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§0. Introduction

Recently Kato and Usui ([KU]) have constructed partial compact-
ifications of period domains by using logarithmic Hodge structures. It
motivates us to study extended period maps and their Torelli problems.
The purpose of this article is to give some results on the infinitesimal
logarithmic Torelli problem of extended period maps for degenerating
hypersurfaces.

We first set up the following problem in the logarithmic algebraic ge-
ometry. Let k be a field of characteristic zero and let S, = (Spec(k), Np)
be the standard log point where the log structure Ny is defined by
N — k1 — 0. Let fo : (Z,Mz) — S, be a log smooth morphism
of semistable type whose underlying morphism is proper and flat of rel-
ative dimension m. Let wz,s, be the sheaf of logarithmic differentials
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of (Z,Mz)/S, introduced by [K]. It is a locally free O z-module and we
put

q
qu/So :/\UJZ/SO and 02/30 -’:Homoz(wz/so,OZ).

The main object of study is the map

dpz : H'(Z,0z5,) — D Hom(H(Z,wyd), H ' (Z,0}57"))
0<p<m-—1

that is given rise to by the pairing H(Z, 0z/5,) ® HP(Z, wz/s Py —

HPY(Z, wZ/Sl ~P) induced by the contraction 0z/5, ® wZ/S — w%/;o

and cup product. We say that the infinitesimal logarithmic Torelli holds
for (Z,Mz)/8, when dpz is injective.

Now we consider the case k = C. In [KU] dpy is interpreted as the
logarithmic differential of an extended period map and the injectivity
implies that the period map is an embedding on the universal deforma-
tion space of fy. In order to explain the implication more precisely, we
consider the following concrete situation. Let B = {t € C | [t| < 1} be
the unit disc and let P™*! be the complex projective space with homo-
geneous coordinate X, ..., X;,1+1. We will construct a certain moduli
space over B that parametrizes families of hypersurfaces X C P™*! x B
over B such that X — B is smooth outside the point {t = X; =

-+ Xm+1 = 0} with some prescribed type of singularity at the point.
Every member X/B of the moduli space has a standard desingulariza-
tion X — X such that X has strictly semistable reduction over B. It
gives rise to a log smooth morphism (Z, Mz) — S, where Z is the cen-
tral fiber of X — B and M 7 is associated to the embedding Z — X.
Our main result Theorem(2-1) asserts under suitable assumptions that
the infinitesimal logarithmic Torelli holds for (Z, Mz)/S,. Letting B"
be the universal covering of B — {0}, it implies that the limiting Hodge
structure on H™(X xp B",Q) defined by Steenbrink [St] determines
(Z, Mz) locally on the moduli space up to isomorphisms of log schemes
over S, (see Theorem(2-2) for the more precise statement).

The proof of the main theorem follows the line of thoughts de-
veloped by Griffiths [Grif]. The point is to express H'(Z,0z/s,) and
H?(Z,w} /So) by Jacobian rings and observe that dpz is induced by
multiplication of polynomials. In order to develop the generalized Jaco-
bian rings in our logarithmic context, we apply the Green’s technique of
Koszul complexes (|G, Lecture 4]) to a certain toric variety.
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§1. A moduli space of degenerating hypersurfaces in P"

In the whole paper we fix the base field k of characteristic zero, a
variable ¢ over k and a discrete valuation ring A over k[t] such that ¢ is a
prime element of A and that A/(t) = k. Let Py = Proj(A[Xo,..., X))
be the projective space of dimension n > 3 over Spec(A) and let Ay =
Spec(Alzy, ..., x,]) with z; = X;/ X, be the affine subspace. We are go-
ing to study hypersurfaces in P4 which are smooth over Spec(A)[1/¢] and
whose fibers over Spec(A/(t)) has isolated singularity of some prescribed
type at the origin of A,. We need introduce some notations.

Definition(1-1). We fix an integer s > 1.

(1) Let g > 0be an integer. Let P{ C A[Xo, ..., X,] be the A-module
of homogeneous polynomials of degree g. Let Ay = Az, ..., z,)
and A/S\q be the subspace of polynomials of degree < q. We con-
stantly use the identification P} = Al%q; G(Xo, X1,..., Xpn) —
G, zy,...,2p).

(2) For an integer v > 0 let mp(v) C A be the ideal generated by
the elements

tPrfrad? ... g with B+, +s Z @ 2 v
1<i<n-—1

and define
Pl(v) = Ker(P{ — Ax/ma(v)) = A nma(v).

Now we fix an integer d > 0 for the degree of our hypersurfaces
and § > 0 for the multiplicity of designated singularity. Our object to
study is hypersurfaces defined by an equation F € PZ(s6) (s is already
fixed in Definition(1-1)). By definition F € P¢ lies in Pg(sd) if f =
F(1,z1,...,Tn) € A%d is written in the form

— a1 .02 | .0
f - E : Qoy,...,0n L1 Lo $nn (a'alv'-yan € A)7
i+ ta, <d

|Gas,emanl + D 803+ an > 86

1<i<n—1

where |A| denotes the normalized additive valuation of A € A.
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Remark(1-1). A typical example of such fis
f=alt o+l 420 +10 + b with he A Nma(s6 + 1).

where we assume s < d. The reason why I choose such special type
of degenerating hypersurfaces for our stydy of the logarithmic Torelli
problem is not so much more than the convenience of computation. By
using toric geometry we will construct a birational map Py = Py (A) —
P, associated to a certaion cone decomposition A in such a way that
the inverse images of the generic members of degenerating hypersurfaces
defined by equations in Pg(s§) have semistable reduction over Spec(A).
A change of A will bring about that of the type of equations, and vice
versa. I believe that with more effort, one should be able to carry out the
similar computation for degenerating hypersurfaces defined by equations
of more general type. For example one may fix appropriate rational

numbers &g, 61, . . . , 6, to consider equations of the form
«@ (a7
f= E a017~~~,anx11$22 “’xz" (aala--~7an € A)?
aj+--+a,<d
S0l an| + Y Gici > 1.
1<i<n

Now we construct a moduli space over Spec(A) parametrizing hy-
persurfaces in Py of the above type which are smooth in the logarithmic
sense (cf. Theorem(1-1)). We start with the following.

Definition(1-2). We fix integers d, 8, r satisfying r = s6 and § > 2 and
d>r. Let M = P(P(r)") be the projective space bundle over Spec(A)
associated to the A-dual of P¢(r). For a morphism p : Spec(A) — M we
let X, C Pa be the corresponding hypersurface. Note that X, passes
through 0 = (t,1,...,2,) € Ay where X, is singular.

The next task is to construct an appropriate simultaneous desingu-
larization of X;,. For this we use the terminology of toric geometry that
we refer to [F]. Let N be the lattice of rank n + 1 with the standard
basis

60:(1,0,...,0), 61:(0,1,...,0),-~,en:(O,O,...,l)

where the vectors are n + 1-dimensional. Let M = Homgz(N,Z) with
dual pairing (, ) : M x N — Z. For a cone ¢ in Ng write

U, = Spec(k[M,]) with M, ={ue M| (u,v) >0 (Vv € o)}
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For a fan A in N let
X(A)y= u U,
cEA

be the corresponding toric variety. In particular we have

A = X(Aq) = Spec(k[t, z1, .. ., Tn])

for Ay = {faces of o} with 09 = Rygeq+---+Rxpe, wheret, zq,...,2,
are the elements in k[M,,] corresponding to the dual basis of
{eo,...,en}. For a fan A which is a subdivision of Ay we have the

natural morphism 7 : X(A) — A arising from the natural map (N, A) —
(N, Ay).
Definition(1-3). Let s > 1 be as in Definition(1-1).

(1) Let A; be the fan consisting of the following cones and their faces

of, 05, 00508 0, (1<k<s—1,1<i<n—1),

s ’g
where, denoting vy, = (1,k,...,k, 1),

0:; =Rsoep + Rxovr + Rxoveq1 + Ryoer

+"'+R/z—0?ﬁ+“'+Rzoen—1,

a;g =R>oen + Rxovk + Ryovp1 + Rxoe1
4o+ Roges + -+ Rygen_1,

003 =R>0e0 + Rx>0en + Rxov1 + Rxo€1
+"'+R/zo\€i+"'+Rzoen—1,

of =Rsoe0 + R>ous + Rxoer + -+ - + R>pepn—1,

5
o, =Rspe, + Ryovs + Ryoe1 + - + Rypen—1.

Let A := X(A;) with 7 : A — A be the corresponding toric

variety. Note that if s = 1, 7 is the blow up of A with center at
0= (t,z1,...,%n)-

(2) Let P = Proj(k[t][Xo,...,Xn]) be the projective n-space over
Spec(k[t]) and fix the embedding A < P over Spec(k[t]) via z; =
X;/Xo. Putting

P=AU U A; withA;={X;#0}CP

1<i<n



406 S. Saito

patched together in an evident manner, we get 7 : P — P that
fits into the following cartesian diagram

A — P
Il I
A — P

Proposition(1-1). A is smooth over k, m is proper and T : A -
7710) S A — {0} where 0 = (t,%1,...,%,) € A. The reduced part
E of 771(0) is a simple normal crossing divisor on A. We can write

E = LkJ Er as a divisor on A’, where K C A is an irreducible smooth
1<k<s

divisor characterized by the following property:

Er UEg41 ifaza,f%withlgkgs—l
EnU, C Eq ifU:UO,i
Es ifo=oF.
Proof. Easy and left to the readers. Q.E.D.

Definition(1-4). Let

Arn < Pa
Iy Iy
Ap — Pa

be the base change of the diagram in Definition(1-3)(2) via
Spec(A) — Spec(kt]). For X, C Pa as in Definition(1-2), we denote by
Xp C Py the proper transform of X, by 7 : Py — Py.

Theorem(1-1). There exists a Zariski open subset Ms C M (the locus
of “log-smooth points”) characterized by the property that a morphismp :
Spec(A) — M factors through M;s if and only if the following condition
() holds:
(¥) X, is reqular and X, — Spec(A) is smooth outside 0 and X, is a
strict semi-stable reduction over Spec(A).

Moreover Ms C M is strictly dense, where a dense open immersion
U — V of A-schemes is strictly dense if U @p k — V @, k is dense.

Fix a morphism p : Spec(A) — M and let F € PZ(r) be a cor-
responding non-zero polynomial. Let f = F(1,z1,...,x,) € Ax. By
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Definition(1-1) we can write

1) f= Y e t?ePed 28 (Gar,an €A),
ar+-+an<d

B=p(c,...,0n) =max{0,7 — s(ay + -+ @p_1) — an}.

Note M = Proj(Alaa,.....a,]) by taking the coefficients of f as a homo-
geneous coordinate. Put

fhom _ Z aal’_wanmgoxflxsﬂ e :l}zn
a 2) s(art-+an_1)taotan=r
€ Alzg, 1, ..., Tn),
(;wm — (fhom mod t) c ]{;[;[;0,:171, A ,.’L‘n]-

Grading k[zo,...,z,] by degz; = s for 1 < ¢ < n —1 and degzg =
degz, = 1, fi°™ is homogeneous of degree r. Let

P(Q) := Proj(k[zo, z1,...,zn]) be the weighted projective space of type
Q=(1,s,...,s1). Now Theorem(1-1) is an easy consequence of Theorem(1-
2) below.

Theorem(1-2). X, satisfies the condition () of Theorem(1-1) if and
only if the following conditions hold.
(1) 8F/8X,,...,0F/8X,, have no common zero in Py — {0}.
(2) 2odfFom™[0xo,0fB™)0xy, ..., Ofb°™ |0z, have no common
zero in P(Q).

Remark(1-2). For f as Rem.(1-1), we have fl°™ = zf + 29 4 --- +
z8 | + 27 and we easily see that it satisfies Theorem(1-2)(2). Hence
it corresponds to a morphism Spec(A) — M;s if we take h sufficiently
general so that f satisfies the condition of Theorem(1-2)(1).

Proposition(1-3). Let Vi C P(Q) be the hypersurface defined by

hom — 0 and let Vo = Vi N {xo = 0} and V3 = Vi N{zy = ,, = 0}. The
condition of Theorem(1-2)(2) is equivalent to the following condition: If
s =1, Vi and Va are regular. If s > 2, V3 and V1 N (D' (z9) U D*(z,,))
and Vo N DY (z,) are regular where DV (z;) = P(Q) — {z; = 0}.

Proof. The proof is standard and left to the readers. Q.E.D.

Now we prove Theorem(1-2). Let H; C P5 be defined by {t = 0}
and let H, C Pj be its proper transform. In view of Proposition(1-1)



408 S. Saito

the conditions of Theorem(1-1) are equivalent to the conditions that
Xp — Spec(A) is smooth outside 0 and that:

(*): XpNEx, X, NELNEgy1 (1 <k <s—1), X,NH;, X,NH,NE,,
and X'p N ﬁt NEg NEgy1 intersect transversally.
It is standard that the first condition is equivalent to Theorem(1-2)(1).
We show the equivalence of the condition (x) and the condition of
Proposition(1-3). We assume s > 2 and leave the (easier) case s =1 to
the readers. Recall that we have

KA = éJA U, — Ap = Spec(Alzy, 22, . . ., Z4)),

where we write U, for U, XSpec(k[t]) Spec(A). We describe the condition

() on each open subset U, for ¢ = o, ;,a:%,af. For simplicity we
assume n = 3 while the argument in general case is the same.

Case 0 = = 0g; oOr oki . We take for example o = Uk = Ryovr +
R>ovk+1 + R>pe0 + Rygeq with 1 < k < s—1. We have U = Spec(Rs)

where

z1 = yfys lys
Ry = Aly1,y2,ys, yal/(t — y1y2ys))  with { gy = yFybt!
Tn = Y1Y2.

Note that ENU, = (Ex UEg41) N U, and By, By, H, are defined by
y1 =0, y2 = 0, y3 = 0 respectively on U,. First assume k < s — 2. An
easy calculation shows that f = (y¥y5™1)8(g + y1y2h) with h € R, and

g= g(y4) = Z Aoy 02,0 ° yztlll‘

a)+as=6,a,=0

‘We note that
T1 hom
(*1) ng(wg) :f (O7x17x270)

Now the condition (*) on U, is equivalent to the regularity of

Ro/(y1,v2,y3,9). By (1) it is equivalent to the regularity of V3N D™ (x2)
where V3 is as in Proposition(1-3). The similar computations in cases
0 =0g;0r O';:i show that the condition (*) on U, for these o is equivalent

s—1,s\6

to the regularity of V3. In case k = s — 1 we see that f = (y;'y3)°(g +
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y1Y2h) with h € R, and

9=9(y1,Y3,Ya)

_ Z P yfw(arl-ozz)vy;—-s(al +a2)—anyzyl.
s(artaz)+an<r
We note that
x? xg I
xgg(-n, — _) - fhom(x()’ T1,T2, .’L’n),
o Ty I2
(*2) (65 ]
g(O, Y3, y4) = Z Aoy 02,0 " Yg -

a1 tas=6,a,=0

Now the condition () on U, is equivalent to the regularity of R, /(yi, )
and R,/(ys,¥i,g) with 2 = 1,2 and that of R,/(y1,y2,9) and

Ro/(y1,y2,yY3,9). By (¥1) and (*2) it is equivalent to the regularity of
Van Dt (z3) and Vi N (DT (z2) N DY (z,)) and Vo N (DT (x2) N DY (zy,)).

The similar computations in cases ¢ = 0"::2 with £k = s — 1 show that

the condition (*) on U, for these o is equi\;alent to the regularity of V3
and V; N (D (zo) U DT (x,)) N (D (z1) U D (x2)) and Vo N D (z,) N
(D+ (331) uDTt (2172))

Case 0 = 0. We take for example 0 = 0 = Rxqvs + R>pe1 +
R>pe2 + R>oe9. We have U, = Spec(R,) where

T1 = uzu;

R, = Alug, uy, ug, ug]/(t — ugug) with ¢ T2 = ujUs

Ty = US.

Note that ENU, = E; N U, and E; and ﬁt are defined by us = 0
and ug = 0 on U, respectively. An easy calculation shows that f =
u3(g + ush) with h € R, and

_ _ r—s(or+az)—an_ o), «
g_g(u07u17u’2) = § Aoy, Uo nu11u22'
s(artaz)ta, <r
We note
To T1 T2 h
T om
(*3) xng(—7 — = )=f (zo, 1, T2, T ).
Ty TS TS

Now the condition (x) on U, is equivalent to the regularity of R, /(us,g)
and R,/(uo,us,g). By (%3) it is equivalent to the regularity of Vi N
D*(z,) and Vo, N D¥(z,). The similar computation in case ¢ = o
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shows that the condition (%) on U, for these o is equivalent to the
regularity of V4 N (DV(zo) U DV (z,,)) and V2N D*(z,,). This completes
the proof of Theorem(1-2). Q.E.D.
As an immediate consequence of the above proof we get the follow-
ing.
Proposition(1-4). For p : Spec(A) — M, = 1(X,) = X +6-
> kEj as a divisor on Py.

1<k<s

§2. Injectivity of infinitesimal period map

Fix a morphism p : Spec(A) — M;s and let X C P and X c ]INJ’A
be the corresponding hypersurface and its proper transform with the
projection 7 : X — X. Let Z C X be the closed fiber of X — Spec(A).

Definition(2-1). Let wg g = Q25 5(logZ) be the sheaf of logarithmic

differentials of the semistable family X over S := Spec(A) in the sense
of [St]. By [St] wg g is a locally free O g-module. We put

q
w;’?/s =g, and Og = ’Homox(w;{/s,(’);().
We also define a locally free Oz-modules

q
wz/s, =wg /s OA Kk, qu/So = Awz/sy, 0775, = Homo,(wz/s,,0z).

Remark(2-1). In the language of log geometry (cf. [K]), wy /s (resp.
wz/s,) is the sheaf of logarithmic differentials of the log smooth mor-
phisms ()?, Mg) — (Spec(A),Np) (resp. (Z,Mz) — (Spec(k), No)).
Here Ny and N, are the log structure defined by N - A — k; 1 — ¢t — 0
and M is associated to the embedding Z C X and M. 7 is its inverse
image on Z.

Let m =n — 1 be the relative dimension of X /S and let
HY(Z,07)s,) ® HY(Z,wy, ") — HP*H(Z,w), o 77)

be the map induced by the contraction 6/, ® qu /50 w%}éo and the
cup product. It induces

d —1—
HY(Z,67/5,) % € Hom(H"(Z, W)y HPYH(Z, w767 P)).
0<p<m-1
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Theorem(2-1). Let the assumption be as in Definition(1-1) and
Definition(1-2). Assume the following conditions:
(i) d>r+1 and either n > 4 or n = 3 and d # 4.
(ii) 6 < n.
(it) HO(Z,6,/s,) = 0.
The map dpz is injective if n is even or § > 3. If n is odd and 6 = 2
then dimy(Ker(dpz)) =7 — 1.

Remark(2-2). We will see (cf. Remark(4-1)) that the singularity (X, 0)
is canonical if and only if § < n or § = n, s = 1. Thus Theorem(2-1)
suggests that the canonicality of the singularity plays an important role
in the infinitesimal logarithmic Torelli problem.

Concerning the second assumption of Theorem (2-1), we have the
following.

Proposition(2-1). The condition H(Z,07/s,) = 0 defines strictly
dense open subset Mt of M.

Proposition(2-1) follows from Proposition(2-2)(2) below that will be
proven in §4. Indeed, by the semicontinuity, the vanishing of H(Z,0zs,)
is an open condition on the moduli space. Thus it suffices to show that
there exists a morphism p : Spec(A) — M, satisfying the condition.
Indeed we may take for example

F=X(X 4 XS_ )+ XTT"Xm 4+ &4+ 117G € Pi(r)

where ®4 (resp. G) is a sufficiently general homogeneous polynomials of
degree d in X1,...,X, (resp. in Xo, X1,...,Xn) (cf. Theorem(1-2)).

Proposition(2-2). Assume d > r and § < n.

(1) H¥(Z,0z/s,) =0 for j > 2 if either j <n—3 or j =n —2 and
d#n+lorj=n—1andd<n+1.

(2) Let F € Pd(r) be a polynomial defining X C Pa and put Fy = (F
mod t) € k[Xo,...,X,]. Then H°(Z,0z5,) = 0 if either s > 2
and

are linearly independent over k, or if s =1 and

are linearly independent over k.
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In the rest of this section we give a geometric implication of
Theorem(2-1). We suppose that the readers are familiar with basic
notions of log geometry.

Let My be as Proposition(2-1) and put M;}, = M;} ®, k. Note
that M is smooth over Spec(A). The construction of §1 gives us the
following cartesian diagram of log schemes

(Zuniv7 MZM'N,U) [N ()zuniv’ M)’Eu'{tiv)
(2_1) lfal,nzv lfunu;
(Miio:No) = (M, Na)

s

with the following properties: Let
S, = (Spec(k), No) — S = (Spec(A), Na)

denote the exact closed immersion of log schemes, where Ny and N, are
defined in Remark(2-1).

(a): Np and Np in (2-1) are defined in the same way as Remark(2-
1).

(b): Z¥mv C Xuniv jg g simple normal crossing divisor defined by
t=0.

(c): Mg.,.,., is associated to the embedding Z*"** C X“""¥ and
M zuniv is its inverse image.

(d): f% and f¥™ are log smooth of semistable type.

e): Let p: S — (Mgt Ny) be an exact closed immersion and let

ls

po : Sy — (M}, No) be the induced exact closed immersion. By
pulling back the above diagram via p and pg, we get the following
cartesian diagram of log smooth morphisms

(Z,Mz) — (X,Mg)
l l
§o — S

where the underlying morphisms are those associated to p as in
§1 and Mg and Mz are defined as Remark(2-1).

By (a) (M{!, Np) is alog scheme over S. A morphism po : Spec(k) —
M, lsstp extends in the unique way to an exact closed immersion pg : S, —
(M, No) over S,,. By pulling back f§™* in (2-1) via po we get the log
smooth morphism

fpo : (ZPO’MZpo)_)ﬁo’

Now assume k = C and let A C CJ[[t]] be the ring of convergent
formal power series. By [Mat] and [FK3] f,, gives rise to a log Hodge
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structure H(pg) over S, that is underlain by
1 .
(Rmfp:;!i@7 Rmfpo*pro /So )7

a pair of a local system on S9(~ {t € C | |t| = 1}) and a C-vector space
with the descending filtration given by subspaces R™ fPo*“’%:O /s0 C
R™ fpo*w'zpo /so- We note that H(po) is determined by the limiting
Hodge structure defined by Steenbrink [St] on the space

H™(X* xp_B.,Q).

Here X% — B, := {t € C | |t| < ¢} with sufficiently small € > 0 is
the morphism of complex analytic space that arises from X - Spec(A)
corresponding to a lift p : Spec(A) — M of py over Spec(A) and E: is
the universal covering of B, — {0}.

Theorem(2-2). Assume the following conditions:
(i) d > r+ 1 and either n is even or § > 3.
(il 6<n
(i) n > 4.
Locally on Mo, H(po) determines (Zp,, Mz, ) up to isomorphisms of
log schemes over 8.

Proof Fix an exact closed immersion po : Sy — (M}, No) and denote
simply by fo : (Zo,Mz,) — S, the log smooth morphism obtained
by pulling back fy™¥ via pp. We recall the logarithmic deformation
theory of fo (cf. [KN], [FK1] and [FK2]). Let Cy (resp. Cj) be the
category of artinian (resp. Noetherian complete) local k-algebra with
residue field k. Let LCj (resp. LC}) be the category of pairs (I',0r)
where T = (Spec(A), M) with A € Cj is a log scheme (resp. T =
(Spf(A), M) with A € C}} is a formal log scheme) whose log structure
M is isomorphic to the inverse image of the log structure on §; via
Spec(A) — Spec(k) and Or : S, — T is an exact closed immersion
whose underlying morphisms come from Cj, (resp. C;). One defines the
functor Dy, /s, : LCp — Sets by setting Dy, /5,(I) to be the set of
isomorphism classes of log smooth liftings of fy to T (cf. [FK2, Definition
4.1]). We remark that by definition the log structure oo : M — A for an
object T = (Spec(A), M) € LCy, is isomorphic to N@ A* — A; (n,u) —
0"u. Hence Dy, g, deals only with locally trivial deformations of fo.
By [FK1, §8], [FK2, §4] and [FK4] we have the following facts:

(a): Dz,/s, is pro-represented by an object
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in LC}} with the universal family ¢ : (¥, Mx) — (7, N7). More-
over R is formally smooth over k. By definition the fiber of ¢
over O7 : Sy — T is fo.

(b): Let kle] be the ring of dual numbers and let N, be the inverse
image of the log structure Ny on Sp via the map Spec(kle]) —
Spec(k) induced by the canonical map k — k[e]. By definition
S, = (Spec(kle]), N.) with the canonical exact closed immersion
Sy — S, induced by the residue map k[e] — k is an object in LCy,.
For an object T in LCj, or LC; we call To(T) = Homzcp (S.,T)
the logarithmic tangent space of I' at O, where the space on the
right hand side denotes the set of morphisms S, — 7 in LC.
The logarithmic Kodaira-Spencer map induces the isomorphism

H'(Z0,024/5,) = To(T) = Dzy/5,(S.)-
(c¢): For a morphism
¢: L = (Spi(R), M) — T’ = (Sp(R'), M")
in LC;, we define its logarithmic differential of ¢ to be the map
d¢ : To(T) — To(T).

If R and R’ are formally smooth over k and if d¢ is injective, then
the underlying morphism Spf(R) — Spf(R’) is an embedding.

The pro-representability follows from the assumption
HO(ZO,QZO/SO) = 0 and the rigidity of Dz, /g, (cf. [FK2, §3 and §4]).
The formally smoothness of R over k is a consequence of the fact that
Dz, /s, has no obstruction that follows from Proposition(2-2)(1) (with
j = 2) and the assumption (ii) (In cases n = 4, d = 5, H*(Zy, 02,/5,) 7
0 so that one needs an extra argument that we omit).

Now we assume ¥ = C and let ¢*" : (X% Myen) — T =
(79" Ntaen) be the corresponding morphism of log analytic spaces over
C. By the universality there is an open neighborhood V' C M, f;o of pg
and a strict morphism of log analytic spaces g : (V, Nojy) — Z*" map-
ping po to 0 such that the restriction to V of f¢" in the diagram (2-1)
is isomorphic to the pullback of %™ via g. By the theory of logarithmic
Hodge structures and their moduli space (cf. [KU], [Mat], [FK3] and
[Us]) ™ gives rise to the extended period map

p:IT°" - T\Dy

where the space on the right hand side is the classifying space of log-
arithmic Hodge structures of suitable type equipped with its canonical
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log structure. We have p(g(p)) = [H(pp)] for p} : Spec(C) — V C ML,
Theorem(2-1) implies that under the assumption of Theorem(2-2) the
logarithmic differential dp at 07 of p is injective, which implies p is an
embedding. This proves the assertion of Theorem(2-2). Q.E.D.

§83. Jacobian rings of degenerating hypersurfaces

Let the assumption be as in §2. In this section we express the cup
product

(1) H'(R0g) on HXWE D) —» HH (X020

(32) HP (X, D) @n B P (X 0R0) — HM (X ok 00 )

in terms of Jacobian rings and we prove Theorem(2-1).

Definition(3-1). Let F € PZ(r) be an equation defining X C P,.
(1) For an integer ¢ > 0 we write B}, = P{/J1 where

JL = H,0F/0X;
F

0<i<n

H; € Pﬁ“d“} c P

(2) For integers ¢,v > 0 we write BL(v) = Pi(v)/J%(v) where

Jpw) ={ > HidF/oX: | Hye P (v —r+ )} € I,

0<i<n

where p; = sif 1 <i<n—1 and p, =1 and pg = 0. Note that
JL(v) C P}(v) since F/0X; € P (r — ).

(3) Write f = F(1,z1,%2,...,Z,) € Ax. For integers ¢,v > 0 we
define

Ry (v) = Ker(Bf — An/(I5 + ma(v))),
where Iy = {gof + Y. ¢;0f/0x; I gi € Ay (0<i<n)}.
1<i<n

Lemma(3-1). The natural map ¢ : BL-(v) — RE%.(v) is injective if Bf.(v)
1s torsion free as a A-module. It is surjective if g —v >d —r+ s — 2.

Proof. Tt is easy to see Ker(:) is torsion, which implies the first
assertion immediately. To show the second assertion it suffices to show
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the surjectivity of PJ(v) — R%(v). We have the following commutative
diagram of exact sequences

0 0
! l
Jp 5 Iyt mp(v)/ma(v)
! 1

0— Piv) — Pl — Ap/mp(v)

1 1 1

0— RL(v) — BL —  Ap/I;+mu(v)
!
0 ‘ 0

By the diagram the desired assertion follows from the surjectivity of a.
Note that under P{ = A%Y

JiL 5 {ho(d-f—— Z z;0f/0x;) + Z hidf |0x; | hy € Algsq'(dq)}’

1<i<n 1<i<n

Take ¢ = gof + > ¢:0f/0x; € Iy with g; € Ay. We have

1<i<n

= lgo (d.f — Z a:iaf/awi) + Z (gi + %gozi)af/axi.

d
1<i<n 1<i<n

We may write

1 1
~go="ho+ g}, gi+—=gozi=h;+g; (1<i<n)

d d
with h; € qu_(d_l) and g/ € (x1,...,7,)77 %2 C mp(q — d+ 2) for

0 < ¢ < n. The assumption of Lemma(3-1) implies v < g—d+2+7r—py;
(cf. Definition(3-1)(2)) and we have

gi0f [0z € mpa(q —d+ 2+ 71 — p;) Cmp(v).
Since ho(d- f — 3 x;0f/0x;), hidf/0z; € J%, this completes the

1<i<n

proof. Q.E.D.

Theorem(3-1). Assumen >3 andd > r+1.
(1) For 0 < p < m:=n—1 there is the natural isomorphism of free
A-modules

O+ BR”(w(p) = REP (1(p) S HY (X, W P)prim
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where k(p) = d(p+1) —n—1 and v(p) = s(6(p+1) —n+1) - 1.

Here the primitive part HP (X ,wg? /S)””m is defined to be

Ker(HP(X,qu/S) = HP (X, Q% 1)/ HP (X0, Q% ) )prim) s

where X, /n is the generic fiber of X/S.
(2) Assume 6 < n and eithern > 4 orn = 3 and d # 4. There is
the natural isomorphism of free A-modules

B BEC) S REGY) S Bk )

where d* =dn—2(n+1) and r* =rn—s(2n —2) — 2 = s(én —
2n+2)—2.

(3) Assume H°(Z,0z/s,) =0 and § < n. There is the natural injec-
tive homomorphism of free A-modules

B0 RE(r) — HY(X,0% ).

It is an isomorphism if either n > 4 orn =3 and d # 4. There
is an ezract sequence

0 — B&(r) — RL(r) — @ Coker(A5' — Ap/mu(s)) — 0.
1<i<n—1
In particular B&(r) = R&(r) if and only if s < 2.
Moreover the cup products (3-1) and (3-2) are compatible with the mul-
tiplication of the Jacobian rings.

The proof of Theorem(3-1) is given in §4.

Remark(3-1). Under the assumption d > v + 1 we can verify k(p) —
v(p), d* —r* > d—r+s— 2. Hence Lemma(3-1) implies the first
isomorphisms of Theorem(3-1)(1) and (2) if we already know that the
groups on the left hand side are torsion free.

‘We have the following auxiliary result that will be proven in §4.
Proposition(3-1). Assume d > r and j > 2 and § < n. Then
HI (X,O;(/S) 15 a free A-module and it vanishes if either 7 < n — 3
orj=n—2andd#n+1lorj=n—1andd<n-+1.

" To deduce Theorem(2-1) from Theorem(3-1) we need the following.

Lemma(3-2). Assumed > r+ 1 and n > 3. For an integer 0 < p <
n—2 let

Yy = PROw(p) @ P{" PP (w(n — 2 - p)) — P (r*)
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be the multiplication. Recall that PK* (r*) is generated over k by those
polynomials of the form ¢7$gtﬁ where sy+a+F > r* and a+vy < d* and
¢ is a homogeneous polynomial of degree v in x1,...,2n_1. Assume
that v(p) > 0 and v(n — 2 —p) > 0.

(1) If s = 1, v, ts surjective. If s > 2, Im(1p,) contains all the
above polynomials except for ¢u_1wgtﬂ with o+ B = s — 2 where
p=(6—2)n+2.

(2) The composite of v, with the projection Py (r*) — B& (r*) is
surjective.

Proof. First we deduce Lemma(3-2)(2) from (1). We may assume
s > 2 and fix qb”_lel‘tﬁ with a+0 = s—2 as in (1). By Definition(3-1)(2)
J& (r*) contains the polynomials

z2tf > hof /o

1<i<n—1

where h; is a homogeneous polynomial of degree y—§é in x4, ..., z,_1 and
f is as in Definition(3-1)(3). In fact we need note that the assumptions
d>r+land § >2imply p—86=(6-2)(n—1)>0and d*— ((s —2) +
(=8 +(d—-1)=(n—-1)(d—§8) —s—1>0. We can write

f=> @operit’

a,b,c>0

where ®,; . is a homogeneous polynomial of degree c in z1,...,2zn_1
and a,b,c > 0 are integers satisfying sc+a+b > r and ¢+ a < d.
By Theorem(1-2) and Proposition(1-3) ®¢¢ s is non-degenerate. By
Macaulay’s theorem ([D, §2]) any homogeneous polynomial of degree
>(6—-2)(n—1)=p—6in x1,...,Z,—1 is in the homogeneous ideal
generated by 0®g 9,5/0x; with 1 <¢ <n—1. Noting p—1 > p—6 > 0if
6 > 2, we can thus find h; homogeneous of degree u — 6 in x1,...,T,—1
such that

bu—122tP = Z ’ Z ot tPt 00,y . /x; mod JE (r*).
1<i<n—1(a,b,c)#(0,0,6)

Thus the desired assertion follows from Lemma(3-2)(1).
Next we prove Lemma(3-2)(1). We prove only the statement in case
s > 2 and leave the (easier) case s = 1 to the readers. Put

k1 = K(p), K2 = K(n—2—p), n=v({p), r=v(n—2-p)
M =06p+1)—(n—-1), a=6(n—p—-1)—(n—1)
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We note
d* =K1 + Ko, = A1+ A2, )\1,)\2 >1
¥ =su—2, 1y =8\ — 1, Vg =5Ay — 1.
We have
Py ()= PY (™) and P(w)= Y PF(vi)n (i=12).

esp Ti SAg

Here P{ (r*). ¢ P¥(r*) and P (v;),, C PFi(v;) are the submodule
generated by those polynomials of the form

(%) qﬁu,ewz‘tﬁ witha+ 8 >se—2and a <d* — pu+te,
(,25,\i_7-ix%itﬁi with o +B1 2 STy — 1 and a; S K¢ — )‘z +Ti,

respectively where ¢, is as in Lemma(3-2). When 7 + 72 = ¢, the
multiplication induces

170577'177'2 : P}\fl(yl)ﬁ XA PKI(V1)71 - PA* (T*)E

We note that the assumption d > r + 1, n > 3 and s > 2 implies
that d* > r* and k; > v; (1 = 1,2), so that d* — u + € > se — 2 and
Ki— A +7; > s7;— 1. From this we see that v , -, is surjective if either
5€—2>0,s1;,—1>0(=1,2)orse—2<0, s, —1<0((:=1,2).
Unless ¢ = 1, for a given € < p we can find 7; < A; (2 = 1,2) such
that 7. + @ = € and that the above condition is satisfied. Thus we get
PX* (r*)e C Im(vpp) if € # 1. When € = 1, it is easy to see that Im(v1,1,0)
contains all the polynomials of the form (x) except a + 3 = s — 2. This
completes the proof. Q.E.D.

Now we deduce Theorem(2-1) from Theorem(3-1) and Lemma(3-2).
We use the following duality theorem.

Theorem(3-2). Let f : X — S = Spec(A) be the natural morphism.
For a locally free O g-module F, we have the isomorphism in the derived
category of bounded complexes of Og-modules.

RfRHomo, (F, w}?/s[m]) 5 RHomeg (Rf.F,Og).

Writing FY = Homo,, (F,0%), it gives rise to the eract sequence

0 — Ext L (H™'P(X, F),A) - H?(X,F¥ @ w?
A X/S

%Hom(Hm_p()?, F),A) — 0.
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Proof. Thisis a consequence of [H]. The key fact is f'Og = w? %/ glml-

Q.E.D.
By [St] HP(X ,wh /S) is a free A-module. By Proposition(3-1) the

first two assumptions of Theorem(2-1) imply that H? ()? 0% / g)isa free
A-module. By the long exact sequence induced by

OHHX/SLG;(/SHOZ/SO -0,

the last assumption of Theorem(2-1) and the freeness of H2(X,6 %/s)
imply that H(X, 0%s) is a free A-module and

HY(X, 0%,5) ®nk = H'(Z,02s,).

Hence Theorem(3-1) and Theorem(3-2) imply that the dual of dpz of
Theorem(2-1) is equal to the multiplication

U - @ Bn(p) ))®a Bn(n 2= p)(y(n 2—p))® Ak—aB%*(r*)(X)Ak,
0<p<n—2

We easily see that v(p) > 0 and v(n—2—p) > Oifandonly if -1 < p <
n—1—%. Ifniseven or § > 3, there exists 0 <p <n—2 satlsfylng the
condltlon Hence Theorem(2-1) in this case follows from Lemma(3-2).
Now assume that 6 = 2 and n is odd. We note r* =1 —2 = 2s — 2. For
0 < Vp < n — 2, we have either v(p) >2s—1orv(n—2—p) >2s—1
so that the image of multiplication

v+ YO ) @n PR (w(n -2 p) - P () = PY (25 - 2)
is contained in P¢ (2s — 1). Taking q = ~—_—, we have 0 < g < n— 2,
v(g) = —land v(n —2—4q) = 25— 1. By the same argument as the

proof of Lemma(3-2) we can prove Im(¢,) = P& (2s — 1). This shows
that

(%) Coker(¥) 5 PE (25 — 2)/PL (25 — 1) + J& (25 — 2).

If s = 1, we easily see that the right hand side is of dimension 1 over k.
Assume s > 2. A direct computation shows that P¢ (2s—2)/Pd (25s—1)
is a k-linear space with a basis

tha? with p+v =2s—2, and z;t%z? with1 <i<n—1, a+b=s—2.
n n
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By Definition(3-1)(2) the image of J& (25—2) in P{ (2s—2) /P (25—1)
is generated by the classes of t“mﬁ@f/@xj with 1 < 7 < n—1 and
a+b=s—2. We can write

f= > oyuut’zt+g withge Pir+1)=Pf(2s+1)
0<y<2
vtr=s{2—7)
where ¢., ., ,, is homogeneous of degree yin z1, ..., z,—1. By Theorem(1-
2) and Proposition(1-3), ¢2 = ¢29 o is non-degenerate and hence z; for
1 <Vi < n—11is alinear combination of d¢y/0x1,...,0¢2/0x,_1. Not-
ing t°2%8g/dx; € P& (2s —1)for 1<j<n—1and a+b=s—2, this
shows that the right hand side of () is generated by t“z¥ with u+ v =
2s—2 and they are linearly independent over k. This completes the proof
of Theorem(2-1). Q.E.D.

84. Proof of main results

In this section we prove Theorem(3-1), Proposition(2-2) and
Proposition(3-1). The key is Proposition(4-1) and Proposition(4-2) be-
low. We maintain the assumption in §2.

Definition(4-1). Let the notation be as in Definition(1-3). Let H; C P
for 1 <4 < n be the hyperplane X; = 0 and let H; C P be defined
by t = 0. As a divisor on P write 7~1H; = H; + E(:) and n~'H, =
Ht + E(t) where Hz and Ht are the proper transforms of H; and H;
respectively. From the computation in the proof of Theorem(1-2) we see
(cf. Proposition(1-1))

E@)= » kBExif1<i<n—1 and E(n) = > Ex.
1<k<s 1<k<s

The first key result concerns the cohomology of the sheaf
F :=7"0p, (£) ® O, (—aE(t) - bE(1)) (£, a,b € Z).

Recall the notation in Definition(1-1). Let m(a,b) C k[t, z1,...,2zx] be
the ideal generated by

B a1 o2 | pQn
FA il T,

withﬂ+an+k< 3 ozi> >a4kb forl<Vk<s.
1<i<n—1
Let mp(a,b) = m(a,b) @ A C Ap and write Pt(a,b) = Ker(Pf{ —
Apr/mp(a,b)). We note Pf(a,b) = Pf if a,b < 0 and that my(a,b) =
mp(a+ sb) if @ < 0.
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Proposition(4-1). Let E C ﬁA be the exceptional divisor of w : ]T”A —
Py.
(1) Letting i : 0 — Py be the inclusion, we have the ezact sequences

0 — mJF — Op, (£) — i.(Ar/ma(a, b)) — 0.

(2) H(Py, F) = P(a,b).
(3) Assume a > —2, b > 1—n and a +b > —n. Then we have
R'm,F =0 ifv> 1.
(4) Under the same assumption as (3) we have:
H"(]IT’A,}')———O if2<v#norv=mn, {>-n,
Hl(]IN”A,}") = Coker(Pf{ — Ap/mp(a,b)),
HY(PA,F) =0 if £ > max{a + sb,a + b} — 1.
(5) Under the same assumption as (3) we have

(P ~ [0 fO0<i#ln+1
e(Pa, 7) = An/mp(a,b)  ifi=1.

The proof of Proposition(4-1) is given in §5.
Definition(4-2). Let wg /s be the sheaf of logarithmic differentials

of the semistable family Px over Spec(A) in the sense of [St]. Let
W, / s(ogX) be the sheaf of logarithmic differentials with additional

logarithmic pole along X. By [St] these are locally free OﬁA—modules.
Let 05, /g £resp. 05, )s(—logX)) be the Op -dual of wg, /s (resp.
w@A/S(logX)). We write

P — p _
Wb s = Byys  and wg (ogX) = Awg g (logX).

Recall the Euler exact sequence
(4-1) 0>, 56— P Op,(-1)-dX; > Op, -0
0<i<n
and its Op,-dual
O—>(9H~,,A =X —1Tp, s —0,

where ¥ = @ Op,(1). The second key result gives us the similar
0<i<n

exact sequences for wg, ;5. Write £ = O, (X). By Proposition(1-4) we

have the canonical isomorphism

(4-2) L~ 7*Op, (d) ® O, (~6-E(1)).
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Proposition(4-2). We have the ezact sequences

0— Wp, /5 7 Op, (—1) - dXo @ @ OﬁiA(E(i)) ® T Op, (—1) - dX;
1<i<n
— Oﬁ/\ — O,
and 1its Of"A -dual

0— Op, = 108, (1)-00® P 7 Op, (1)@, (—E(5))-0; — 03,5 — 0
1<i<n

where 1(1) = 3 X;8;. Denoting by % the sheaf at the middle of the

0<i<n
second exact sequence, we have the following exact sequence

0— P/S( 10gX)—>E]—F+£—>O

where jp(8;) = OF/8X; € PE~Y(r — ;) for 0 <4 < n (cf. Definition(3-
1)(2)) that induces by (4-2) and Proposition(4-1)(2) the map

™0p, (1) = L (i =0)
and 7*0p,(1) ® O5, (-E(7)) = L (1 <i<n).

The proof will be given in the next section. We also need the fol-
lowing auxiliary results.

Proposition(4-3). We have the exact sequences

P p—1
O_H‘)ﬁ,\/s_) P/S(logX) /S—>0,

0—>0ﬁA/S®£ — b5, /S( logX) — 05,5 — 0.
Proof. The proof is standard and left to the readers. Q.E.D.

Proposition(4-4). We have the natural isomorphism

w

oS (Op,(d—n — 1)) ® O, (E(t) + (n — 1 - §E(1)) © Og.

Proof. By the first sequence of Proposition(4-2)

(4-3) logX) = L®E

wu%,\ /s(
with £ = 7%(Op, (—n — 1)) ® O, (E(¢) + (n — 1)E(1)).
Thus Proposition(4-4) follows from Proposition(4-3). Q.ED.
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Remark(4-1). Proposition(4-4) immediately implies the following fact:
The singularity (X,0) is canonical if and only if either 6 < n — 1 or
6=mn, s=1.If § >n+2, (X,0) is not log-canonical.

Now we prove Theorem(3-1) and Proposition(3-1). First we show
Theorem(3-1)(1). By [St] we know that HP (X, w')’? / ) is afree A-module.

By Remark(3-1) it suffices to show B;(p) (v(p)) = HP (X, wl )prim. We

X/s
note
(4-4) Hq(]PA’QgA/S) :) Hq(PAvw]%A/S) for vaq > 0.
To see this it suffices to show . (w%\/s) =Qp, /s and R'm, (ng /S) =0

for Vv > 1. The first sequence of Proposition(4-2) induces the following
exact sequence

~ 1~ -
0— —>/I<E*—>pAE*—>~~~—>E*—>O;P7A—>0,

P
wﬁA/s
where ©* is the O, -dual of Y. By Proposition(4-1)(3) and (1),

R”w*(xi*) =0for Vv > 1, Vu > 0 and w*(ﬁ\i*) = AT* with I* =
@ Op,(-1). This shows the second assertion and that we have the

0<i<n

exact sequence

p p—1
0—>7r*w§A/S—>/\E*—> ANYY— .. X" = Op, —0.

Compared with the similar exact sequence induced by (4-1), this proves
W*ng /s = o, /s- By (4-4) and Proposition(4-3) and the Bott vanishing
of HI(Pa, , s)> Theorem(3-1)(1) follows from the isomorphism

B (v(p) > HP(Ba,wf ", (1ogX).

D S n— >
By (4-3) we have A5, /s(FlogX) @ LR E = wy /pS(logX ). Therefore
the last sequence of Proposition(4-2) gives rise to the following exact

sequence
Ong;;’S(log)?) —Cy—Cp—---—CP—0,

where C; = > ® LY R E for 0 < a < p. Thus we obtain the spectral

sequence

EP® = Hb(Py,C2) = Ha+b(1’15,\,wg;;’s(1og)?)).
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By definition C} is the direct sum of 7*Op, (£) ® Op, (—aE(t) — BE(1))
with

L=da+1)—n—1+p-a,
B=6(a+1)+p—a—(n—1)—ewithe=0o0r 1 or 2,
a=—1or 0and (a,€) # (0,0),
We have £ > —n and 8 > 1 — n by the assumption that d > 3, § > 2
and p > a > 0. By Proposition(4-1)(4), E'f’b =0 for Vb > 1 if
dla+1)—n—14p—a>c(bla+1)+p—a—(n—-1))—1 forc=1,s.

It is easy to see that this holds under the assumption d > r+1, s > 1
and p < n — 1. Thus the spectral sequence degenerates at Ey and we
get the isomorphism

HP(@A,wg—;’S(log)?)) 2 Coker(HO(Py, S0LPRE) 15 HO(Py, LPH0E)).
A

This shows the desired isomorphism by Proposition(4-1)(2) and
Definition(3-1)(2). Q.E.D.
Next we show Proposition(3-1). First we show

(4-5) H”(@A,%A/S(—log)?)) =0 forv>2

Indeed this follows from the second sequence of Proposition(4-2) and
the fact H”(Py, L) = H**}(Py,%) = 0 for Vv > 1 by Proposition(4-
1)(4). We note that the assumption d > r is used for the vanishing of
H(P,, £). By (4-5) Proposition(4-3) implies

HI(X,0%,5) = H Py, 05, s @ L") forj>2.
By using the exact sequence
0L S@L™ =l s®LT 0

coming from Proposition(4-2), the same argument as the proof of (4-4)
shows

Hi(ﬁ’A, G@A/S ® ;C—‘l) :Hi(]P’A, T]P’A/S(_d))

SHYU(PA, Qpjs(n+1—d))  for Vi >0.

(4-6)

We note that the assumption § < n is used to get

R'm L '=R'n,(E®LY)=0 forVv>1
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by applying Proposition(4-1)(3). Noting that the last group in (4-6) is
torsion free and that it vanishes if either i <n—2ori=n—1and d #
n+1ori=nandd < n+1,it implies Proposition(3-1). Q.E.D.

Next we show Theorem(3-1)(2). Proposition(3-1) implies that
H%(X,05 %,s) is free, which implies by T heorem(3-2) that

m—1 m
H™ (X, wX/s®w)?/s)

4) we have the exact sequence

is free. By Proposition(4-3) and Proposition(4-

0—>w~ ®£®8—>w~ (logX)®£®€—>w ®uwg,, — 0.

Pa/S X/s X/8
By the same argument as the proof of Theorem(3-1)(1) we can show the
isomorphsim
BL (r*) 5 Hn—2(IP’A,w%A/S(log)~() QLRE).
By the same argument as the proof of (4-4) we can show

HY (]P’A,w~ s®LRYE) S HIPA, R, /5(d—n—1))

Pa/
and it vanishes for 1 < Vg # n unless ¢ = 2 and d = n + 1. It implies

H" 2Py, 0?2  (logX)®LQ®E) S H™ (X, wh, . Quw

“B, /s X/s X/S)

if n >4 or n=3,d # 4. Hence Theorem(3-1)(2) is proven. Q.E.D.
Next we prove Theorem(3-1)(3). Let

H' (PA7 Pa /s( 10gX))—>H (X OX/S)

be the map induced by the last sequence of Proposition(4-3). By (4-6)
it is injective if n > 3 and an isomorphism if either n > 4 or n = 3 and
d # 4. Therefore it suffices to show the following.

Proposition(4-5). Assume d > r. There are the exact sequences

0= B%(T) - Hl(ﬁ[\,@@/\/s(—logi)) - @ AA/mA(S) + Al%l — 0,

1<i<n—1
Hl(]’ﬁ’A, HD;A/S(—log)NC)) N B% — AA/(mA(r) + If)
and Ker(1) is torsion.

Proof. The first sequence follows immediately from the last se-
quence of Proposition(4-2) and Proposition(4-1). To show the second
we consider the localization sequence

HL(Pa,0) — H'(Pa,0) — HY(U, Oy) — HE(P4, ©),
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where © = OﬁA/S(—log)?) and U =P, — E = P, — {0}. We know that
Hﬁ:(ﬁA, ©) is a torsion A-module if ¢ > 1. Thus it suffices to show

H(U, 05, 5(-logX), ) = B}

and
Hg (Py, 05, 5(—logX)) = An/ma(r) + I5.
The first isomorphism follows easily from the exact sequence

0— ]P’ /S( logX @ O]P’A 1)|U — O]P’A(d)ﬂU —0

0<i<n

induced by the last sequence of Proposition(4-2). It also induces the
exact sequence

Hg(Pa, %) — Hg(Pa, £) — H3(Pa, 05, 5(—logX)) — Hg(Pa, %),

Hence the second isomorphism follows from Proposition(4-1)(5). Q.E.D.

Finally we show Proposition(2-2). Proposition(2-2)(1) is a direct
consequence of Proposition(3-1). To show Proposition(2-2)(2) we start
with the following exact sequence induced by Proposition(4-3):

0— 0@,\/5 QL PRpk— H@A/S(—log)?) ®nk —0z/5, — 0.

By (4-6) it induces HO(]T"A,O,GﬁA/S(—logX’) ®nk) = H(Z,07/s,) where

HEA’O is the special fiber of IﬁA‘ To compute the left hand side we use the
exact sequence induced by the last sequence of Proposition(4-2):

(%) 0— 65, ,s(— logX) @p k — B @p k— L)k — 0.

Writing 7 = 7*Op, (1) ® Og, (—E(4))), we have the following exact se-
quence by Proposition(4-1)

00— mF — OPA(I) - i*AA/mA(;Li) — 0
where p; is as in Definition(3-1)(2). It induces the exact sequence

0 — Ap/mp(p3)[t] =H°(Pa o, (meF) ©n k)
—H(Pp o, Op, (1) ®4 k) — (Ar/ma(1:)) @a k
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where Py o is the special fiber of Py and M[t] = Ker(M L M) for a
A-module M. Hence we get the exact sequences

0 HAA/?A(M)[t]
—H(Pp0,(7*O0p, (1) ® O3 (—E(:))) ®4 k) — Py (1) — 0,

by noting that (7. F)®sk = 7. (FOak) since R'm, F = 0 by Proposition(4-
1)(3). Here, for integers g, v > 0 we write P (v) = Ker(P{! — Ag/my(v))
with P! = P{ ®p k, Ax = Ax ®a k and mi(v) C Ay is the image of
ma(v). By the same argument we get the exact sequence

0 — Ap/ma(r)[t] = HO(Pp 0, L@ k) — PE(r) — 0.

Combining (x) with the last two exact sequences, we get the exact se-
quence _
00— TQ — HO(HDA’O, O@A/S(—logX) (SIN k) - T1

where Ty is the kernel of the map

D An/ma(u)lt] — Ax/ma(r);

1<i<n

(hi)1<i<n — Z hi - 8f/0x; mod my(r)

1<i<n
and T is the kernel of the map
D Pi(w) = PE(r); (Hio<isn — ) Hi-0F/0X;
0<i<n 0<i<n

and hence it vanishes under the assumption of Proposition(2-2)(2). Thus
it suffices to show Ty = 0. In what follows we assume s > 2 and leave
the case s = 1 to the readers. We see

Ty = {a = Y Y aiut*'248/0z; +b0/dx,

1<i<n—1ptrv=s
pn>1,020

Qi vy be k7 af S mA(T)}

It is easy to see that Ty = 0 if and only if there is no non-trivial relation
such as

(%) oY aiuah T el ofhem )0z + b8 S5 [0z, =0

1<i<n—1 ptv=s
n21,v20
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in k[zg, %1, . .., T,) where fE°™ is as (1-2) in §1. First assume b # 0. Let
I C klzo, ..., %) be the ideal generated by

LD foo™ [dx, DfEo™ JOy, . .. BFEO™ |0y,

The relation implies that I is generated only by n elements so that
P(Q) D Sup(k[zo, ..., zn]/I) # 0. This contradicts Theorem(1-2). Next

assume b = 0. We can write fom = Y ®,, x5zt where &, ,
satv+pu=r
is homogeneous of degree o in x1,...,2n—1. Then, putting &5 = $s 00,

(*%) implies

0= Z mg_lx,l;< Z ai,u,uaq)&/aﬂﬁi)

pHr=s 1<i<n—1
u>1,0>0

+ (terms of degree < § —2 in z1,...,Tp_1).

Since &5 = fh°™(0,xy,...,2n_1,0) is non-degenerated by Theorem(1-2)
and Proposition(1-3), it implies a;,, = 0 for Vi,v, u and the proof is
completed. Q.E.D.

§5. Proof of key propositions

In this section we prove Proposition(4-1) and Proposition(4-2). First
we show Proposition(4-1). By the projection formula

R'm,F = Op,(¢) ® R'm,. O, (—aE(t) —bE(1)) for Vv > 0.

Hence Proposition(4-1)(1) and (3) follow from Proposition(5-1) below.
Proposition(4-1)(2) is a direct consequence of (1). Next we show
Proposition(4-1)(4). Proposition(4-1)(3) implies HY(Py,F) =
HY(Pp, m F) for Vv > 0. Therefore Proposition(4-1)(1) implies the fol-
lowing isomorphism and the exact sequence

HV(]P)A,T('*f) = HV(PA,OPA(K)) for v > 2,

0— HO(PAJT*]'-) HHO(PAv Op, (¢))
_>AA/mA(a,b) — Hl(PA,TF*f) — 0.

Thus Proposition(4-1)(4) follow from the standard vanishing of H" (P, Op, (£))

except that the vanishing of H!(P, F) requires Lemma(5-1) below. Fi-
nally, to show Proposition(4-1)(5), we use the localization sequence
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By [H, §9 Theorem9.1] we have

. i 0 ifi#0,n,
H(AA_E7]:)_H( A‘{O}aoAA)_{AA ifi=0.
Thus Proposition(4-1)(5) follows from Proposition(5-1). Q.E.D.

Lemma(5-1). The map P{ — Ax/mp(a,b) is surjective if £ > max{a+
sb,a + b} — 1.

Proof. This follows from the fact that (z1,...,2,)" C ma(a,b)
with v = max{a + sb,a + b}. Q.E.D.

Proposition(5-1). Let the notation be as in Definition(1-3). Let a,b
be integers.

(1) HO(;NE&, Oz (—aE(t) — bE(1))) = m(a,b) C k[t,21,...,Tn].
(2) H'(A,Oz(—aE(t) —bE(1))) =0 forVi>1ifa>-2,b>1—-n
and a+b> —n.

Proof. Proposition(5-1)(1) follows from the standard description of
the space of global sections of line bundles on toric varieties (cf. [F,§3]).
For the proof of Proposition(5-1)(2) we need a preparation. Let A® =
Spec(k[z1,...,z¢]) be an affine space over k. A refinement of A’ is
the proper morphism of toric varieties X(A) — X(Aq) = A’ where
Ag = {00} is asin §1 and A is a refinement of Ag. We use the following
standard fact from toric geometry (cf. [F, §3.5, Proposition]).

Proposition(5-2). Let X(A) — A’ be a refinement and let F =
Ox(a)(D) with a Cartier divisor D such that F is generated by global
sections. Then H'(X(A),F) =0 for Vi > 1.

Now we show Proposition(5-1)(2). First assume a > 0. If b > 0,
Oz (—aE(t) —bE(1)) is generated by global sections. Hence the vanishing
follows from Proposition(5-2). If 1 —n < b < —1 we use the exact
sequence

0 — Oz (—aE(t) — bE(1)) »Oz(—aE(t) — (b+ DE(1))
—0g,  (-aBz () —(+1DE; (1)) =0

Tn—1

that follows from O;(E(1)) = O&(—f]n_l), where H; is as in
Definition(4-1) and Ej (x) is the pull back of E(x) to H;. Note that
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fIn_l is a refinement of the affine space H,_; and that the map

H(Og(—aE(t)—(b+ 1)E(1))) ,
= H(Og, _ (—aEg, (1)~ (b+1DEz (1)

is surjective by Proposition(5-1)(2) and its variant for the toric variety
f]n-l. The desired vanishing is now reduced to the case b = 0 by
induction.

In case a = —1 we use the exact sequence

0 — O5(E(t) — bE(1)) — O5(—bE(1)) — O (~bEg (1)) — 0

that follows from Oz (E(t)) = O&(—f]t). Thus we are reduced to the
case a = 0 by the same argument as before.
In case a = —2 we use the exact sequence

0 — Oz (2E(t) — bE(1)) —O5 (E(t) — bE(L))
—0g (Eg (t) —bEgz (1)) =0

that follows from Oy (E(t)) i (’)K(—INIR). Thus we are reduced to the
case a = —1 by the same argument as before. This completes the proof of
Proposition(5-1)(2). Q.E.D.

Next we show Proposition(4-2). Recall the notation of Definition(1-
3). We start with the exact sequence

0 — Qs (log D2 +Ht)

1<i<n

—>O]p(-1) . dXo &) @ O]p

1<i<n

dxX;
X;

dt
@Op—t— — O — 0.

It is easy to see
0<i<n 1<i<n
Hence we get the exact sequence

0—+Qﬁ/k(10g Z ﬁi+ﬁt+lE)

1<i<n

-7 0p(-1)-dXo ® EP Oz

1<i<n

aX; dt
4% o
X; ®

P7—>Oﬂ~)—>0.
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Noting (9~( i) ®Op(E(3)) = m*Op(H; ) — 7r*(9]p=(1) it induces the exact
sequence

0 -»Qﬁ/k(logﬁt +E)

dt
—1*0p(~1) - dXo ® P O(E()) ® 7*0p(-1) - dX; & O
1<i<n
— O@ -— 0.

The first exact sequence of Proposition(4-2) is an immediate consequence
of this. To deduce the last exact sequence from the first one, we use the
commutative diagram
0— O@A - % - 0K~,,A/S —0
l Lir Lir
0— O — £ — L®0g —0

where i is induced by jr. It suffices to show that ip is surjective
and that its kernel is ‘911» /S( logX ). Restricted on Py —E = Py —
{0}, the assertion follows from the condition Theorem(1-2)(1). Thus
it suffices to verify it on each U, with ¢ € A;. Restricted on A,,
L, = O3, (—6E(1)) and we have

ir(0) = the class of 0f € Oy (—6E(1)) for d € b5 /.
Taking o = 02'2, we have (cf. the proof of Theorem(1-2))

U, = Spec(R,;) with Ry = Alyy,...,Yns1]/(t — v192¥3)-

The exceptional divisors on U, are defined by y; = 0 and yo = 0. We
can write f = (yFy. +1)5 f in R, where f is an equation of XnU, cU,
and Oy, (—8E(1)) = (y*y5t1)80y, . We have locally on U,

b5, /s = {Z a; - yid/dyi+ > a;- a/ayjl

1<4<3 4<j<n+1
ai, aj € Ou,, a1 +a2+az = 0},
05, ,5(—logX) = {0 €65, ,5|0f € fOu,}.
We compute

{(Mfzé““) -yidf /8y = v:i0f /9y mod (f) (i=1,2),
(yrys™) % -0f joy; = 0f/oy; (3<j<n+1),



Infinitesimal Logarithmic Torelli Problem 433

The condition of Theorem(1-1) on U, implies the regularity of
RO’/(]E)’ RG'/(.fay-?))) ’Ba/(f7yi)7 RG/(f7y37yi) (Z = 172)7
Ro’/(fy Y1, y2)7 RJ/(fa Y1,Y2, y3)

By a standard argument this implies the desired assertion restricted on
U,. The same computation shows the assertion on U, for other ¢ and the

proof is complete. Q.E.D.
References
D] R. Donagi, Generic Torelli for projective hypersurface, Compositio
Math., 50 (1983), 325-353.
[F] W. Fulton, Introduction to Toric Varieties, The William H. Rover

Lectures in Geometry, Washington University, Princeton Univer-
sity Press, Princeton, New Jersey, 1993.

[GIT] D. Mumford, J. Fogarty and F. Kirwan, Geometric Invariant The-
ory, Ergebnisse der Math. und ihrer Grenzgebiete, 34, Springer-

Verlag.

[G] M. Green, Infinitesimal methods in Hodge theory, Lecture Notes in
Math., 1594 (1994), 1-92.

[Grif] P. Griffiths, Periods of certain rational integrals, I and II, Ann. of
Math., 90 (1969), 460-541.

[H] R. Hartshorne, Residue and Duality, Lecture Notes in Math., 20
(1966). .

[KU] K. Kato and S. Usui, Logarithmic Hodge structure and classifying
spaces, preprint.

K] K. Kato, Logarithmic structures of Fontaine-Illusie, in Algebraic

Analysis, Geometry and Number Theory, (J.-I. Igusa, ed.), Johns
Hopkins Univ., 1988, pp. 191-224.

[KN] Y. Kawamata and Y. Namikawa, Logarithmic deformations of nor-
mal crossing varieties and smoothings of degenerate Calabi-Yau
varieties, Invent. Math., 118 (1994), 395—409.

[FK1] F. Kato, Log smooth deformation theory, Tohoku Math. J., 48
(1996), 317-354.

[FK2] F. Kato, Functors of log Artin rings, manuscripta math., 96 (1998),
97112.

[FK3] F. Kato, Relative logarithmic Poincaré lemma and relative log de

. Rham theory, Duke Math. J., 93 (1998), 179-206.

[FK4] F. Kato, Log smooth deformation theory II, in preparation.

[Mat] T. Matsubara, On log Hodge structures of higher direct images,
preprint.

[St] J. Steenbrink, Limits of Hodge structure, Invent. Math., 31 (1976),

229-257.



434 S. Saito

[Us] S. Usui, Recovery of vanishing cycles by log geometry, Tohoku
Math. J., 53 (2001), 1-36.

Graduate School of Mathematics
Nagoya University

Nagoya, 464-8602

Japan



