularity. Our object to 
study is hypersurfaces defined by an equation FE P;{(s8) (s is already 
fixed in Definition(l-1)). By definition F E P;{ lies in P;{(s8) iff 

F(l, x 1, ... , Xn) E A~d is written in the form 

!= 

laa,, ... ,aJ + L sai +an 2: s8 
1:S:i:S:n-1 

where 1>-1 denotes the normalized additive valuation of>. EA. 
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Remark(l-1). A typical example of such f is 

f = xf + · · · + x~_1 + x~6 + t86 + h with hE Axd n mA(s8 + 1). 

where we assume s8 < d. The reason why I choose such special type 
of degenerating hypersurfaces for our stydy of the logarithmic Torelli 
problem is not so much more than the convenience of computation. By 
using toric geometry we will construct a birational map jjiiA = PA(A) -t 

lP' A associated to a certaion cone decomposition A in such a way that 
the inverse images of the generic members of degenerating hypersurfaces 
defined by equations in PX(s8) have semistable reduction over Spec(A). 
A change of A will bring about that of the type of equations, and vice 
versa. I believe that with more effort, one should be able to carry out the 
similar computation for degenerating hypersurfaces defined by equations 
of more general type. For example one may fix appropriate rational 
numbers 80 , 81 , ... , 8n to consider equations of the form 

!= a-1, ... ,-nx"'11 x"'2, ... xn"'n (a E A) ~ ~ al,···,O<n ' 

a1+··-+an~d 

8olaa1 , ... ,anl + L 8iai 2: 1. 
1~i~n 

Now we construct a moduli space over Spec(A) parametrizinghy­
persurfaces in lP' A of the above type which are smooth in the logarithmic 
sense (cf. Theorem(l-1)). We start with the following. . 

Definition(l-2). We fix integers d, 8, r satisfying r = s8 and 8 2: 2 and 
d 2: r. Let M = lP'(PX(r)*) be the projective space bundle over Spec(A) 
associated to the A-dual of PX(r). For a morphism p: Spec(A) -t M we 
let Xv C lP' A be the corresponding hypersurface. Note that Xp passes 
through 0 = (t, Xt, ... , Xn) E AA where Xp is singular. 

The next task is to construct an appropriate simultaneous desingu­
larization of Xp. For this we use the terminology of toric geometry that 
we refer to [F]. Let N be the lattice of rank n + 1 with the standard 
basis 

eo = (1, 0, ... , 0), e1 = (0, 1, ... , 0), · · · , en = (0, 0, ... , 1) 

where the vectors are n +!-dimensional. Let M = Homz(N, Z) with 
dual pairing ( , ) : M x N -t Z. For a cone a in NR write 

Ua = Spec(k[Ma]) with Ma = { u E M I (u, v) 2: 0 (Vv E a)}. 
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For a fan .D. in N let 

X(.D.) = U Uu 
uE~ 

be the corresponding toric variety. In particular we have 

A:= X(.D.o) = Spec(k[t, x1, ... , xn]) 

for .6.0 = {faces of a 0} with ao = !R~oeo + · · · + !R~oen where t, x1, ... , Xn 
are the elements in k[Mu0 ] corresponding to the dual basis of 
{ e0, ... , en}· For a fan .D. which is a subdivision of .6.0 we have the 
natural morphism 1r: X(.D.)-+ A arising from the natural map (N, .D.)-+ 
(N, .D.o). 

Defi.nition(l-3). Let s ~ 1 be as in Definition(1-1). 

( 1) Let .D.s be the fan consisting of the following cones and their faces 

where, denoting Vk = (1, k, ... , k, 1), 

a~ i =lR~oeo + !R~ovk + !R~ovk+1 + lR~oe1 , 

+ · · · +~ + · · · +lR~oen-1 1 
a;i =lR~oen + !R~ovk + !R~ovk+l + lR~oe1 

+·· · +~ + ··· +lR~oen-1, 
a0,i =!R~oeo + !R~oen + lR~ov1 + lR~oe1 

+ ··· +~ + ··· +lR~oen-1 1 
a; =!R~oeo + !R~oVs + lR~oe1 + · · · + !R~oen-b 

a; =!R~oen + !R~oVs + lR~oe1 + · · · + lR~oen-1· 

Let A := X(.D.s) with 1r : A-+ A be the corresponding toric 
variety. Note that if s = 1, 1r is the blow up of A with center at 
0 = (t,x1, ... ,xn)· 

(2) Let JlD = Proj(k[t][X0 , •.• , Xn]) be the projective n-space over 
Spec(k[t]) and fix the embedding A Co....+ JlD over Spec(k[t]) via Xi = 

Xi/Xo. Putting 
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patched together in an evident manner, we get 1r : IF' ---+ IF' that 
fits into the following cartesian diagram 

Proposition(1-1). A. is smooth over k, 1r is proper and 1r : A. -
1r-1 (0) :::.. A.- {0} where 0 = (t, x 1 , ... , Xn) E A.. The reduced part 

lE of 1r-1 (0) is a simple norrr:_al crossing div~sor on A. We can write 
lE = U lEk as a divisor on A., where lEk C A. is an irreducible smooth 

l:Sk:Ss 

divisor characterized by the following property: 

if a = ak±, with 1 ::; k ::; s - 1 
,t 

if a= a0 ' 
·" 

f ± 
2 a= as. 

Proof. Easy and left to the readers. Q.E.D. 

Definition(1-4). Let 

be the base change of the diagram in Definition(1-3)(2) via 
~ec(~---+ Spec(k[t]). For Xp C IF' A as in D~nition(1-2), we denote by 

XP C IF' A the proper transform of Xp by 1r : IF' A ---+ IF' A. 

Theorem(1-1). There exists a Zariski open subset Mls C M (the locus 
of "log-smooth points") characterized by the property that a morphism p: 
Spec(A) ---+ M factors through Mls if and only if the following condition 
( *) holds: 
( *) Xp is regular and Xp ---+ Spec( A) is smooth outside 0 and Xp is a 
strict semi-stable reduction over Spec(A). 

Moreover Mls C M is strictly dense, where a dense open immersion 
U <----+ V of A-schemes is strictly dense if U ®A k <----+ V ®A k is dense. 

Fix a morphism p : Spec(A) ---+ M and let F E PX(r) be a cor­
responding non-zero polynomial. Let f = F(1, x 1 , ... , Xn) E AA. By 
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Definition(1-1) we can write 

(1-1) != a tf3 x"'' x"'2 • • • x"'n a~, ... ,an 1 2 n 

a1+···+an::;d 

Note M = Proj(A[aa1 , ... ,aJ) by taking the coefficients off as a homo­
geneous coordinate. Put 

s(a1 +···+an-d+ao+an=r 
(1-2) 

{ 

Jhom _ 

E A[xo, XI, ... , Xn], 

.f0hom = (Jhom d t) k[ ] J 1 mo E xo,xl, ... ,xn. 

Grading k[xo, ... , Xn] by deg Xi = s for 1 ::::; i ::::; n - 1 and deg xo 
degxn = 1, f~om is homogeneous of degree r. Let 
lP'(Q) := Proj(k[xo, XI, ... , xn]) be the weighted projective space of type 
Q = (1, s, ... , s, 1). Now Theorem(1-1) is an easy consequence ofTheorem(1-
2) below. 

Theorem(l-2). Xp satisfies the condition(*) of Theorem(1-1) if and 
only if the following conditions hold. 

(1) 8Fj8Xo, ... , 8Fj8Xn have no common zero in lP'A- {0}. 
(2) xo8f~om j8xo, 8f~om j8x1, ... , 8f~om j8xn have no common 

zero in lP'( Q). 

Remark(l-2). For f as Rem.(1-1), we have f~om = x0 + xf + · · · + 
x~_ 1 + x;;_ and we easily see that it satisfies Theorem(1-2)(2). Hence 
it corresponds to a morphism Spec(A) ----> Mzs if we take h sufficiently 
general so that f satisfies the condition of Theorem(l-2)(1). 

Proposition(l-3). Let V1 c lP'(Q) be the hypersurface defined by 
!~om = 0 and let v2 = vl n { Xo = 0} and v3 = Vi n { Xo = Xn = 0}. The 
condition of Theorem(1-2)(2) is equivalent to the following condition: If 
s = 1, V1 and V2 are regular. If s ~ 2, V3 and V1 n (D+(x0 ) U n+(xn)) 
and v2 n n+(xn) are regular where n+(xi) = lP'(Q)- {xi= 0}. 

Proof. The proof is standard and left to the readers. Q.E.D. 

Now we prove Theorem(1-2). Let Ht C lP'A be defined by {t = 0} 
and let Ht C iPA be its proper transform. In view of Proposition(1-1) 



408 S. Saito 

the conditions of Theorem(1-1) are equivalent to the conditions that 
Xp----> Spec(A) is smooth outside 0 and that: 

(*): Xp_0lEk,_.XPn!Ekn!Ek+l (1::::; k::::; s-1), XPniit, XPniitnlEk 
and Xp n Ht n !Ek n !Ek+l intersect transversally. 

It is standard that the first condition is equivalent to Theorem(1-2)(1). 
We show the equivalence of the condition ( *) and the condition of 
Proposition(1-3). We assume s:::,: 2 and leave the (easier) cases= 1 to 
the readers. Recall that we have 

where we write Uu for Uu x Spec(k[t]) Spec( A). We describe the condition 

( *) on each open subset U u for CY = CY0 , , CYk±,, CY~. For simplicity we 
,z ,2 

assume n = 3 while the argument in general case is the same. 

Case CY = CY 0 i or CYk±,. We take for example CY = CYk+, = IR;::ovk + 
' ,t ,2 

IR;::ovk+l + IR;::oeo + IR;::oe1 with 1 ::::; k ::::; s- 1. We have Uu = Spec(Ru) 
where 

{ 

X1 = y~y~+ 1 Y4 

Ru = A[y1, Yz, Y3, Y4]/(t- YlY2Y3)) with x 2 = y~y~+l 

Xn = Y1Y2· 

Note that IE n Uu = (!Ek u !Ek+l) n Uu and !Ekl !Ek+l, Ht are defined by 
Yl = 0, Yz = 0, Y3 = 0 respectively on Uu. First assume k::::; s- 2. An 
easy calculation shows that f = (YtY~+ 1 ) 15 (g + YlYzh) with hE Ru and 

We note that 

Now the condition ( *) on Uu is equivalent to the regularity of 
Ru /(Yl, Yz, y3, g). By (d) it is equivalent to the regularity of V3nD+(xz) 
where V3 is as in Proposition(1-3). The similar computations in cases 
CY = CY 0 ' or CYk±, show that the condition ( *) on U u for these CY is equivalent 

,2 ,2 

to the regularity of V3 . In case k = s -1 we see that f = (yf~ 1 yf2) 15 (g + 
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Y1Y2h) with hERa and 

We note that 

Now the condition ( *) on U a is equivalent to the regularity of Ra I (Yi, g) 
and Rai(Y3,Yi,g) with i = 1,2 and that of Rai(Yl,Y2,g) and 
Rai(Yl,Y2,Y3,g). By (*1) and (*2) it is equivalent to the regularity of 
V3 n n+(x2) and V1 n (D+(x2) n n+(xn)) and V2 n (D+(x2) n n+(xn)). 
The similar computations in cases a = ak±, with k = s - 1 show that 

,2 

the condition(*) on Ua for these a is equivalent to the regularity of V3 

and V1 n (D+(xo) U n+(xn)) n (D+(xl) U n+(x2)) and V2 n n+(xn) n 
(D+(xl) u D+(x2)). 

Case a = a~. We take for example a = a"t = lR;:::ovs + lR;:::oe1 + 
lR;:::oe2 + lR;:::oeo. We have Ua = Spec(Ra) where 

{ 
x1 = u~u1 

Ra =A[uo,ul,u2,u3]1(t-uou3) with x2 =u~u2 

Xn = U3. 

Note that lEn Ua = lEs n Ua and lEs and Ht are defined by U3 = 0 
and u 0 = 0 on Ua respectively. An easy calculation shows that f = 

u3(g + u3h) with h E Ra and 

( ) "'\'"' r-s(a, +a2)-an a, <>2 
g = g Uo, U!, U2 = ~ aa,,a2,an Uo Ul U2 . 

s(a, +a2)+an:'Or 

We note 

Now the condition ( *) on Ua is equivalent to the regularity of Ra I ( u 3 , g) 
and Ral(u0 ,u3 ,g). By (*3) it is equivalent to the regularity of V1 n 
D+(xn) and V2 n D+(xn)· The similar computation in case a = a-; 
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shows that the condition ( *) on U a for these CT is equivalent to the 
regularity of v1 n ( v+ ( Xo) u v+ ( Xn)) and V2 n v+ ( Xn). This completes 
the proof of Theorem(1-2). Q.E.D. 

As an immediate consequence of the above proof we get the follow-
ing. 

Proposition(l-4). For p : Spec(A) ~ Mz 8 , n-1 (Xp) = Xp + 8 · 

L klEk as a divisor on FA. 
1~k~s 

§2. lnjectivity of infinitesimal period map 

Fix a morphism p: Spec(A) ~ Mzs and let X C lP'A and X C FA 
be the corresponding hypersurface and its proper transform with the 
projection 1r: X~ X. Let Z C X be the closed fiber of X~ Spec(A). 

Definition(2-1). Let wx.;s = Dx.18 (logZ) be the sheaf of logarithmic 

differentials of the semistable family X over S := Spec(A) in the sense 
of [St]. By [St] wx.;s is a locally free Ox.-module. We put 

q q ( 
wx;s = 1\wx;s and Bx;s = 'Hom0 x wx. 18 ,0x.)· 

We also define a locally free Oz-modules 

wz;so = wx.;s ®A k, 
q q 

wZ/So = 1\wz;so, 

Remark(2-l). In the language of log geometry (cf. [K]), wx.;s (resp. 
wz;s0 ) is the sheaf of logarithmic differentials of the log smooth mor­

phisms (X,Mx.) ~ (Spec(A),NA) (resp. (Z,Mz) ~ (Spec(k),No}). 
Here N 0 and N A are the log structure defined by N ~ A ~ k; 1 ~ t ~ 0 
and M x is associated to the embedding Z C X and Mz is its inverse 
image on Z. 

Let m = n - 1 be the relative dimension of X/ S and let 

H 1(Z, Bz;so) ® HP(Z, w';11:) ~ HP+l(z, w';1-;;~-p) 

be the map induced by the contraction Bz;so ® w'fz;so ~ w'!zj~o and the 
cup product. It induces 

1 ( ) dpz H z, Bz;so ~ ffi H (HP(Z m-p) HP+1(z m-1-p)) W om ,wZ/So ' ,wZ/So . 
O~p~m-1 
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Theorem(2-1). Let the assumption be as in Definition(1-1) and 
Definition(1-2). Assume the following conditions: 

(i) d ~ r + 1 and either n ~ 4 or n = 3 and d =/= 4. 
(ii) 8 < n. 

(iii) H 0 (Z, ez;s0 ) = 0. 

The map dpz is injective if n is even or 8 ~ 3. If n is odd and 8 = 2 
then dimk(Ker(dpz)) = r- 1. 

Remark(2-2). We will see (cf. Remark(4-1)) that the singularity (X, 0) 
is canonical if and only if 8 < n or 8 = n, s = 1. Thus Theorem(2-1) 
suggests that the canonicality of the singularity plays an important role 
in the infinitesimal logarithmic Torelli problem. 

Concerning the second assumption of Theorem (2-1), we have the 
following. 

Proposition(2-1). The condition H 0 (Z, ez;s0 ) = 0 defines strictly 
dense open subset Mtst of Mzs. 

Proposition(2-1) follows from Proposition(2-2)(2) below that will be 
proven in §4. Indeed, by the semicontinuity, the vanishing of H 0 ( z, e z I So) 

is an open condition on the moduli space. Thus it suffices to show that 
there exists a morphism p : Spec(A) ---> Mzs satisfying the condition. 
Indeed we may take for example 

F = Xd- 8 (X8 + · · · X 8 ) + Xd-r Xr +<I> + trG E Pd(r) 0 1 n-1 0 n d A 

where <Pd (resp. G) is a sufficiently general homogeneous polynomials of 
degreedinX1, ... ,Xn (resp. inXo,X1, ... ,Xn) (cf. Theorem(1-2)). 

Proposition(2-2). Assumed~ r and 8 < n. 

(1) Hi(z,ez;s0 ) = 0 for j ~ 2 if either j:::; n- 3 or j = n- 2 and 
d =/= n + 1 or j = n - 1 and d :::; n + 1. 

(2) Let FE P;{(r) be a polynomial defining XC lP'A and put F0 = (F 
mod t) E k[Xo, ... , Xn]· Then H 0 (Z, ez;s0 ) = 0 if either s ~ 2 
and 

are linearly independent over k, or if s = 1 and 

are linearly independent over k. 
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In the rest of this section we give a geometric implication of 
Theorem(2-1). We suppose that the readers are familiar with basic 
notions of log geometry. 

Let Mtst be as Proposition(2-1) and put Mts~o = Mtst ®A k. Note 
that Mtst is smooth over Spec(A). The construction of §1 gives us the 
following cartesian diagram of log schemes 

(zuniv, Mzuniv) '---> 

(2-1) l foniv 

( Ml~t,o' No) '---' 

(.Xuniv, M j(univ) 
l Juniv 

(Mtst,NA) 

with the following properties: Let 

S_0 = (Spec(k), No)<---> S_ =(Spec( A), NA) 

denote the exact closed immersion of log schemes, where No and N A are 
defined in Remark(2-1). 

(a): NA and N 0 in (2-1) are defined in the same way as Remark(2-
1). 

(b): zuniv c j(univ is a simple normal crossing divisor defined by 
t = 0. 

(c)· M- . is associated to the embedding zuniv c j(univ and • xun?-V 

Mzuniv is its inverse image. 
(d): funiv and foniv are log smooth of semis table type. 
(e): Let p: S_--+ (M1~t,NA) be an exact closed immersion and let 

Po : S_0 --+ (Mtst 0 , No) be the induced exact closed immersion. By 
pulling back th~ above diagram via p and p0 , we get the following 
cartesian diagram of log smooth morphisms 

where the underlying morphisms are those associated to p as in 
§1 and Mx and Mz are defined as Remark(2-1). 

By (a) ( Mtst, N A) is a log scheme overS_. A morphism Po : Spec( k) --+ 

M1~t,o extends in the unique way to an exact closed immersion p0 : S_0 --+ 

(M1~t 0 , No) over S_0 . By pulling back foniv in (2-1) via Po we get the log 
smo~th morphism 

fPo : ( Zpo' MzPo) --+ S.o · 

Now assume k = C and let A C q[t]] be the ring of convergent 
formal power series. By [Mat] and [FK3] fPo gives rise to a log Hodge 
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structure H(p0 ) over S.n that is underlain by 

a pair of a local system on ~~og ( ~ { t E C I I tl = 1}) and a C.-vector space 

with the descending filtration given by subspaces Rm fvo*w~:o/So C 

RmfPo*wzPo/Sa· We note that H(po) is determined by the limiting 
Hodge structure defined by Steenbrink [St] on the space 

Hm(J(an XB. B:,Q). 

Here )(an ---> B€ := { t E C I It I < E} with sufficiently small E > 0 is 
the morphism of complex analytic space that arises from X---> Spec(A) 
corresponding to a lift p: Spec(A) ---> Mt: of p0 over Spec(A) and n; is 
the universal covering of B€- {0}. 

Theorem(2-2). Assume the following conditions: 

(i) d ~ r + 1 and either n is even or 8 ~ 3. 
(ii) 8 < n 

(iii) n ~ 4. 
Locally on M{st,0 , H(po) determines (Zp0 , MzPo) up to isomorphisms of 
log schemes over ~0 . 

Proof Fix an exact closed immersion Po: ~0 ---> (Mtst,0 , No) and denote 
simply by fo : (Z0 ,Mz0 ) ---> S.n the log smooth morphism obtained 
by pulling back fffniv via Po· We recall the logarithmic deformation 
theory of fo (cf. [KN], [FK1] and [FK2]). Let Ck (resp. CO be the 
category of artinian (resp. Noetherian complete) local k-algebra with 
residue field k. Let LCk (resp. LC~) be the category of pairs (;[, 01'.) 
where T_ = (Spec( A), M) with A E Ck is a log scheme (resp. T_ = 
(Spf(A), M) with A E C~ is a formal log scheme) whose log structure 
M is isomorphic to the inverse image of the log structure on S.n via 
Spec(A) ---> Spec(k) and 01'. : S.n "--+ T_ is an exact closed immersion 
whose underlying morphisms come from Ck (resp. C~ ). One defines the 
functor Dzo/So : LCk ---> Sets by setting Dzo/So (T_) to be the set of 
isomorphism classes of log smooth liftings of fo toT_ ( cf. [FK2, Definition 
4.1]). We remark that by definition the log structure a: M---> A for an 
object T_ =(Spec( A), M) E LCk is isomorphic toN EB A*---> A; (n, u)---> 
onu. Hence Dzo/So deals only with locally trivial deformations of fo. 
By [FK1, §8], [FK2, §4] and [FK4] we have the following facts: 

(a): Dzo/So is pro-represented by an object 

T= (T = Spf(R), NT) 
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in LCt with the universal family cp: (X,Mx)--+ (T,Ny). More­
over R is formally smooth over k. By definition the fiber of cp 
over Oz.: S..o --+Tis fo. 

(b): Let k[E] be the ring of dual numbers and let N. be the inverse 
image of the log structure N0 on 80 via the map Spec(k[E]) --+ 
Spec(k) induced by the canonical map k --+ k[E]. By definition 
3... := (Spec(k[E]), N.) with the canonical exact closed immersion 
3._0 '-----+ 3... induced by the residue map k[E] --+ k is an object in LCk. 
For an object T_ in LCk or LCt we call To (T_) = Hom Let (3..., T_) 
the logarithmic tangent space ofT_ at O;r_, where the space on the 
right hand side denotes the set of morphisms 3_. --+ T in LCk. 
The logarithmic Kodaira-Spencer map induces the isomorphism 

H 1 (Zo,(}z0 jS0 ) _:::. To(T) = Dz0 jS0 (3...). 

(c): For a morphism 

¢: T = (Spf(R), M) --+ T' = (Spf(R'), M') 

in LCt, we define its logarithmic differential of ¢ to be the map 

d¢: To(T) --+ To(T'). 

If R and R' are formally smooth over k and if d¢ is injective, then 
the underlying morphism Spf(R)--+ Spf(R') is an embedding. 

The pro-representability follows from the assumption 
H 0 (Zo, {}z0 js0 ) = 0 and the rigidity of Dz0 js0 (cf. [FK2, §3 and §4]). 
The formally smoothness of R over k is a consequence of the fact that 
Dz0 js0 has no obstruction that follows from Proposition(2-2)(1) (with 
j = 2) and the assumption (ii) (In cases n = 4, d = 5, H 2(Zo, ()Zo/Bo) -=1-

0 so that one needs an extra argument that we omit). 
Now we assume k = C and let cpan : (xan, Mxan) --+ yan = 

(Tan, Nyan) be the corresponding morphism of log analytic spaces over 
C. By the universality there is an open neighborhood V C Mtst 0 of Po 
and a strict morphism of log analytic spaces g: (V, Now)--+ ya'n map­
ping p0 to 0 such that the restriction to V of f0niv in the diagram (2-1) 
is isomorphic to the pullback of cpan via g. By the theory of logarithmic 
Hodge structures and their moduli space (cf. [KU], [Mat], [FK3] and 
[Us]) cpan gives rise to the extended period map 

p : yan --+ r\DE 

where the space on the right hand side is the classifying space of log­
arithmic Hodge structures of suitable type equipped with its canonical 
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log structure. We have p(g(p~)) = [H(p~)J for p~: Spec(C)----+ V C Mtst· 
Theorem(2-1) implies that under the assumption of Theorem(2-2) the 
logarithmic differential dp at Oz: of p is injective, which implies p is an 
embedding. This proves the assertion of Theorem(2-2). Q.E.D. 

§3. Jacobian rings of degenerating hypersurfaces 

Let the assumption be as in §2. In this section we express the cup 
product 

(3-1) H 1(X (}- ) ®A HP(X w':':-P)----+ HP+ 1 (X wr::-p-l) 
' XjS ' XjS ' XjS 

(3-2) HP(X w':':-p) ® Hm-p-l(X w~+l)----+ Hm-l(X w~ ®w"!! ) 
' XjS A ' XjS ' XjS XjS 

in terms of Jacobian rings and we prove Theorem(2-1). 

Definition(3-1). Let FE PX(r) be an equation defining XC JIDA. 

(1) For an integer q 2: 0 we write B~ = PX/J~ where 

J~ = { L Hi8F/8Xi I HiE px-d+l} c PX. 
o::;i::=;n 

(2) For integers q,v 2:0 we write B~(v) = PX(v)jJ~(v) where 

J~(v) = { L Hi8Fj8Xi I HiE Px-d+1 (v- r + JLi)} C J~, 
o::;i::=;n 

where JLi = s if 1 :::; i :::; n- 1 and JLn = 1 and JLo = 0. Note that 
J~(v) C PX(v) since 8F/8Xi E P1- 1 (r- JLi)· 

(3) Write f = F(1, x1, x2, ... , Xn) E AA. For integers q, v 2: 0 we 
define 

R}(v) = Ker(B~ ----+ AA/(It + mA(v))), 

where It= {gof + 2:: giaf jaxi I gi E AA (0:::; i:::; n) }. 
l::=;i::=;n 

Lemma(3-1). The natural map L: B~(v) ----+ R~(v) is injective if B~(v) 
is torsion free as a A-module. It is surjective if q- v 2: d- r + s- 2. 

Proof. It is easy to see Ker( L) is torsion, which implies the first 
assertion immediately. To show the second assertion it suffices to show 
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the surjectivity of PX(v)---> Rj,(v). We have the following commutative 
diagram of exact sequences 

0 0 

l l 
Jq a 

It+ mA(v)/mA(v) F 
...... 

l l 
a ...... PX(v) ...... pq 

A ...... AA/mA(v) 

l l l 
0---> Rj,(v) ...... Bq 

F 
...... AA/ It+ mA(v) 

l l 
0 0 

By the diagram the desired assertion follows from the surjectivity of a. 
Note that under PX ~ A~q 

J~ ~ { ho(d · f- L xi8f /8xi) + L hi8f j8xi I hiE A~q-(d- 1 ) }· 
1:Si:Sn 1:Si:Sn 

Take¢= gof + L gi8f j8xi E It with gi E AA· We have 
1:Si:Sn 

c/Y=~go(d·f- L xi8ff8xi)+ L (gi+~goxi)8ff8xi. 
1:Si:Sn 1:Si:Sn 

We may write 

~go= ho + gb, gi + ~goxi =hi+ g~ (1 ::; i::; n) 

with hi E A~q-(d- 1 ) and g~ E (x1, ... , Xn)q-d+ 2 C mA(q- d + 2) for 
0 ::; i ::; n. The assumption of Lemma(3-1) implies v ::; q- d + 2 + r- f.Li 
(cf. Definition(3-1)(2)) and we have 

g~8f j8xi E mA(q- d + 2 + r- f.Li) C mA(v). 

Since ho(d · f- L Xi8ff8xi), hi8f/8xi E J~, this completes the 
1:Si:Sn 

proof. Q.E.D. 

Theorem(3-1). Assume n ~ 3 and d ~ r + 1. 

(1) For 0::; p::; m := n- 1 there is the natural isomorphism of free 
A-modules 
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where K(p) = d(p + 1)- n -1 and v(p) = s(8(p + 1)- n + 1) -1. 

Here the primitive part HP(X,w~18 )prim is defined to be 

Ker(HP(X, w~15 ) ----> HP(X17 , rl'i,_, 117 )/ HP(X17 , rl]c,/1J)prim), 

where XrJTJ is the generic fiber of XjS. 
(2) Assume 8 < n and either n ~ 4 or n = 3 and d f= 4. There is 

the natural isomorphism of free A-modules 

-+.tan* . Bd*( *) ~ Rd*( *) ~ Hm-1(X~ 1 m ) 
'+'F . F r ____, F r ____, ,wx;s ®wx;s' 

where d* = dn- 2(n + 1) and r* = rn- s(2n- 2)- 2 = s(8n-
2n + 2)- 2. 

(3) Assume H 0 (Z, Bz;s0 ) = 0 and 8 < n. There is the natural injec­
tive homomorphism of free A-modules 

¢t;n : R}(r) ____, H 1 (X, ex;s)· 

It is an isomorphism if either n ~ 4 or n = 3 and d f= 4. There 
is an exact sequence 

o ____, B']i,(r) ____, R}(r) ____, E9 Coker(A;e ____, AA/mA(s)) ____, o. 
1:Si:Sn-1 

In particular B']i,(r) ~ R'j,(r) if and only if s ::; 2. 

Moreover the cup products (3-1) and (3-2) are compatible with the mul­
tiplication of the Jacobian rings. 

The proof of Theorem(3-1) is given in §4. 

Remark(3-1). Under the assumption d ~ r + 1 we can verify K(p) -
v(p), d* - r* ~ d- r + s- 2. Hence Lemma(3-1) implies the first 
isomorphisms of Theorem(3-1)(1) and (2) if we already know that the 
groups on the left hand side are torsion free. 

We have the following auxiliary result that will be proven in §4. 

Proposition(3-l). Assume d ~ r and j ~ 2 and 8 < n. Then 
HJ(X,Bx;s) is a free A-module and it vanishes if either j ::; n- 3 
or j = n - 2 and d f= n + 1 or j = n - 1 and d ::; n + 1. 

To deduce Theorem(2-1) from Theorem(3-1) we need the following. 

Lemma(3-2). Assume d ~ r + 1 and n ~ 3. For an integer 0 ::; p ::; 
n- 2 let 

7/Jp : p~(p)(v(p)) ® p~(n-Z-p)(v(n- 2- p))----> P{ (r*) 
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be the multiplication. Recall that Pf (r*) is generated over k by those 
polynomials of the form ¢-yx':;tf3 where s')'+o+ f3 2: r* and a+!' :::; d* and 
¢-y is a homogeneous polynomial of degree 1' in X1, ... , Xn- 1. Assume 
that v(p) 2: 0 and v(n- 2- p) 2: 0. 

(1) If s = 1, 'if;p is surjective. If s 2: 2, Im('if;p) contains all the 
above polynomials except for ¢ 11 _ 1x'::tf3 with a+ f3 = s- 2 where 

J.L = (8- 2)n + 2. 
(2) The composite of 'if;p with the projection Pf (r*) ___, B~* (r*) is 

surjective. 

Proof. First we deduce Lemma(3-2)(2) from (1). We may assume 
s 2: 2 and fix ¢ 11 _ 1x'::tf3 with a+f3 = s-2 as in (1). By Definition(3-1)(2) 
Jf (r*) contains the polynomials 

x~tf3 L hi a f I axi 
1:'0i:'On-1 

where hi is a homogeneous polynomial of degree J.L-8 in x 1 , ... , Xn- 1 and 
f is as in Definition(3-1)(3). In fact we need note that the assumptions 
d 2: r + 1 and 8 2: 2 imply J.L- 8 = (8- 2)(n -1) 2: 0 and d*- ((s- 2) + 
(J.L- 8) + (d- 1)) = (n- 1)(d- 8)- s- 1 2: 0. We can write 

f = L <L>a,b,cX~tb 
a,b,c~O 

where <L>a,b,c. is a homogeneous polynomial of degree c in x 1 , ... , Xn_ 1 
and a, b, c 2: 0 are integers satisfying sc + a + b 2: r and c + a :::; d. 
By Theorem(1-2) and Proposition(1-3) <L>o,o,8 is non-degenerate. By 
Macaulay's theorem ([D, §2]) any homogeneous polynomial of degree 
> (8- 2)(n- 1) = J.L- 8 in x 1 , ... , Xn_ 1 is in the homogeneous ideal 
generated by 8<L>o,0,8 I axi with 1 :::; i :::; n -1. Noting J.L -1 > J.L- 8 2: 0 if 
8 2: 2, we can thus find hi homogeneous of degree J.L- 8 in x 1 , ... , Xn-1 
such that 

d* ( *) mod Jp r . 
1 :'Oi:'On-1(a,b,c)#(0,0,8) 

Thus the desired assertion follows from Lemma(3-2)(1). 
Next we prove Lemma(3-2)(1). We prove only the statement in case 

s 2: 2 and leave the (easier) case s = 1 to the readers. Put 

{ 
A:1 = ti:(p), A:2 = ti:(n- 2- p), v1 = v(p), v2 = v(n- 2 

.A.1 = 8(p + 1)- (n- 1), .A.2 = 8(n- p- 1)- (n- 1) 

p) 
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We note 

{ 
d: = l'i:I +K:2, Jl =AI +..\2, AI,..\2;:::: 1 

r = SJL- 2, vi = s..\I - 1, v2 = s..\2 - 1. 

We have 

Here P{ (r*), C P{ (r*) and p~; (vi)r, C P~' (vi) are the submodule 
generated by those polynomials of the form 

respectively where ¢-y is as in Lemma(3-2). When 7I + 72 = E, the 
multiplication induces 

We note that the assumption d 2': r + 1, n 2': 3 and s 2': 2 implies 
that d* > r* and l'i:i >vi (i = 1,2), so that d*- JL + E > SE- 2 and 
l'i:i- Ai + 7i > S7i -1. From this we see that 'I/J,,r1 ,r2 is surjective if either 
SE- 2 2': 0, S7i- 1 2': 0 (i = 1, 2) or SE- 2 ::::: 0, S7i- 1 ::::: 0 (i = 1, 2). 
Unless E = 1, for a given E :::; JL we can find 7i :::; ..\i (i = 1, 2) such 
that 7I + 72 = E and that the above condition is satisfied. Thus we get 
P{ (r*), C Im('I/Jp) if E -1- 1. When E = 1, it is easy to see that Im('I/JI,I,o) 
contains all the polynomials of the form ( *) except a + (3 = s - 2. This 
completes the proof. Q.E.D. 

Now we deduce Theorem(2-1) from Theorem(3-1) and Lemma(3-2). 
We use the following duality theorem. 

Theorem(3-2). Let f : X ----> S = Spec(A) be the natural morphism. 
For a locally free 0 x -module :F, we have the isomorphism in the derived 
category of bounded complexes of Os-modules. 

Writing :Fv = Homox (:F, Ox), it gives rise to the exact sequence 

0----+ Extl(Hm+I-P(X, :F), A) ----+HP(X, :Fv ® w'i;s) 

----+Hom(Hm-p(X, :F), A) ----> 0. 
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Proof. This is a consequence of [H]. The key fact is J'Os = w'R18 [m]. 
Q.E.D. 

By [St] HP(X,w'g 18 ) is a free A-module. By Proposition(3-1) the 

first two assumptions of Theorem(2-1) imply that H 2 (X, ex;s) is a free 
A-module. By the long exact sequence induced by 

the last assumption of Theorem( 2-1) and the freeness of H 2 (X' eX Is) 

imply that H 1 (X, Bx;s) is a free A-module and 

Hence Theorem(3-1) and Theorem(3-2) imply that the dual of dpz of 
Theorem(2-1) is equal to the multiplication 

W : ffi B;(p) (v(p))&JAB;(n- 2-p\v(n-2-p))&JAk---+ B'j..* (r*)&JAk. 
O:Sp:Sn-2 

We easily see that v(p) 2: 0 and v(n-2-p) 2: 0 if and only if~ -1 :::; p:::; 
n - 1 - ~. If n is even or 8 2: 3, there exists 0 :::; p :::; n - 2 satisfying the 
condition. Hence Theorem(2-1) in this case follows from Lemma(3-2). 
Now assume that 8 = 2 and n is odd. We note r* = r- 2 = 2s- 2. For 
0:::; Vp:::; n- 2, we have either v(p) 2: 2s- 1 or v(n- 2- p) 2: 2s- 1 
so that the image of multiplication 

'1/Jp : p~(p)(v(p)) i'ZJA P:(n- 2-p)(v(n- 2- p))---+ Pf (r*) = Pf (2s- 2) 

is contained in Pf (2s- 1). Taking q = n:_;- 3 , we have 0 :::; q :::; n- 2, 
v(q) = -1 and v(n- 2- q) = 2s- 1. By the same argument as the 
proof of Lemma(3-2) we can prove Im('I/Jq) = Pf (2s- 1). This shows 
that 

(*) Coker(W) ~ Pf (2s- 2)/Pf (2s -1) + Jf (2s- 2). 

If s = 1, we easily see that the right hand side is of dimension 1 over k. 
Assume s 2: 2. A direct computation shows that Pf (2s- 2) / Pf (2s -1) 
is a k-linear space with a basis 

t"'x~ with JL+v = 2s-2, and xitax~ with 1:::; i:::; n-1, a+b= s-2. 
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By Definition(3-1)(2) the image of J'fi.* (2s-2) in Pf (2s-2)/ Pf (2s-1) 
is generated by the classes of tax~8f j8xj with 1 ::; j ::; n- 1 and 
a + b = s - 2. We can write 

f = L </J7,v,JLtvx~ + g with g E PX(r + 1) = PX(2s + 1) 
0::0-y$2 

v+JL=•(2--y) 

where ¢7 ,v,JL is homogeneous of degree 1 in x 1 , ... , Xn_ 1 . By Theorem(1-
2) and Proposition(1-3), ¢2 = ¢2 ,0 ,0 is non-degenerate and hence Xi for 
1::; Vi::; n-1 is a linear combination of 8¢2 j8x1 , ••• , 8¢2/8xn_1 • Not­
ing tax~8gj8xj E Pf (2s- 1) for 1::; j::; n- 1 and a+ b = s- 2, this 
shows that the right hand side of ( *) is generated by t~Lx~ with J.L + v = 
2s-2 and they are linearly independent over k. This completes the proof 
ofTheorem(2-1). Q.E.D. 

§4. Proof of main results 

In this section we prove Theorem(3-1), Proposition(2-2) and 
Proposition(3-1). The key is Proposition(4-1) and Proposition(4-2) be­
low. We maintain the assumption in §2. 

Definition(4-1). Let the notation be as in Definition(1-3). Let Hi C IP' 
for 1 ::; i ::; n be the hyperplane Xi = 0 and let Ht c IP' be defined 
by t = 0. As a divisor on Jiil write 1r-1 Hi = ft + JE( i) and 1r-1 Ht = 

Ht + JE(t) where iii and Ht are the proper transforms of Hi and Ht 
respectively. From the computation in the proofof Theorem(1-2) we see 
( cf. Proposition( 1-1)) 

JE(i) = L klEk if 1::; i::; n- 1 and JE(n) = JE(t) = L lEk. 

The first key result concerns the cohomology of the sheaf 

F := 1r*OIPA (£) 0 OiPA ( -alE(t)- blE(1)) (£,a, bE Z). 

Recall the notation in Definition(1-1). Let m(a, b) C k[t, x 1 , ... , xn] be 
the ideal generated by 

t13 x"'1 x"'2 ••• x"'n 1 2 n 

with,B+an+k( L ai)?.a+kb for1::;Vk::;s. 
1::0i::On-1 

Let mA(a, b) = m(a, b) ®k[t] A C AA and write Pj..(a, b) = Ker(Pi ----> 

AA/mA(a, b)). We note Pi(a, b) =Pi if a, b::; 0 and that mA(a, b) = 

mA(a + sb) if a::; 0. 
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Proposition(4-1). Let lE C IPA be the exceptional divisor of 7f : IP'A ----> 
IP' A. 

( 1) Letting i : 0 ----> IP' A be the inclusion, we have the exact sequences 

0----> 1r*F----> OpA(£)----> i*(AA/mA(a,b))----> 0. 

(2) H 0 (PA,F) = Px(a,b). 
(3) Assume a ;:::: -2, b ;:::: 1 - n and a + b ;:::: -n. Then we have 

Rv 1r *F = 0 if v ;:::: 1. 
(4) Under the same assumption as (3) we have: 

Hv(IPA,F) = 0 if2::::; v =1- nor v = n, £;:::: -n, 

H 1 (IPA,F) = Coker(PX.----> AA/mA(a,b)), 
H 1 (IPA,F) = 0 if .e;:::: max:{ a+ sb, a+ b} -1. 

(5) Under the same assumption as (3) we have 

. - ~ { 0 if 0 ::::; i =1- 1, n + 1 
HE(IP' A, F) ----> A I ( b) f . - 1 A ffiA a, Z Z- . 

The proof of Proposition(4-1) is given in §5. 

Definition(4-2). Let WpA/S be the sheaf of logarithmic differentials 

of the semistable family IPA over Spec(A) in the sense of [St]. Let 
WpA 18 (logX) be the sheaf of logarithmic differentials with additional 

logarithmic pole along X. By [St] these are locally free 0iiiA-modules. 

Let ()ii'A/S (resp. ()iiiA;s(-logX)) be the 0iiiA-dual of wii'A/S (resp. 

wii'A/8 (logX)). We write 

p p 
W- = 1\Wm, /S 

IPA/S "A 
and 

Recall the Euler exact sequence 

(4-1) o ____, o~A;s ____, EB o!PA(-1). dXi ____, oiPA ____, o 
o::;i::;n 

and its OpA -dual 
o ____, oiiiA ____, :E ____, TJP>Afs ____, o, 

where :E = E9 OJPA (1). The second key result gives us the similar 
o::;i::;n 

exact sequences for WjiiA;s· Write .c = ojiiA (X). By Proposition(1-4) we 
have the canonical isomorphism 

(4-2) 
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Proposition{4-2). We have the exact sequences 

and its CJjji A -dual 

0 --t OjjiA __!:_, 7r*QIP'A (1)·8oEB E9 7r*QIP'A (1)00jjiA ( -JE(i))·8i --t ()PA/S --t 0 
l~i~n 

where t,(1) = E xiai. Denoting by I; the sheaf at the middle of the 
O~i~n 

second exact sequence, we have the following exact sequence 

- - jp 
0---> ()ii'A;s( -logX) ---> :E ---> .C---> 0, 

where ]F(ai) = 8Fj8Xi E pX_-1(r- J-ti) for 0::::; i::::; n (cf. Definition(3-
1)(2)) that induces by (4-2) and Proposition(4-1)(2) the map 

7r*QIP'A (1) --t .C (i = 0) 

and 1r*OIP'A (1) 0 OjjiA ( -lE(i))---> .C (1 ::::; i::::; n). 

The proof will be given in the next section. We also need the fol­
lowing auxiliary results. 

Proposition{4-3). We have the exact sequences 

-1 -
0 --t ()PA/S 0 .C --t ()PA/S( -logX) --t ()X/S --t 0. 

Proof. The proof is standard and left to the readers. Q.E.D. 

Proposition{4-4). We have the natuml isomorphism 

w'.f;s ~ 1r*(OIP'A (d- n- 1)) 0 OjjiA (JE(t) + (n- 1- 8)JE(1)) 0 Ox. 

Proof. By the first sequence of Proposition(4-2) 

(4-3) wjiA 18(1ogX) = .C 0£ 

with£= 7r*(OIP'A ( -n- 1)) 0 OjjiA (JE(t) + (n- 1)JE(1)). 

Thus Proposition(4-4) follows from Proposition(4-3). Q.E.D. 
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Remark( 4-1). Proposition( 4-4) immediately implies the following fact: 
The singularity (X, 0) is canonical if and only if either 8 ::::; n - 1 or 
8 = n, s = 1. If 8 2': n + 2, (X, 0) is not log-canonical. 

Now we prove Theorem(3-1) and Proposition(3-1). First we show 

Theorem(3-1)(1). By [St] we know that HP(X, w118 ) is a free A-module. 

ByRemark(3-1) it suffices to show B;(v)(v(p)) ~ HP(X,w118 )prim· We 

note 

(4-4) Hq(IP'A,ot 18) ~ Hq(ITDA,wt 18 ) for \::fp,q;:::: 0. 

To see this it suffices to show 1r * (wE 1 ) = 0~ IS and R'-' 1r * (wE 1 ) = 0 Jl'A S ;rA Jl'A S 

for \::fv 2': 1. The first sequence of Proposition(4-2) induces the following 
exact sequence 

p~ p-1~ ~ 
0 ____, wE ____, A~* ____, A ~* ____, ... ____, ~* ____, 0;;; ____, 0, 

IT'AIS rA 

where ~* is the on> A -dual of ~. By Proposition(4-1)(3) and (1), 
M~ M~ M 

R'-'n*(A~*) = 0 for \::fv 2': 1, \::/f-l 2': 0 and n*(A~*) = A~* with ~* = 

ffi Op A ( -1). This shows the second assertion and that we have the 
O:'Oi:'On 
exact sequence 

p p "* p-1 * * 0 ____, Jf*W- ----> ;\~ ____, ;\ ~ ---->,,, ~ ----> QpA ----> 0. 
IT' AIS 

Compared with the similar exact sequence induced by (4-1), this proves 
n*w~AIS = O~AIS' By (4-4) and Proposition(4-3) and the Bott vanishing 

of Hq(IP'A,ot18), Theorem(3-1)(1) follows from the isomorphism 

B;(v)(v(p)) ~ HP(IfDA,w:::-1v (logX)). 
Jl'A S 

p ~ ~ 

By (4-3) we have ABii>AIS(-logX) ® .C ® [ = w~:J8 (logX). Therefore 

the last sequence of Proposition( 4-2) gives rise to the following exact 
sequence 

0 ____, w:::-p (logX) ____, C0 ____, C1 ____, 0 0 0 ____, CP ____, 0 
IT'AIS P P P ' 

p-a~ 

where c; = A ~ ® .ca+1 ® E for 0 ::::; a ::::; p. Thus we obtain the spectral 
sequence 
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By definition c; is the direct sum of 7r*QpA (£) 0 Ojj>A ( -a!E(t)- ,BIE(1)) 
with 

{ 
f = d(a + 1)- n- 1 + p- a, 

,6 = 8(a + 1) + p- a- (n- 1)- E withE= 0 or 1 or 2, 

a= -1 or 0 and (a, E)-# (0,0), 

We have f ~ -n and ,6 ~ 1 - n by the assumption that d ~ 3, 8 ~ 2 
and p ~a~ 0. By Proposition(4-1)(4), Er·b = 0 for 'Vb ~ 1 if 

d(a + 1)- n -1 + p- a ~ c(8(a + 1) + p- a- (n -1)) -1 for c = 1, s. 

It is easy to see that this holds under the assumption d ~ r + 1, s ~ 1 
and p ~ n - 1. Thus the spectral sequence degenerates at E 2 and we 
get the isomorphism 

This shows the desired isomorphism by Proposition(4-1)(2) and 
Definition(3-1)(2). Q.E.D. 

Next we show Proposition(3-1). First we show 

(4-5) 

Indeed this follows from the second sequence of Proposition(4-2) and 

the fact H"'(PA,.C) = H"'+1 (PA,I;) = 0 for 'Vv ~ 1 by Proposition(4-
1)(4). We note that the assumption d ~ r is used for the vanishing of 
H 1 (PA,.C). By (4-5) Proposition(4-3) implies 

By using the exact sequence 

0-+ ,e-1 -+ I; 0 ,e-1 -+ ()PA/S 0 ,e-1 -+ 0 

coming from Proposition(4-2), the same argument as the proof of (4-4) 
shows 

We note that the assumption 8 < n is used to get 

R"1r*.C- 1 = R"1r*(I; 0 .c-1 ) = 0 for 'Vv ~ 1 
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by applying Proposition(4-1)(3). Noting that the last group in (4-6) is 
torsion free and that it vanishes if either i ::; n - 2 or i = n - 1 and d -=I­
n+ 1 or i =nand d::; n + 1, it implies Proposition(3-1). Q.E.D. 

Next we show Theorem(3-1)(2). Proposition(3-1) implies that 

H 2 CX,Bx;s) 1s free, which implies by Theorem(3-2) that 

Hm- 1(X,w}15 ®w'§_15 ) is free. By Proposition(4-3) and Proposition(4-

4) we have the exact sequence 

2 2 ~ 1 m 
0----+ WPA/S ® £ ® E----+ WPA/S(logX) ® £ ® E----+ wx;s ® WX/S----+ 0. 

By the same argument as the proof of Theorem(3-1)(1) we can show the 
isomorphsim 

By the same argument as the proof of ( 4-4) we can show 

Hq(ifo A, wt;s ®£®E) ~ Hq (lP' A, Sl~A;s(d- n 1)) 

and it vanishes for 1 ::; \fq -=1- n unless q = 2 and d = n + 1. It implies 

Hn-2 (ifilA,wjA/S(logX) ®£®E)~ Hm- 1 (X,w}15 ® w'§_15 ) 

if n 2:: 4 or n = 3, d -=1- 4. Hence Theorem(3-1)(2) is proven. Q.E.D. 
Next we prove Theorem(3-1)(3). Let 

H 1 (lfDA, BiA;s( -logX))----+ H 1 (X, Bx;s) 

be the map induced by the last sequence of Proposition( 4-3). By ( 4-6) 
it is injective if n 2:: 3 and an isomorphism if either n 2:: 4 or n = 3 and 
d -=1- 4. Therefore it suffices to show the following. 

Proposition(4-5). Assumed 2:: r. There are the exact sequences 

0----+ B'fc(r)----+ H 1 (FA,ef?A;s(-logX))----+ E9 AA/mA(s) + A~ 1 ----+ 0, 
1::=;i::=;n-1 

1 ~ ~ < d 
H (lP' A, ef?A;s( -logX)) ----+ B F ----+ AA/(mA(r) +It) 

and Ker( ~) is torsion. 

Proof. The first sequence follows immediately from the last se­
quence of Proposition(4-2) and Proposition(4-1). To show the second 
we consider the localization sequence 
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where 8 = BiPA;s(-logX) and lU =!PiA -JE = lP'A- {0}. We know that 

H~(WA, 8) is a torsion A-module if i;:::: 1. Thus it suffices to show 

and 

The first isomorphism follows easily from the exact sequence 

0----* BiPA;s( -logX) I!J----* E9 C'JIP'A (l)II!J----* C'JIP'A (d) IV----* 0 
I O:C::i:C::n 

induced by the last sequence of Proposition( 4-2). It also induces the 
exact sequence 

Hence the second isomorphism follows from Proposition(4-1)(5). Q.E.D. 

Finally we show Proposition(2-2). Proposition(2-2)(1) is a direct 
consequence of Proposition(3-l). To show Proposition(2-2)(2) we start 
with the following exact sequence induced by Proposition( 4-3): 

~y (4-6) it induces H0 (WA,~, BiPA;s(-logX) 0A k) ~ H 0 (Z, Bz;s0 ) where 

lP' A,o is the special fiber of lP' A. To compute the left hand side we use the 
exact sequence induced by the last sequence of Proposition( 4-2): 

Writing F = n*C'JIP'A(l) (>9 ('JiPA (-JE(i))), we have the following exact se­
quence by Proposition(4-1) 

where f.Li is as in Definition(3-1)(2). It induces the exact sequence 

0----* AA/mA(J.Li)[t] ---tH0 (1P'A,o, (n*F) 0A k) 

---tH0 (JP' A,o, (')IF' A (1) 0A k)----* (AA/mA(J.Li)) 0A k 
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where lP'A,o is the special fiber of lP'A and M[t] = Ker(M ~ M) for a 
A-module M. Hence we get the exact sequences 

0 -+AA/mA(JLi)[tj 

-+H0 (1fDA,o, (7r*Oii'A (1) (>9 ojiiA ( -JE(i))) 0A k)-+ Pl(JLi)-+ 0, 

by noting that (7r*F)0Ak = 7f * (:FC>9Ak) since R17r*:F = 0 by Proposition( 4-
1)(3). Here, for integers q, v 2: 0 we write PZ(v) = Ker(PZ-+ Ak/mk(v)) 
with PZ = PX 0A k, Ak = AA 0A k and mk(v) C Ak is the image of 
mA(v). By the same argument we get the exact sequence 

Combining ( *) with the last two exact sequences, we get the exact se-
quence 

0~ ~ 

0-+ To-+ H (lP'A,o, OJiiA;s( -logX) 0A k)-+ T1 

where To is the kernel of the map 

E9 AA/mA(JLi)[t]-+ AA/mA(r); 
1:Si:Sn 

(hih<:;i<:;n 1-+ L hi· fJJ/fJxi mod mA(r) 
1:SiS,n 

and T1 is the kernel of the map 

and hence it vanishes under the assumption of Proposition(2-2)(2). Thus 
it suffices to show T0 = 0. In what follows we assume 8 2: 2 and leave 
the case 8 = 1 to the readers. We see 

To= {a= L L ai,,.,,,A'"- 1 x~fJjfJxi + bfJjfJxn I 
1 <i<n-1 p+v=s 

- - J.L2:l,v2:0 

ai,p,v, bE k, fJf E ffiA(r)} 

It is easy to see that T0 = 0 if and only if there is no non-trivial relation 
such as 

1 <i<n-1 p+v=s 
- - J.L2:l,v2:0 
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in k[x0 , x1 , ... , xn] where j/)0 '"' is as (1-2) in §1. First assume b :f. 0. Let 
I C k[xo, ... , Xn] be the ideal generated by 

xoa J/;0 '"' I axo, a J/;0 '"' I axl, ... a J/;0 '"' I axn. 

The relation implies that I is generated only by n elements so that 
lP'(Q) :::) Sup(k[x0 , ... , Xnl/ I) i- 0. This contradicts Theorem(1-2). Next 
assume b = 0. We can write j/)0 '"' = E <I>a,v,J.tx0x~ where <I>a,v,J.t 

sa+v+J.t=r 
is homogeneous of degree o: in x1 , ... ,Xn-l· Then, putting <1>0 = <1>0,0 ,0 , 

( **) implies 

0 = L x~-1x~( L ai,J.t,va<I>olaxi) 
J.t+v=s 1<i<n-1 
~-t2::1,v2::0 - -

+ (terms of degree :::; 6- 2 in X1, ... , Xn-1)· 

Since <1>0 = j/)0 '"'(0, x1 , ... , Xn_ 1 , 0) is non-degenerated by Theorem(1-2) 
and Proposition(1-3), it implies ai,J.t,v = 0 for Vi, v, J1, and the proof is 
completed. Q.E.D. 

§5. Proof of key propositions 

In this section we prove Proposition(4-1) and Proposition(4-2). First 
we show Proposition(4-1). By the projection formula 

Rv1r*F =Oil' A(£) 0 Rv1r*OPA ( -alE(t)- blE(1)) for \:lv ~ 0. 

Hence Proposition(4-1)(1) and (3) follow from Proposition(5-1) below. 
Proposition(4-1)(2) is a direct consequence of (1). Next we show 
Proposition( 4-1) ( 4). Proposition( 4-1) (3) implies Hv (iP A, F) _:::. 
Hv(lP'A,1f*F) for \:lv ~ 0. Therefore Proposition(4-1)(1) implies the fol­
lowing isomorphism and the exact sequence 

0 ----+ H 0 (1P' A, 1r *F) ----+H0 (1P' A, Oil' A(£)) 
----+AAimA(a,b)----+ H 1 (1P'A,7f*F)----+ 0. 

Thlis Proposition( 4-1) ( 4) follow from the standard vanishing of Hv (JP> A, 011' A ( £)) 
except that the vanishing of H 1 (ih, F) requires Lemma( 5-1) below. Fi-
nally, to show Proposition(4-1)(5), we use the localization sequence 
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By [H, §9 Theorem9.1] we have 

Thus Proposition(4-1)(5) follows from Proposition(5-1). Q.E.D. 

Lemma(5-1). The map Pf:..---) AA/mA(a,b) is surjective if£ 2: max{ a+ 
sb, a+ b}- 1. 

Proof This follows from the fact that (x~, ... , Xn)v C mA(a, b) 
with v =max{ a+ sb, a+ b}. Q.E.D. 

Proposition( 5-1). Let the notation be as in Definition(1-3). Let a, b 
be integers. 

(1) H 0 (A,OA;(-a1E(t)- b!E(1))) = m(a,b) C k[t,x1, ... ,xn]· 
(2) Hi(A, OA;( -aiE(t) - b!E(1))) = 0 for Vi 2: 1 if a 2: -2, b 2: 1 - n 

and a + b 2: -n. 

Proof Proposition(5-1)(1) follows from the standard description of 
the space of global sections of line bundles on toric varieties (cf. [F,§3]). 
For the proof of Proposition(5-1)(2) we need a preparation. Let A/ = 
Spec(k[x~, ... , x£]) be an affine space over k. A refinement of A/ is 
the proper morphism of toric varieties X(~) ---) X(~o) = A/ where 
~0 = {ao} is as in §1 and~ is a refinement of ~0 . We use the following 
standard fact from toric geometry (cf. [F, §3.5, Proposition]). 

Proposition(5-2). Let X(~) ---) A/ be a refinement and let :F = 

Ox(L~.)(D) with a Cartier divisor D such that :F is generated by global 
sections. Then Hi(X(~), :F) = 0 for Vi 2: 1. 

Now we show Proposition(5-1)(2). First assume a 2: 0. If b 2: 0, 
OA: (-alE( t) - biE( 1)) is generated by global sections. Hence the vanishing 
follows from Proposition(5-2). If 1 - n :::; b :::; -1 we use the exact 
sequence 

0---) OA:(-aiE(t)- b!E(1)) ---)OA:(-aiE(t)- (b+ 1)1E(1)) 

---)Ojjn_ 1 ( -a1Ejjn_ 1 (t)- (b + 1)1Ejjn_ 1 (1))---) 0 

Xn-1 

that follows from OA (IE( 1)) ---) OA (-ii n-d, where iii is as in 

Definition( 4-1) and IE H; ( *) is the pull back of IE(*) to iii. Note that 
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Hn-1 is a refinement of the affine space Hn_ 1 and that the map 

H 0 (0;.( -aE(t)-(b + 1)E(1))) 

--+ H 0 (0jjn_ 1 (-aEjjn_ 1 (t)- (b+ 1)Ejjn_ 1 (1))) 

i~ surjective by Proposition(5-1)(2) and its variant for the toric variety 
Hn-1· The desired vanishing is now reduced to the case b = 0 by 
induction. 

In case a = -1 we use the exact sequence 

,!:_ -
that follows from 0.4: (E( t)) --+ OA (-Ht). Thus we are reduced to the 
case a = 0 by the same argument as before. 

In case a = -2 we use the exact sequence 

that follows from 0.4:(E(t)) ~ OA:(-Hn)· Thus we are reduced to the 
case a = -1 by the same argument as before. This completes the proof of 
Proposition(5-1)(2). Q.E.D. 

Next we show Proposition(4-2). Recall the notation of Definition(1-
3). We start with the exact sequence 

It is easy to see 

7r*n!P'/k (log L Hi+ Ht) ~ nP/k (log L iii+ iit +E). 
o::;i::;n l:Si:Sn 

Hence we get the exact sequence 
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~ ~ 
Noting Ojj»(Hi) ®Oiii(IE(i)) = n*OP'(Hi) ___, n*OP'(1), it induces the exact 
sequence 

o __,f2iii;k(logHt +IE) 

--tn*O['( -1). dXo EB EB Oiii(IE(i)) ® n*O['( -1). dXi EB oiii ~t 
l:Si:Sn 

The first exact sequence ofProposition(4-2) is an immediate consequence 
of this. To deduce the last exact sequence from the first one, we use the 
commutative diagram 

0---t 

0---t 

___, I: ___, ()iii A Is 
l jF l iF 

___, .c ___, .C®Ox 

--tO 

--tO 

where iF is induced by jF. It suffices to show that iF is surjective 
and that its kernel is ()iii A/ 5 ( -logX\ Restricted on Jiii A - IE = lP' A -

{0}, the assertion follows from the condition Theorem(1-2)(1). T~us 

it suffices to verify it on each Uu with O" E D. 8 • Restricted on AA, 
.CIAA = OA:J-8IE(1)) and we have 

iF(o) =the class of of E OAA (-8IE(1)) for 0 E ()iiiA;s· 

Taking O" = O"k+"' we have (cf. the proof of Theorem(1-2)) ,, 

The exceptional divisors on Uu are defined by Yl = 0 and Y2 = 0. We 
can write f = (yty~+l )6 · J in Ru where J is an equation of X n Uu C Uu 
and Ou,.(-8IE(1)) = (YtY~+1) 6 0u,.. We have locally on Uu 

()iiiA/S = { L ai · Yiojoyi + L aj · ojoyj I 
l:Si:S3 4:Sj:Sn+l 

ai, aj EOu,., a1+a2+a3=0}, 

()iiiA;s(-logX) = {o E ()iiiA/S I of E ]Ou,.}. 

We compute 

{ 
(y~y~+l)- 6 · Yiof joyi = Y_io]joyi mod(]) (i = 1, 2), 

(y~y~+l)- 6 . of joyj =of joyj (3:::; j:::; n + 1), 
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The condition of Theorem(1-1) on Ucr implies the regularity of 

Rcr I (f), Rcr I (j, Y3), Rcr I (j, Yi), Rcr l(i, Y3, Yi) ( i = 1, 2), 

Rcri(J, Yl, Y2), Rcri(J, Yl, Y2, Y3)· 

By a standard argument this implies the desired assertion restricted on 
Ucr. The same computation shows the assertion on Ucr for other cr and the 
proof is complete. Q.E.D. 
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